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A NOTE ON ZERO-STATE STABILITY OF LINEAR SYSTEMS*

by
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A. J. Thomasian**

We consider a linear, time-varying, possibly anticipative system

whose zero-state response y to an input x is given by

jx>

f
= J w(t, t) x(t

—00

y(t) = J w(t, t) x(t) dT -oo < t < oo (1)
—oo

For simplicity we assume that all functions are real-valued. We will

consider only bounded inputs and we require that the response always be

defined and finite for any such input. Since we take the response to be

defined by (1), we consider exclusively the zero-state response of the

system, t Now, for any fixed t , we can define a bounded input by
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'The zero-state response of a linear system is the response of the system
when it starts from the zero state. For further information on this subject,
consult Zadeh, L.A. and C.A. Desoer: Theory of Linear Systems, The
state-space approach, McGraw-Hill Book Co; New York, 1963.
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x (t) = sgn w(t , t) -oo < t < oo (2)
o

and for this input the response at t is

00

J |w(tQ,T)|dT (3)
-00

Therefore our requirement implies that the integral (3) is finite for each

t . Thus we are led to our basic assumption concerning w, which char

acterizes the system:

A s sumption A: The linear time-varying system defined by (1)

satisfies the condition that for every fixed t , -oo < t < oo, w(t , t) is a
7 o o o

measurable function of r and the integral (3) is finite.

Now let (*Lj be the set of all functions on (-00,00) and if a function

y happens to be bounded, define its norm by

\\ y |.| = sup I y(t) I -00 < t < 00 (4)

Let i^C be the set of bounded measurable functions on (-00,00). It is well

known that the space ^f with the norm (4) is complete, therefore is a

Banach: space>. All of our inputs x will be long to^", and so have finite

norm (|| x ||< 00)while, because of Assumption A, all of our responses y

are well defined (the integral in (1) is taken as a Lebesque integral), finite

(y(t) is finite for each t, -00 < t < 00), and belong to W . Thus under
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Assumption A, formula (1) defines a linear operator T from a to M ,

so that y = Tx.

Now probably the most natural definition of "zero-state stability"

in the sense of, "any bounded input produces a bounded output, " is given

by Property 1 below, while Property 2 is an apparently stronger require

ment. Property 3 is a common hypothesis for a linear system, We list

now these three properties of interest to us, which a linear system satis

fying A s sumption A might have:

Property 1. For all x belonging to J( , the output y = Tx is bounded,

i.e. x belongs to x (so || x || < oo) implies || Tx || < oo.

Property 2. Property 1 holds and furthermore there is a finite constant

C such that 11 Tx 11 < C 11 x 11 for all x belonging to "Jf .

Property 3. There is a finite constant M such that

00

/ |w(t, t) | dr < M for all t, -oo < t < oo.
-oo

Thus Property 1 requires that || Tx || / || x || be finite for every x ^ 0

belonging to Jf , while Property 2 requires that all of these ratios be

bounded by a constant C which is independent of x. The interesting

point is that all these properties are equivalent.

Theorem. A linear system satisfying Assumption A either has all

three of the above properties or none of them.
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Proof. We will show 3 —^2 ^>1 ^'3. 2 =^>1 is immediate.

Proof that 3 «=»^»2. For any xe j^ we havet

|| Tx || =sup |J(w(t,T)x(T) dr |<sup ||W(t,T) | |x(r)|dT
t t J

< SUp (|| X||J|(w(t,T)| dT)< M|| X jl
t

Proof that 1=^3. The key to the proof is the "Principle of Uniform

Boundedness, " which asserts: * if for each t in some index set R, T is

a bounded linear operator mapping a Banach space 5f* into a Banach space

^Lj , and if, for every xe JC , the set of real numbers {|| T (x)||:te R}

is bounded, then the set of numbers { || T ||: te R} is bounded.

Now, for each te R = (-00,00), (1) defines a linear operator from the

Banach space 5f int<> the Banach space Z =(-00,00) (with absolute value

norm) by Tjx) =y(t). Clearly ||T.||=sup {|| T (x) || }<f|w(t, t) |dr
* 11-11=1 M pJ

while for the particular x given by (2) we have 11 T m > ji ,. TiUT

so || T || = / |w(t, t) [dT <00 for all t. Property 1 states that for all

x€~}r sup || T (x) || =sup || y(t) || = || T(x) || <00. Hence by the con-
t€ R te R

elusion of the Principle of Uniform Boundedness, Property 3 follows.

All suprema and all integrals are taken over (-00,00),

See for example, p. 168 of C Goffman's article in Buck,R. C , "Studies in
Modern Analysis, " published by the Mathematical Association of America,
Distributed by Prentice Hall, 1962. See also Dunford, N. and Schwartz, J. T.
Linear Operators, Part I. Inter science Publishers, 1958, Theorem II, p. 52.
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