

Copyright © 1972, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

to

/

THEORY AND PRACTICE OF ALGORITHM VERIFICATION

by

W. D. Maurer

Memorandum No. ERL-M315

1 January 1972

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

\

Research sponsored by the National Science Foundation, under Grants
GJ-821 and GJ-31612.

T A B L •3 *,0 F C 0 IT T 10 N T 3

Page

1 COFP-ECTTftSS OF FnOGJlAl-iS: BASIC PRINCIPLES 1

1-1 Straight-Line Programs 2
"I-? Intermediate Assertions 7
1-3 Branch-Forward Programs H
1-& Closed Loops 15
1-5 Control Points and Control Paths 20
1-6 Controlled Expressions 25
1-7 Assertions in Loops 30
1-8 Inductive Assertions 35
1-9 Debugging By Proving Correctness ko
1-10 Multiple Loops **5
1-11 Multiple Controlled I• repressions 51
1-12 The Termination Theoren 56

2 COri.ECTinSS OF PROGRAMS: FvF.TirP. T3CIP.jr*:\TLS 71

2-1 Using Mathematical Facts 72
2-2 Input-Output 77
2-3 Permutations and. Sortednoss 82
2-h- Sort Routines 87
2-f Merging Routines 91
2-6 Assertions Before and After Assignments 96
2-7 Assertions About Listr 100
2-8 Assembly Language 105
2-9 Self-Modifying Programs 109
2-10 Subroutines 113
2-11 Matrix Multiplication 118
2-12 Standard Verification Arguments 12U

5TATJ3 VECTOR FUNCTION TMECY 1^2

3-1 Sets and Ft 'net ions 1*6
3-2 Memories , 153
3-3 State Vectors 157
3-t Computation Sequences 162

~3~? State Vector Functions 167
3-6 Assignment:; 170
3~7 Expressions and Conditions 175
3-^ Memory Extensions 180
3-9 Programs 185
3-10 The Effect of a Program 189
3-11 Side Effects 19b
3-12 Parameters 199
3-I3 Correctness ' 20U

1 COEEECTMGSS OF PROGRAM: BASIC PRINCIPLES

This book is an introduction to programming as a science.

What distinguishes a science from an art is the fact that in a

science ve know that certain things are true, instead of merely

feeling that they are true*

Debugging, as it is currently practiced, is an example of

programming as an .art. We write a program, run it a few tines,

find mistakes, correct them, run it again, and finally emerge with

a "working version" of the program. This may still not be correct

for all possible input; it is only correct for the input we have

tested• If we are more sophisticated, we submit our program to-a

specialist in programming quality control, who subjects it to as

thorough a battery of tests as he can devise. At the end of this

process, the program may still have bugs in it; all that is dif

ferent from before is that the programming manager is u.jw willing

to pay for anf damage, caused in the future by any bugs which rovain.

The first "chapter of this book will be devoted to thr> basic

principles of proving mathematically that there are no bugs in.a

given program. The principles, however, will be stated intuitively,

in programming terms, without the use of formal mathematical models;

these will be deferred until Chapter 3*

^""3- Straight-Line Programs

What does it mean for a program to be correct? To illustrate

what should be included in a proper definition of correctness,

let us consider the following simple program:

B = A x A

C = A x 3

B = B X C

B = B X B

B = B X B

B = BX C

This program calculates the 23rd power of A. The results at each

stage are the square, cube, fifth power, then 10th, 20th, and ?3rd

powers•

If we are to call this a correct program, it. will not be enough

to say that it correctly calculates the 23rd power of A. In parti

cular, if we change, the 'last statement to C = B X C, then the new

program still calculates the 23rd power of A, and yet the two pro-,

grams are clearly not equivalent. If this program were part of a

larger one, and its result were used later on, we would have to re- .

ference C, rather than B. We must, therefore, specify which variable

receives the new value. Thus for the program above we would say:

After this program is finished* B is equal to the 23rd power of A.

The above statement, however, is still not enough to specify

what this-program does. In particular, the program

A = 1

B = 1

also hss the property that, after it is finished, 3 is equal to

the 23rd power of A. The difference between the two programs, of

course, is that in the new program the value of A may be changed,

whereas it may not be in the original program. If we specify that

the value of A is not changed, then the statement that 3 is equal

to the 23rd power of A is enough to specify B completely.

What if we change the last statement of our original program

to A = B X C? Now the value of A will be equal to the 23rd power

of what it was at the beginning. But if this program is embedded

in a larger one, the beginning of the larger program might not be

the same as the beginning of this one. The initial value of A must

be associated with the beginning of this program, and not some

larger one. Thus we might say: If A = X at the beginning of this pro-

gram, then A will be equal to the 23rd power of X at the end of it.

Implicit in this statement is the fact that the value of X is not

changed by the program; otherwise, we would encounter the same

problem we did before• The device of including a new variable,

such as X here, in order ,to state the conditions of correctness

of a program, ".may be used whenever the purpose of a program is to

change a variable rather than to set it to some function of other

variables.

A condition such as A = X or A = X2^ in these examples is

known as an assertion* In proving the correctness of a program,

there will always be an assertion at the end of the program, and

sometimes there will also be one at the beginning. A condition

which must hold in order for the urogram to work properly may be

stated as an initial assertion, or an assertion at the beginning.

k

Thus, for example, in a program to set B equal to the square root

of A, the initial assertion would state that A is greater than or

equal to zero. The final assertion is then the statement that B is

equal to the square root of A. We have identified the following

components in a statement of correctness of a program:

(1) an initial assertion;

(2) a final assertion;

(3) a statement of what variables may have their values changed

by the program;.

0+) a statement that if the initial assertion is true at tlie

beginning of the program, then the final assertion will be true

at the end of it.

Are these enough to specify completely what a program does?

In general, the answer is still no. A program may get into an

endless loop under .certain conditions; or it may end in more than

one place, thus making it necessary to have more than one final

assertion. Let us, however, confine our attention for the moment

^° straight-line programs* in which the above behavior cannot

occur. A straight-line program is one which has no branches at all,

such as our program to calculate 23rd powers. We will use this pro

gram to show intuitively that in this case the answer to our ques

tion is yes.

The program uses three variables, A, B, and C. A complete spe

cification of what this program does will give the new values of

A, B, and C after the program has oeen executed, as fuuctionr; of

their original values. For the moment, lot A, B, and C r.tr.ud for

the now values of ttie variablesj and let &, b, an:'! £ st:)id for

their, original values. rH)^er\ the equations

6-

A = a

B = a23

C = a3

provide a complete specification of the effect of this program.

Normally, the second of these is the only one we will be interes

ted in, although we might need the third, if, for example, this

program is embedded 'in a larger one which uses the cube of a• If

we happen to notice that this is an. Intermediate result which

remains at the end of this program as the final value of C, we

can avoid recalculating the cube of a if this result is needed.

Let us now regard &, b, and c, not merely as symbols denoting

A, B, and C respectively at an earlier point in the computation,

but rather as separate variables, much like the variable X in the

previous example. We may now construct the initial assertion

A=&, B = b, C = £

and the final assertion

A = a, B = fe23, C = a3

Furthermore, B and C are the only variables whose values may

be changed by this program. These statements are equivalent to the

complete specification given above, and for the same sort of reasons

as before; since a cannot change, the final assertion defines the

values of A, B, and C uniquely in terms of initial values, even

though this assertion refers directly only to the final values of

A, B, C, &,^b, and £.

We have thus shown intuitively that defining khe correctness of

a straight-line program in terms of initial and final assertions

allows the effect of that program to bo specified completely*

In proving the correctness of a program, however, we a?-e :::<•>t al

ways interested in a complete specification. We have seen that it

is enough, in our first example program, to specify that B is set

equal to the 23rd power of A, provided we also know that the value

of A cannot change. However, the value of A cannot change because

no individual statement of this program can cliango the value of A;

l:i general, whether or not a program has branches in it, the o;ly

variables which can be affected by the program as a whole are those

which are affected \yy individual statements in it.

We shall, therefore, continue to define correctness of a

straight-line program in terms of initial and final assertions

alone. A complete definition of correctness for straight-line

programs may be, stated as follows:

Given & straight-line, program, an. initial assertion-about the

variables of that program, and a final assertion about t?:esc vari

ables , the program is. correct (with respect to these two assertions)

i£? whenever it i& started with the initial assertion valid, it

ends with the final assertion valid«

We will often abbreviate and say simply that "a program is

correct," but we should note carefully that, strictly speaking, a

program is always said to be correct with respect to something.

Also, whenever it appears that we have no initial assc-tion for a

program, it is- ui.dorstood that the initial assertion is the "mtfl.

assertion," which is always true» When two or mo.ro assort." nns arc

connected oy commas, "and" is understood; thus, for example, "A -••-

§_, B -- b, C - £" denotes the ringle assertion "A•-- a and B - b •no

V*» -- V •

1-2 Intermediate Assertions

We shall now prove the correctness of bur straight-line program

to calculate the 23rd power of A, in its original form. Our final

assertion is B - A 3; there is no initial assertion. In addition,

B and C are the only variables whose values may be changed 'try the

program.

Before we proceed to the actual proof, let us consider certain

objections which might be made on intuitive grounds to the statement

that this program is correct. The first sort of objection ocrncerns

itself with the representation of variables within a computer•

For example, what if the 23rd power of A is too big a number to

fit into a word on the computer being used? In this case, in order

for the, program to be correct, we must specify that the value of A

is small enough so that this will not happen. This then becomes

part of our initial assertion. Similarly, if A is a floating point

number, there will probably be roundoff error in the calculations,

and the answer will not be precisely equal to the 23rd power of

the given value of A. In such a case, all of our quantities must

be asserted to be subject to roundoff error. Thus our initial as

sertion might say that A is equal to X + e, for some error term e.

Our final assertibn then says that B is now equal to Y + ef, where

Y is the 23rd power of X and the error term ef depends on e, and,

in general, on X as well.

It is evident from the above that programs involving floating

point quantities may be proved correct with respect to the proper

assertions* The formulation of these assertions requires special

techniques, which are the province of numerical ana3.ys.is and are

beyond the scope of this book. In the future, we shall always as-

8

sume, when dealing with integers and real members, that those ore

arbitrary integers and real numbers, not bor.d "ay any restrictions

as to size or significance. It is worth repeating that these as

sumptions are made'solely in the interests of simplicity; there is

nothing to prevent us from dropping them in an expanded theory.

The gocond sort of objection to the statements which we have

made abo ;.t our example program concerns the variables whoso values

may be changed. As we saw in the preceding section, we need only

look at each statement of the program separately in order to prove,

in this case, that B and C are the on3.y such variables. We vo'ilC

infer this from the fact that B and C are the- only variables oc

curring on the loft side of the equal sign in any statement in t-o

program* The tro: hie is that this inference depends on. t.he feet t'v.t

our statements" have no s5.de effects. In some languages, such, as

ALGOL, any arithmetic statement may have side effects; thus A o~

B or C might be functions with no parameters. Therefore, this pos

sibility must be explicitly or implicitly excluded as part of our

proof of correctness.

Even when side effects are present, it is usually not too dif

ficult to verify the statement that the side effects do not inter

fere with the variables, whoso values are being calculated. \ side

effect is always the effect of some subroutine, or sons function

coded as a subroutine; any variable whose value is cha.ngcd by the

side effect has its value changed by some statement appearing in

the definition of the corresponding subroutine. This statement nay,

in turn, have a side effect, and the analysis may be car-."led through

several levols, out it never leads to circular arguments, even in

the cas of recursive r.idc efforts. This is hecjv.se all the cor

rectness stnturnouts which wo make about, programs hold only for

programs which terminate in a finite number of steps. If a program

terminates in n, stops, there can be no more than n recursion levels

in the run,ling of that* program.

Having met these objections, let us return to the nrob7.en of

proving that our final assertion will be valid after'the given pro

gram has been run. One way to do this is to show exactly what goes

on at each stage, as follows:

B = A X A

* 3 = A2

C = A x B

* B = A2, C ---- A3

3 = BnC

* B* A^, C- A3
B --; D X B

* B= A10, C= A3
B =•- B x B

* B - A20, C - A3
3 = DKC

* ^> ~ a23' jj — jA.

Instead of two assertions, wo now have seven, of which the first

is loft out since it is always true. The five new assertions may

be called Intermediate assertions* Bach statement in the program

now has an assertion before it and after it, and may thus be re

garded as a one-statement "program" whose correctness is be:*ng

proved. Let us write, for example, the third statement of the pro

gram above, with its "initial assertion" and "final assertion" in

this sense': 0 0
* B = A , C =: AJ

B = B«C

*B- A?, C -- A3

10

2
To prove this correct, we must verify that, if B =•-• A and

C = A3, and then B is set equal to B)(C, then we will have B -

A/ and C = A3. To anyone who knows what assignment statements

mean, this is obvious» Let us, however, briefly consider the

idea of mechanizing this proof process, that is, writing a com

puter program which verifies single statements in this fashion,

and, it is hoped, larger programs as well. Obviously we would

need a convention to distinguish an assertion from a statement;

we have used an asterisk preceding each assertion, which allows

assertions to look like comments (in most programming languages)

so that we can leave them in our programs when we run them. We

would also need some other method of specifying exponentiation,

such as ** as it is used in FORTRAN. The character strings

*3 = A**2« and »C = A**3», representing assertions, and lB=B)(C»,

representing an assignment, must be combined by our program to

form fB = A**?* and ?C = A**3f* This process depends for its va

lidity on the mathematical meaning of assignments and assertions,

which will be more fully discussed in Chapter 3* For the present,

we shall accept intuitive arguments when they arise; thus in the

proof of the one-statement program above we shall simply say that

it is correct "*oy inspection." It is also clear that the entire

program is correct if each of the one-statement programs it con

tains is correct; thus in this case the entire program is correct

by inspection.

11

1-3 Branch-Forward Programs

We now consider programs which contain transfer (or jump, or

•branch) statements. The simplest of these programs to analyze are

the ones in which all transfers are in the forward direction;

this is because such programs cannot contain any loops. We shall

refer to them as branch-forward programs ♦

The following FORTRAN II function calculates the absolute

value of X:

FUNCTION ABSF(X)

ABSF = X

IF (X) 1, 2, 2

1 ABSF = -X

2 RETURN

END

We have chosen FORTRAN II because in most algebraic languages this

program would not require any branches at all. In FORTRAN IV, for

example, we would have written IF (X .IZT. 0) ABSF = -X; in ALGOL,

we would collapse the whole program into ABSF :^ i£ X<0 then -X

else X. FORTRAN II, however, forces us, even in this simple case,

to consider the issue of branching.

Tt is clear that only the function variable ABSF can have its

value changed by this program. Let us 'S&b up intermediate assertions

ftzr this program, just as we did in the procodiug sec-'-.ion:

FUNCTION ABSF(X)

'• ABSF = X

* ABSF = X

IF (X) 1, 2, 2

12

* X < 09 ABSF = X

1 ABSF = -X

* ABSF EQUAIS THE ABSOLUTE VALUE OF X

2 RETURN

END

The proof, here is a bit harder than the preceding one, because when

we consider the IF statement we must distinguish two cases (in

general, three). If X was less than zero, we pass to statement 1,

and the assertion there is simply that X is less than 0 (and that

A3SF is still equal to X, a fact which is not actually used here).

If X was greater than or equal to zero, we pass to statement 2.

In this case, ABSF will be equal to the absolute value of X because

ABSF = X and X £ 0. If statement 1 is executed, ABSF will then be

equal to the absolute value of X because ABSF = -X and X < 0.

All this is quite straightforward9 and we would therefore like

to be able to dispense with the intermediate assertions arid to say

that this program is correct by inspection. In doing this* it is

helpful to write out each of. the two paths which the program may take;

ABSF a X ABSF = X

(x < o) Oc 2 o)

ABSF = «X RETURN

RETIBN

In each of these paths we have written the condition which actu

ally holds whenever that path is taken$ these conditions are en

closed in parentheses to identify them as conditions. It is not

necessary to include any labels in the specifications of the paths.

In each of the two cases above, the final assertion that ABSF is

equal to the absolute value of X may be immediately verified*

13

As another example of a branch-forward program, we consider

the sorting of an array of two elements, given here with inter

mediate conditions at each stage:

* A(l) = X, A(2) = Y

IF (A(l) .IE. A(2)) GO TO 1

* A(l) = X, A(2) = Y, X > Y

T = A(l)

* A(l) = X, A(2) = Y, X > Y, T = X

A(l) = A(2)

* A(l) = Y, A(2) = Y, X > Y, T = X

A(2) = T

* Ad) = jaaaa^ y), *(2) = lygcx, y)

1 CONTINUE

Here we have used FORTRAN IV; max and min are the usual maximum

and minimum functions (which in FORTRAN would be written AMAX and

AMIN when applied to real numbers, so as not to begin with I, J, K,

L, M, or N). As before, the treatment of the IF statement must be

broken up into two cases. The only verification here which is not

immediately obvious is that1involving the statement A (2) = T, and

this becomes clear as soon as we realize that, since X > Y, we

must have X = max(X, Y) and Y = min(X« Y) in this caseo Using the

shorter method, we may write out two paths as before. The first is

* A(l) = X, A(2) = Y

(A(1)£.A(2))

* A(l) = ndn(X. Y), A(2) = max(X, Y)

and the second is

Ik

* A(l) = X, A(2) = Y

(A(l) > A(2))

T = A(l)

A(l) «= A(2)

A(2) = T

* A(l) = alQ(X, Y), A(2) = g£x.(X, Y)

Here the values of X and Y cannot change, since indeed they do not

appear in the program at all. In each of these paths, there is both

an initial and a final assertion. We shall continue to precede these

assertions by asterisks, and to write intermediate conditions in

parentheses, since intermediate conditions and assertions play

quite different roles in verification. Each intermediate condition

must hold at the point at which it is encountered; thus in the second

path above we may infer from A(l) > A(2) that we must have had X > Y

at the beginning of the path, so that X = max(X, Y), Y = min(X, Y).

Paths in programs, as illustrated above, are subject to certain

general rules which we may now state. A path consists of: an ini

tial assertion, which may be omitted (and reads "always true" if

it is omitted); followed by any number of assignments and conditions;

followed by a final assertion. The path is correct (or verified, or

valid) if: whenever it is started with its initial asserti n valid,

and if it is actually followed to its end (which means, in particu

lar, that each intermediate assertion is true as it is passed),

then when it is finished the final assertion will be valid. The

length of such a path is the number of assignments and conditions

in it, irrespective of the initial and final assertion.

15

1-lj. Closed Loops

A closed loop in a program is a sequence of statements, such

that it is theoretically possible for the program to proceed from

the first of them through the sequence to the last and then back

to the first. A straight-line program, or, more generally, a

branch-forward program, cannot have closed loops. It is possible

to write a program which has no closed loops and yet is not a

branch-forward program, as shown by the following example (again

in FORTRAN II):

FUNCTION SUMABS(X, Y)

1 A = X

2 IF (A) 3, 5% 5

5 B = Y

6 IF (B) 7, 9, 9

9 SUMABS = A + B

10 RETURN

3 A = -A

k- GO TO 5

7 B = -B

8 GO TO 9

This function computes the sum of the absolute values of X and v#

The statements GO TO 5" and GO TO 9 are branches backward. We have

purposely included a statement number on every statement in this

program to show that it is iu fact a branch-forward program if we

interpret "forward" to mean "in increasing order of statement num

bers." In fact, any program with no closed loops may have its

statements ordered in such a way; this follows from the properties

of partial orderings. In what follows, we shall assume that any

16

program with no closed loops is in fact a branch-forward program.

As a simple example of a program with a closed loop, let us

consider the following program to calculate A , in which the vari

ables whose values may be changed are X and Is

A — JL

1=0

1 IF (I .EQ* N) GO TO 2

X = X * A

1=1 + 1

GO TO 1

2 CONTINUE

In order for this program to work, N must be an integer which is

either positive or zero* Let us write an assertion before each

statement of this programs

* N£ 0

X = 1

* N £ 0, X = 1

1=0

*N^0, I £ N, X = A1

15 IF (I JEQ. N) GO TO 2

* N£ 0, I < N, X= A1
X = X * A

* N£ 0, I < N, X = AI+1
1=1 + 1

* N£ 0, I £ N, X = A1
GO TO 1

* X = AW

2 .CONTINUE

17

This, example raises the question of how to fig-re out what our

assertions should be, especially as our programs get longer. In

fact, the determination of assertions in proofs of programs is

a task which is comparable to programming itself. In this case,

we must know enough about how our program works to be able to

assert, for example, that whenever we get to statement number 1

(either the first time or at some later time) then N will still

be greater than or equal to zero, I will be less than or

equal to N, and the value of X, which is a "partial answer,"

will be exactly A1.

Now suppose that we verify what happens at each statement, just

as we did before. This verification is obvious at the statement

X = 1. At the statement I - 0, wo obtain I < N (clear, since I -• 0

and IT £ 0) and X = A1 (clear, since 1 = 0 and X = 1)J At statement

number 1, we start with X = A1; if I = N, then we clearly obtain

X = Ar*. If I ^ N, then since we started with I < N, we get I < IT,

which is the only thing that changes. At the statement X -- X * A,

the only thing that changes is that X = pJ- becomes X ~ A1"1"1, which

is clear since A1 * A - A1 . At the statement 1=1 + 1, we start

with I < N and obtain I <; N, which is true but depends on the fact

that both I and N are' integers. We also start with X = AI+1 and

obtain X = A*"-, which is clear since I lias been increased by one.

Finally, the GO TO statement does not change anything.

It is strongly recommended that the reader work tvr rjgh the

above verifications before proceeding further, since abbreviated

arguments such as those made in the preceding paragraph will be used

constantly throughout this chapter. At the risk of over-specification,

wo. shall write out one of these arguments in full. Let us write the

statement X = X * A together with the assertions which precede and

follow it: 0 i If 0° is left ^^as^*Throughout this chapter^ass-e ^^.jg^caWrtt"

18

* N£ 0, I < N, X = A1

X = X * A

*N£ 0, I< N, X =AI+1

This is a path of length 1. We must verify that £f N > 0, I < N,

and X = A1, and i£ we set X = X * A, then we will have N 2 0,

I < N, and X = A****-. These three conclusions are verified as

follows» We have N <> 0 and I < N at the erd because these con

ditions were both true at the beginning and because neither N nor

I has been changed by the assignment X = X * A. We have X = AI+1

at the end because X = A1 at the beginning and we have multiplied

the value of X by A in the given assignment* Thus the path is valid.

This entire argument Is then abbreviated, as we have done in the

preceding paragraph, to "At the statement X = X * A, the only

thing that changes is that X = A1 becomes X = AI+*, which is clear

since A1 * A = AI+1oM

What can we infer from these arguments? Can we, in particular,

infer that our program is correct? Suppose that the program takes

n steps to execute, and suppose that, before the first step, the

initial assertion is valid© We may now show inductively that, be

fore the £th step, which presumably consists in executing some

statement, the assertion given .bfcfdre*that'-statement will be valid.

In fact, if this is true for £ = k, the preceding arguments have

shown precisely that it is true for £ = £ + !• In particular, it

is true for £ = n,, so that, when the program terminates, the final

assertion will be valid. Thus the program is correct. The trouble

with this argument is that we have no way of knowing that the pro

gram takes a finite number of steps at all. In other words, we now

know that either the program is correct ctr it goes into an endless

loop. This situation is so common in proofs of correctness that it

19

has a special name: partial correctness* We now define correctness

and partial correctness In a general framework.

Let £ £e fi program and let jL, ..., J^ be assertions about the

variables of £. iet each. A^ be associated with a statement S^ o£ P.
Then £ £g, gorrect with respect £o th& ^ ££& ££g. 1^ ££? whenever
£t £jg. started, at j§pj^ E^ ££& 4^ tog., tften £t wJJJ- eventually £et

to some jv, fy& fit £bfi£ Pftfev ^ H£2JL £& Sl™> J£ iSL ^^Hl
correct wl,th respect £o th£ &£ aj& tM J^ ££, vheneyep ££ JLg. Star
Jet gt sj2S§, 1^ v£th ^ ££ue,* t^££ £t gyer, gets, to some J^.tha
assertion ^ w£il be true, at that pojlnt.

If every statement of P has an assertion associated with it,

then the.correctness ofoP with respect to all these assertions

is simply the statement that every path in P of length 1 is valid.

Such a program,, even though it is correct (not just partially cor

rect), may still get into an endless loop. On the other hand, Sup

pose that we choose for the F the starting and stopping statements

of the program, and for the A* the initial and final assertions.

If we can show that the program never returns to the start, then

the correctness of P now means that if the program is started at

the beginning with the initial assertion valid, then it will get

to the end, and when it does the final assertion v/5.11 be valid.

As we have seen above, the part^a^l correctness in this case may

be proved by adding more assertions until every statement has an

associated assertion, and then proving correctness (or partial,

correctness, which is the same in this case) of the result. This

is a special case of the thcorom of the next section. Note that

we may also allow here for P to start and/or stop in ;:ore than one

place. A straight-line program, of course, always starts at the

(physical) beginning and steps at the end, so that reference to

associated statements is superfluous in this case.

'rf».«^l4.'^'.-. .

20

1-5 Control Points and Control Paths

The exponentiation program of the previous chapter is not only

partially correct; it is correct. Before we prove this, however,

let us show how its partial correctness may be proved more simply

by the use of paths of length greater than 1»

In a branch-forward program, each path from the beginning of

the program to the end has a length which is less than or equal

to the total number of statements in the program. In a more gene

ral situation, however, this is not true. In bio? exponentiation

program, we go around the loop N times, and therefore there is a

different path from the beginning of the program to its end for

each integer N > 0. Because this program is so simple, we can, in

fact, analyze each of the infinite number of paths of this form;

but this is much more difficult for longer programs. There is,

hov/ever, a method by which we may always restrict ourselves to the

consideration of a finite number of paths. This is the method of

control points and control paths.

