Copyright © 1972, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THEORY AND PRACTICE OF ALGORITHM VERIFICATION

by

W. D. Maurer

Memorandum No. ERL-M315

1 January 1972

'ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Research sponsc;red by- the National Science Foundation, under Grants
-GJ~-821 argd GJ-31612.

3

TABLE ~ «OF COnTai

HT S

’ Page
1 COFRECTMHESS OF PROCT/IS ¢ B.AIC PRINCIPILS 1
1=1 ~trulgnt-L_“c Prograns 2
1~ Intermediate Assertions 7
1~3 Branch-Forward Prograns 11
1<+ Closed ILoops 15
1-5 Control Points and Control Paths 20
1-(Controlled Expressions 25
1-7 Assertions in Loops 30
1-8 Inductive Assertions 35
1-9 Debugging 3y Proving Correctness ko
1-10 lultiple Loops 45
1-11 Multiple Controlled .ivpressions 51
1-12 The ;c*~1kutﬁon Theoren 56
SO LOCTINSS O ""ﬁ ;R; MSs TIRTITE TUCIHILLS 71
2=1 Usin% ”bﬂﬁmeica] Facts 72
2~2 Input-Outnut 7
2=3 Permutations and Sortedness 82
? ﬁ Sort Fouatines 87
D=F llorging Tontines 9
2-6 Assertions Defore and After Assi mmernts 96
2=7 Assertions Abcut Listr 100
2=-8 Assembly Ianguoge 105
2-9 Jelf=odifying Progrars 109
2~10 Subroutines 113
2-11 Matrix Imltiplication 118
2-12 Standard Verificetion .rguments 124
STATH VECWCR TWICTION T:HC Y 142
=1 sets and Tunctions 143
3-2 llemories T 153
3=3 Cteve Vectors ’ 157
3-E Computation Seyiences 162
-3~5 State Vecteor runctions - 167
36 Assignments 170
3-7 wxp“vsq ong ond Con”itions 175
3= lemory Tiytensions 180
3_,0 'D'I‘Ogrc.;.u].85
3-10 The ffect of a Progren 189
3-11 Zide Iffects 194
=12 Paranetors 183

3~-13 Correctness 2

R COPFRCTNDSS OF PROGRAMS: BASIC PRINCIPLLS

This book is an introduction to programming ns a scicncee.

what distinguishes a science from an art is the Tact that in -~

science we Mnow ¥het certain tlhings are true, instead of nerely
feeling that they are true. |

Debﬁgging, as it is currently procticed, is an exomnle of
prograrming as an art. We write a program, run it ~ fouw tines,
find mistakés, correct them, run it again, =nd finaliy cnecrge with
a "working version" of the pro ram. Thls may still no* be correct
for all poséible inputs it is only correct for the input we have
tested., If we are nore sophisticated, we submit our rrogram to-a
specialist in programming quality control, vho subjects it to as
‘thorough a baftery of tests as he can devise. At the end of this

process, thie prograj may still have bugs in it; a1l thot is dif-

fercnt from before is that the programming manager is now willing
to pay for any damage caused iu the future by any buge wlrich roruina

Theafirsﬁ“chapter of this book will be devoted to the busic
nrinciples of proving mathematically that there arc no bugs ina
givén progfamo The principles, however, will be stated intuitively,
in programming terms, without the use of formal mothenat icel modelss

these will be deferred 'mntil Chapbter 3.

1-1 Stralght-Line Programs

What does it mean for a program to be correct? To illustrate
what should be included in a proper definition of correctness,

let us consider the following simple program:

B=Ax A
C=Ax%3B
B=BxC
B=BXDSB
B=BXB
B=BX C

This program calculates the 23rd power of A. The results at each
stage are the square, cube, fifth power, then 10th, 20th, and 23rd
powers .

If we are to call this a correct program, it will not be enough
to say that it .correctly calcnlates the 23rd power of A. In parti-
cular, if we change.the‘last statement to C = B X C, then the new
program still calculates the 23rd power of A, and yét the two pro-.
grams are clearly not equivalent. If this program were part of a
‘larger cne, and its result were used iater on, we would have to re- .
ference C, father than B, We must, therefore, specify which veriable

receives the new value., Thus for the program above we would say:

After this program is finished, B is equal to the 23rd power of A.
‘ The above statement, however, is still not enough to specify

what this- program doese In particular, the program

A=1
B=1

also hes the property that, after it is finished, B is equal %o
the 23rd power of A. The difference between the two programs, of
course, is that in the new program the value of A may be changed,
whereas it may not be in the original program. If we specify that
the value of A is not changed, then the statement that B is equal
to the 23rd power of A 1is enough to specify B completelye.