A control point in a program is any statement for .which we have-

made an assertion. A control path is any path from one control

point to another, with no control points in between. If we have an

assertion attached to every statement in the program, then every

statement is a control point, and every control path has length 1.

The other extreme is the case in which only the starting and stop

ping points of our program are control points; in this case, there

are an infinite number of control paths unless the given program is

a straight-line or branch-forward program. We would like to work

with an intermediate case, in which the number of control paths is

finite while the number of coivfev-exl points is as small, or nearly as

small, as possible.

21

In our exponentiation program, it is sufficient to consider

one control point in addition to the starting and stopping points.

Suppose, for example, that statement number 1 is a control point.

The assertion at this statement is the same as it was before. Let

us write the program with assertions only at the control points

we have selected:

* N k 0

X =

I =

1

0

* N k o, I < N, X = A1

1 IF

X =

I =

(I .EQ,

I + 1

• N) GO TO 2

GO TO 1

* X = A*

2 CONTINUE

Remembering that a control path stretches from one control point

to another, with no control points in between, we see that there

are three control paths, as follows:

*N£0 *N£ 0, I£ N, X= A1 * N>0, I< N, X= A1
X = 1 (I = N) (I ^ N)

1=0 * X = AN X = X * A

*K^O, I <vN, X = A1 1=1 + 1

t *U^0, I< N, X= A1

In the third of these control paths, there is a GO TO statement

(GO TO 1), which is omitted since it has no bearing on the validity

of the path. This path is also an example of the fact that a con

trol path may stretch from one control point back to itself©

22

Suppose, now that we can show each of these paths to bo valid.

Is the program still partially correct? Let F. be the starting

statement of the program; as we run it, let F be the first con

trol point we encounter, let F- be the second one, and-so on.

(Some of the F. may be the same.) Between F. and F there is a

control path, and we see' by induction that if the assertion at F..

is valid then the assertion at F. is valid for each i. If the pro

gram takes a finite number of steps, then there will be a finite

number of F-, and one of them will be a stopping statement, since
jL V

such a statement is always a control point. The assertion at this

point will be valid, and the urogram is therefore partially correct.

This is a special case of the following theorem:

Let If ^e g. set of pairs (A., F), where each A. is an. assertion

which is associated with pp& statementsJ in the program P, and

alj. of the £j are distinct. Then, £ £g correct with respect to any

subset iT1 £ 1T if £t is. correct with respect to 1T.

Normally, (A , F.) e T1 if and on^7 *f F« ?-s a starting or stop-

ping statement of P.» By including a pair (A., F,) £ IT for every

statement F* of P, we obtain the method of the preceding section;

by including (A., F) 6 7T only for control points F , we obtain the

method of this section.

A collection of control points is sufficient if evexy closed

loop in the program must go through at least one control point.

This condition assures us that the total number of control paths

is finite, as will be proved in the next paragraph. In. our exponen

tiation program, we have a sufficient co3.lect5.on of control points

because there is only one loop in the program, and that loop passes

through the statement numbered 1. If xre took, instead of the state

ment numbered 1, any of the tluroo statements which follow ::t as a

control point-, we would still have had a sufficient collection of

control points.

23

Let us now consider control paths when the collection of con

trol points is sufficient. Suppose that a control path loops back

to some previous point oil itself. Then this point must be its

starting point, because otherwise there would be a closed loop in

the program which contains no control points. Therefore the only

two statements in such a control path that can be the same as its

start and its end. But since each program contains only a finite

number of distinct statements, there can be only a finite number

°f sequences of distinct statements followed by a single arbitrary

.statement. Hence there are only finitely many control paths. We

have proved that whenever W£ **&ve & sufficient collection of con

trol wttrtavthft'total number of control paths relative t& thege,

control points £§, finite." The converse is also true, provided tliat

there are no loops which can nevex be reached.

In one sense, we have already proved that each control path in

our exponentiation program is valid. In fact, by including (A.., F^)

inlffor every statement F., and in1P for the control points only,

werinfer from our theorem that the validity of control paths is a

consequence-of the validity of paths of length 1 (this -is also.".easy

to see directly), wMch we already know in this case. Let us, how-

ever, show independently that each control path is valid; r>s before,

we use abbreviated arguments, all of which may be "written out"

using the paths of length 1 as above. The first path gives IT 2 0

(clear), I £ N (clear from 1=0 and N^O), and X = Ax (= A =1,

clear). The second path gives us X = A?r, which is clear from X

= A1 since I = N. The third path gives us N £ 0 (clear), I < 17,

and X = A1. Since originally Ii IT and I ^ N, we must have- had

I < N, so that I + 1 £ N (since X and N are integers). Also, X -

A^A = Ai+1, where i is the old value of I; but i+1 is then trie new

•-.f'.vetttnr - '*-. '.is-•_«»"*•*»*•*».«>>:

2k

value of I, so that X = A1. This completes the verification.

One njethod of assuring that we have a sufficient collection

of control points, in most computer languages, is to choose the

labelled statement's as control points. This works because in most

languages a closed loop must include at/least one labelled state

ment. In assembly language, Xn order to use this trick, one must

be assured that the given program contains no transfers backward

to an unlabelled statement, such as a label plus or minus a constant.

25

1-6 Controlled Expressions

Let us now finish the proof of correctness of our exponentia

tion program. We have seen that it is now sufficient to prove that

it always terminates in a finite number of steps.

The proof of this fact might have been easier if we had used

a DO loop, as follows:

X = 1

DO 2 I = 1, N

2 X = X * A

This is not quite equivalent to our original program, and is not

even correct for; N = 0 because of the way FORTPAN works. But the

termination of such a program follows immediately from a theorem

which may be formulated specifically for FORTRAN. One merely needs

to check certain things? that I and N are never changed inside the

loop; that there is no inner loop (or that any inner loops termi

nate); and so on. In any other language, with a different sort of

iteration statement, we may prove a similar theorem.

The trouble with this is that DO statements, and iteration

statements in general, are not very easy to handle when it comes

to proving partial correctness. In fact, when we prove partial
<

correctness by the methods outlined above, iteration statements

cannot really be considered as statements at all, in the sense of

being-associated with assertions. It is possible to revise o?ir

methods so that they apply to programs containing iteration state

ments, but it is simpler to "write out" all iteration statements;

that is, we include statements which explicitly initialize, in-

26

crement, and test the controlled variable •

We mxjst therefore consider the general problem of proving ter

mination without iteration statements. The key to such proofs is

usually the quantity which, if we had used an iteration statement,

would have played the role of the controlled variable. Very:.often

this quantity is in fact a single variable; in our exponentiation

program, it is I. The properties of the variable I which we shall

need in this program are:

(1) It increases each time we go around the loop;

(2) It is bounded at some statement in the loop.

In this loop, the statement I = I + 1 is the only statement

which changes the value of I, and thus I always increases when we

go around the loop. The assertion I < N, among others, appears at

statement number 1, and this shows that I is bounded. It is neces

sary, of course, that the maximum value of I, namely N, be constant

inside the loop* It may, however, be changed outside the loopj for

example, it may be initialized at the start of the program.

We shall now state and prove, in informal terms, a theorem

about the termination of programs which have exactly one closed

loop and exactly one control point in that loop. In this case,

there will be one control path which goes completely around the

loop, which we call the loop control path. In general, a loop con

trol path in a program is any control path which is contained com

pletely within a single closed loop of that program. Our theorem

now reads as follows:

4 pro.gra.m w^tft o_ne loop and one control point in that loop

always terminates If there exists an integer expression whose va3=ue

always increases £s_ ge. £0 around the loop* and is bounded at the

control point by a quantity which does not change inside the loop.

27

Jfere we have used the phrase "always terminates" to mean

"always terminates in a finite number of steps (i. e., takes only

a finite number of steps to execute) when started with its initial

assertion valid." The statement that the program is bounded at the

control point implies that we have already set up an assertion

there, and verified it by showing that every control path in the

program is valid* Ihat is, when we are proving correctness, it

is assumed that partial correctness has already been proved.

The proof of our theorem proceeds as follows. Suppose, in con

tradiction, that the loop is endless© We start our program and run

it until we get to the control point. Suppose that the value of

our integer expression is now v ; we also know that this expression

is bounded by a quantity whose value at this point we call b. Thus

we have v. < b© We now continue the program until we get back to
1

the control point3 suppose that the integer expression now has

value v2. By hypothesis, we have v2 > V-, and also v2 ^ b because

the value of the bound does net change within the loop. Continuing

in this way, we derive a strictly increasing sequence of integers

v < v < ..», all of Which are less than or equal to the integer

b, which is impossible. Thus the theorem is proved.

Integer expressions such as the one discussed here may be called

controlled expressions. In general, a program will have several

closed loops and one or more controlled expressions. In this case,

we must determine how they interact with one another; this topic

will be taken up again in section 1-11.

The simplest example of a situation in which a controlled ex

pression does hot consist of a single variable is that in which

the controlled variable decreases rather than increasing, such as

in the following program:

28

X = 1

I = N

1 IF (I .EQ. 0) GO TO 2

X = X * A

1=1-1

GO TO 1

2 CONTINUE

This program also calculates A • The variable I is not a controlled

expression here, in the sense of the theorem above, because it does

not increase. We could, of course, prove another theorem about

variables which decrease, but it is simpler and more elegant to

consider the negative of a "decreasing controlled expression" as

an ordinary controlled expression. Thus, in this program, the con

trolled expression is -I. Let us rewrite the program with assertions

placed at control points:

* N > 0

X = 1

I = N

* N ^ 0, I 2 0

1 IF (I .EQ. 0) GO TO 2

X = X * A

1=1-1

GO TO 1

J * N £ 0, I = 0

2 CONTINUE

We have purposely omitted $ny assertions about X and A because we

are only interested here in the question of termination. (The pro-

29

gram is partially correct with respect to the given assertions,

but this does not imply, of course, that it computes A .) It is

now clear that the value of the expression -I always increases

whenever we go around the loop; and that it is bounded (by the

constant zero) at a statement in the loop, namely statement num

ber 1.

30

1-7 Assertions in, fcoops

The art of proving the correctness of programs, as we have

suggested, consists to a great degree in finding the right asser

tions. This involves the idea of formalizing intuitive arguments,

which is quite familiar to anyone who has ever learned to program,

or, for that matter, to solve word problems in high school algebra.

A person who has written a program usually has an intuitive idea

of why it works. In proving that program it is merely necessary

for him to translate this into a set of assertions at a sufficient

collection of control points.

The following examples are meant to give the reader experience

in finding such assertions in simple programs. Let us first finish

the example of the previous section: •

X = 1

I=N

1 IF (I .EQ. 0) GO TO 2

X = X * A

1=1-1

GO TO 1

2 CONTINUE

Why does this work? To be precise, what is the intermediate value

of X at some point in the loop, such as statement number 1? Ex

perienced programmers might make the intuitive statement that "it

doesn't matter, because it is obvious that the loop is executed N

times anyway•',' In proofs, however, this is not enough; one must

always look for an assertion which may be stated in formal torms.

In this case, tho variable I goes from N down to zero while the

31

power of A goes from zero up to N, so that I is always equal to

N minus the power of A; or, in other words, the power of A is

equal to N-I. This may be stated as the assertion X = A**"**, and,
after taking into account that x and I are the only variables
whose values may change, the setup is complete:

X = 1

I = N

* N£ 0, I > 0, X = A1**1

1 IF (I .EQ. 0) GO TO 2

X = X * A

1=1-1

GO TO 1

* X S A? •.

2 CONTINUE

The control paths are now as follows:

N-I* N£ 0 * N2 0, I £ 0, X = AN"X * N> 0, I £ 0, X = A
X = 1 (1=0) (I * 0)

I=N * X = AN X = X*A

*N£0, I £ 0, X = kNoml 1=1-1

* N2 0, I ^ 0, X = AJKE

In the first control path, we have N J> 0 (clear), 1^0 (clear

from I = N and N£ 0), and X = A11"1 (= A0 = 1, clear). In the
second, we have X = AN, which is clear from X = A1*"1 and 1=0.

In the third, we have N;> 0 (clear), 1^0, and X = A11""1. Since
at the beginning I ;> 0 and I ^ 0, we must have had I > 0, which

means that 1-1 £ 0 since I is an integer. Finally, we have X =

AN-I * A =A(N-I)+1 =AN-(I-1)5 and subsequently the value of I

is decreased by one, giving X = A1*"*1 again.

32

The following program finds the sum of all the elements of an

array A of dimension N ;> 1, while changing only I and S:

1 = 1

S = 0

1 S = S + A(I)

1=1 + 1

IF (I .IE. N) GO TO 1

CONTINUE

What is the proper assertion here at statement number 1? Clearly

it must, among other things, specify that S is equal to some par

tial sum, which depends on the value of I. 2l little checking will
I

show, however, that S is not equal to 'EZa(x), but rather to
1-1 x=i
2^"A(x), at statement number 1. (By making the statement immedi-
x=L
ately following statement number 1 into our control point, we could

I
have used STa(x).) Also at statement number 1, I is less than or

x=l
equal to N. V/e rewrite the program with assertions:

*'N J> 1

1=1

S = 0

1-1
* N > 1, I < N, S = 21 A(x)

""" x=l
1 S = S + A(I)

1=1+1

IF (I .IE. N) GO TO 1
N

* S = 2Z A(x)
x=l

CONTIN.JE

The first •Control path is

33

* N,£ 1

1=1

S = 0

F, S = lA* N£ 1, I ^ N, S = £ A(x)
x=l

Here N £ 1 is clear, I £ N is clear from 1=1 and N £ 1, and S

is asserted to be "a sum from x=l to 0," which must clearly be

defined as zero, which is the value given to S. The second con

trol path is

* lfi 1> 1 < TT, S = £fA(x)
x=l

S = S + A(I)

1=1 + 1

i-i
*N^l, I < N, S = 2lA(x)

x=l

Here N £ 1 is clear, I < N follows from the intermediate condi

tion (I £ N), and S = 2Ta(x) is preserved because S = S + A(I)
xi=l

adds the I-th term to the first I-l, and then I is increased by

one. The third and last control path is

I-l
* N2 1> I < N, S = 5~A(x)

x~J.

S = S + A(I)

1=1 + 1

(I > N)

* S = > A(x)•ti
Here we must have had at the beginning I + 1 > N but I < N, there-

fore I = N. The N-th term is added to S and the path thus becomes

clearly valid.

3k

; Termination of this program follows by the same arguments

that were used in the preceding section. The controlled expres

sion is I, and, just as before, it is increasing as we go around

the loop and is bounded at the statement numbered 1.

35

1*8 Inductive Assertions

I-l
The assertion S = 21A(x) in the last program above is rather

x=l
awkward to present to a computer program, such as a verification

program, as it stands. Such assertions are, rather, defined in

ductively in this situation. If we let C(X, K) stand for the as-
K

sertion X = 2* A(x), then C(X, 0) is equivalent to X = 0, while
x=l

C(X, K-l) is equivalent to C(X + A(K), K) for K > 0.

It is remarkable that such inductive definitions often lead

to simplified proofs of the validity of paths, even when the given

program is being verified by hand. For example, consider the second

of the three control paths in the last program above, rewritten to

make reference to the assertion C(X, K) above:

* N > 1, I < N, C(S, I-l)

S = S + A(I)

1=1 + 1

(I < N)

* N£ 1, I < N, C(S, I-l)

The argument of the previous chapter, using the summation sign, is

intuitive and rather tedious to formalize. The argument above,

however, is immediate if we rewrite the first instance of C above

as C(S + A(I), I). The first assignment in this path now converts

this into C(S, I), and the second assignment converts it into

C(S, I-l), which is exactly the form."given in the final assertion.

We shall give defining relations for conditions at the begin

ning of the program, preceded by two asterisks. As another, example

of their use, we prove the correctness of a program to move an

array from one place to another. It is equivalent to the simple

DO loop

36

DO 1 I = 1, N

1 B(I) = A(I)

The intermediate result here is that B(x.) -: A(x) for all x (> 1)

less than or equal to I-l. We call this assertion C(I-l), and de-

' fine C inductively before listing the urogram, as follows: •

*'••' C(0) = .TIVJE.

** C(K) = C(K-l) .AND. (A(X) = B(K))

• * IT > 1

1 = 1

* 1 i I, I < II, C(I-l)

1 3(1) = A(I)

1=1 + 1

IF' (I .IE. N) GO TO 1

* C(N)
COflTINlK

We note that if the second statement of this urogram is replaced

by A(I) ~ B(I), the.same-assertions still apply; the difference, of

course, is that such a prograra would change the values, of elements

of the array A, whereas the given rirogT^ja doe's not. The statement

3(1) = A(I) will execute properly only if the subscript I is in its

proper range; this is the sole reason for the assertion 1 < I at

statement number 1. (One must also be assured here that the dimen

sion specified-for the arrays A and B is not less than N.) The

control naths-. are now listed at the left, with their corrosuondiun

proofs at the ri>;ht:

* N ^ 1
1 ^ X fallowr from I ••• 1, ::>H T ' "l ''pom

J .. 1

' t t , II and \\ - 1; 0(1-1) ., 0(0) ,vir;#
* -1- ilili N, 0(1-1)

* 1 < I, I £ N, C(I-l)

B(I) = A(I)

I = I + 1

(I £ N)

*1^I, I £ N, C(I-l)

* 1 < I, I < N, C(I-l)

B(I) = A(I)

1=1 + 1

(I > N)

* C(N)

37

1 < I is clear since I increases5 I £ N

follows from the intermediate assertion

I < N; C(I-l) at the end is by defini

tion C(I-2) and B(I-l) = A(I-l), each

of which follow from the path.

We must have I = N at the beginning in

order to have I > N at the end. There

fore C(N-l) holds at the beginning,

followed by B(N) = A(N), giving C(N).

The controlled expression for this program is I; the argument is

the same as before. This completes the proof of correctness.

We now consider a loop which has two exits* The following pro«

gram searches the array A for the qiantity X; the intermediate

result here is that we have not found X yet for as far as we have

searched. Specifically, just before we check whether X = A(I), we

must know that X ^ A(x) for each x < I-l. We call this assertion

F(I-l), and define it inductively as before.

** F(0) = .TRUHU

** F(K) = F(K-l) oAND. (X 4 A(K))

* N > 1

1 = 1

* 1 £ I, IS N, F(I-l)

1- IF (X .ESQ. A(I)) GO TO 3

I Vl + 1 .

W (I .IE. N) GO TO 1

38

* F(N)

2 CONTINUE

...

* F(I-l), X = A(I)

3 CONTINUE

Again we note the assertion 1 < I, included for the same reason

as before. Since the program has two exits, correctness is proved

with respect to three (sets of) assertions, one at the beginning

of the program, one at statement 2, and one at statement 3« We

show the control paths to be valid as follows:

* N£ 1

1 = 1

* 1 < I, I < N, F(I-l)

* 1 < I, I £ N, F(I-l)

(X = A(I))

* F(I-l), X = A(I)

* 1 < I, I < N, F(I-l)

(X 4 A(D)

1=1 + 1

(I < N)

* 1 < I, I < N, F(I-l)

1 < I follows from 1=1, and I £ N from

I = 1 and N > 1; F(I-l) = F(O) = •TRIE.

Follows immediately,

1 < I is clear since I increases; I < N

follows from the condition I < N in the

path; F(I-l) is F(I-2) and (X ^ A(I-l)),

both of which are clear from the path.

* 1 < I, I < N, F(I-l)
"" ~ We must have I = N at the beginning in

(X 4 A(D)
order to have I > N at the end. There-

1=1 + 1
fore F(N-l) holds at the beginning,

(I > N)
.and X / A(N), giving us F(N).

* F(N)

39

The third of these paths is the only one which is a loop control

path*' The termination argument is again just as before; the con

trolled expression is I. The only variable whose value may be

changed by this program is !•

ko

1-9 Debugging by Proving Correctness

We shall now consider a very simple example of the payoff that

is to be expected from proving correctness of programs. Namely,

we shall show how our methods may be used to find bugs in programs

that not only look correct, but actually are correct for most (but

not all) possible input situations.

Let us write a program to test whether the number I is prime.

We assume that we have access to the standard remainder function

MOD(I, J) whose value is the remainder when I is divided by J.

Since I will be non-prime if MOD (I, J) = 0 for suitably chosen

values of J$ we start our programming task by writing

IF (MOD(I, J) .EQ. 0) GO TO 2

where at statement number 2 we will note the fact that I is not

prime. Let us do this by setting the value of a function, called

PRIME(I), to .FAISE.; thus our program reads

LOGICAL FUNCTION PRIME(I)

...

IF (M0D(I, J) .EQ. 0) GO TO 2

• o .

2 PRIME = .FAISE.

RETURN

Now what do we want to do if MCD(I, J) is unequal to 0? We want to

increase J by 1 and loop back. We must make a test at this point,

and we may remember that if I is the product of any two integers then

at least one of them must be less than the square root of I. Since

it is easier to take squares than square roots, we write

kl

LOGICAL FUNCTION PRIME (I)

... «

1 IF (MOD(I, J) .EQ. 0) GO TO 2

.J = J + 1

IF (J*J .LE. I) GO TO 1

...

2 PRIME = .FAISE.

RETURN

...

There are now three things remaining to be cleaned up. If the test

on J fails, then I is in fact prime, and we must set PRIME to

•TRUE. We must remember to initialize J to 2, rather than 1, since

any integer is the product of itself and 1. Finally, we must put

an EM) statement on the program. The result is:

>

LOGICAL FUNCTION PRIME(I)

J = 2

1 IF (M0D(I, J) .EQ. 0) GO TO 2

J = J + 1

IF (J*J .LE. I) GO TO 1

PRIME = .TRUE.

RETURN

2 PRIME = .FALSE.

RETURN '

END

We now have a program which seems to work; we may compile it, and

it will tell us, for example* that FRIME(17) is .TRUE, while

PRIME(28) is .FAISE. Let us, hov/ever, seek to verify its correct

ness. From what we now know about assertions, it is clear that we

1*2

must derive an assertion in the loop, at statement number 1, for

example. This assertion says that we have checked all integers

less than J (and greater than 1) for being divisors of I; that is,

I ^ 2*2 for integers x and %with 2 < £ £ J-l. Let us call this

condition C(J-l), and write out the loop control path using it:

* C(J-l)

(MOD(I, J) 4 0)

J = J + 1

(J*J < I)

* C(J-l)

This path is valid, since if MQD(I, J) ^ 0 and C(J-l) is true,

then so is C(J), and then J is increased by 1. Furthermore, C(l)

is always true, so that the initial control path of the routine

is valid whatever the initial assertion is. If C(J) is true for

some J with J*J > I, then we may infer that I is prime, and so

the path which includes the statement PRIME = .TRUE, is valid.

This leaves the path which includes the statement PF.IME = .FALSE. •

If MOD (I, J) = 0, then I is certainly not prime unless J is equal

to 1 or I. How can we show that this will never happen? J is

certainly not 1, because it starts at 2 and increases; similarly,

J*J is tested to be less than or equal to I, so J should certainly

be less than I. Let us incorporate these; facts into our proof by

adding the assertions J £ 2 and J*J £ I at statement number 1;

then J < I will follow immediately. The loop control path nov; reads:

* C(J-l), J£ 2, J*J <; I

(MOD(I, J) * 0)

J = J + 1

(J*J < I)

* C(J-l), J > 2, J*J < I

k3

This is valid, since J is increased and hence the inequality

J > 2 is preserved, whereas the assertion J*J < I follows from

the condition J*J < I in the path. However, we must now also go

back and re-verify the initial control path, which now reads:

* I > 0

J = 2

* C(J-l), J > 2, J*J < I

Unfortunately, this path is not valid. C(J-l) is C(l), which is

always true, and J £ 2 certainly holds, but J*J <> I will not hold

unless I is at least h*

Well, that is easy enough. We can verify the program with the

initial assertion I > h — in fact, we have already done so —

and then go back and check the special cases I = 1, 2, and 3. For

1 = 1, for example, we have M0D(1, 2) = 1, so we increase J by 1,

and then J*J is certainly greater than I. For 1 = 2 — Good heavcnst

We have uncovered a bugI

In fact, for 1 = 2 (and for no other positive* Integer value of

I)f the'program given above is not correct. It will return PRIME (2)

= .FALSE. — that is, 2 is not a prime — when in fact it is. This

is the kind of bug that gives programming managers nightmares: a

program is written, checked out, the programmer goes on to something

else, maybe moves to another city, the program is included as a

subroutine in a larger program, which in turn is made into a sub

routine of one still larger, and then strange erroneous behavior

begins to appear. Often it takes weeks to trace the bug back to the

original program in which it appears; sometimes it is not found at

all, and the larger programs are completely rewritten. In this case

it is obvious that, if we were testing numbers one at a time, it

would never occur to us to test such an obvious prime as 2; but if

kh

this routine is part of a larger one, the logic of the larger pro

gram might very easily require it to test the primeness of 2.

Fixing the bug, of course, is very easy; and, in fact, once

the bug is fixed, the proof of partial correctness of the program

follows immediately from what we have done up to now. We rewrite

the program in correct form:

** C(l) = .TRUE.

** C(K) = C(K-l) .AIIDo (I ^ K«z for integer z)

LOGICAL FUNCTION PRIME(I)

* I > 0

IF v>" .GT. I) GO TO 3

J = 2

* C(J-l), J ^ 2, J*J < I

1 .IF (MOD(I, J) .EQ. 0) GO TO 2

J = J + 1

IF (J*J .IE. I) GO TO 1

3 PRIME = .TRUE.

* PRIME = .TRUE, and I is prime

RETURN

2 PRIME = .FALSE.

* PRIME = .FAISE. and I is. not. prime

RETURN

EI©

To finish the proof of correctness, we need only note that J is

our controlled expression. It increases around the loop, and the

assertion J*J < I, together with J > 2, serves to bound J at the

statement numbered 1.

U5

We shall now apply our methods to the verification of a

slightly larger program, one which finds all prime numbers from

1 to N using the sieve of Eratosthenes. Because this program in

cludes more than one loop, only its partial correctness will be

proved in this section.

The program uses a logical (i. e., Boolean) array whose size

will be left unspecified^'although it is assumed that this size is

greater than or equal to N. The purpose of the program is to set

the elements of this array, called A, in such a way that A(I) is

•TRIE, if I is prime and .FALSE, otherwise. First, all elements

of the array are set to .TRUE.; then we start the sieve by "cros

sing out" (i. e., setting to .FALSE.) all elements A(I) such that

I is a multiple of 2, 3? *f-*-and so on. In crossing out multiples

of J, it may be assumed that multiples of the form J*L with L < J

have already been crossed out, since J*L = L*J, so that we first

cross out Afr), A(6), A(8), etc., then A(9), A(12), A(l?), etc.,

and continue in this fashion. As in the preceding program, we make

use of the fact that if N (or any number less than N) is the pro

duct of two integers, at least one of them must be less than or

equal to the square root of N; hence the last multiples to be crossed

out are the multiples of M, where M*M < N but (M+l)*(Jf+l) > N.

Our first task is to determine precisely what the intermediate

assertions should be at all labelled statements. At statement

number 1, we have set each A(x.) to .TRUE, for 1 < x < I-l; we de

note this assertion by U(I-l). At statement number .°, we have for

all £, 1 £ £ < N, that A(&) -- .VAIGK. if x • %•& Cor pn.rlt've in

tegers 2 <. ^ vitli ? ^ j <; I-l, and A(x) = .TRUEe otherwise; we

k6

denote this assertion by V(I-l). At statement number 3? we have

for all x, 1 < x < N, that A(x) = .FALSE, if x = %•£ for positive

integers z & & with 2 <; y. < I-l, or if x < J-1 and x - I»z for

some integer z^Ij and A(x) = .TRUE, otherwise; we denote this

assertion by W(I, J-1). Finally, at statement *f, A(x) is .TRUE.

or .FAISE. according as x is prime or not, for 1 < x < N. With

these assertions (for the moment not defined inductively; see

also section 2-6), the program reads as follows:

* N > 0

1 = 1
>

* 1 ^ I,. I < N, U(I-l)

1 A (I) = .TRUE.

1=1 + 1

IF (I .IE. N) GO TO 1

1 = 2

* I 2 2, (I-1)*(I-1) < N, V(I-l)

2 J = 1*1

IF (J .GT. N) GO TO k>

* I > 2, 1*1 ^ J, J £ N, MOD (J, I) = 0, W(I, J-1)

3 A (J) = .FAISE.

J = J + I

IF (J ..LE. N) GO TO 3

I = I + 1

GO TO 2

* A(5) = PRIME(5)1 1 < £ < N

h CONTINUE

In the last assertion we have used the PRIME function as defined

in the previous chapter. There are seven control paths, as follows:

kl

Path 1 . * N > 0

1=1

* * £ 1, I < N, U(I-l)

The assertion 1 < I follows from 1 = 1, and I < N follows from

I = 1 and N > 0. Also, U(I-l) is U(0), which is vacuously true.

Path 2 * 1 £ I, I < N, U(I-l)

A (I) = .TRUE.

I = I + 1

(I £ N)

* i £ i> * < n, u(i-i)

Here 1 < I follows since I is increased, and I < N follows from

the condition I < N in the path. The reference to A(I) may be made

because 1 < I and I < N© The assertion U(I-l) at the beginning of

the path and the assignment A(I) = .TRUE, give U(I), and then I

is increased by 1, giving U(I-l) again.

Path i * 1 < I, I <. N, U(I-l)

A (I) = .TRUE.

1=1 + 1

(I > N)

1 = 2

* I 2 2, (I-1)*(I-1) £ N, V(I-l)

Again 1 < I and I < N legitimize the reference to A (I). The as

sertion I > 2 follows from 1=2; also, (I-1)*(I-1) = 1, and

1 < N because at the beginning of the path 1 < I and I < N. The

assertion V(I-l) = V(l), that is, A(x.) = .TRUE, for all x, 1 <, x

£ N. This is the same as U(N), which follows at the end of the

path.since we must noire I = N at the beginning of the path in order

kS

to have the intermediate condition I > N.

Path h *I2 2, (I-1)*(I-1) < N, V(I-l)

% J = 1*1

(J > N)

* A&) = PRIMER), 1 < £ < N

Since ACs) is*' .TRUE, for 1 £ x < N whenever it is not .FALSE., and

the same is true of PRIME(x), it suffices to prove that PRIME(x) is

.FAISE. if and only if A(x.) is. If PRIME (x.) is .FALSE., then x =

;£«z for y., z ^ 1, and £, z ^ x. We may assume % < £, so that 2 <

X < 2. < x* 2£i I, then £ £ z implies z £ I, and £.z > 1*1 = J

> N, which contradicts £•£ = 2 < N» Hence £ < I or y. < I-l, wliich,

by V(I-l), implies that A(g) is .FALSE.. Conversely, if A(x) is

•FALSE., then x, = £•& for positive integers y. and z with 2 < £ <

I-l and j^, which implies y. 4 1, £ ^ 1, and hence £ / x, z 4 x,

so that PRIME (x) is .FAISE..

Path 2. * I > 2> (I-1)*(I-1) < N, V(I-l)

J = 1*1

(J £ N)

* I £ 2, 1*1 = J, J £ N, MOD (J, I) = 0, W(I, J-1)

The assertion I £ 2 is unchanged by the path; 1*1 = J follows from

the assignment in the path, and J < N from the condition in the

path. The assertion M0D(J, I) = 0 also follows from J = 1*1. This

leaves W(I, J-1), which is W(I, 1*1-1); but if x - I»z for some

integer £ £ I, then £ j> 1*1, and we cannot have x £ 1*1-1. Tims

W(I, 1*1-1) is the same as V(I-l), which is prosorvod from the

beginning of the path since I is unchanged along it.

k9

Path 6 * I £ 2, 1*1 < J, J < N, MOD (J, I) = 0, W(I, J-1)

A (J) = .FALSE.

J = J + I

(J < N)

* I £ 2, 1*1 £ J, J £ N, MOD(J, I) = 0, W(I, J-1)

Again 1^2 is unchanged by the path; I £ 2 implies that J in

creases along the path, which in turn justifies 1*1 < J. The as

sertion J < N follows from the condition J < N in the path. Since

MOD (J, I) = 0, we have MQD(J+1, I) = 0, which becomes MOD(J, I) =

0 at the end of the path. This leaves W(I, J-1), and the only dif

ference between this at the begin-ing of the path and at the end

is that J has been increased by I. Since MOD(J, I) = 0, x = J sa

tisfies 2 ="I*JS with £ ^ I since 1*1 ^ J, but since we do not

have x <; J-1 for ".this 2 at the beginning of the path, this, does

not figure in W(I, J-1) there * When J is increased by I, this is

the only value of x for which A(x) changes in the description of

W(I, J-1); and in the path we indeed set A(J) = .FALSE.. As before,

the reference to A(J) may be made because h <; J and J < N.

Path Z * 1 ^ 2, 1*1 < J, J < N, MOD (J, I) = 0, W(I, J-1)

A (J) = .FALSE.

J. = J + I

(J > N)

1=1 + 1

* I > 2, (I-1)*(I-1) < N, V(I-l)

Here I > 2 since I is increased along the path, and (I-1)*(I-1)

< N follovrs from 1*1 < N at the beginning of the path and the fact

that I has increased by 1. The cordition V(I) is the same as

W(I, N), and this follows from W(I, J-1) at the begin.iing of the

50

path and the fact that A(J) is set to .FALSE, (just as in the pre

ceding path) and' then later J > N. Since I is increased by 1, V(I)

becomes V(I-l) again. The reference to A(J) follows in this path

in the same way that it does in the previous one. This completes

the proof of partial correctness.

51

1-11 Multiple Controlled Expressions

Nbwrwe.\shall derive some -rules for proving termination of a

program which has more than one loop. Using these rules, we shall

be able to prove the termination, and hence the correctness, of

the sieve program of the preceding chapter. In the derivation of

these rules, we shall use this program as an example.

It is not difficult to see that, even in the general case, we

may restrict our attention to the loop control paths, i. e., those

control paths which are part of some closed loop. In our example

program, there ar^ ?even control paths, and four of these, namely

paths 2, ?, 6, and 7, are loop control paths. We shall be seeking

rules which generalize those of section 1-5? and thus, for each

loop control path, we shall be looking for an expression whose

value increases along that path and is bounded at the end of it.

The quantities, in this program, which play the role of controlled

variables are quite obviously I and J; we see that I increases

along patlis 2 and 7? while J increases along paths 6 and 7* Also,

I is bounded at the end of paths 2 and 7* while J is bounded at

the end of path 6. Neither I nor J increases along path 5, al

though we may note that path 5 at least "progresses" in one sense:

it does not contain a branch backward.

Suppose we were simply to show that every loop control path

in a given program has a corresponding expression which increases

along it, and is bounded at the end of it. Is this sufficient to

show that the program terminates? The answer is no, as may easily

be seen by considering the following program:

52

1 I =. I + 1

J = J - 1

2 1=1-1

J = J + 1

GO TO 1

Considering the numbered statements as control points, I always

increases along the first control path, and J along the second;

also I and J are bounded everywhere. Yet the program never termi

nates. >

We might say that in this case I increases along the first loop

control path, but J decreases along it, and vice versa for the

second loop control path* This, however, is not the real reason

why this program does not terminate, because exactly the same be

havior is shown by the program

1 1=1 + 1

J = J - 1

IF (I .IE. N) GO TO 1

2 1=1-1

J = J + 1

IF (J .IE. N) GO TO 2

which does terminate. What is the difference between these two

programs, from the point of view of loop control paths? It is this:

in the first case the two loop control paths are .joined together;

in the second, they are not. When two such paths are physically

separate, it does not.'matter what each of them docs to the con

trolled expression of the other. This means, in particular, tHat

path 2 in our sieve program may be considered on an entirely se

parate basis from the other loop control paths of that program.

53

It has the controlled expression I, which, as we have seen, is
increasing along it and is bounded at the end of it.

Let us now consider what happens when two or more paths are

joined together, as our paths ?, 6, and 7. Here, we would say in
tuitively that we have an outer loop and an inner loop. Path 6 is
the inner loop, and paths 5 and 7 together are the outer loop.
The variable I controls the outer loop, and the variable J con

trols the inner loop. The variable I is not changed at all in the

inner loop; but the variable J is decreased in the outer loop,
namely along path 5. It turns out that this behavior is charac

teristic of inner and outer loops, as we now show by considering
a program with three levels of loops:

I = 1

1 J = 1

2 K = 1

3 A(I, J, K) = 0

K = K + 1

IF (K .IE. N) GO TO 3

J = J + 1

IF (J .LB. N) GO TO 2

I =* I + 1

IF (I .IE. N) GO TO 1
Under the assumption that statement number 3 is the only control
point, we have three loop control paths. Along the innermost one,
K is increased, and Iand Jremain constant. Along the outermost,
I is increased; J and K are also increased and then later de

creased (when they are set to 1). In general, in an outer loop
control path, it does not matter what happens to the controlled

expressions of inner loops. An inner loop control path, however,

is presumably, inside some outer loop, .and the controlled exm-essi™

5k

of the outer loop must not be allowed to decrease. This obser

vation is.further strengthened by considering the "middle" loop

in our last example. Here J increases, while I remains constant

but K decreases. The J loop is "inner" to the I loop, but "outer"

to the K loopo

Suppose that w® have determined all of the inner-outer re

lationships which exist among the loops of a given program. Then

every loop control path is completely inside k levels of nested

loops, for some k» If these have the associated controlled ex

pressions e,, ••», e,, then the values of all these expressions

must be nondecreasing along this path. Also, any two loops which

do not have an inner-outer relationship must be physically se

parate. Suppose, in particular, that a second loop control path

is completely inside & levels of nested loops, having the asso

ciated controlled expressions e», »••* e«. Then we must have e
1 m 1

= e! for 1 ^ i < min(k, m). If k > ji, then the first path is

inner to the second; if Jg < m, then the second path is inner to

the first; and if k = m, the two paths are "in the same loop."

In our sieve program, |»ths 2, ?, and 7 are each inside one level

of loop, with the controlled expression I, whereas for path 6 we

have Jc = 2, e- = I, and e^ = J. In the last example above, the

outermost loop is associated with I, the next with I and J, and

the innermost with I, J, and K.

There remains the problem of discriminating "primary" paths'

such as paths 2, $, and 7 in our sieve program, along which con

trolled expressions increase, from "secondary" paths such as path

?, along which they do not. We recall that path 5 contains no

branch backwards this seems to suggest that the "program coimter"

of this program (i. e., the "variable" whose "value" is the num-

103

** E(Q) = .TRUE,

** E(K) = E(K-l) .AND. (A(K) - elt(K, D)

* LV(X9 L)

1=1

GO TO 2

1 A(I) = FSCX+1)

1=1 + 1

. X = FSOO

*E(I-1), LV(X, cdrnCl-i; L))

2 IF (X .Mile 0) GO TO 1

* EClength(D)

COHTINUE

Here length(L), the length of the list L, is defined as usual by

length (nil) = 0 and length (L) - lcngth(cdr(D) + 1 if L * nil. The

control paths here are verified as follows:

* LV(X, L) E(I-l) is E(0), which is true;

1 = 1 ; LVtt, cdrn(I-l, L) is LV(X, L)

* E(I-l), LV(X9 cdrn(I-l, D) (which holds) because cdrn(I-l, L)

= cdrn(0, L) = L.

* E(I-l), LV(X, cdrn(I-l, L)) The definition of LV shows that

(X ± 0) Cdrn(I-l, L) 5* nil at the beginning,

A(I) = FS(X+1) and FS(X+1) = car(cdrn(I-l» L) =

1=1 + 1 §lt(I> L), so that E(I-l) and

X = FS(X) . (A(I) = FS(X+D) give E(I), and

* E(I-l),'l,VCX, cclrn(I-l, L)) then I is increased by 1, giving
E(I-l) r.gain. Also X = TOCO f.ivos

LV(X, cdr(cdrn(I-l, L))) ••=•-

LV(X, cdrn(I, D), which, when I is

increased, becomes LV(X, cdrn(I-l* L).)*

;...• 10**

*E(I-1), LVQC+ cdrn(I~l, D) Here the, definition of L7 rhows

(X - 0) that cdrn(I~l, L) - nil at the

* E(length(L)) . beginning, so that 1-1 •-= length(L)

(as may be easily shown) and

E(I-l) becones E (length(L))«

Thus the program is partially correct. The fact that it terminates

follows from a consideration of the controlled expression I, which

is bounded along the loop control path since it can nevor be.come

larger than length(L). The initial assertion, involving a list L

of finite length, is', of course, crucial to tlie termination of

this program,, •-•

105

2-8 Assembly Language

We shall now show how to prove the correctness of assembly

language programs, using the methods developed thus far. Such

programs have certain special problems, due to the possibility of

self-modification; in the next section, v/e show how these are solved.

Superficially, from the viewpoint of verification, instruc

tions in assembly language are much like very simple statements

in an algebraic language. Indeed, each assembly-language statement

has its algebraic-language counterpart, provided that we regard

each register as a variable with a special name. If we have one

accumulator called ac, for example, then "store X" becomes X -• ac_,

"add X" becomes-ac. = ac.+^X, and "shift1 left by k bits" becomes
kac = ac«2 *. This last correspondence is not exact, of course, since

we must make allowance for those bits which are shifted off the

left-hand end of the accumulator. But rather than writing out the

complete (and cumbersome) definition of the shifting operation each

time it is used, we may simply use the fact that the above simpli

fied definition holds whenever the leftmost k bits of the accumulator

are all ^the same, as they almost always will be if the shift is used

for arithmetic purposes • This then becomes an assertion to be asso

ciated with the shift instruction, much like the assertion 1 < I
- i

which is required at any FORTRAN IV statement which makes

reference to A(I). If we are using a shift for a non-arithmetic

purpose, we use a different property of it, such as one which con

siders the accumulator as being broken up into fields.

Indexed transfers in assembly language cause a problem whose

method of solution will help us understand the treatment of self-

modification in the next section. One way in which indexed transfers

106

may be used is in analogy with switches, controlled GO TO statements,

and the like, in algebraic languages. Consider the FORTRAN statement

GO TO (21, 22, 23, 65, 99), K

This specifies a transfer to one of five different statements. V/e

may have to consider the possibility that this statement does not

transfer at a 115 this will happen in some versions of FOrTRA^ when

K is unequal to 1, P, 3, **-, or ?. But at any rate there are at most

six different next statements after this one; this is important

because it sharply limits the number of control paths in the pro

gram. If we were doing this in assembly language, v/e would load IC

into an index register and then make an indexed transfer. If state

ment number 21 corresponds to the label L21, p.nd. so on, our program

might look like this:

LOAD XR,K

JUMP *,XR

JUMP L21

'JUMP L22

JUMP L23

JUMP L65

JUMP L99

Here XR stands for the index register (or its equivalent) which we

are using5 this is loaded with the value of K, and then v/e jump to

♦•(meaning "the current location"') plus the current value contained

in XR. This jump is what causes the difficulty, because theoretically

it could go to any address in the entire computer. If there are

32,768 words in memory, it would seem that we must consider (at

least) 32,768 different control paths in e*ery assembly language

program*

107

One way to avoid' this is to add some instructions which test

the value of K anflctheiiv pefrform theiindexed transfer only if this

value is 1, 2,3, kA or 5« In this way we may directly consider all

32,768 (or however many) paths, and show that only five (or six) of

them are ever actually taken* In fact, this is what would be done

if this assembly language program were the result of a FORTRAN com

pilation, at least in some versions of FORTRAN. Our verification

theory, however, would not be very general if it did not allow for

the possibility of omitting this test in the interests of efficiency.

This, after all,'is what programmers do in practice; they say intui

tively that "the value of K is always going to be in its proper

range anyway} so why test?" What we do in this case is to make the

assertion that & is equal to 1, 2, 3, *f, or ?, and associate this

assertion wijfch the start of the assembly language program above•

This assertion is then proved, Just like any other assertion.

Let us now consider a slightly more complex case. Suppose that

we are using a subroutine call instruction which leaves the return

address in the register XR. To return from a subroutine, we would us

JUMP 0,XR

Suppose now that a certain,subroutine is called in jj different places

in a program, with corresponding return addresses a., ..., a . At th,

point at which we return from the subroutine, we must have an as

sertion that XR contains some one of these return addresses. If

the subroutine calls another subroutine, using the same type of

call instruction, then it will have to save the return address at

the beginning, and restore it at the end. It is clear, however, that

whether the return address is kept in XR or in some saved location,

the assertion that it is in fact one of the g,^ must be verified over

every control path of the subroutine. If it is kept in ^R, we must

108

make sure that no instruction of the subroutine changes XR. If

it is saved, we must make sure that no instruction of the sub

routine changes the save area, except for the one which actually

does the saving.

It may seem that we have a circular argument here. In order

to limit the total number of control paths, we need the assertion

that the return address is proper; but in order to verify this

assertion, we need to make a complete analysis of all of our con

trol paths. In fact, however, this type of argument ?s perfectly

valfd, and is not circular. All assertions at a single point in

the program are combined into one, using "and"5 among these will

be the assertions about return addresses. V/e must now verify each

control path in the program. In verifying each assertion separately

at the end of the path, we may .use' all the assertions at the begin

ning of that path, in combination if necessary. Thus we may assume,

for exampie^ that the number of control paths in our program is

properly limited, and tha't our other intermediate"conditions are -

valid as well; and we may then proceed to prove both these things

at once, by verifying each of our assumed control paths and shewing

that our return address remains proper, at the end of each of them.

109

2-9 Self-Modifying Programs '

As long as our programs cannot modify themselves, the control

paths in them remain fixed. It would, however, appear that when

a program has the capability, for example, of changing an ordinary

assignment statement into a transfer statement during execution,

then a new control nath is created. How do we extend our method

of control points and control paths to cover this situation? The

answer is that we do not extend it at all; instead, we extend our

model of the program to one in which the control paths, as properly

interpreted, remain fixed throughout the execution. This will now

be illustrated for assembly-language programs; most other languages

do not allow true self-modification.

Even when an assembly-language program does not modify itself,

this fact must be proved* Otherwise, we would have no way of being

sure that the control paths in the program are what we say they are.

We shall now indicate how this is done. Suppose that our program lias

been loaded into memory and is ready to start. Each instruction word

in this program will contain a certain pattern of zeroes and ones,

which directs the computer to perform some instruction. Now this

statement is itself an assertion, albeit a highly complex one . T.hc

memory cells in which the instruction words are kept may certainly

be thought of as variables, since theoretically their contents my

change at any time. Since this program does not modify itself, how

ever, the contents of these cells will not, in fact, change d -ring

the running of the program. This means that the assertion that each

instruction word contains its own proper instruction code is true

throughout the running of the program* and this fact may, be proved

using the same methods we have used before. Along each control path,

we must show that this assertion is preserved; that is, if the in-

lio

struct ion words have their indicated contents at the beginning of

the path, then they still do at the end of it. normally this is

very simple; all we have to do is to observe that none of our

statements affects the contents of'any instruction cell. It is

important to remember, however, that no assembly-language program

is proved correct until this type of verification has been made.

Let us now consider a self-modifying program. ICost self

modifying programs modify themselves in only a very few places,

so let us first consider those instruction words which are not

modified. Each of these has certain contents at the berin-inf-: of

the program, and, by assumption, these contents are not no0:1fied

during execution. Consequently this part of the analysis of a

self-modifying program proceeds in exactly the same way as if it

did not modify itself. That is, we must prove that all of these

contents remain constant when we go along each control path of

the nrogram. Of course, it is no longer true that our statements

do not affect the'contents of any instruction cell, but they at

least do not modify the contents of those cells wliich we have iden

tified as never being modified.

It remains to consider the instruction words which are modi

fied during execution, and how these affect the construction of

the control pathso Taking a very simple case, suppose that v/e have

an instruction which unconditionally transfers to location Z, and.

suppose that this instruction is later modified to contain "no

operation" or some other statement which never transfers. How do

we set up our control paths in the presence of such an instruction?

V/e set them up exactly as if the instruction had been a conditional

transfer to Z. In fact, it is a sort of conditional transfer,

somewhat like the "zero test" instructions that mean "if X is zero,

then skip the next: instruction." If X denotes the location of this.

I1.L

instruction, and j; is the instruction code of the transfer to Z,

then the meaning, in context, of this instruction is "If X ~ t,

then transfer to Z."

In a broader sense, this is true of every instruction word

in every assembly language program0 Suppose that t.,, • •«, t are

the various possible contents of the instruction word X, where

there are b bits in an instruction word and n = 2^0 Let I , ...,

I be the instructions corresponding to t-, ..., t respectively.

Then the meaning of the instruction word X is "If X = t*, for any

3, then do Ij." Some of the I., of course, will be meaningless or

illegal. But in any case, 'if we wish to verify our programs, we

will have to be able to prove that, when we get to X, the contents

of X will be sharply limited. In the extreme case, we can prove

that X can have only one possible value; this is the case we

treated earlier in connection with non-self-modifying programs.

If X has Jc possible values, then X must be treated as a k-way con

ditional instruction. This does not necessarily mean, of course,

that there are k different control paths to consider here, because

some of these instructions may not transfer, and others may all

transfer to the same place. The shortness of our proof, hc&'evor,

will depend to a great extent on how well we can lir.iit the number

of different possibilities to consider.

The statement that the instruction word X may contain only the

instruction, codes tx. , •••, u^ (depending onX), is, of course, an

assertion. In order to prove this assertion at X, we will normalljr

have to strengthen it a bit. The assertion at X must not only say

that only the instruction codes u. will occur; it must also tell us

unc'or wliat conditions (pn'the other variables A.n the program) each

u, will actually be the contents of X. In verifying ;>71 tlie asser-

112

tions of this type in our program, we nake valid use of the same

seemingly circular argument we encountered in the preceding section.

That is, in setting up our control paths, we a^-une the validity

of certain assertions about the instruction words; to prove these

assertions, it is enough to analyze only those control naths which

we have set up under the assumptions we have :?ade.

Many programmers attempt to avoid self-modification entirely

-rhen they write assembly-language programs. The conventions wVch

are used with certain computers for subroutine handling, however,

make a certain amount of self-nodification unavoidable. Cn ;iany

computers, the standard instruction which calls a subroutine ler.vos

the return address in the address field of an instruction word, nnd

then transfers to the next instruction word. Return fror such- a

subroutine is accomplished by transferring to its first instruction

word. If possible, this is done with indirect addressing; otherwise,

the operation code field of this word will contain the operation

code for an unconditional transfer, which in. sono cases may be

placed there by the calling instruction. In either ease, this first-

instruction word is modified curing execution of the nrograr.. On-

other computers, when a rotirn address is saved, it is saved i:i the

address field of an instruction word at the end of its sub-outine.

This instruction word is later executed, r^od the result is to trrns-

fer control to the return address. Here again we hav^ an instruction

word which is modified by the program.

113

2-10'Subroutines

The existence of subroutines in a program being proved correct

gives rise to a problem concerning the proper construction of con

trol paths in that program. We know, even when we are not working

in assembly language, that one of the functioxns of a subroutine

call statement is to transfer control to the entry point of the

corresponding subroutine. Suppose, however, that we constructed a

control path which entered the subroutine when it came to a call

statement. The only way that our control path, or some future con

trol path, could get back into the calling program is through the

return statement of the subroutine. But if the subroutine is called

more than once, the return statement can return control to a number

of different places. The only way we can tell v/here the return state*

ment is going to lead us is by reference to the return address; and

in most languages, the return address is kept carefully hidden from

the view or concern of the programmer.

In assembly language, of course, our return addresses are in

full view. We may, if we wish, construct control paths which lead

from call statements into subroutines, and whose final assertions

involve the return address. The initial assertion of a control path

leading through a return statement will then involve a ret im ad

dress, and this assertion will allow us to determine which way to

go after the subroutine is finished. If v/e do this, however, the

assertions in our subroutines will be quite complicated. Consider,

for example, the first control point in a submutlne. If this sub

routine is called from n different p.laces, we will have u d.ifToront

control paths which end here, and we will have to construct an as

sertion at this point which is true no matter which control path

we have taken. If A,, ..., An are assertions which hold at the n

different call statements, and a-,, ..., a are the corrcsp riding

return addresses, then

(An and (r=an)) or (A^ and (r=a^)) or ... or (A„ and (r=a))
x .. x — 2 — 2 """""* — n n

is an assertion which will be true at the beginning of the sub

routine, provided that each call statement left its return address

in the register r. Similarly, at the last control path before a

return statement in the subroutine, we will have to construct an

assertion that will lead correctly to an arbitrary return address.

If A*, A* are assertions which hold at the return addresses
1' ' n

a,, ..*, a respectively, then

(A' and (r=a)) or (A* and (r=a0)) or ... or (A' and (r^a))
1 1 ~"~ 2 ——" *• ii n

will hold at each return statement of the subroutine, provided that

it transfers control to the address in the register r. This division

into cases will then be carried throughout the proof of the subroutire.

Normally, the assertions A. will have certain similarities to

each other, which will tend to reduce somewhat the labor of proof.

The difficulty of this approach to proving subroutines correct be

comes even more apparent, however, when there are multiple levels of

subroutines. If routine A- calls B at n places and routine B calls C

at m places, then there are n»m assertions connected by "or" in the

routine C as above. Further levels will lead to further multiplica

tion.

There is another method of proving subroutines correct which

introduces into the proof process the same sort of division of labor

that" the use oil subroutines: introduces into programming itself.

Suppose that we have a subroutine X which does hot eall any- other

subroutines at further levels. We may then prove this subroutine

' • • 115

correct as a separate program, without reference to any other

routine which calls it. We will have to do this v/ith respect to

some initial assertion A and some final assertion A8; at the same

time, we note that X changes only the values of certain variables

x.,, ..., x, • Now suppose that the program P calls X at n places.

At each of these there is an assertion A*, and at the next state

ment following a given call statement, i. e., at its return address,

there is an assertion A]. If A. = A and B., and A] = A1 and B ,
i i i7 i i'

where B. does not involve the variables x.., ..., x_ , then the path

from the call statement to its return address, through the subri.mtine,

is valid. We may thus regard the call statement as if it were an

assignment statement of a special kind. Hence our control paths,

in particular, do not need to lead from a call statement to the

start of the corresponding subroutine; rather, they lead directly

through the call statement to the return address. This considerably

simplifies the proof of programs with subroutines.

For a subroutine with parameters, the process is slightly more

complex. The assertions A and A1 above will now depend, in general,

on what the actual parameters are. If a subroutine is meant to be

called with m actual parameters, we may denote them by p , ..., p,

and construct assertions A(pn, ..., p) and Af(p^, ..., p). In the
x m 1 m

proof of correctness of the subroutine, certain assertions will in

volve one or more of its formal parameters. Each such assertion is

then understood to be a parametrized assertion as above, in which

6ach formal parameter occurring in this way is replaced by the cor

responding actual parameter symbol p.. When the subroutine is called

the validity of a control path through the call statement to its

return address in the calling urogram is established by noting the

actual parameters with which the subroutine is called, substituting

these into A(p^, ..., pm) and A'CPj, ..., p^), and following the

116

implications of the correctness of the corresponding path of length

1 through the call statement.

The decomposition of the proof of correctness of a program with

subroutines into the separate proofs of correctness of the program

and of the subroutines is a process which must, of course, be ri

gorously Justified &nd. not taken on faith. In fact, it is very easy

for this process to be constructed incorrectly. Suppose, for example,

that routine A calls B using a calling instruction which leaves the

return address in register R, and routine B calls C using the same

calling instruction. An experienced programmer will now notice that

B must save the return address somewhere; otherwise it v/ill be lost

when B calls C, and we will never return to routine A (and in fact

we will probably enter an endless loop). But the statement that B

saves and restores R is not necessary in order to prove that B is

correct. Thus, if B does not save R, the routines A, B, and C may

all be correct seijarately, but not when they are combined. We must

therefore state a set of rules which will be used whenever subrou

tines are called, and we must then prove that, if these rules are

followed, the correctness of a collection of routines separately

is equivalent to their correctness as a whole.

For programs in algebraic and higher-level languages, the same

method may be used. It is clear, in particular, that in order for a

program written in such a language to be executed correctly, the

compiler or other language processor for the given language must

itself be correct. But if the compiler is correct, then the object

code must be produced in a correct manner, and this includes the

statement that the rules which are followed by all objcH. code In

its handling of subroutines pro valid :»n the so use d^Hrvd ah-vo.

Since these rules ore valid, we do not need to wo"»,",v ab.»ut them in

117

writing our programs in such a language. We simply prove each

subroutine correct, and trust to the compiler to execute the pro

gram correctly as a whole, automatically.

For recursive programs, there is one further consideration.

A collection of recursive programs may be separately correct, and

a reasonable collection of rules may be strictly followed with

respect to communication between subroutines, including the handling

of a push-down list, and yet the collection of programs as a whole

may be only partially correct. This is because of the problem of

unlimited growth of the push-down list, or, what is the same thing,

unlimited increase in the recursion level* The fact that this can

not happen must therefore be shown separately; it is a consequence

of the following fact, which is usually true for correct recursive '

routines. Let Pn, ..., P be routines which call each other mutu-
1 n

ally, and let the various arguments with which these routines are

called be ordered in some way: (if.cthefcetexist an infinite number

of possible sets of arguments, these must be well-ordered). Then

if P is called with a set S of arguments, and P proceeds to call
i x i

P with a set S of arguments, we must have S„ < S_ in the ordering
j y y x

of the sets of arguments; in addition, if 1 > 3, we must have

118

2-11 Matrix Multiplication

As our final example of a slightly longer 'program, we. shall

prove the partial correctness of a matrix multiplication routine.

This will be used in the next section, where we discuss ways of

abbreviating Commonly occurring correctness arguments.

Three indices, I, J, and K, are used in this program, and each

of them has its corresponding loop. The statement numbered 3 is

common to all three loops, and therefore it is the only necessary

control noint, aside from the starting and stopping points. Our

first task, therefore, is to determine precisely what the interme

diate assertion should be at statement number 3. It is clear that

this assertion depends heavily on I, J, and K. The first 1-1 rows

of the matrix C have already been filled in at this point; this

assertion will be denoted by RCfc/S(I-l). The first J-1 elements of

the I-th row have also been filled in, and this assertion is de

noted by RCW(I, J-1). Finally, S contains a partial sum correspon

ding to the J-th element of the I-th row, this partial sum inclu

ding all terms below the K-th term. We denote this last assertion

by ESUM(S, I, J, K-l). The final assertion of this program is now'

RCWS(N), and the assertions at statement number 3 include ROWr(I-l),

RCW(I, J-1), and ESUM(S, I, J, K-l), together with the statement

that each of the indices I, J, and K has an integer value between

1 and N inclusive. As before, the statements that I, J, .-nd K are

strictly positive are needed only to inside that the various sub

scripts in the program will all be in their proper ranges. V/e give

the program with its assertions,,first making inductive definitions

of Ra/f?, ROT, and ESUM:

119

** ROWS(O) = .TRIE.

** ROWS (I) = RaVS(I-l) .AND. ROW(I, N)

** ROWd, 0) = .TRUE.

** ROW(I, J) = ROW(I, J-1) .AND. (C(I, J) = S) .AT©.

** ESUM(S, I, J, N)

** ESUM(S, I, J, 0) = (S = 0)

** ESUM(S, I, J, K-l) = ESUM(S + A(I,K)*B(K,J),

1=1

1 J = 1

2 K = 1

S = 0

* 1 < I, I < N, 1 < J, J £ N, 1 < K, K < Nf

* ROWS(I-l), ROW(I, J-1), ESUM(S, I, J, K-l)

3 S = S + A(I,K)*B(K,J)

K = K + 1

IF (K .IE. N) GO TO 3

C(I, J) = S

J = J + 1

IF (J .IE. N) GO TO 2

1=1 + 1

' 3P (I .IE. K) GO TO 1

* ROWS (N)

CONTINUE

This program has five control paths. The first is

* N £ 1

o x = 1

J = 1 .

K = 1

120

S = 0

* 1 < I, I < N, 1 < J, J < II, 1 < K, K < IT,

*R0V/Sd-1), R0W(I, J-1), ESUM(S, I, J, K-l)

Here 1 < I, 1 < J, and 1 < K follow from I ~ 1, j ,_- l, and Z = 1

respectively; I < IT, J <; IT, and K < N follow from these and from

N > 1. The remaining conditions are true by' definition; specifi

cally, RCWS(I-l) = Ra/S(0) - .TRIE., ROW(I, J-1) =--. RCWd, 0) -

•TRIE., and 3SUM(S, I, J, K-l) = ESUM(S, 1, J, 0) = (0 ™ o), which

is clearly true. The next three control paths are the loop control

paths; the one for the innermost loop is

* 1 < I, I < IT, 1 < J, J < N, 1 < K, K < IT,

*Ra/s(i-i), Ra/(i, j-1), esuiKs, i, J, k-i)

S = S + A(I,K)*B(K,J)

K =-- K + 1

(K < IT)

* 1 < I, I < N, 1 < J, J < IT, 1 < K, K < IT,

* RCWS(I«-1), Ra/(I, J-1), ESUM(S, I, J, K-l)

Here 1 < K is clear because K increases, K < IT is clear from the

condition K < IT in the path, and ESIJM(S, I, J, K-l) at the begin

ning of the path becomes ESUM(S + A(I,K)*B(K,J), I,*J, K), which is

successively transformed into F.SUM(S, I, J, K) and then oti!!(S, I,

J, K-l). The other conditions at the end of this path are unchanged

by the path because S and K are not involved in them. The next

outer loop control path is

* 1 £ I, I < N, 1 < J, J < IT, 1 < K, K < N,

*R0wsd-D, row(i, j-i), et,um(s, I, J, r:-i)

S = S + A(I,K)*B(K,J)

*

K = K + 1

(K > N)

C(I, J) = S

J = J + 1

(J < N)

K = 1

S = 0

121

1 < I, I < N, 1 < J, J £ N, 1 < K, K < IT,

*R0WS(I-1), ROW(I, J-1), ESUM(S, I, J, K-l)

The arguments for 1 < K, K £ N, and ESUM(S, I, J, K-l) here are

the same as in the first path, and those for 1 < I, I < N, and

ROWS(I-l) the same as in the second. We have 1 < J at the end

since J increases, and J < N from the condition J < N in the path.

We mnst have K = W at the beginning of the path in order to have

K > N when it appears as a condition, and thus ESUM(S, I, J, IT)

holds up through C(I, J) = S; when combined with this and RCW(I,

J-1), the result (by the definition) is ROW(I, J), and then J is

increased by one, giving RCW(I, J-1) again. The outermost loop

control path is

* 1 < I, I < N, 1 < J, J < IT, 1 < K, K < N,

*R0WS(I-1), RCW(I, J-1), ESUM(S, I, J, K-l)

S = S + A(I,K)*B(K,J)

K = K + 1

(K > N)

C(I, J) = S

J = J + 1

(J > N)

122

.1=1 + 1

(I < N)

J = 1

K = 1

S = 0

* 1 < I, I £ IT, 1 < J, J < IT, 1 < K, K < IT,

*R0WS(I~D, ROWd, J-1), ESUM(S, I, J, K-l)

Here we have 1 < I at the end since I increases, and I < IT from

the condition I < N" in the path. As before, we must have K - u

at the beginning of the path, and also J - IT; also as before,

we have ROW (I, J), that is, R0W(I, IT), valid just before the

statement J = J + 1, and combining this with ROWS(I-l) gives

ROWS(I) by the definition, following which I is increased "by one,

giving ROWS(I-l) again. The other conditions in this path follow

as in the first path. Finally, there is the path

* 1 £ I, I < N, 1 £ J, J £ IT, 1 < K, K < II,

* ROWS(I-l), R(W(I, J-1), ESUM(S, I, J, K-l).

S = S + A(I,K)*B(K,J)

K = K + 1

(K > N)

C(I, J) = S

J = J + 1

(J > N)

I = I + 1

(I > N)

* ROWS (IT)

In this path, by arguments resembling the preceding, we must have

had I ™ >;, j = N, and K ~ IT at the beginning. As in the preceding

123

path, RCMS'CD holds just before the statement I = I + 1; but this

is RCWS(N), and RC¥S(N) continues to hold through the end of ttoe"'

path© Our program lias thus been proved partially correct.

I2h

2"12 £MlW?£ Verification. AiTunentj.s

The proof developed in the preceding section has me.de patently

obvious the need for efficiency in the proof process. The program

whose partial correctness was proved there uses only the most

elementary of programming techniques. It consists of twelve state

ments, plus C0NTHJ1F, at the end, and it is equivalent to

DO 1 I - 1, IT

DO 1 J •- 1, IT

S --= 0

DO 2 K = 1, N

2 S = S + A(I, K)*!*(K, J)

1 C(I, J) =.• S

which contains only six statements. Yet its proof took over three

pages, although admittedly half of the proof consisted in listing

paths© If we are to be able to verify programs of any reasonable

length, v/e must learn to skip steps; we must identify certain

arguments which are very often used in proofs of this hind, and

agree not to make such arguments explicitly in the future. V/e shall

now specifically identify four of these standard arguments, and

postpone the proof of termination of our matrix muni plication

program until the next section.

Each of our four arguments will be r^on an identifying letter.

When this .letter apnonrs in parentis ses after an assertion at the

end of a control path, the corresponding standard argument is as

sumed to apply. As an illustration, we have constructed a hypo

thetical control path using all four of these arguments, as follows:

125

* 1 < I, I < IT, F(S, T)

K = 1

1=1 + 1

(I < N)

* 1< I (I), I <; N (C), K= 1 (A), F(S, T) (U)

The meanings of the identifying letters are as follows:

(U) The assertion is unchanged during the path. That is, an

assertion at the end of the path is identical to one at the be

ginning, and none of the variables which appeared in that asser

tion were changed by any assignment in the path. Thus, in our

example, the assertion F(S, T) appears both at the beginning and

at the end of the path, and the two given assignments change only

K and I. Notice that S arid T could have appeared, although they

did not, on the right sides of these assignments and in the in

termediate condition.

(A) The assertion is the result of an assignment which is

made on this path and whose variables are not later changed. If

the assignment is £ = e, where v is any variable and e any ex

pression, then the condition may be (v = e), (£ < ©)* (v 2; £)»

(e = v), etc. In the example, K is set to 1 as the first assignment
1

of the path. Note that K could have been set to something else be

fore the statement K = 1 in this path, although not afterward; also

K could have occurred in right sides and intermediate conditions.

(C) The assertion is the same as an intermediate condition

appearing in the path, whose variables are not later changed.

Thus in our example the condition I £ N implies the final asser

tion I < N. Here again, I and/or IT could have appeared on the

right side of an assignment after the intermediate condition

I < N, or in any other intermdiate condition, or on the left side

before (I £ N), as here in the assignment 1=1 + 1.

126

(I) The assertion is an inequality which is "strengthened"

by the path. For an inequality of the form a < b, for example,

b may increase during the path, or a may decrease, but not vice

versa. The same inequality is presumed to hold at the beginning

of the path and at the end. Thus, here, the inequality 1 < I is

strengthened hy the statement 1 = 1 + 1.

Of the 31*- assertions needed in the proof of bur matrix mul

tiplication program, 18 follow directly from these four standard

arguments. We shall rewrite the five paths of this program with

the standard arguments specified, omitting all. proofs:

* IT > 1

I =. 1

J = 1

K-l

S = 0

* 1 < I (A), I < IT, 1 < J (A), J < U, 1 < K (A),

* K < IT, KOWS(I-l), HOW(I, J-1), ?.£UM(S, I, J, K-l)

* 1 < I, I < IT, 1 < J, J < IT, 1 < K, K < M,

* rtCWS(I-l),. ROW(I, J-1), ESUM(8, I, J, K-l)

S --••: S + A(I,K)*B(K,J)

K = K + 1

(K < N)

* 1 < I (U), I < IT (!T), 1 < J (U), J < n (U),

* 1 < K (I), K < IT (C), ROWS(I-l) (II),

*Ra/d, J-i) (u), &;w(i', i, j, i:-i)

* 1 £ Ir I £ N, 1 £ J, J < N, 1 < K, K < N,

*ROWS(I-D, ROW(I, J-1), ESUM(S, I, J, K-l)

S = S + A(I,K)*B(K,J)

K = K + 1

(K > N)

C(I, J) = S

J = J + 1

(Ji»)

£=1

S = 0

* 1 £ I (U), I < N (U), 1 < J (I), J < N (C),

* 1 < K (A), K < N, ROWS(I-l) (U),

*RCW(I, J-1), ESUM(S, I, J, K-l)

* 1 < I, I £ N, 1 < J, J < N, 1 < K, K < N,

RCWS(I-1) ROW(I, J-1), ESUM(S, I, J, K-l)

S = S + A(I,K)*B(K,J)

K = K + 1

(K > N)

C(I, J) = S

J = J + 1

(J > N)

1=1 + 1

(l£ N)

J = 1

K = 1

S = 0

* 1 < I (I), I < N (C), 1 < J (A), J < N,

* 1 < K (A), K < IT, ROWS(I-l), ROW(I, J-1),

* ESUM(S, I, J, K-l)

127

* 1 < I> I £ ff> 1 < J, J <"N, 1 •< K, K < IT,

*R0WS(I-1), ROW(I, J-1), ESUM(S, I, J, K-l)

S = S + A(I,K)*I3(K,J)

K = K + 1

(K > N)

C(I, J) = S

• J =•- J + 1

(J > IT)

1=1 + 1

(I > N)

* ROWS(M)

128

* 1 £lr I £ N, 1 £ J, J < N, 1 < K, K < N,

*R0WS(I-1), ROW(I, J-1), ESUM(S, I, J, K-l)

S = S + A(I,K)*B(K,J)

K = K + 1

(K > N)

C(I, J) = S

J = J + 1

(J£ N)

£ = 1

S = 0

* 1 £ I (U), I < N (U), 1 £ J (I), J < N (C),

* 1 < K (A), K < N, ROWS(I-l) (U),

*RCW(I, J-1), ESUM(S, I, J, K-l)

* 1 < I, I < N, 1 ^ J, J < IT, 1 < K, K < N,

*Ra\TS(I-l), ROW(I, J-1), ESUM(S, I, J, K-l)

S = S + A(I,K)*B(K,J)

K = K + 1

(K > N)

C(I, J) = S

J = J + 1

(J > N)

1=1 + 1

(I £ N)

J = 1

K = 1

S = 0

* 1 £ I (I), I < N (C), 1 < J (A), J < N,

* 1 < K (A), K < IT, ROWS(I-l), ROW(I, J-1),

* ESUM(S, I, J, K-l)

127

* 1 < I, I < IT, 1 < J, J < IT, 1 < K, K < IT,

*R0WS(I-1), RCW(I, J-1), ESUM(S, I, J, K-l)

S =.S + A(I,K)*B(K,J)

K - K + 1

(K > N)

C(I, J) = S

J =: J + 1

(J > N)

1=1+1

(I > N)

* ROWS (IT)

128

129

PROBLEMS

1. The following program computes the square root of X to

within a tolerance of 10~^, under the assumption that X is posi

tive. It is given with assertions; ABS denotes the absolute-value

function. We repeat, as noted in section 1-2, that roundoff error

and other types of etror associated with floating point are to

be ignored©

* X > 0

A = X

B = 1

TOL = loOE-0?

* A*B = X, A > 0, B > 0

1 A = (A + B)/2.0

B = X/A

IF (ABS(A-B) > TOL) GO TO 1

* ABS(A«SQRT(X)) £ TOL

Prove the partial correctness of this program*1 (Note that if the

final assertion had been ABS(A-B) < TOL , the partial correctness

would have been trivial.)

2. (a) Consider the path in the above program which starts

and ends at statement number 1. Verify this path with the addi-

tional assertion A > B at statement number 1. (Hint: Write A =

£ - £, B = 2 + B.9 then £ = (A + B)/2o0 and X = A*B = e2 - c[2 < J32.)

(b) If X < 1, the assertion A > B will not, of course, hold

at the end of the control path which starts at the beginning of

the program. Therefore, let us use (A = X .OR. A > B) instead©

Re-verify the partial correctness of the entire program with this

•RC-

new assertion at statement number 1.

(c) If A > B and A*B = X, show that ?A±§ - fx! < I'a - ^xL

(Hint: First show that the absolute value signs may be removed.)

(d) Add to the program the statement I=0 at the beginning
and the statement 1=1 + 1 somewhere within the loop. Add the

assertion ABS(A-B) < ABS(X-1.0)*(2.0**(-I)) at statement number

1. Using (c) above, verify the partial correctness of the ex

panded program,

(e) Verify the correctness of the expanded program. (The con

trolled expression is obviously I; therefore all we need to do

is to add, and verify, another additional assertion at statement

number 1, giving a bound on h)

(f) Give an intuitive argument to the effect that the cor

rectness of the expanded program is equivalent to the correctness

of the original program. (Consider the fact that no new statements

were added which may change any variables not present in the ori

ginal program.)

3e Translate the following program according to the rules

given at the end of section 2-2:

OPEN FILE INPUT

OPEN FILE OUTPUT

1 READ INPUT, X

IF (EOF, INPUT) GO TO 2

WRITE OUTPUT, X

GO TO 1

2 END FILE OUTPUT

It is assumed that INPUT and OUTPUT here are file names.

131

hQ (a) The program of the preceding problem is an adaptation

of the program given in section 2-2, and in this section it was

stated that this program is in turn equivalent to one given in

section 1-8. Formulate the initial, intermediate, and final as

sertions for the program of the preceding problem which correspond

to those of the program in section 1-8•

(b) Prove the correctness of the program of the preceding

problem with respect to the assertions obtained as above •

5. (a) Suppose that A(l) = 3? A(2) = ?, A(3) = 7?A(W = 5,

B(l) = ?, B(2) = 5, B(3) = 7, and B(h) = 3. Is PERM(A, B, *f) true?

(b) Suppose that A(l) » 1, A(2) = 2, A(3) = 3, AJfc) = 3*

B(l) = 2, B(2) = 3, B(3) = S and B(lf) = 1. Is PERM(A, B, K) true?

6. What Is the sortedness of each of the following arrays?

Assume that the elements of each array are ordered as given*

(a) 6, 3, 8, 10, 20

(b) 19, 17, 12, 10, 39 2, U

(c) b, 8, 2, 11, 1, 12.

(d) 1, 2, 3, ^, 59 6, 7, 8, 9, 10.

7» In the program of section 2-**, suppose that we alter the

condition in statement number 1 from .GT. to .IE., and rearrange

the other statements accordingly (without changing them), as

follows:

I = 1

1 IF (A(I) .LEo A(I+D) GO TO 2

T * A(I)

A(I) = A(I+1)

A(I+1) = T

IF (I .EQ. 1) GO TO 1

1=1-1

GO TO 1

2 1=1 + 1

IF (I .NE. N) GO TO 1

3 CONTINUE

(Notice that, in the process, we have reduced the total number

of executable statements in the program from 12 to 11.) How does

this change affect the proof of correctness of the given program?

8. Suppose that we change statement number 2 (in the ori

ginal program of section 2~+, not as modified above), together

with the following two statements, to

T = A(I+1)

A(I+1) = A(I)

A(I) = T

How does this change affect the proof of correctness of this

program?

9. In the following problems, assume that MERGE (I, J, K) is

defined, as in section 2-?, relative to the arrays A, B, and C.

(a) Suppose that the arrays A, B, and C are given by

1, 6, 8, 12, 17

2, 12, 17, 19

1, 2, 6, 8, 12, 17, 19

(that is, A(l) = 1, A(2) = 6, A(3) = 8, etc.) Is MERGE(5, If, 7)

true?

(b) Suppose that the arrays A, B, and C are given by

1, 6, 8, 12, 17

2*f, 2?, 29, 31, 33

1. 6. ft. IP. 17. PU. P<?. PQ. ^1. ^

133

Is MERGE(5, 5, 10) true?

10. (a) Suppose that A(l) = A(2) = ... = A(10) = 17* Is

ASC(A, 10) true?

(b) Suppose that A(l) = -*f, A(2) = -3, A(3) = -2, and A(»f)

= -1. Is ASC(A, h) true?

11. What is the value of each of the following?

(a) (K = 2) after (K = K + K)

(b) (I £ J + 5) after (J = 10 - J)

(c) (W = Y) after (W = Y*Y)

(d) (K * L) after (K = K + 5)

12. Use the back substitution rule to determine the value

of each of the followings

(a) (S = SIGMA(A(K), K, 1, I)) before (S = S + A(D)

(b) (MERGE(1-1, J-1, K-l)) before (K = K + 1)

(c) (T < U + V) before (U = 2*7)

(d) (D > E + ?) before (D = E + 3)

13. Modify the definition

LV(LP, L) = (i£ L = nil then LP = 0 else

(LP is odd and FS(LP+1) = ca£(L) and LV(FS(LP), cdrjL))))

given in section 2-7 for the assertion LV ("list value") as di

rected by each of the following modifications in the list pro

cessing conventions given just before that definition. Some of

these modifications are mentioned in the paragraph following the

definition; each one is to be considered separately*

(a) The special pointer which marks the end of a list is

taken to be a constant called NIL.

(b) Any pointer to the jfc-th item in the free storage is given
by Ai rather than 2^-1.

(c) The first element of each pair denotes the content of

the item, and the second denotes a pointer or zero as originally

specified for the first.

(d) Two arrays FS1 and FS2 are used. The ^-th item consists

of FS1Q) and FS2(j)$ by a pointer to this item we mean the in

teger J[. The content of the item is in FS1Q) and the pointer or

zero is in FS2(i)e

(e) A double array is used; otherwise, same as (d) above,

with FS1Q) replaced by FS (1, & and FS2Q) replaced by FS(2, j).

1+. In each of the five cases above, state in detail what

changes must be made in the list unwinding program of section

2-7, and in its proof of correctness,' in order for it to remain

correct with respect to the assertions given.

15. The following operations and pseudo-operations in an

imaginary assembly language are found in Jfromunming; An Intro

duction To Computer Techniques by Maurer. We shall assume that

our computer has an accumulator, which is the only register with

which we shall be concerned, plus an unspecified number of memory

words which have names I, J, K, The pseudo-operation

n RE 1

where n is any name, reserves one memory word and gives it the

name n. The pseudo-operation

n CO k

whoro n is any n:\v\o and k j<; any constant, rosorvus oiv* mrrnory

135

word and gives it the name n and the initial contents k. The

following instructions are given with their approximate alge

braic-language counterparts; here ac denotes the accumulatoro

LD Y ac = Y

AD Y ac = ac + Y

SU Y ac = ac - Y

MU Y ac = ac * Y

DI Y ac » ac / Y

ST Y Y = ac

TR EETA GO TO BETA

TZ BETA IF (ac « 0) GO TO BETA

The following program now represents in this assembly language

the exponentiation program of section l«Jf:

I RE 1

N RE 1

A RE 1

X RE 1

ONE CO 1

ZERO CO 0

ID ONE

ST X

LD ZERO

ST I

LI LD I

SU N

TZ L2

LD X

MU A

336

ST X

LD I

AD ONE

ST I

TR LI

L2 (continue)

Prove the correctness of this program in the same way that the

correctness of the original program was proved in Chapter 10

Assume, for the moment, that the approximate algebraic-language

equivalents given are in fact exact.

16. Translate the prime-testing program of section 1-9 into

the assembly language of the preceding problem, and prove its

correctness in this form, under the same assumptions as above.

You may use one additional instruction:

TP BETA IF (ac £ 0) GO TO BETA

Your initial assertion should be I > h (as mentioned in section

1-9, the program is not correct for 1 = 2). Note that the MOD

function may be translated into an assembly language using a

divide instruction which does not compute remainders (as the one

defined above) by dividing, then multiplying, and finally sub

tracting; thus, for example, MQD(7,2) = 7-(7/2*2) = 7-(3*2) =

7-6 = 1.

17. Suppose that a computer with no indox registers and a

maximum of +K 18-bit words lias the assembly language defined in

problem 16 above. There is one instruction per v/ord, and standard

(not base-displaceraent) addressing is used; the first six bits

of an instruction are the operation code, and the remaining 12

137

bits are the address. The operation codes for the instructions

which we have introduced are given as follows in octal:

LD — 21 MU - - 2? TZ — ?0

AD — 23 DI - - 27 TR — 60

SU — 2h ST - - 22 TP — ?2

Suppose that the program of problem 15 above is loaded into

memory, starting at octal address 0206. Formulate the precise

assertions about the instruction and data words of this program

which should be made at its beginning and at LI and L2 in order

to complete the proof of correctness of this program begun in

problem 1?, taking now into account the fact that it must be

proved that this program does not modify itself*,

18. The following program represents, in the assembly lan

guage of problem 1$ above, the summation program of section 1-7.

It is assumed that the pseudo-operation

ij RE m

where n is any name and m is any integer, reserves m memory words

for an array called n (of dimension jg). All variables are assumed

to be integers.

. N RE 1

I RE 1

S RE 1

A RE 100

ONE CO 1

ZERO CO 0

IN3T AD A

START LD II^T

ST L2

LD ONE

ST I

LD ZERO

ST S

LI LD S

L2 RE 1

ST S

LD L2

AD ONE

ST L2

LD I

AD ONE

ST I

LD ' N

SU I

TP LI

np.

Suppose that this program is loaded into the computer of problem

17 above, starting at octal address 10?1. Prove the correctness

of the program with respect to assertions derived from those in

section 1-7; the initial assertion must include N < 100 because

of the restriction in the program above on the array A. Note that

this program modifies itself; the operation code for an add in

struction is such that the sign bit in the instruction word will

be zero, so that, as an integer, the instruction word will be

positive. (This insures, for example, that adding 1 to

AD A

will produce

AD A+l

no matter how negative integers are represented.)

139

19• The following FORTRAN subroutine is given with assertions:

SUBROUTINE ROOT

COMMON A, B, C, N

* C £ 0

B = SQRT(C)

* B =1<f

RETURN

END

It is called by the following FORTRAN program with assertions:

REAL N

COMMON A, B, C, N

* N > 0

c = i.o

A = 0.0

* N > 0, C > 0, C £ N, A = H Y£

1 CALL ROO0T

2 A = A + B

C = C +1.0

IF (C .LE. N) GO TO 1

*a . lyg

The COMMON statements in the program and in the subroutine, of

course, insure us that all variables here are global. Assume that

the subroutine is correct (the proof of this would involve the

correctness of the further function SQRT called by it).

(a) Prove the correctness of the program under the assumption

that the statement CALL ROOT may be replaced by its effect (i. e.,

by the presumably correct subroutine).

140

(b) Prove the correctness of the program under the assumption

that the statement CALL ROOT is the same as "Set R = 2 and go to

ROOT" and that the statement RETURN is the same as "Go to the

statement whose statement number is given by tte value of R."

Assume that R is an integer variable.

20© (a) Suppose that we were to add the statement A = 0.0

after B = SQRT(C) in the subroutine. Does this affect the cor

rectness of the subroutine?

(b) Does it affect the partial correctness of the main pro

gram?

(c) Where does the proof of correctness of the main program

break down under these conditions?

(d) Suppose, instead, that we were to add the statement C

= 1.0 before B = SQRT(C) in the subroutine. Does this affect

the correctness of the subroutine?

(e) Does it affect the partial correctness of the main pro

gram?

(f) Where does the proof of correctness of the main program

break down under these conditions?

21. In the matrix multiplication routine of section 2-11,

we used the variable S as a partial sum, rather than C(I, J),

for the sake of efficiency. Suppose, however, that we do not do

this; that is, we eliminate the statement C(I, J) = S, and re

place S by C(I, J) everywhere else in the program. How does this

change affect the proof of partial correctness?

22. Complete the proof of correctness of the routine given

in section 2-11.

lUl

23o Identify the standard verification arguments (see sec

tion 2-12) which may be used in the proof of partial correctness

given in sections 1-^+ and 1-?.

2k. Identify the standard verification arguments which may

be used in the proof of partial correctness given in section 1-10.

lte

3 STATE VECTOR FUNCTION THEORY
V

v
»

The title of this chapter does not adequately convey its gen

erality. State vector function theory, as we shall develop it, is

.nothing less than the theory of programs as they are actually run

on computers. Various other "theories of programs" or "theories of

algorithms" have been formulated, but most of these are Pbout pro

grams for artificially constructed machines, such as Turing machines

A Turing machine has states, which may be thought of as integer val

ues of a single variable which constitutes the entire "innards" of

the machine. A digital computer, on the other hand, lias state vec-

to£g,, and so does a program written in an algebraic or higher level

language. Each state vector is a set of states:or values, one for

each variable. State vector functions are then functions on state

vectors, i. e., functions f(S), where S is a state vector.

In developing state vector function theory, the fundamental

object is the memory, which is a set of variables together with a

way of telling what values each variable can take. The reader who

is familiar with other mathematical theories, such as group theory

or automata theory, may make comparisons between the way in which

a group, ah automaton, or a memory (in our sense) is defined in

terms of sets and functions. Once this is done, we may define the

concepts of state vector and state vector function in formal terns*

We may then develop certain theorems, then use these to prove more

complex theorems, and ultimately build up a theory which nay then

be applied in proving assertions about arbitrary programs.

1U3

3-1 Sets and Functions

In order to develop our formal mathematical models, we shall

start with some basic facts about sets and fractions. These nay

also be found in textbooks on elementary set theory, modern algebra,

or the like.

The notion of a set ?is fundamental to all mathematics. A set

contains elements * and each of these elements is a member of the

set. If the element x is a member of the set X, v/e say that x is

in X, or x£ X. If x is not in X, we v/rite x £ X. It is always

true that either x £ X or x ^ X, for any element x and any set X.
If X and Y are sets, then the union of X and Y, or X {J Y,

is the set of all elements which are in either X or Y, and the

intersection of X and Y, or X 0 Y, is the set of all elements

which art in both X and Y. Every set has a certain number of ele

ments, and this number may be finite or infinite. If it" is finite,

it may bo positive or zero. There is exactly one set whose number

of elements is zero.; this set is denoted by 4>, and. is called the

null set. If X 0 Y = <{> for the sets X and Y, then X and Y am

called dis.joint. If the number of elements in a set is infinite,

it is called an infinite set; otherwise, a finite set.

A finite set nay be specified by listing all its elements

in brackets. Thus X ~ {2, 3, 6, 7} means that X is the set con

sisting of the four elements 2, 3, 6, and 7* The set of all in

tegers between in'and n inclusive will sometimes be abbreviated

^m, m+1, ..., n2; iif m.= 1, we write fl, ••*, n}.
If every element of the set X is also an element of the

Ikh

set Y, then we say that X is contained in Y, or that Y contains X.

These may be abbreviated X C Y and Y O X. If both X C Y and Y C X,

then X and Y must be the same set, i. e., X = Y. A subset of Y is

any set X contained in Y. Any property of the elements of a set

defines a subset consisting of all elements which have that pro

perty. The set of all elements of Y which are greater than zero,

for example, is a subset of Y$ it may be denoted by ^y 6 Y: y > 0\.
A subset of Y is called proper if it is unequal to Y.

A function f with domain X, where X is a sot, is a way of

associating a value, called f(x), with every element x£X. The

set of all values of the function f is called the range of f. If

X is any set which contains the domain of f and Y is any sot which

contains the range of f, we may write f: X->Y* and we may say that'

f is a function from X to Y. Such a function is called total (or a

total function) if X is equal to its domain, and it is called

onto (or onto %) -if Y is equal to its range. If f is not neces

sarily onto Y, it is called into Y; if f is not necessarily total,

it is said to be partial. (Partial functions may be thought of as

"partially defined," i. e., f(x) does not necessarily exist for

x £ X, where f; X-^Y.) A function f is one-to-one if f(a) = f(b)

always Implies a = b.

THEOREM 3-1-1. A total function f: X ~»X, where X is a finite

set, is one-to-one if and only if it is onto. (Such a function is

called a nermutation.)

Pr.OOff. If f is not one-to-one, then there exist a € X, b 6 X

such that f (a) =,f(b). If X contains ir elements, then the range of

f consists of f(a) together with the (at most) n-2 values f(x) for

x / a, x £ b. There are thus at most n-1 values in this range, which

shows that X is not equal to the range and therefore f is not onto.

Conversely, if f is not onto, the range of f can contain at most

n-1 elements; since there are n quantities f(x), for x € X, at least

two of them must be the same, which shows that x is not one-to-one.

The restriction of the function f: X-*Y to the subset X1 of

X is the function g: X* -> Y such that g(x) = f(x) for all x € X».

It is abbreviated fix.

Let fs X->Y be a function and let X8 be a subset of X. The

set of all f(x) for x e X» is a subset of Y. If we denote this

subset of Y by Y«, we may write f(X8) = Y». This notation is very

often used, although it would be more accurate to write ff(Xf) =

Yf, where f9 is the function from the set of all subsets of X to

the set of all subsets of Y defined by ^(X1) « '•> Y: y = f(x)

for some x £ X9:, for each subset X9 of X.

TlM jtnverae image of an element y 6 Y under a function ft

X ->Y is the set of all x € X such that f(x) = y.

A function may be specified by listing all its values if its

domain is finite. In particular, suppose that the domain of a

function f is the set fl9 2n. Then the function is completely spe

cified by giving f(1) and f(2). If f(l) = x and f(2) = y, then the

21*6

function is completely specified by writing (x, y). The expression

(x, y) is called an ordered pair, and the set of all such ordered

pairs (x, y), for all x in a set X and all y in a set Y, is called

the cartesian product of the two given sets X and Y, or X x Y.

(It is also possible to define functions in terms of ordered pairs,

rather than ordered pairs in terms of functions. In fact, the set

of all ordered pairs of the form (x, f(x)), for some function f,

may be taken as a definition of f•)

Ohions, intersections, and cartesian products may be extended

to the case of more than two factors. If X., X , ..., X are sets,

then their union is the set of all elements which are in anyjj^

of them, and their intersection is the set of all elements which

are in all of them. The union of the sets X , X0, ..., X is denoted
n n 1 2 n

by U x., and their intersection bjr H X . The cartesian product

Xl * X2 * *•• xXn is the set of aU orforad n-tuples (x^ x2, ..„,
xn)» where each x is a member of the corresponding X . Following
the definition of an ordered pair above, we define an ordered

n-tuple as a function whose domain is the set {1, ..., n], speci

fied by giving the value f(i) for each i. In the ordered n-tuple

(x t ..., xn), considered as a function f, x = f(i) for 1 < i < n.

These constructions may be taken a step further. Let I be a

set and for each 16 I let X be a set. The union of all the X is

the set of all elements which are in any of the X , and is denoted by

k?I Xi° The Jkrtersection of all the X± is the set of all elements
which are in all of the X., and is denoted by D X.. The cartesian

product of all the X± tf&ll be defined as the set of all functions

f with domain I which are such that f(i) € X for each i £ I. This

product may be denoted by T? X .
lei i

The identity function W any set X is the total function

in?

e: X--»X such that e(x) = x for all x 6 X. The composition of

two functions f: X-»Y and g: Y~>Z is the function h: X-> Z

such that h(x) = g(f(x)) whenever this is defined; we write h =

f o g. a function ft X-»Y has an inverse gs Y-^X if and only if

f & g = e.

THEOREM 3-1-2. A function has an inverse if and only if it

is one-to-one9 and this inverse is itself one-to-one. The inverse

of a function is total if and only if the function is onto, and

onto if and only if the function is total.

PROOF. If the function fs X-*Y is not one-to-one, then

there exist a € X, b € X with f(a) = f(b). If f were to have an

inverse g, then a = e(a) = g(f(a)) = g(f(b)) = e(b) = b. Converse

ly, if f is one-to-one, we may define g$ Y-^X such that g(y) = x

whenever f(x) = y. This function is well defined, because otherwise

we would have g(y) = x, and g(y) =x for x^ * x2, or f(x^) =y=
f(x), and f would not be one-to-one. If g were not one-to-one,

we would have gfr-J = stop) for Vn * ^ i# e°* there exists x
with f(x) = y and f(x) » y , which is absurd. The function g will

be total if and only if, for every y 6 Y, there exists g(y), i. e.,

there exists x with f(x) = y, and this is true if and only if f is

onto. The function g will be onto if and only if, for every x € X,

there exists y with g(y) = x, i. e©, f(x) = y, and this is true if

and only if f is total.

A total function f: X^Y which is one-to-one and onto is

called a one-to-one c orrespondence.

COROLIARY 3-1-1. The inverse of a one-to-one correspondence

is a one-to-one correspondence.

A one-to-one correspondence is natural (or sometimes canoni

cal) if there is a particularly easy way to define it. This, of

course, is not a precise concept. When we state that there exists

a natural one-to-one correspondence between two sets, however, we

mean the following: (1) there is a one-to-one correspondence5 (2)

we are now going to define a particular one-to-one correspondence

which will be considered from now on as "the natural one" between

these two particular sets. As an example of this, we now define a

particular one-to-one correspondence which is very widely used.

THEOREM 3-l-3o Let X be any set and let P(X) be the set of

all subsets of X (including the null set and X itself). Let B be

the set -ftrue. false^ of two elements, and let F(X, B) be the

set of all total functions f: X-* B. Then there is a natural

one-to-one correspondence between P(X) and F(X, B).

PROOF. For each subset X9 of X let the corresponding f:

X->B be defined by f(x) » true if x £ X* and f(x) = false other

wise. This Cca?uaspondenc© i£?total? it-is aleO ene-to-one, because

different subsets clearly correspond to different functions. If

f: X-»B is an arbitrary total function, then the set of all x 6 X

for which f(x) = true is a subset of X from which f is derivable

in the above way. Thus the correspondence is also onto.

A binary operation on any set X is a function f: X x X-» X.

For example, the operator + on a set X (if"it is defined) corre

sponds to the binary operation f: X x X ~*X defined by f(x, y) =

x •+ y. The domain of f is the set X x X, i. e., the set of ordered

pairs (x, y) with x 6 X and y £ X, and hence we should properly

write f((x, y)). However, when the domain of any function is a

cartesian product we shall drop the extra pair of parentheses. An

&=§EX operation on X is a function f* Xn X, where Xn is defined

to be the cartesian product of q copies of X, 1. e., the set of

all total functions from (X, 900, n^ into X.

11*9

A relation on a set X is a map f: X * X->ftrue» false^©

For example, the operator < on a set X (if it is defined) corre

sponds to the relation fjX * X~Mtrue« false£ defined by f(x, y)

= true if x < y and f(x, y) = false otherwise© A relation may also

be thought of as a subset of X x X, by the preceding theorem. In

general* when we have a natural one-to-one correspondence between

two sets and we are given an element of one of these sets, we may

regard it just as easily as an element of the othere In this case

the set of all subsets of X X X and the set of all maps f: X x X-»

$true, false^ may be thought of interchangeably as the set of all

relations on X© As a subset of X x X, a relation is the set of all

ordered pairs (x, y) for which the relation holds true (x < y, in

our example). If a relation is called R, and (x, y) is in the cor

responding set (of, thinking of R as a function, R(x, y) = true)*

we may write xHy«

A relation is reflexive if xRx is always true and irreflexive

if xRx is always false. A relation is symmetric if xRy Implies yRx

and antisymmetric if xRy and yRx imply xRx© (This includes the

possibility that xRy and yRx are never true at the same time©) A

relation is transitive if xRy and yRz impJy xRz© A relation is an

equivalence relation if it is reflexive, symmetric, and transitive©

A partition (or a decomposition) of a set X is a set $ of sub

sets of X such that D n DB = <j> for any two elements D, D1 of $) ,
and also ll D = X, That is, each element of X belongs to exactly

one D £ 3©

THEQRBM 3*l-*f© There is a natural one-to-one correspondence

between the set of all equivalence relations on any set X and the

set of all partitions of X©

PROOF© Let R be an equivalence relation on X© For each x 6 X,

150

let D « J£y £X* xRy}© (The set D_ is called the equivalence

class of x in X©) The corresponding partition $ is now the set

of all the Ds for xC X, with the restriction that if two 'or more

of the T>x are the same set then this set is counted only once©

Since R is reflexive, x6Dt and thus U D = X© Suppose that

D_ n D 4 6 %we will show that in this case D » D • There
x y T x y

exists z 6 X such that xRz and yRzj if a £ D $ since: R is sym-

metric, zRy; since R is transitive, xRz and zRy imply xRy, and,

again since R is symmetric, yRx© If a£ Dx then xRa; since R is

transitive, yRx and xRa imply yRa, and a £ D © Conversely, if

a 6 D • then yRa, and since R is transitive, xRy and yRa imply

xRa, so that a£ Dx© Thus D =D ©Now let <2) be any partition,
and define the corresponding relation R as a subset of X to be

the set of all (x, y) where x and y are both in the same element

D £ oB# Clearly (x, x) 6 R for each x, so that R is reflexive©

If x and y are in the same element of £) 9 this is the same as

saying that y and x are, so that xRy implies yRx; thus R is sym

metric© Finally, if x and y are in the same element of j8, and so

are y and z, then, clearly, so are x and z© Thus xRy and yRz im

ply xRz, and R is transitive, which completes the proof that R is

an equivalence relation©

A relation is a partial ordering if it is reflexive,

antisymmetric, and transitive© It is customary to denote a re

lation by s if it is an equivalence relation and by <; if it is a

partial ordering© A partially ordered set is a set X together with

a partial ordering on X© A partially ordered set has a smallest

element x if x £ y for all y, and a greatest element y if x £ y

for all x© It has a maximal element x if x < y implies x »-y, and a

minimal element y if x <: y implies x = y©

151

A directed graph is a set X together with a set of ordered

pairs (x, y), x 6 X, y £ X© If the ordered pair (x, y) is in this

set, we write x-> y© The elements of X are called the nodes of the

graph and the ordered pairs (x, y) are called the links© If x and

y are nodes, then we say that there is a directed path of length n

from x to y if there exist nodes x , ©©©, x , xQ = x, x^ = y, with

xi-l^ x± *OT * ^ * & n° Tnere is always toy definition a directed
path of length zero from x to x© A directed path of length greater

than zero from x to x is called a directed cycle© A graph with no

directed cycles is called acyclic © (By "graph" we shall always

mean a directed graph©)

THEOREM 3-1-5© On any acyclic graph the relation R, defined

by xRy if and only if there exists a directed path (of length £ 0)

from x to y, is a partial ordering© (Acyclic graphs are accordingly

sometimes called ordered graphs©)

PROOF© By the above paragraph, R is certainly reflexive© It

is also transitive, because if there exist nodes xQ, ©•©, xn, x =

x, x = y, x. ,-» x. for 1 < i £ n, and also nodes y © ••©, y ,
n x—jl x 0 m

y0 = y' ya = *' yi*l~> yi for X* i * n' then we set xi+n = yi»
1 £ i £ m» and the nodes x^, ©«©, X ^ then satisfy x,= x, x .

"* •* 0 n+m 0 n+m

28 ym = z* and xi-l~* Xi for * &* ^ n and n+1 ^ x ^ n+m» i# e#*
1 £ i £ n+m© Thus xRy and yRz imply xRz© If xRy and yRx, then tefee

above*construction givto a directedrpefete'l^o^ac to x which can have

length zero only if the original two paths do, i. e©, x » y© Since

the graph is acyclic, this must be the case, which shows that R is

antisymmetric•

A node x of any directed graph is initial if y->x does not

152

hold for any node y© It is terminal if x-*y does not hold for

any node y© These definitions hold in any directed graphj if a

graph is acyclic, initial nodes are minimal nodes (in the partial

ordering of the above theorem) and terminal nodes are maximal nodes©

There are a number of special set-theoretical conventions

which we will use© The notation A C B (or B -"> A) means that A is

a subset of B which is not necessarily proper| that is, it may toe

that A - B (and we will not use the notation A C B or B 3 A). The

identity function on any set will be denoted by e© The composition

of two functions f and g is denoted by h « f < g, where h(x) *

g(f(x)) (and not f(g(x)), as used by some authors)? thus f * g

means intuitively "first apply f, then apply g©" The inverse of a

function f is the function g such that f * g = e (not g '•> f » e,

although this follows immediately)© The cartesian product of the

sets X4, for all i £ I (for some set I), will be denoted by JTX±

(and not X Xj«
Mil *

153

3-<2 Msmories

We shall take the fundamental position that all characteristics

££ memory max bg, inferred from the values which are currently assumed

iZ certain variables© As applied to human memory, this statement, of

course, is debatable, although there is nothing which prevents us from

conjecturing that the human mind, in this way as in so many other

ways, is like a computer© If a person9s behavior depends on whether

he is happy, sad, frustrated, etc©, one might postulate a "brain

variable" called mood* whose values are "happy," "sad," "frustrated,"

etc© For the present, however, we shall confine ourselves to consi

dering the memory of a ccopufesar, or of an algorithm© Even in this case

the statement? made above is not at all obvious; one must decide what

to do about input-output, currently inactive variables, push-down

lists, etc© However, in what follows we shall give evidence indicating

that the given statement is in fact applicable to all such situations©

The fundamental relation between variables and their values is

that of legality© That is, given a variable m and a value £, one must

be able to determine whether %is a legal (or allowable or permissible)

value of m© If M is the set of all variables and V is the set of all

values, then the set of all ordered pairs (m,, v.), such that v is a

legal value of g, is a subset of the cartesian product M x V which

we call the legality relation L© It is clear from experience that

no finiteness restrictions ought to be imposed on M or V, and, in

fact, these may be arbitrary sets© Thus an (ideal) algorithm or com

puter may have an infinite number of variables, and any of these may

have an infinite number of legal values© These-considerations are now

made precise as follows©

I5h

DEFINITION 3-2-1* A memory is an ordered triple P^ (M, V, L),

where M and V are arbitrary sets and L is a subset of M X V© The

set M is the set of variables of T; the set V is the set of values

of P| and L is the legality relation of P©

We have the following simple examples of memoriess

(1) V= (B, ?0, ll, B x ^0, 1$), where B is the set of all bit

positions in the registers, core, tapes, etc., of a certain binary

digital computer. In this case, every value is always legal.

(2) f= (M, V, L), where M=fa]L, ..., an, b^ ..., b^, V is
the union of two sets R and I, and L contains the pairs (a., r) for

r £ R and (b., i) for i 6 I. This is the memory of an algorithm

whose declarations are real a-, •••, an and integer b^, ..., bm©

The sets R and I are sets of real numbers and integers respectively©

The legality relation assures us that no real variable may have an

integer value, or vice versa.

(3) T = ($, (j>, 4>), tne flull memory.

Whenever we" are given a memory."!1, \we may. denote.".its set of vari

ables, by TM, its set of values by [, and its legality relation by

T^. Thus in the first example above we may write P = B. If one memory

is the union of two others, its set of variables, set of values, and

legality relation are the respective unions of the corresponding

components of those two memories. Thus for the memories P and P ,

we have

In particular, the memory of the second example above is the union

of its "real variable memory" T = ($al9 •••, an^, R, ^a^, «••, an\ %R)

and its "integer variable memory" P2 = (fkjj •••* b^i 1* £*> * ...,

"\

155

b \ ^ I)© This Example shows that the property of a memory that
m

every value is always legal is not preserved when we take the union

of memories© Another way to specify the definition of the union of

two memories is to write

(r1or2)M= r*vr%

(P u rjL - pj u rj
12 12

In the interest of brevity, we shall sometimes specify a memory

as an ordered pair P « (M, V), rather than as an ordered triple© In

this case we assume that every value is always legal© Thus our three

examples above may be written P« (B, £0, i$)9 T» (fa^, ••©, an"%, R)
u(i^, ..., bmf, I),'and P= ($, 4>)©

The legality relation of a memory may be specified completely by

giving a set of (legal) values for each variable© Conversely, such a

specification of sets uniquely defines a legality relation© If two

variables have the same set of values, we commonly speak of them as

being "of the same type"$ likewise in programming languages we have

quantities called types which specify roughly what values are per

mitted for a variable© We shall now make this concept precise by

defining a type function in an arbitrary memory©

DEFINITION \&-2© The type function FT of the memory P is the

function from PM into the set of all subsets of Pv defined by FT(m)

=£v 6 PV: (m, v) £ TL? for each m 6TM. The set PT(m) is called the

type of m in T©

Thus, in the second example above, R is the type of each variable

a., (i. e©, each "real variable") and I is the type of each variable

b. (each "integer variable"). In the first example, £°* l\ is the

type of every variable.

In practice? theV^type t>f a variable dependa on whether we are

156

dealing with "ideal" or "actual" situations. In an ideal memory,

the type of an integer variable, for example, will be the set of all

integers© In an actual memory, this type will be merely the set of

all those integers which will fit into a word on some actual computer

This assumes that single precision is used; if multiple precision is

allowed, the type will be some larger, but still finite, set. In

what follows, we will denote any of these three kinds of type set

by integer. All of the key words, in fact, which normally define

types in programming languages, such as integer, real, and Boolean,

will be used here to denote sets. Of these, only Boolean lias a con

stant, universal meaning, namely Boolean = -Jtrue, falset© In parti

cular, real (as used in FORTRAN and ALGOL) may be the set of all

real numbers or the set of all allowable floating point numbers.

In PL/I, a type is uniquely identified by a particular base, scale,

mode, and precision.

157

3-3 State Vectors

The most important property of the values of variables is that

they change during a computation© Every computation goes through a

series of "states" TQ, T., ••©, which may either be infinite (in
which case we speak of an "endless loop") or finite© At each point

in the computation, the value of every variable is determined; this

means that each state corresponds to a function from variables to

values© If T is a state and m is a variable, then T(m) is the value

of m associated with T$ Such states depend on the memory associated

with the process; in particular, T(m) must be a legal value of m by

the legality relation of the memory© These considerations are for

malized as follows©

DEFINITION 3-3-1© A state vector ©fo£ memory: f isia function

Ts rM-»rv such that (m, T(m)) £ PL for each m £TM© The set of all

state vectors of a memory f is the state vector domain PD of f©

State vectors are also called content functions, and the value

T(ffl), as above, may also be called the contents (or current contents)

of m© Our use of the term "state vectors" is partly derived from

the fact that, in the following sections of this chapter, we shall

be studying various functidns whose domain is PD© Such functions will

be called state vector functions; it would be slightly awkward to

call them "content function functions©" State vectors are sometimes

also called "snapshots" (from the term "snapshot dump") or simply

"states" by analogy with automata theory©

When the set of variables is finite, say fM =^n^, ©©•, m^,
every state vector may be identified with an n-tuple, namely (T(m-),

••©, TOO), where T is the state vector© This construction justifies

the use of the term "veotor©" The domain in this case may be iden-

158

tified with the n^fold cartesian product X, x ... * y , where X.

= P (in.), 1 < i ^ ij© In general, a state vector domain may be iden

tified in this way with a finite or infinite cartesian product of

sets of values of variables.

If P = (M, V, L) is a memory and M« is a subset of H, the state

vector Ts M-*V has the restriction T1: M«-» V defined in the usual

way, i. e., T«(2iJ) - T(m») for all m» € M». As usual, we denote this

restriction Ijy t|m?. It specifies a legal value for each variable

in M1, and is therefore itself a state vector of the memory Pf =

(MS V», Lf), where V'=^6V:^C Mf with (m, v) £ h} and L» =

1 0 (M'X V9). In fact, the domain of T» is the set of all restric

tions to M* of the domain of T. We refer to pf as a submemory of P

and write P» C P© In general,

PiC r2^ (riC P2» rIC P2' ri =fl n ffJ * PI»
We have defined state vector domains in terms of memories, but

there is a sense in which the state vector domain is the more fun

damental concept© The situation is analogous to that in physics

where density functions, temperature functions, and the like may be

defined in terms of coordinate systems, but nevertheless have a

nature which is independent of the coordinate system© In the same

way, there will generally be a large number of waj^s of constructing

a single memory, and the state vector domain (and all state vector

functions) will be essentially the same for all of these ways© To

start with, there are two trivial ways in which this is so:

(a) Let P = (M, V, L) and suppose that certain values in V are

always illegal; that is, suppose that V* = ?v £ V: 3m £ M with (m, v)

6 L} is a proper subset of V© Then;L- is a subset of M x V«, and every

state vector of V is also a state vector of p1 = (M, V», L). In light

159

of this fact we may generally assume, for any memory, that each of

its values is always legal for at least one variable. Ifcider this

condition it is clear, in particular, that a submemory is complete

ly specified by its set of variables; if ^ CPg. then P^ =£v 6 P][:
3m £ pM with (m, v) e PJf•

(b) Let T = (M, V, L) and suppose that some variable in Mhas

nj£> legal values© It is then clear from the definition that this

memory has no state vectors at all, and thus becomes uninteresting©

But now suppose that there are certain variables, each of which has

exactly one legal value© Specifically, let us break up M into two

sets, M* and M", such that if m t M" there is one and only one v £ V

(which we denote by v(m)) such that (m, v) 6 L© If T is a state

vector of P, then clearly T(m) = v(m) for each m £ M1, and T is thus

defined solely by its values on M*. If T1 c P is determined by M1 as

above, then each state vector in the domain of P corresponds uniquely

to one in the domain of P1© Thus the two state vector domains are

identical©

In light of this fact we might think that an axiom should be

set up specifying at least two legal values for each variable© Such

an axiom, however, would not correspond to situations found in prac

tice; read-only memories, for example, are such that each variable

in them has one and only one value©

A deeper method of constructing large numbers of memories, all

of which have effectively the same state vector domain, may be found

by considering some new examples of memories, in addition to the

ones mentioned earliers

(If) T= (Hj6, |0©.l, ©.., 236-13) u(M^, |0, 1, ©.., 215-1^)©
Here M~£ is the set of all,36-blt words, registers, etc©, in some

binary digital computer, and M-h- is the set of all lj-bit registers©

160

(5) P= (U1? A2, A3, Bx, B2, B3, C1, C2, C3, D1? D^, D1, real).
This represents a collection of four real single arrays, each of

dimension 3« Each component of each array is a variable, and its

values are real numbers©

(6) P = ({A, B, C, D}, real * real x real). This also represents

four real single arrays of dimension 3o Each array is a variable,

and its values are three-dimensional real vectors.

It is easy to see that there is a natural one-to-one correspon

dence between the state vectors of the last two examples. A state

vector of the memory of example J gives a real value for each vari

able; these may be collected into real three-dimensional vectors,

one for each array. But this gives us a state vector of the memory

of example 6; and the argument clearly works in reverse. The same

sort of correspondence may be drawn up between the state vectors

of the memory of example h and those of example 1, provided that

the set B is chosen properly. In fact, B should contain 36 elements

(bits) for each element of ML/, and 15 elements for each element of

K--« A state vector will now give zero or one as a value for each

of these bits, and from these we may determine an integer less than

2? as a value for each 36-bit register and less than 2-*-? as a value

for each l?-bit register. This gives us a state vector as in example *+.

We shall refer to the passage from example 5" to example 6 above

as the process of combining variables. The variables A, , Ap, and A-v

are combined into a single variable A, and similarly'for the other

three arrays. In the same way, the bits in the memory of example 1

are combined into words and registers as in example *+© when this 3s

done, the legal Values of the variable formed by the combining pro

cess are the state vectors of the submemory determined by the vari

ables which were combined. Thus, in example 6 above, real x real x real

a

161

is effectively the set of state vectors of the memory Tf =

QJL^ A2, A31, real), or of p» = ({H^ B2, B^, real), etc© The/;
correspondence between the two state vector domains will now be

set up in the most general case©

THEOREM ^-1-1© Let P » (M, V, L) be an arbitrary memory and

let ob be a decomposition of M; that is, $ is a set of disjoint

subsets of Mwhose union is M© For each D £ §5 let D' be the sub-

memory of P, as defined above, such that DPM (i© e©, (D^)**) = D©
Let V» be the union of all DrD (i© e©, (Dr)D) for all D£ 2. and
let Xftfc & x V9 be .such that (D, T) £ L° if and only if T€ D^.
Then there is a natural one-to-one correspondence between PD and

K?, where K= (S, V*, L»)©
HtOQF© Let T e PD and define T* 6 I? by T*(D) » t|D for each

D£ #• Bfcfcbe definition of state vectors in D , we have t|d €
DrD, and thus (D, Tf(D)) £ L» for each D£$9 which shows that
T* is actually in K?© If T , T £ PD correspond to T«, T» £ K?

in this way, then T* = T* implies T.|D = TjD for each D £ <£ § and

thus T. = T2 since the union of all D£ $ is M. If T1 £ I?, then
we may define T € PD by $&9/following rules if x S M, then x £ D

for some D6 «jb, and letting U = T9(D), we define T(x) = U(x)©

It is then clear that t|d = U=T*(D), so that T* is derived from
T by the given correspondence© This completes the proof©

This theorem may be made intuitively clear by considering our

state vector domains as cartesian products© The domain f^ is tha

cartesian product of the value sets fT(x) for each x € M© The domain

Kr is the cartesian product of a collection of subproducts, each of

which involves the value sets PT(x) for each x in some subset DC M©

The product is the same no matter in what order it is taken©

162

3-*+ Commutation Sequences

We shall now take a viewpoint about state vectors which seems,

at first glance, to be quite restrictive. Subsequently, however,

we shall give evidence indicating that this viewpoint is completely

natural in any computing situation, provided only that we take ac

count of all quantities which play the role of variables.

when a computation goes through a series of states which are

represented by state vectors Tn, T , ..., each state vector, ob

viously, depends on the preceding one. Does it, however, depend on

anything else as well? Our viewpoint is that the answer to this

question is no; that is, each state vector in a computation is de

termined by the preceding state vector* and by nothing else© A

corollary to this is that anything which might affect the choice of

a new state vector must be incorporated into the current state vector.

Let us first deal with two points whicli immediately come to mind:

(1) The values of those quantities which are normally thought

of as variables in a program do not, by themselves, determine the

next state vector© One must also know which statement is currently

being executed© This situation, however, may be treated be admitting

a new variable whose values are the statements of the program itself©

(Such variables are sometimes called location counters, p-counters,

instruction counters, program address registers, etc.) If this vari

able is called X, then the value T(A) for any state vector T tells

us which statement we are working on. Th5s, in turn, tells us what

the next statement is, so that the value of Tf(X) for the next state

vector T* is determined, as well as all tit* other values of Tf©

(2) If a computational process involves input-output, the next

state vector may depend on the values which have been read in© Fur-

163

thermore, a process may be receiving input from several sources

at the same time© This situation is treated by considering each

input device as a variable, or, rather, as several variables which

may be combined into one by the combining process of the preceding

section© Each square on a tape, for example, is a variable, whose

legal values are the symbols which may be written on the tape. If

all these squares are combined, the legal values of the single

resulting "tape variable".are the possible contents of the entire

tape© In a different situation, we might wish to combine these

variables in a different fashion, so that records or files would

be variables, rather than entire tapes© The same considerations

hold for card readers, paper tape readers, and all other input de

vices; each of these is included, when appropriate, as one or more

components of the state vector. Note that it does not matter whether

our tapes, card decks, etc., are finite or infinite, since the set

of variables of a memory may be infinite, and correspondingly an

infinite number of variables may be combined into one0

It is also convenient to include output devices as variables,

whether or not the information they contain may be read back into

the computation© The reason for this is that, when a computation

terminates, the resulting output may be determined directly from

the final value of the state vector. Output devices, of course, are

variables in the same sense that input devices are; that is, each

o itput device may be thought of as a sequence of variables, whose

values are characters, printed lines, punched cards, tape squares,

etc., or these variables may be combined into a single variable for

each output device.

Having Justified our point of view, we now make two important

•definitions©

l6h

DEFINITION >4KL. An execution function is a total or partial

function f: T0-* P , for some memory P which is presumed to contain

a location counter \. Any sequence T^, Tn , ..., such that T. n =
U JL 1+x

f(T.) for each i > 0 is called a computation sequence of f.

These definitions imply what we have postulated about compu

tations; that is, each state vector depends on the preceding state

vector, and on nothing else. The execution functions are allowed to

be incompletely defined; that is, it is not necessarily true that

every state vector leads to an identifiable next state vector. The

most important case in which this is true is when the value of \

specifies a stopping statement of the program. In this case, the

computation sequence terminates. This phenomenon will be taken up

in more detail in the next section©

It is clear that every digital computer has an execution func

tion. If we are given the value zero or one for each bit in core,

on tape, in the registers, etc., then this determines a state vec

tor. The next state vector is now determined by the current state

vector alone. That is, the location counter specifies an instruction;

the instruction specifies an address; and the instruction is execu

ted© Simultaneously, any input-output channel has a state, which

is part of the current state vector, and the next state vector in

cludes the results of input-output transmission of data determined

by this state. It is, of course, true that the timing of input-output

introduces some uncertainty into the determination of the next state

vector; and we could also imagine a computer being subject to inter

mittent error, in which the next state vector would be given only in

probabilistic terms. Proofs of algorithms under such conditions re

quire special techniques.

Similarly, every program written in a programming language has

an execution function. There are a number of features of programming

165

languages which make it seem that the next state vector is de

termined partially by quantities other than the values of the va

riables© In each such case, however, these quantities will them

selves be considered as variables© Here are a few examples:

(1) A variable whose type can change during the course of a

computation has an associated type-variable whose legal values are

the applicable types© For example, suppose that we are working with

a language in which the statement K » I + J is executed with integer

values of K, I, and J, and then executed again in the same program

with real (floating point) values of these variables© In order to

execute this statement the computer must first interrogate the types

of K, I, and J, which are presumably kept in memory at execution

time, before deciding whether to use a fixed-point or a floating-point

add instruction© In such a situation, our memory will include K, I,

and J in its set of variables, and all applicable integers as well

as real numbers will be legal values of K, I, and J; but the memory

will also contain other variables (ieft us call them K1, I1, and J»)

whose legal values are the sets (real and Integer) of all applicable

floating point numbers and integers respectively©

(2) A push-down list may be considered as a variable whose
i.

values are sequences of quantities which may be pushed down. If Q
"v

is the set of all such quantities, then the legal values of the

push-down list variable are finite sequences of elements of Q©

(3) Inactive variables in a program are represented by a vari

able which very closely resembles the one constructed above for a

push-down list© Let us consider, for example, a language with block

structure. When a block is entered, certain declarations made within

the block involve variable names which have already*bean declared,

either in some other block or recursively in the current block.

166

The current values of these variables, therefore, have to be saved,

and this operation is mathematically the same as if they were

placed on a push-down list. In practice, this does not actually

happen, because it would take too much time; instead, we allocate

new storage, and make reference at all times to variables in terms

of the current storage allocation. It is quite possible to include

storage allocation information itself as variables in memory, and

we may construct execution functions on this basis. This, however,

has the disadvantage that the meaning of a program is defined in

terms of a particular scheme for interpreting or compiling that

program©

Another type of inactive variable is found in string processing

languages, where the names'Of those identifiers which are to be

given values during a computation may be constructed as strings

by the same computation© In such a case, every syntactically valid

identifier is potentially a variable in memory. No distinction need

be made, however, between potential and actual variables; we may,

indeed, consider a memory in which every possible variable name cor

responds to a variable©

167

3-5 State Vector Functions

The execution functions defined in the preceding section are

a special example of state vector functions — that is, functions

on some state vector domain© In the next few sections, we shall see

how to construct state vector functions that correspond, not only

with programs, but with various things that are found in programs

such as assignment statements, conditional statements, expressions,

terms, and factorso

The correspondence between state vector functions and the con

stituents of a program provides an answer to what might appear to

be a serious problem in our theory t how can we prove anything about

execution functions, in light of the fact that most of them which

we encounter in practice are so extremely complex? It is clearly

no good to have a theory which deals effectively only with small

programs, and the executipn function of a program is clearly as

complex as the program itself© Of even greater complexity is the

execution function of a digital computer; indeed, the entire com

puter operations manual is, in a sense, a description of this func

tion© Much the same thing, of course, could be said about programs

themselves; for example, one could say that it takes the entire

manual of a programming language to define that language© But when

we break up a program into statements, the statements into ex

pressions and the like, the expressions into terms and factors, and

so on, we discover that at each individual stage in the analysis the

passage from lower to higher complexity is simple and straightforward©

A term, for example, is nothing more than a sequence of factors

separated by multiplication and division signs© In the same way,

when we associate a term, for example, with a state vector function,

168

we do so by combining the state vector functions of its factors

in a standard and simply stated way. The fact that a program with

a given execution function produces correct results may then be

proved in stages, just as would the fact that a program has no,

syntax errors in it©

These state vector function correspondences will be made pre

cise in the next few sections. For the moment, we give intuitive

explanations of seven of the commonest types of state vector

functions© In each case we assume that the memory P does not in

clude a location counter variable; the domain of each function is

J*.

(1) Given a state vector and an assignment statement, we

may perform the assignment and obtain a new state vector. An

assignment statement therefore corresponds to a function from

state vectors to state vectors, i. e., a function f: pD -> TD#

(2) Given a state vector and an arithmetic expression* we

can substitute for each variable in the expression its value as

given by the state vector, and then evaluate the expression, i. e.,

find a value for it© An arithmetic expression therefore corresponds

to a function from state vectors to values, i. e©, a function

f: TD-4T, where T is the set of all possible values of the given
expression© \

(3) Given a state vector and a statement in a program, we

can determine the next statement. If a program P is viewed as a

finite set of statements (which may have an additional structure,

depending on the programming language) then there thus corresponds

to every such statement a function g: PD~» P (as well as, in gen

eral, a function f: PD^pD as above).

169

(h) Given a state vector and a left side of an assignment,

we can determine which variable is changed by that assignment© A

left side of an assignment thus corresponds to a function from

state vectors to the set of possible variables which may be changed,

i© e©, a function f: rD-^ T© (This assumes that only one variable

is being so changed©)

(?) A condition may be viewed as an expression whose set of

values is ftrue, false}© Ascin;(2)Jaboeveo there corresponds to the

condition a function fit PDc> ftrue, false}© A condition may also

be thought of as the set D* C PD of all state vectors for which

the condition is true© This dual view of conditions follows also

from Theorem 3-l-3o

(6) Given a state vector and a program (with a designated

place to start), we can run the program, and, when it terminates

(if it does), we have a new state vector© A program thus corre

sponds to a function from state vectors to state vectors, i. e©,

a function fs TD-> PD.; this function will be partial unless the

program always terminates©

(7) Given a state vector and an expression with a side effect,

we obtain both a value for the expression and a new state vector

which expresses the values of all the variables, some of which

may have been changed by the side effect© Such an expression

therefore corresponds to two functions — the expression function

as in (2) above, which is a function fs fD-* T, and the side effect,

which is a function s; TD "* PD as in (6) above© Conditions may also

have side effect*$ hero, as before, we simply set T = ?t£ue, false?.

170

3-6 Assignments

An assignment in a programming language corresponds to a func

tion from a state vector domain to itself© This is true whether or

not it involves a subscripted left side, multiple replacement, type

conversion, parameter references, or side effects.

In the simplest type of assignment, there is a single variable

on the left side, whose new value is the value of the expression

on the right. The new values of all other variables are the same as

their old values. These two sentences completely determine the

state vector function. As an example, let us consider the memory P =

(?Z, A, B, C|, real), and the assignment Z»A+B+C©A state

vector corresponds to a *f-tuple (z, a, b, c), where z, a, b, and c

are the respective values of Z, A, B, and C. (If the state vector

is S, viewed as a function, then the corresponding ^-tuple is

(S(Z), S(A), S(B), S(C)).) The function f: TD-> PD is then defined by

f(z, a, b, c) ---• (a+b+c, a, b, c)

In general, provided all variables are real, the memory will contain

the above memory as a submemory© In this case we define

f(S) - S»

where S is an arbitrary state vector and. S9 is defined in terms of S

as follows:

S'(Z) =.« 3(A) + G(B) + S(C)

S«(x) = S(x) for all x -/ Z

It is immediately apparent that the state vector functions of

assignments may'be quite complicated. Even in the oxr-mplo ahove,

171

which is very simple, we have, at the very least, a function of

four-dimensional vectors whose value is a four-dimensional vector©

Before we go any further, therefore, we need to assure ourselves

that the rule, in any situation, for forming the state vector

function of an assignment will be simple enough to be easily under

stood© In order for this to be so, we must proceed step by step,

just as indicated in the preceding section© An assignment has a

left side and a right side, and each of these has its own corre

sponding state vector function, which we can assume is known© These

functions may now be combined according to a standard rule, which

varies from one programming language to another, in order to con

struct a state vector function for an expression.

Let us review briefly the nature of state vector functions

for the left and right sides of an assignment, as indicated in

the last section* We assume, first of all© that V. is the set of

all legal values of the right side, and V is the set of all legal

values of thp variable on the left side (or of any variable in the

array which the left side refers to)© Furthermore let £ be the

standard type-conversion function from V, to V2« (Mbvan:Bxamp3LeJ-lf
Vn = real and 1 = integer, then £ is the entier function, with, for

example, t(6©*f37) = 6©) If ^ =V2, then £ will be the identity
function© Let P be a memory such that all variables referenced on

both sides of the assignment are contained in fM© The left side

now corresponds to a function vs FD-V P, and the right side corre

sponds to a function es H*-* V-• From these we must construct a

function as PD^> P^ which corresponds to the assignment© This may

be done by the following rules

a(S) = S», S*(v(S)) = t(e(S)), S«(x) = S(x) for x 4 v(S)

Thus, in the example, above, v is the constant function whose value

172

in Pli is always Z, while e(S) = S(A) + S (B) + S(C) for each state

vector S £ PD© (The plus sign here refers, of course, to a specific
binary operation which must be defined on the set real.) For an

example in which v is not a constant function, consider the assign

ment ACI+13 = ACI3, where A is an array. In this case the value of

v(S) is the variable ACxl where x = S(I) +1, while e(S) = S(m)

where m is the variable ACS(1)1.

The state vector function of an assignment depends not only on

the assignment but also on the memory involved. If v/e add extra

variables to our memory, we may immediately derive a new state vec

tor function by assuming that the assignment does not affect the

values of any of these new variables. Specifically, if P £ P and

f s ^i^^l *~s tile state vector function of an assignment with the
memory P , then the state vector function f : T^-tV® of the same
assignment wJth the memory Pp is given by

f2(s) =s», s»|rj= ^©IrJ), st(x) =sgo for x£ r*1

V/e say that f2 is a memory extension of L. In section 2-7, we shall

make a very general definition of memory extension, and we shall show

that every assignment defined on a finite number of variables texz a

"primitive memory" containing every memory on which it may be defined:

memory extensions then give all state vector functions of that as

signment.

When several assignments are executed one after the other, the

result may be represented by a single state vector function which is

the composition (in the usual sense) of the state vector functions

corresponding to the individual assignments. This assumes a single

memory large enough to contain all variables which are involved in

these assignments. If f- and f0 correspond to the assignments a,

and a?, then we shall write f., a fr) for the function which corre-

173

sponds to a followed by a2$ here if g= f.^ o fg, then g(x) =
f0(f.(x))© Such a composition has the same domain and range as

the functions of which it is composed} this corresponds to the

fact that a succession of assignments plays the same role in a

program as a single assignment (for example, one box in a flowchart

may contain a succession of assignments). If several assignments

have state vector functions on different memories, it is essential

first to take the union of all these memories in order to form the

state' vector function of the sequence of assignments as the com

position of all these memory extensions©

It is well known that assignments have different meanings in

different programming languages© This fact may be interpreted to

mean that the rule for forming the state vector function of an as

signment depends on the programming language © The rule we have

given assumes that there are no side effects and no references to

parameters} these are taken up in sections 3-11 and 3-12 respec

tively© A separate state vector function rule must be specified for

a language allowing multiple assignments© This is one feature of

algebraic languages whose meaning is not at all obvious; for

example, consider the multiple assignment

I = J = MCn = K (or I, J© MCJ1 = K)

What does this mean? Do we put K first in I, then in J, and then

In MCJ3? In this case MCJ1 will always be MCKD© Or do we put K

first in MCJ3, then in J, and finally in I? This is the sort of

question which is most effectively answered by reference to a rule

for forming state vector functions© Suppose, for example, that we

have already defined the state vector function g, for a simple

17^

assignment with left side v and right side e. Now let v,, v
— — J. ' n

be left sides and let a., ..., a be the state vector functions
1 n

of the simple assignments v_=e, ©.., v =e© Then the multiple as-
1 n

signment v =...=v =e (or V ,...,v =e) would be defined, in the

absence of side effects, by

a„ a ..« ca
1 n

in the first case and

a o ©• • o a.
n 1

in the second. If side effects are present, of course, still fur

ther rules might be formulated; for example, we might wish to take

the side effects from left to right, and then the assignments from

right to left©

175

3-7 Expressions and Conditions

Expressions in programming languages correspond to functions

from state vectors to values of the expression© The ways in which

these functions are constructed reflect the characteristics of the

given programming language©

As an example, consider the expression A %B + C© (As in the

preceding section, we defer until later the possibility that A,

B, or C might be a parameter, or have a side effect©) If the given

memory is P = (fA, B,, C?, real), so that A, B, and C are real vari

ables, then PD may be identified with real x real x real© If the

values of A x B + C are also elements of real, then the correspon

ding state vector function f: rD-» real is defined by

f(a, b, c) = axb+c

where a, b, c £ real, or by

f(S) = S(A) xS(B) + S(C)

This last equatioh has the advantage that it remains valid when P

is replaced by some larger memory which contains P (as above) as a

submemory© These equations, however, are still not precise defini

tions of the corresponding functions, and, in fact, are subject to

some ambiguity© We have not yet specified the precedence of the ope

rators + and x, or, indeed, whether they are subject to any prece

dence at all. In the language APL, the equation for f would be

f(S) = S(A) x (S(B) + S(C))

whereas in FORTRAN, ALGOL, and PL/I it would be

f(S) « (S(A)'xS(B)) + S(C)

176

This mean©? that when we are working with expressions, just as with

assignments, Qur state vector .functions must be constructed step

by step.

An expression may be built up from two subexpressions with an

operator between them© The simplest expressions are often called

prista-fy expressions or primaries; these may be constants, variables,

or function references. Parentheses may be handled by considering

an arbitrary expression in parentheses to be a primary expression©

In APL, the operator following the leftmost primary is applied to

that primary and the subexpression to its right; thus AxB+C, for

example, is formed from A and B+C© If we know the state vector

functions p and q corresponding to A and B+C respectively, we can

form from them the function f corresponding to A*B+C. Specifically,

p(S) = S(A)

q(S) = S(B) + S(C)

f(S) = S(A) x (S(B) + S(O)

and thus

f(S) = p(S) x q(S)

This, then, is the general rule for forming f from p and q whenever

the operator is X, assuming-that f, p,»ahd q aose all defined on the

same state vector domain, with the same memory© Any other operator

has its corresponding rule.

In FORTPAN, ALGOL, and PL/I, the situation is more complex, bo-.

cause of the existence of precedence© Usually, what is done is to

define for each precedence level a specific type of expression which

is formed from the expression types at the next lower level using

operators at the current level. Thus in ALGOL there are three pre

cedence levels for arithmetic operators and three types of arithmetic

177

expressions, known as simple arithmetic expressions, terms, and

factors• (We ignore for the moment the unary minus sign and the

use of £f, then, and elseo) The simple arithmetic expression

AxB+C is made up of the terms AxB and C, and the term A*B is in

turn made up of the factors A and B© When a simple arithmetic

expression is made up of more than two terms, the rightmost term

is combined with the remaining subexpression, using the operator

at the left of that term, and similar statements hold for terms

and factors© Within this framework, however, the rules for forming

state vector functions are much the same as before© If f, p, and q

are state vector functions which correspond to AtfB+C, AxB, and C

respectively, then f(S) = p(S) + q(S)$ similarly, if f, p, and q

correspond to AXB, A, and B, then f(S) = p(S) X q(S)©

All of these rules are subject to slight alteration if the

state vector functions to be combined are defined with respect to

different memories© If ps lP-> real and q: V0-^ reajjl are to be com

bined using the + operator to form f8 Vp-> real, then W = U u V and

f(S) = p(S|uM) + q(s|vM)

for each state vector S € \P 0

When we have a rule such as f(S) = p(S) + q(S) (or f(S) =

p(sluM) + q(s|vM)), we would like to write simply f = p + q. We

shall now justify a form of abbreviation of this kind© Let plus

be the binary addition function on the set real. 1© e©, plus(x.y)

= x + y; the following construction allows us to extend plus to a

function plus*, which is such that we may write f = plus*(p. q)

in either of the above two cases©

DEFINITION 3-?-lo Let f: X, t ©.. * Xn~> Y. Then the star-

extension f*(el9 o.0, en), where e^ fj^ X1? I £ i£ n, is the

178

function g: PD-» Y, where P« f' u ©©© u P , defined by g(S) =

fte^sfP^), ..., en(SJT^)) for each state vector S£ PD©
In the example above, p;Lup is a function from real x real into

real, so that n = 2 and xi = ^ = ^ = £2fii* For an example in which

X^, Xg, and Y are not all the same, consider the definition of a

relational, expression such as A+B < C*D. This is a Boolean expres

sion, and the range of its corresponding state vector function £;is

therefore {true, false?g the function itself is given by

C true if S(A)+S(B) < S(C)*3(D)

L false otherwise

If p and q are state vector functions corresponding to A+B and CD

respectively, then we may write f « (p < q), or, using star-exten

sions, f = less*(p.q). where less is a function from real x real

into ftrue., false\ with less(a.b) = true if a < b and false other

wise© For an example in which a = 3» let Y be any set and define

conds .{true, false1 x Y x Y->Y by oond(true. y, y1) = y and

cond(false, y, y9) = y«© If f and f9 are ttate .^vector functions

with values in Y which correspond respectively to e and e:, while

g corresponds to the Boolean expression b, then cond*(g, f, f')

will correspond to (^£ b then e else e')» Here if Y « real, we

get a conditional real expression^ if Y « ?true. false>. a condi

tional Boolean expression! if Y is 4fcselfts6mevstate vector domain,

a conditional assignment| and so on© In this last case, where e and

e1 are assignments, we can abbreviate by writing (££ b then e)

if e* is the null assignment, corresponding to the identity state

vector function©

There are various miscellaneous rules for forming state vector

functions of expressions© Chary operators may be treated using

179

star-extensions, just like binary operations $ if ne£: Y->Y is

the function given by ne£(y) = «y, then ng£*(f) is the state vector

function of -e whenever £ is the state vector function of e. In

this case we may write more simply f a neg. rather than neg*(f).

Constants k have constant state vector functions f (S) • k$ simple

variables Y have state vector functions f (S) = S(z). Array refe

rences ACe-, ••©, e D*hartre: state vector functions a*(fjv-©.©, fn},

where .the fearer state vector functions corresponding respectively

to the e±9 and a(i , ..., in) stands for a variable (on the left
side of an assignment) or its current value (on the right side)©

Function references FCe^ ..©, enl have state vector functions

f*(f , o©», f), where the f correspond to the e. as above and f
1 n j, —

is the function computed by F© This assumes, again, that there are

no side effects© We shall see in section 3-H that a different kind

of star-extension must be used when side effects are present©

The state vector functions of expressions are subject to a form

of memory extension© If fs T^^Y corresponds to an expression and
P2 Tn, the function g* fD ->• Y corresponding to this same expression
may be defined by g(S) =f(s|rj?)o If a defining relation such as
f (S) = S(A) * S(B) + S(C) holds for f, then a corresponding relation

sufch as g(S) = S(A) * S(B) + S(C) holds for g, since for any variable

V£ T^ we have S(V) =S»(V), where S* =s]T**©
Conditions in programming languages, let us repeat, are treated

exactly like expressions. They correspond to state vector functions

whose values are either true or false.

180

3-8 Memory Extensions
r

i

We now define memory extensions in their comnlete generality,

and show that all state vector functions arise by memory extension

from primitive ones, provided that the underlying memory is finite.

(A memory P is said to be finite If |* is a finite set©) For the

state vector functions of expressions f (2^, ©•«, xn) and assignments

y = f(x_, ©©•, xlJ, the corresponding primitive functions may be

identified with £ itself, viewed in the proper way as a state vec

tor function©

DKFaamriOff 3-*8-l» Let A, B, U, V be memories with AS U, B £ V,

and let fs A^'-^jEP. Furthermore assua© that Y£ B u U© Then the

memory extension, gs .Ip-^V0 of f is defined by g(S) = S«, where Sf(x)

=S(x) for x $ BM and S»(x) » S"(x) for x € BM, with S" = f (s(AM).
Up to now we have npt treated functions from one state vector

domain to a different one© We will now show how an arbitrary func

tion of jx arguments may be regarded as just such a function© Let the

arguments be x., 1 £ i & n, and let each argument x. be required to

have its values in a set X^© If A is the union of all the one-element

memories (?xJ$, X.), then AD may be identified with the cartesian

product X^ % ©•© / X^ which is the domain of f • Row let Y be the

set of ail possible values of f, and let B be the one-element memory

({jit Y)© Then bP may be identified with Y, since each state vector

in it has exactly one component, which is an element of Y© Since Y

is the range of f, we have represented f as.la function from AD to Br©

Let us now consider memory extensions of this state vector

function© We may add new variables to either A or B, or both; the

condition V£B\;U means that any new variables added to B must

either be in A or added to A© This is necessary, since the new

181

values 6f these variables must be the same as their old values,

and the old values must therefore exist© Specifically, S is a func

tion on U, and Sf on Vf in the definition of S1, if x $ BM, then
x^ and thus S(x) is defined© We are particularly concerned with

two special cases of the condition V £ B v U:

(a) V = B© Here VD may be identified with Y, and the memory

extension gs tP-> Y of f is defined by g(S) = f(s|AM). The result
is precisely the general form for the state vector function of an

expression, as mentioned at the end of the preceding section©

(b) V = U© In this case V^ = IT, and the memory extension g:

lP-» \P of f is defined by g(S) = Ss, where S'(x) = s(x) for x 4

y and S»(y) =f(s|AM) =f(S(x1), ..©, S(xn)). This is precisely
the general form for the state vector function of an assignment,

such as the one given as an example at the beginning of section 3-6.

We now consider the problem of finding memories A and B, as

small as possible, and a function f: AD -* bP which may be extended

to a given function gs tP-> V° in the manner described above© If

•fcrls..any Variable-.in V '̂:whoSe value:never changes."under :the aption-

of g, then it is not necessary for v to belong to B , since the

memory extension will express precisely the fact that the value of

v never changes. Hence BM should consist of those variables in VM

whoservalues may^change^ as well as those which have no old values,

i. e., which are not in 1)^© The memory B will thus include all

possible results of the computation represented by g© Likewise,

if u is any variable in U^ whose value cannot affect any possible

result of g, then u does not need to belong to A , since these re

sults, i© e©, the values of g(S) on B , depend only on the values

of S on AM by the definition of memory extension. Hence AM should

consist of those variables in u" whose values may affect the results

of g. The memory A will thus include everything which is used by

182

the computation represented by g© We may think of g as "taking its

input from A" and "leaving its output in B©" This is now made pre

cise as follows.

DEFINITION 3-8-2© Let gs tP-» V°© Then the flutptlt reglsnKB(g)

is defined as £v £ VMs ng£. (S*(x) = S(x) for all S S iP, where S*

= g(Sj? and the input region IR(g) is defined as £u € 1^: 3FS„, S„
T 'J • * 12

GiP, y € CR(g), with S^z) =S2(z) for all z ?* u, but S£(y) *
S|(y), where S« =g(S.), S£ =g(Sg)]f© The input memory IM(g) and
tne output memory OM(g) are those submemories of. U and V respec

tively which are such that (IM(g))M = IR(g) and (OM(g))M = CR(g)o
The input domain ID(g) is defined to be dM(g))D$ the output domain

(2Kg) is defined to be (OM(g))D©

The rather awkward definition of CR(g) is meant to cover two

cases| S(x) may not exist, or it may exist but be unequal to Sf (at)

for some S g tP© Clearly, if Jp =V0, for example, only the second
6f these cases applies© The" definition of IR(g) depends on that of

QR(g), which may seem like putting the cart before the horse© How

ever, this definition is necessary, as may be seen by the theorems

which follow© The first of these is valid with no restrictions on

the size of the memory©

THEOREM 3-8-1. Let g: iP'-* V33 be a memory extension of f J

AD~> BP© Then IR(g) £ AM and GR(g) C BM©

PROOF© If v 6 VM and.v £ BM, then S(v) = S«(v) for all S £ iP,

where, S* « g(S), and this implies that v 4 CR(g)© Hence CR(g) £ BM©
If u £ # and u£ AM, then consider S^ S2 6 # with S^z) =S2,(z)
for z 4 U© Since S1|AM =SJ AM, we have f(S^A1*) =f(S2|AM), and
thus S£(v) =S«(v) for all v € BM, where S£ =g©^* S| =g(S)•
Thus u £ IR(g), and therefore IR(g)S. AM. This-completes the proof©

183

This theorem does not imply that g is always actually a memory

extension of f with IR(g) = AM and CR(g) = BM. The proof of this
statement for finite memory depends upon the following lemma©

LBMMk" 3-8-1© Let g: tP-» VD, where U is finite (i© e., where

U*1 is finite), and let S^ S2 € Jp. If S1\lR(g) =S2|lR(g), then
S^|0R(g) =S||(R(g), where S| =g(S1), S£ =g(S2).

PROOF© Let u_, ••©, u be those elements of the finite set iP
for which S.(u) 4 S2(u±); by hyiidthfc&ilia, each u± £ IR(g). Let TQ,
c, Tn € \P be defined by T±(uJ =S^u) for i <3, T±(u) =
S2(u.) for i i> 3, T.(x) =S-(x) =S2(s) for x not equal to any u,©
Then T- = S„, T = S0, and T,(z) = T, .,(z) for all z 4 x,, 1 £ i £ n.

0 In 2 1 i^jl i

If JJt =g(T±), 0£ i £ n, then UQ =S^, Un =S£, and U±(y) =^(y)
for each y £ CR(g), 1 £'!'£ n, by definition of IR(g)© Hence U^y)

=un(y) for each y € ®(g)» *• ©•> S|l(B(g) =SJ||<B(g)© This com
pletes the proof©

THEOREM 3-8-2© Let g: 13d-* V0, where U is finite© Then there

exists a function f: AD-> #, where AD = ID(g), bP = QD(g), such
that g is armemoryraxtenslon of f •

PROOF. Let S € ID(g) and consider any S- £ Jp such that S^IR(g)
= S© We define f (S) to be S« <B(g), where Sf = g(S)© If S is any

•JU JL ©X. *c»

other state vector in TjP such that S2/lR(g) =S, then, by the lemma,
S«)(B(g) =S»|GR(g), where S* =gCS^), and thus f is a well-defined
function© The memory extension of f to a function h: iP-^V0 is such

that h(S) = S», where S*(x) = S(x) for x $ (B(g) and S»(x) = S»(x)

for x£ CR(g), where S" » fc(s|lR(g))» But if we set S1 = g(S), then
S»(x) = S(x) for x $ Cfc(g) by definition of CR(g), whereas S^CEtg)
=S"|cR(g), where S'1 » f(s|lR(g)), by definition of f© Thus g =h,
and the theorem is. proved©

I8fc

Neither the preceding theorem no* the lemma holds ifl the

presented form if the memory is allowed to be infinite© A slight

extension of the concepts of memory and state vector domain is

needed in this case for the theorem to hold© Let M and V be finite

sets, let L be a subset of M x V denoting a legality relation, and

let T be a particular state vector© We now define a memory as a

^-tuple (M, V, L, T), and we define its domain as the set of all

state vectors which differ from T in only a finite number of

places© (For example, M might contain an infinite number of vari

ables denoting tape squares, and X might be the state vector such

that T(x), for each tape square x, is a "blank character*" The

domain is then the^set of all state vectors which specify only a

finite number of non-blank characters on the tape*) With respect
<

to this extension of the definition, the lemma and theorem above

hold true© >

185

3-9 Programs

We may now carry our analysis one step further, and derive

the state vector function of a program from the state vector

functions of the assignments and other types of statements in it©

In section 3-4-* we associated with each program an execution

function f: PDte> PD, for some memory P, one of whose variables

is presumed to be a location counter A© The set of legal values

of X represents the finite set of statements of the program© From

the definition of f we deduce the statement that

if we know the values of all variables including X,

then we know the new values of all these variables

Let us now construct a sentence equivalent to the above:

if we know the value of \ then

(if we know the values of all variables

other than X, then we know the new values

of all these variables)

and if we know the value of ^ then

(if we know the values of all other vari

ables, then we* know the new value of ^)

This suggests that with each value of A, i. e©, with each state

ment in our program, we may associate two functions on f*?, where

PQ is the submemory of T obtained by excluding A• One of these has
range P*: and gives us the new values of all variables except A5

the other gives the new value of)*, and its range is the set of

statements in the program. This will now be made precise as follows

DEFINITION 3-9-1. A program on a memory P is a finite set P

186

of statements, such that there is associated with every statement

I an action 7A: TD-> PD and a next-statement function £N: T0-^ P©
We have the following simple examples of statements:

(1) An assignment statement consists of an assignment which is

placed in a program in such a way that it is clear which statement

cones next. If the assignment statement is £. and the next statement

fs 2', then £j- is the state vector function corresponding to the

assignment as in section 3-6, and £^ is the constant function

whose value for any state vector is Z*.

&) A gb-to statement J has null action, i© e©,£A is the iden-
tity function, whereas T is the constant function whose value for

any state vector is the statenent which carries the label referenced

in Z*©

(3) A conditional go-to statement ? has null, action (unless there

are side effects in the condition) and a next-statement function

with k different valu.es, for a Jc-way branch. For an ordinary two-way

.branch Ewith next statement Z*, ZN is the function whose value is

the statement to which transfer is made if the given state vector
>•

satisfies the-given condition, and whose value is Zf.otherwise. As

before, Z*A is the identity function© If the given condition is al

ways true, we obtain the ordinary go-to statement as a special case©

Our definition of a program was motivated by the desire to be

able to construct an execution function© Before defining the exe

cution function of an arbitrary program, we consider what happens

when either £A or Z1', for some statement Z, is a partial function.

This is by no means an uncommon occurrence© If S is a state vector

andZA(S) is not defined, this means, intuitively, that computation

cannot be perfor^med for'some reason. For example, JT might be an

assignment statement which makes subscript references, and 3 might

f

187

be a state vector which specifies one of the subscripts to be

outside its proper range. On the other hand, if 2W(S) is not
defined, this means that there is no next statement, i© e., this

is the end of the computation. If the last statement in a program

is a conditional transfer statement £, then^N(S) will be defined

if and only if S satisfies the given condition.

Now let P be a program on amemory PQ and let Tbe the memory
P0 with the location counter Aadded, i© e., P= »0 V) (£M;, P).
Then PD may.be identified with T^ XP, since astate vector in PD
is afunction T: fH^ Tv which is determined completely by T|P^*e
PD and T(A) £ P. Using this correspondence, we would lil.e to de~
0

fine the execution function of P as the function f: PD-» P , where

f(S, D = (£A(S), £%))$ this is in line with our previous in-
\ Ntuitive discussion. Ifcwever, £ and £ may be partial functions,

and it is quite possible for some S and some £ that^A(S) is de

fined butZN(S) is not, or vice versa© We can handle functions

which are only partially defined, but we cannot handle functions

whose values are themselves functions which are only partially de

fined. Therefore, in order to define our execution functions, we

must be sure that the above-mentioned behavior does not occur. We

therefore make the following definition©

DEFINITION 3-9-2. A program P is complete if, for each state*

ment£ of P, "the domain of?A is the same as the domain of 5>\ If

P is a complete program on a memory P , the execution function of

Pis the function f: TD^PD, where P= PQ 0 (£>?, P)» defined by
f(T) =T« where T'JP1* = (T(X))A(TJP^) and T»(J0 = (T(A))H(t|PJJ).
(By the definition, of a complete program, one of these will be de

fined when and only when the other one is.)

188

An important special case of completeness is the condition

that IA and £N are either (a) both everywhere defined or (b) both

nowhere, defined^ for an arbitrary statement Z of P© A statement

satisfying conditio!* (p) above nay be called an epcit statements
•4
V

it serves no. purpose in the computation itself, but merely denotes 3
v

where that computation, ends ©

189

3-10 The Effect of £ Program

The execution function f of a program gives the state vector

f(T) which results from executing fc. single step of the program,

given the state vector T© The effect of a program (when started

at a given point) is a function £ which gives the state vector

§(S) which results from running the entire program, having started

with the state vector S. This is, in general, a partial function,

since e(S) is undefined whenever the initial state vector 3 di

rects the program to run endlessly0

When 'a program has an execution function — i« e., when it

is complete — its effects are very easy to define. (We will often

abbreviate and simply refer to "the effect of a program," but,

strictly speaking, an effect of a program is always with respect

to some particular starting point©) Let the program P be defined

on PQ, and let f=P0 0(CM? P) and rD =P^ xPas in the pre
ceding section© If S6 P^ and Z is the designated starting point,
then (S, £) =T 6rD« We now define T ,Tg, T ,<*tc, by tZ± -
e"(T ,), where $ is the execution function of P. The T will then

be the successive state vectors of V which constitute the compu

tation sequence (see section 3-J+) of P when started at T • If this

computation sequence is finite, let T^ be its last element; then

we define f(S) =tJPq» where f is the effect of Pwith respect
to £. That is, T- will be of the form (f(S), £•), for sone state

ment Z1 •

We will now make a slightly broader definition of the effect

of a program, which includes the possibility that the program is

incomplete© Let P, P , P, S, Z9 and T be as above. Let SQ =-• S and

F0 :•• Z; then TQ « (SQ, FQ). 1/t 3.?+1 =F^CS^ and F^ ^F^) for

190

each i2 0for which both ^ and F^ are defined; we set T - (S ,F)
Let £ be the function? we are seeking to define, i. e©, the effect

of P when started at Z. There are now four cases:

(1) S± and F are defined for all i| in this case j§(S) is un
defined.

(2) S± and F are defined only for i £ z, for sone z; in this

case, 3(S) = S„© (These are the two cases we discussed above.)

(3) Si is defined for i <; z+1, and F. for i£ z. Thus Tt. =

(Sz, F) has the property that FA(S„) is defined but F?(S) is not.
z z z z

In other words, this is the last statement of the program, but it

has an action; it is not an exit statement. The result of tliat

action should therefore be the value of fi(S), i. e., fi(C) ~ S„ ..

(*f) S. is defined for i < z, and F, for i < z+1: thus F?(S)
j. *— l. — z z

is defined, but f£(Sz) is not. Thus a next statement would be de
fined if the action were defined, but the action is not in fact

defined. This means that the computation sequence has terminated

improperly. Since it may be necessary in this case to examine what

the program has done so far, we define this as the effect, i. e.,

«?(3) - S2.

Noting that in cases (2), (3), and (k) above «(3) is defined

as the last of the S^ to be defined, we make our formal definition©

DEFINITION 3-10-1© Let P be any program on f and let f: PD-> T^

be its execution function, where P= P U (£U, P) and PD is iden
tified canonically with P^ fi P. Then the effect e: r^r^ of P
with respect to the starting statement £ of P> or simply the "effect

of P when started at Z," is defined as follows© Let S = S, F = Z,

and, if S± and F± are defined, i£0, let Si+1 =-- F^(S^) and let F.+1
=F^®^© If each S^ is defined, for i£0, then e(S) is undefined;
if the Si are defined for i < z only, then we define e(S) ~ Sz©

191

We now show that any program may be modified very slightly

so that it becomes complete, without •'Changing any of its effects.

This will justify the restriction of some of our later definitions

to the case of a complete program©

THEOREM 3-10-1. Given any program P on FQ, there is a complete
program P1 on T0 (called the completion of P) such that:

(1) The statements of P* are the statements of P plus two

exit statements (call them U and V)©

(2) The action of each statement of P is a restriction of its

action as a statement of*, P8©

(3) The effect of P when started at any of its statements is

the same as the effect of P* when started at that statement.

(*+) Whenever P1 terminates improperly, it terminates at U.

(?) Whenever Pf terminates properly, it terminates at V©

PROOF. We define the action of each statement of P« (except

U and V, whose action is nowhere defined) to be the action of P

wherever that is defined, and to be the identity whenever the ac

tion of P is not defined© We define the next-statement function

of each statement of P* to have the value V whenever its value in

P is undefined? to have value IT when its value in P is defined but

the value of the corresponding action is undefined; and to have the

same value as it does in P when that value and the value of the =

corresponding action are both defined© U and V, of course," have

next-statement functions which are nowhere defined© Properties

(!)-(?) above may now be verified in a straightforward manner.

192

A program with n statements may be replaced by an altered

program of at most n2+2n statements, each of which is of one of

the special forms discussed above, i© e., an assignment (with

possible side effects) or conditional transfer, and without chan

ging any of its effects, according to the following theorem.

THEOBEM 3-10-2. Let P be a program on VQ; then there exists
a program Ps on FQ such that:

(1) Each statement of P corresponds to a statement of Pf$

(2) The effect of P when started at a given statement is the

same as the effect of Pf when started at the corresponding state

ment ;

(3) Each statement of P? is either an assignment statement

with possible side effects (1© e©, its next-statement function

has at most one value) or a conditional transfer without side

effects (i. e., its action is the identity function).

J^iOOF. Let E-p ».», En he the statements of P. The statements

of P« are of the forms £» and £", 1£ i<n, and £y, 1 <i£ n,
1 & i £ n« Tne statements rf are conditional transfers without

i

side effects; that is, each £iA is the identity function, while

SN(S) = E,., whenever 2*<S) = I,, and £•%) . ?" whenever Z»(s)
1 A« i 3 1 i i

is undefined© The statements Ej are assignments with possible

side effects5 we have Z"A ~ 2^, while £"N is nowhere defined.
X J. X

The statements I are also assignments with possible side effects;

we have £A = ££, and £?. has the single value £'. The statements

Z9 corresponds to the statements £,, and thus conditions (1) and

(3) above are satisfied* To verify condition (2), let 2? be any

statement of P and let Tn « (S, Z), T» = (S, Zf). Let Trf and T» be
u u i i

the computation sequences of P and P9 starting with T and Tf

respectively. We now show that, if T = (S , F), then TI = (S ,
A XX i^X X

F*), where F* corresponds as above to F__© This is true for x = 0;
A X aft.

«

193

so we may assume that it is true for x =i. We have T1+1 = (F|(Si),
fJ<S)); but, by definition, T^ - (F*^), F*11^)) =©^2^)
where F^^ =Ek and F^) =I.,, and thus T£1+2 (= ^(1+1)> =^/V*
2f (S)) = f2^^)* ZO =tt^V' X5}' VherG Zl corresP°nds t0 ^3
= FjT(S). Thus the given statement is true for x = 1+1© Now let e

1 i /

and e» be the effects of P and P» starting with Zand £» respective

ly. If the sequence T. continues indefinitely, then so does the se

quence T1, so that e(S) and ef (S) are both undefined© Otherwise,
1

let T = (Sz, F2) be the last of the T ,with T£ = (Sz, F^)© If
S ' = FA(S) is undefined, then e(S) = S . whereas ef (S) = S

2+1 Z Z' 7 Z' Z

whether T' or T8 is the last of the T]© If S .-, is defined,
2z 2z+l i z+x

then e(S) = S2<pl© Since T2 is the last of the T^, F£(S2) is unde
fined, and thus T* .„ *• (S .£!'), where F„ = Z. \ Z!tN(S) is nowhere

2z+l z K Z El £ z

defined, but 2£A(S2) isi so that eB(S) =££A(S2) =^(Sz) = z(Sz}
= S2+1© Thus in all cases e(S) = ef(S) or both are undefined, and

the theorem is provedo

We may specialize still further and allow each of our condi

tional transfers to be a two-way conditional transfer, since a

k-way conditional transfer is the composition of k-1 two-way trans

fers. It is not possible in geieral, however, to restrict ourselves

to assignment statements without side effects. An exchange state

ment, for example, is one-to-one as a state vector function, where

as any assignment which is not the identity is not one-to-one, a6

long as:^everything is finite (in this case, as long as eac$r variable

can take 6nly a-finite number of distinct valued)©* It is clear, of -

cb utse,' that a one-to-one, non-identity function cannot be the

composition of functions which arc not one-to-one.

19**

3-11 Side Effects

We are now in the position to be able to define rigorously

what it means for an expression, teify factor, etc., to have a

side effect. Let us consider the FORTRAN statement

Z = A + FCO + B

Here the memory P includes Z, A, B, and X, and also any interme

diate variables which are used in computing F. Assuming that all

these variables have values in the set real, the expression A -;-

F(X) + B has a state vector function ft TD-» reaj.. It also has the

side effect ss rD -> PD, which is the effect (in the tech.nical sense

introduced in the preceding chapter) of the function F, when star

ted at its designated starting point.

Any expression, term, factor, or condition which has a side

effect is associated with two state vector fmictions. The domain

of each of these functions is the given state vector domain. The

first of these functions represents the expression, tern, factor,

or condition in the usual way, and its range is the set of its

values in the usual sense. The second is the side effect, and its

range is the same as its donain© Ah assignment, even with a side

effect, has only one state vector function, since an assignnont r.ncl

the effect of a function have the same form as state vector functions

When an expression has several side effects, the composition

of the effects of the corresponding functions is called the side

effect of the given expression. For example, the expression

A + FOO + 13 + G(Y)

has the side effect formed by composing the functions f: rD-^fD

v

195

and g: rD-^PD which are the effects of the functions F and G re

spectively. That is, the side effect of the expression is h: PD -v

PD, where h(S) =* g(f(S)).for each S£ PD. The order of composition

might: be the other way around under different conditions; for exam

ple, consider the expression

F(X) + B*G(Y)

Here it would seen that the order should be the same as above, but

in many compilers an expression of the form A+B*C is compiled as

"load, 3, multiply by C, add A." Unless a special form of compila

tion is used when there are side effects, we will have h(S) - f(g(S))

The composition of side effect functions in expressions, terns,

factors, and conditions may always be specified to be from left to

right hy using the star-eytension with side effects, as follows©

DEFINITION 3-11-1. Let f: ^ * ©.. * XR -» Y, and let sQ: Pq^Pq-
Then the star-extension (f, sQ)*((e-, s), ..., (en, sp)), where
e,: P? -»X, and s,s T^P3?, 1 < i £ n, is the pair (g, s) for
-i'ii ill

g- pD.A y and s: PD-^ PD, where P=P u f u ... U T , defined as%» r .7 0 1 n

follows. Let sjs PD-^ PD be the memory extension of s. to PD, for
i i

0<i <; n, and for each state vector S£ PD let S^ =S and S ^=
sJtejO, 1£i£ nj then fe(S) -f(e^SjJpJ), ..., en<Sn|r£)) and
s(S) = s£(Sn+1)©

In this very general definition, each e^. corresponds to an ex- .

pression and s., i >>0, correrponds to its side effect, while s is

the side effect of f& Any or all of these side effects may bo the

identity function, in which case we say that certain expressions

"have no side effects"; if all side effects are the identity, this

form Of star-extension reduces to that of Definition 3-7-l« If e^

and Sjf, for some 1, are originall;/ defined on different state vector

196

domains,, say A^ and B^, then we may define P = A, u B and ma he
the memory extensions of e. and s. to p~? before proceeding. Uote

that if we write S = S, S. - = sj(S4), and s(S) = s«(S-> in the
n i—l x •*• u u

above, we obtain right-to-left evaluation, rather than left-to-ri^ht;'

in either case, the function evaluation, with its side effect,

follows §11 argument evaluations with their side effects.

The above definition allows us to build up an expression from

primaries with and without side effects© If such an expression is

the ri^ht side of an assignment, there" will "be two'different

plausible interpretations for that assignment if its loft side is

subscripted an& the sldei effect of the expression changes the val

ue (s) of the subscript(s). The problem here, of course, is whether

we should use the new value (s) or the old© Thus in the assignment •

A(I) = F(I), where I is initially 1, A(I) is a subscripted vari

able, and F is a function which increments I by 1, we obtain A(2)

= F(I) according to the first interpretation above and A(l) •- F(I)

according to the second. If v: PD -> PH corresponds to the left

side of our assignment and es PD-> V corresponds to the right

side, with the side effect s: PD-*PD and the type-conversion

function t, then the resulting assignment corresponds to a func

tion a: f^ PD, defined by a(S) =* S«, x^here

S*(v(s(S))) = t(e(S)), S»(x) = S"(x) for x 4 v(s(S)) with S» = s(S)

according to the first interpretation above and

3*(v(S)) = t(e(S)), S*(x) = S"(x) for x 4 v(S) with S" - s(S)

according to the second© The practical difference between these

two viewpoints is that the first: corresponds to a simpler inter

pretations! Strategy, accord:'ig to which the entire right side is

197

handled first, then the result stored in the place indicated by

the left side; whereas the second presents the simpler viewpoint

to the user, according to. which the expression is considered from

left to right in the 'sense that wliatever happens on the right does

f not affect what happens on the left. To implement this strategy,

we first Calculate and save the subscript(s) on the left, tlien

treat the right side, retrieve the subscript(s) on the left, and

finally store the value of the right side ? n the indicated location©

Of course, if v is a constant function, i. e., the left side is

not subscripted, then the two viewpoints coincide.

All of this assumes that the left side of our assignment does

not itself have a side'effect. This will always be true in FOPTRAir

II, but in most other algebraic languages the left ride of an as

signment may, for example, be a subscripted variable whose sub

script (s) may have side effects© In such a case, we must first cal

culate the single side effect us PC -> PD associated with the left

side vs TD-f PM, using the definition of the pair (v, u) as a

star-extension with side effects© Once this is done, taking the

second of the two viewpoints above, we arrive at the rule

a(S) - St, S»(v(u(S))j - t(e(u(S))),

Sf.(x) - 3"(x) for x 4 v(u(S)), where S" --- e(u(S))

^ We repeat that no matter how many side effects the components of

an assignment have, the-resulting assignment'cbrresponds to"only

m one function from state vectors to state vectors, rather than two.

It is a well-known fact that many compiler optimisation tech

niques are incompatible with the interpretation of multiple side

effects on a strict left-to-right (or right-to-left) basis. Any

such technique corresponds tc a rule, alternative to that which

198

we have given for; the star-extension with side effects, for con

structing the state vector function of an arbitrary expression;

however, most such rules are difficult to work with in practice©

Optimization of generated code for expressions is best carried out

either in the complete absence of side effects or under guarantees

(as may sometimes be given by the structure of certain languages)

that side effects will involve only variables not present in the

current expression.

Conditions can also have side effects. In fact, the action of

a conditional go-to statement, in the sense of Definition 3-9-1,

is precisely the side effect of the condition which it contains.

Thus in the FORTRAN II statement

IF (A + F(X) + B) 21, 22, 27

the action is the side effect of F; if F has no side effect, there

is no action, i. e., none of the variables in the program have

their values changed by the statement. The next-statement function

is not affected by the presence of side effects. Relations such as

A + B(X) > C(X) + D, of ^course, have state vector functions and

side effects which may be constructed in the~genoral way described

above, using the star-extension as given-by Definition 3-11-1•

/^

9

199

3-12 Parameters

Each reference to a function, with or without actual parame

ters, constitutes a primary expression and thus has a correspon

ding state vector function© For example, consider the function

GCD(M, IT), called by writing (say) GCD0O.+K2, K3*K?f). The corre

sponding state vector function f is then given by f(S) -

gcd(S(KD+S(K2), S(K3)*S(K!+)), for each state vector S; it is,

in fact, the star-extension gcd*(e«, ©2 '̂ where e_ and e are the

state vector functions corresponding to K1-KK2 and K3*K*+ respec

tively. One way to Implement this function reference is to per

form the assignments M = K2+E2 and N = K3*K*f, followed by calling

GCD, in this case, we would have f(S) = gcd(S(M), S(N)). The ad

vantage of this is that, when the GCD function is coded, the va

riables M and IT have the same status as any other variable© For

example, M is a primary expression, whose state vector function ru

within the coding of GCD, is given by m(S) ~ S(M)© The function f,

in fact,.does not depend at all, in this case, upon the actual

parameters©

Let us now consider a function EUCLID(M, N, K) which sots K

equal to GCD(H, N). If this function is called by writing

EUCLID(ICL+K2, K3*K*f, K5), then it may not be implemented using

the above scheme unless certain modifications are made. We may

perform the assignments M= K1+K2 and N - K3*K*f, as before, but

we cannot then do K = K5 and call EUCLIDf we must first call

E7CLID, and then we must set KJ hy doing K? = K. If tliis is done,

then the state vector function corresp* nding to EUCLID (11, II, IC)

will still depend only on the formal parameters li, IT, and Kj one

must, however, make a distinctior between parameters which aro

used in a routine (such &s M and N) and those whose values are

200

returned (such as K). This is done in the JOVIAL language, where,
for example, EUCLID(M, 3T$ K) would denote the faclS that IC is a

"retimed" parameter, since it follows the semicolon, whoreas ir

and IT are "used" parameters.

Formal narameters as described above, which are set to the

values of the corresponding actual parameters (or the reverse)

when the graven routine is called, are said, to be called bv_ vr.lue.

Li some computer languages, such as JOVIAL and SITOBOL >f, all pa

rameters are alweys called by value. There are, however, two

other standard, wtys of calling parameters; we spoak of parameters

called by reference (somotir.es vhy location" or "by address") end

called b^ 2BE&* ^ each of these Cases^ the execution of the -ivcn

fmiction or suor- -.tine depends in a much '-.ore fundamental way upon

the form of the actual parameters than if calling by value Iir.d lie on

used. This implies that each usage of a formal parameter called by

reference or by name within the coding of a routine is to be in

terpreted in 3 different way than jf it were an ordinary vert: lie.

Calling by reference is very common, bclne; used, for exr.mnlo,

in F0" OTAIJ. The formal parameters are here implemented as re Terence

variables (sometimes called "pointer variables"). lu -o-.-ral, the

value of a reference variable is another variable; if P ~ (;;, 7, L)

is a memory, then the legal values of a reference variable in 11

are themselves in II (besides being in 7). If EUCLID (Kli-rP, I;3*Ffr,

7C?) is a call to the subroutine EUCLID(M, IT, K) in vhich the para

meters are ca.lJ.cd hy reference, then M, IT, and K becoiuc mference

variables; the value of K beconos IC?, whereas the values of J! nr^

?T become temporary variables whose values are the values of the

expressions. I0L+K2 ahd K3*Kl* respectively (Just before EUCLID is

called). Such temporary variables are always used, uailess the cor-

^

201

responding actual parameter consists of a single variable or a

single constant. The state vector function m corresponding to the

primary expression Min the coding of the subroutine is now given

by m(S) = S(S(M)), rather than m(S) = S(M). Here S(M) gives the

current value of M, which is another variable, and then S(3(l0)

gives the current value of that variable.

The use of call by reference is less efficient in simple cases

than the use of call by ucalue, because of the extra calculation

necessary whenever a parameter is used. (Some schemes for imple

menting call by reference do not use any extra time at tills point,

but they use it elsewhere©) On the other hand, call by reference is

much more natural than call by valuef in particular, a parameter

called by value which is both "used" and "returned" must be men

tioned twice© It is also to be noted that call by value in ALGOL

allows only "used", parameters, whereas call by reference always al

lows parameters.to be either "used" or "returned©" If M, as above,

appears on the left side of an assignment statement, the correspon

ding state vector function is given by m(S) ~ S(M); its values are

themselves variables, as for the state vector function of the left

side of any assignment.

Call by name is defined relative to a transformation on the

program which results in a new program without any calls at all.

Each call to a procedure (= subroutine) is replaced by the entire

text of that procedure, lh';which each formal parameter crtlled by

name is replaced by the corresponding actual parameter© When the

actual parameter coesist^ of a single constant or a single unsub-
scripted variable without sida effects* Call by ntime. is equivalent

to call by referenco© When an actual parameter consists of a uoro

general expression, however, this expression must be evaluated anew

202

each time the parameter is used. If the values of any ->f the vari

ables appearing in the expression have changed, the value of the

expression will normally change as well.

It is possible to implement call by name according to the ori

ginal definition; that is, the given program is transformed in

such a way as to eliminate procedure calls. The new form of the

program, however, would normally take up excessive space, and. so

what is usually done instead is to treat each usage of a parameter

called by name as a fmiction which evaluates the corresponding

actual iDarametor. A reference to this value is then returned

Idj the f-» metion; this reference is a temporary variable unless the

parameter is a single variable, Just as in call by reference. Since

a procedure .may be called from more than one place, with differing

actual parameters, such a parameter usage is a function variable»

whoso values are state vector functions. For the formal parameter

K, called "by name, the state vector function of M as a primary ex

pression is z?ven by m(S) = S(h(S)) whore h = S(iO, and its state

vector function as the left side of an assignment is r,lvon by m(G)

- h(G). Any side effect of h becomes the side effect of m whenever

S00 = h; th£ total side effect of m is then the function s whose

(state vector) value s(S) is the value of the side effect of 3 CO.

A mathematical proof of the equivalence of this scheme for

handling parameters called by name with that of the original defi

nition is beyond, the scope of this book© Such a proof must, of

course, be a part of any complete proof of correctness of an ALGOL'

system. Further examples of the equivalence of parameter handling

schemes are quite common in. worhing with programming languages.

Host algebraic language processors? for example, use calling se

quences. which are sequences of formal parameter values as described.

~>

203

above. There is then within each subroutine a single variable

whose values are (pointers to) calling sequences* Such a subrou

tine is called by setting the value of this single variable to a

particular calling sequence and transferring control, which is

faster than setting several parameter variables and transferring

control© In the Et£LID routine, the calling sequences are of the

form (fc, t, X), where at, % and K are< either integers (call by value),

integer references (call by reference), or integer-referonce-valued

functions (call by name)© If Tl is the calling sequence variable,

then the state vector function of M, for example, as a primary ex

pression is now given by m(S) = M- (or SGO, or MS)) where (M, V, k)

= S(R)« This illustrates only the most rudimentary calling sequence

scheme; if a language processing system employs such a scheme, then

the proof of correctness of the system must include a proof t]iat

the scheme is valid — normally, a proof of the equivalence of the

scheme with that by which the given language is defined.

20k

3-13 Correctness

The theory presented in Chapters 1 and 2 on correctness of

programs will now be g.iven a formal mathematical basis. Let P be ^

a program on the memory T , as in Definition 3-9-1, r>vA lot P ~

PQ U (£A^, P), so that fD may be canonically identified with Y^ ^
X P© By Theorem 3-10-2, we may assume that P is complete, >-n0 If

it is complete then its execution function f: TD-> rT) is jiven by

Definition 3-9-2. If T £ fD, then the computation sequence T,.,

Tl' T2' ***9 ^starting from TQ is given by T^.+:? - f(T) for i ;> 0

as in Definition 3^-1. An assertion about the variables of P is

the sane as a condition on them$ that is, it is a state vector

function whose values are true or false. We shall view every as

sertion about P as a subset of F** (or sometimes of f^, if this is

explicitly stated); this is justified in section 3-5• A state vec

tor S for which the assertion A is valid is precisely one which

belongs to A as a set© V/e may now make formal definitions of cor

rectness and partial correctness.

DEFIN1TI0N 3-13,-1. Let If be a set of pairs (F±, A.), where
each F is a statement of a complete program P on Tn and each A

£ T?« Let 1, f, and computation sequences be defined as above.

Let R e TD be the set of all (S., F,,), for all 3 £ PD and .-11

(F., A.) 6 IT, and let R0 £ R be defined by fa , Fj ^ R~ if and.
ii 0 JiN0 r

only if S . f. A^. Then P is partially correct with respect to"tr

if no commutation sequence T^, Tn, .<,., for T^ € Rn contains clr-
0 1 0 ° ^

merits of R-Rq© It is correct witft respect to It ^ ** -s partially

correct with respect to fT and if, in addition, each computation

sequence T0, T ', . *., for T £ R contains elements of R^©

205

THEOREM 3*13-1© If P is partially correct with respect toTT,

then it is partially correct with respect to any subset ^9 C T.

PROOF. Let R and RQ relative to 1T1 be denoted by R» and R^©
Then R1 £ R, R» c R . and R»-R* £R-R . If T , T-, ..., is a com-

0 0 U O w x

nutation sequence for TQ £ R^, then certainly T £ RQ, and the

sequence contains no elements of R-£Q, and therefore no elements

of Rf-af© This completes the proof©
0

This proof is deceptively short, because we have defined par-

tial correctness relative to entire computation sequences, r?..ther

than control paths. The following theorem indicates, as we did in

tuitively earlier, how partial correctness is proved©

THT-IQREM 3-13-2. Using notation as in the definition above, sup

pose that whenever T , T,, ..., is a computation sequence with TQ

e RQ, and T.£R but Sach T £ R for 0<3<k, we hate T £ R .
Then P is partially correct with respect to1T.

PTiOCF. Suppose the c6ntrary; then there exists a computation

sequence TQ, T , .„., w'ith T £ R , containing elements of H-RQ.

Let T be that element of R-R in this sequence whose index z is

as small as possible, so that T,* R«£0 for 0 < j < z. Let T ,
0 • u y

y < z, be that element of R- 5ji this sequence whose index is as

large as possiblef certainly T exists, since T £ R • We then have

T. £ (R-&0) u RQ = R for y < H< z* Consideration of the computa
tion sequence beginning with T leads us to a contradiction of the

hypothesis. This completes the proof© (The converse is obvious.)

COROLLARY 3-13-1. If for each statement F in P we have (F^ Aj.)
6If for some A., then P is partially correct with respect to 1T if

and only if f CRQ1> £ RQ (that is, T6 RQ implies f (T) 6 RQ if f (T)
oxists)•

This follows immediately >oir the fact that R = P^ in this case.

206

DEFINITION 2-J13-2© Using notation as in the definition above,

a path in P is a sequence GfQ, ...,Z) of statements of P such

that for each i, 1 £ i £ n, there exist S, Sf £ T*> with f ((S, X^))
= <SS 25)» Aloop in P is a path (F0, ..., 7n) in Pwith ^ =?n©
A control path of 1? is a path of P such that (Z^, A.^) £ IT for some
A. if and only if i = 0 or n. A loop control path of IT is a control

path of ft contained in some loop in P. A control path of 1? is verified

if for each computation seq once (SQ, Zq), •••> ©n, !En) of P (for
the path (ZQ, •••, Zn)) we have GQ£ AQ implies Sn 6 An, for (SQ,
AQ), (I , An) 6 ^e The set IT is sufficient if each loop in P con
tains some £. with (2*,, O € 1T for some A.©

l i 1

TH5 QP.51'1 3-13-3. If every control path of 1T is verified, then

P is partially correct with respect to U©

PnCGF. Let TQ = (SQ, ZQ)\ ^ = (S^S^), ..., be a computation
sequence for some £ , Jf.,, <>••» 'tiien for eacn k? ^q' •••>^k^ is a
path in P, bytdefinition of a computation sequence© If T €. RQ,

Tk£ R, and each T &R for 0 < j < k, then (rQ, ..o, 2k) is a con
trol path Of T by the definitions of R and RQ. Bjf hypothesis, it is

therefore verified; since T £ RQ, we have S £ A , and. thus 3^ £
A . This, combined with Tfe £ P., yields Tfc £ RQ, and thus, by Theo

rem 3-13-2, P is partially correct with respect to M•

THEOREM 3-13-4© If 1T is sufficient, then IT has only a finite

number of control paths^ and these are of bounded length.

PROOF. Let Qr , ..., Tk) be such a path. We first show that
?.,, •••, Lml are all distinct. Suppose the contrary, so that T^ -•
£., whore we may assume i < U Then by considering (?,, T ., ...,

Z"), we would h,:.ve r. .contradiction to the statement that T is suf-

ficiont. If thore are n statements in the program, then therr-. r>re r--t

most nl choices for (£.,, '•••? ^lc^) if these are a11 distinct, and
at most n, choices for each of £ :ir& 5L . Also, •the "maximum length

of each such path is clearly n+1© This completes the proof.

^

/^

^

207

THEOREM 3-13-5. Suppose tliatIF is sufficient and that each con

trol path of TT is verified, and let J be the set of all integers.

Suppose that for each loop control path C - (£ ? •»i**£Ik) we may

associate b„: rD -* J, en : PD-> J, ..., e : PD^> J, such that:
C 1 n f '

(1) For each computation sequence (SQ, £q)? •••> (3k, 2"k) with

3Q £AQ (for (r0, AQ) €1T) we have
(a) ej,(Sk) 2 W' l^iin,
(b) e fS,) > e (Sn) if C is primary (see (3) below),

n k n ^

(c) hK(S}) = dk(3q) for each b associated with each

loop control path K of If (including K ~ C)$

(2) If e,, ..., e is associated with C - (2T, ..., Z) and

e^, ..., e£ with C» - (£J© ...,££>• «ien?k - ZJ ianlios e^ - et
for 1 < i < min(m, n) (in which case C is called inner to C1 if

™< n? Q'-vter to C1 if m' > n, and strictly outer to C1 if m > n);

(3) Each C = (I, £,) associated with en , ..., e is cither
Ok -u tl

(R) Primary (see also (1) above), in which case 3 6 ly (for

(Ek' Ak)€ ll) lnr,lies en(S) ^ VG)>
(°) secondary* in which case each loop in P containing c

contains some C9 which is primary and outer to C, or

which is/strictly outer to C.

Then P is correct with respect to each subset ITf of If inv--?vinj

all termination statements of P (i. e., (£, A) £ IT-IT1 ian?i;s

f((3,Z))' is always defined for S £ A).

- PT.QGF© Since each control path of 1f is verified, P is partial?-/

correct -ith respect to IT, and therefore w5 th respect to IP. Lot

(SQ, EQ), ®v ^), ..., with ff0, AQ) € ITS S06 AQ, be a equi
tation sequence; it is sufficient to derive a contradiction, ^.ssu-

::.'r\r that tine sequence is inflnfto© (If it must bo finite, then it

a:ids at some (Gv, Z}r), w£th (£k, \) *1P by the hypothesis on TTf;
since P is partially correct with respect toTT!, we have r>k € A^

208

and therefore P* is correct with respect to TP .)

Let 1 (= 0) <"in < JL < .©• be those indices for which (£± ,
A-)e Iff the control paths which this sequence traverses are C

= (T* , 14 x-m ••••£*) for each 3 > °« Since 1T is sufficient,
^i-l ^-i x3

there are infinitely many i, and hence infinitely many Cy Since

there are only a finite' number of distinct C., some must appear

an infinite number of times. Of these, let Cx be associated with

e1? •••© en for n as small as possible. If G^ is primary, take C^.
=?CJ| otherwiseV any loop in R,Cohtain±ngGx contains some C« which

must be primary and associated with e-, ».., en by the choice of x$

we choose such a Cf which appears an infinite number of times and

call it C_r. There are a finite number of C. each of which appears
y «

a finite number of times, ending at T± for various 1^; let Cu end

at the largest of these' i-, &nd. let 30 •(=.# $oxfcr< J£ < 12 < ••<> he
those indices for which C* = C„. Such indices exist because C ap~

*>i y y
pears infinitely often. Let-vfe = e (Sk), bfe = bc (Sk) for each
k £ 0; by hypothesis (3*?)? *^.< b^ for oach i, since Cj is primary©

We now show that each Cz, z > v, is inner to C^.. Suppose the

contrary, and let z be the smallest integer with z > v but Cg not

inner to C,,.. Then z-1 > v and. C 1 is inner to C__. By hypothesis
V — Z-u. V

(2), either C ^ is QV&eT to 0z (impossible, because then Cg would.

also be inner to' C) or C n is inner to C © B.ut then c is either
w' z-1 z z

inner or outer to C„; since it is not inner, it must be strictly
w*

outer, and we have a contradiction to our choice of Cx» Hence each

Cz, z > v, is innc^ to Cv, and this implies Immediately by induction

v < v- and and b = b, for all b > a > v.by hypotheses (la), (1c).
a •** d a d

By hypothesis (lb), v^ t < v* for each i, and since v* , < v^ ,

we have v. < v., < v. <©.. and each v., < b* ~ b.. , which is
^0 31 J2 ^i "" Ji J0

impossible© This completes the proof.

"V

209

PROBLEMS

1. Xa) Let A be a set of m elements and let B be a set of n

elements© How many total functions f: A-»B are there?

(b) How many of these are one-to-one?

(c) How many partial functions ft A-»B are there?

(d) How many of these are one-to-one?

2© A relation is called a strict ordering if it is irreflex-

ive, antisymmetric, and transitive© Show that there is a natural

one-to-one correspondence between the set of all strict orderings

on a given set and the set of all partial orderings on that set©

(Note: If a partial ordering is denoted by <J or £, the correspon

ding strict ordering is often denoted by < or >•)

	Copyright notice 1972
	ERL-315
	Copyright notice 1971
	ERL-315 (1 of 4)
	ERL-315 (2 of 4)
	ERL-315 (3 of 4)
	ERL-315 (4 of 4)