What if we change the last statement of our original program
to A = B X C? Now the value of A will be equal to the 23rd power
of what it Qas at the beginninge. Dut if this program is embedded
in a lai'ger one, the beginhing of the larger program mlght not be
the séme as the beginning of this one. The initial value of A must
be associated with the beginning of this program, and not some
larger.one. Thus we might say: If A = X at the beginning of this pro-
gram, then A will be equal to the 23rd power of X at the end of it.
Implicit in this statement is the fact that the value of X is not
chagged by the programj otherwvise, we would encounter the same
problem we did before. The device of including a ncw variable,
such as X.here, in order ,to state the conditions of correctness
of a program, may be used whenever the purpose of a program is to
change a variable rather than to set it to some function of other
variablese Y

A condition such as A =X or A = x23 1n these exanples is
known as an ggsertion. In proving the correctness of n program,
there will always be an assertion at the end of the program, and
sémetimes there will also be nne at the beginninge. A concition
which must hold in order for the wrogram to work properly may be

e e —————

stated as an initial ascertion, or an assertion at the beginning.

L

Thus, for example, in a program to set B equal to the square root
of Ay the initial assertion would state that A is greater than or
equal to zero. The final asgertion is then the statement that B is
equal to the square root of A. We have ildentified the following
components in a statement of correctness of a programs

(1) an initial assertion;

(2) a final assertiong

(3) a statement of what variables may have their values changed
by the programj

(4+) a statement that if the initial assertion is true at the
beginning of the program, then the final assertion will be true
at the end of it.

Are these enough to specify completely what a program does?
In general, the answer is still noe. A program may get into an
endless loop under .certaln conditionss or it may end in nore than
one place, thus making it necessary to have more than one final
assertion. Let us, howevef, confine our attention for the morent

' A .

to stralsht-line programs, in which the above behavior cenrot
occura A stralght-line program is one which has no hranches at all,
such as our program to calculate 23rd powers. We will use this pro-
gram to show intuitively that in this case the answer o our ques-
tion is yes.

The »rogran uses three variables, Ay 32, and Ce A comnlete sne-
ci?éqation of what this progrs: does will give the new wwulues of

-

Ay Dy and C after the projranm has been exccunted, as Minehlons of
theldr originnd vl ese For the nmouent, let Ay 3, and € stnnd Tor
the naw valies of bthe varinbles, and let g, Dy o sbrnd for

thelr. orfsinal vilucse Then the egations

>
I
I»

[ve)
i
]
N
w

Q
]
fu)
'U)

provide a complete specification of the effect of this program.
Normally, the second of these is the only one we will be interes-
ted in, although we might need the third, if, for example, this
program is embedded 'in a larger one which uses the cube of a. If
we happen to notice that this is an infermediate result which
remains at the end of-;his program as the final value of C, we
can avoid recalculating the cube of g 1f this result is needed.
Let us how regard g, b, and ¢y not merely as symbols denoting
A, By and C respectively at an earlier point in the computation,
but rather as separate variables, much like the variable X in the

previous example. We may now construct the initial assertion
A=ayB=hbyC=¢g

and the final assertion .

Furthermore, B and C are the only variables whose values may
be changed by this program. These statements are equivalent to the
complete specification given above, and for the same sort of rersons
as before; since g cannot change, the final assertion defines the
values of A, By, and C uniquely in terms of Initial values, even
though this assertion refers directly only to the final values of
A, By Cy 257Dy and Se '

We have thus shownkintuitﬁvely that defining the correctinss of

a straight-line program in terms of initial and final assertions

allows t.ue eilect of thal

prosram to he snecified comnletely,

=

In proving the corrcetness of a program, lhovevar, we ore “int al-

ways interested in » complete specification. We have seen £t 2%

3

is cuoushy In our first examplie program, to specify that B ic set

equal To the 23rd nower of A, nrovided we also ow tiat tle vnlue
of 4 corunt change, chéver, the value of 4 canno® change becr: ce

no individual statement of this program can change the value of Aj
in genoral, whether or not s program has branches in ity The oly

varicbles wiich can be affected by the prosran as & vihole cre %loge

witich are affacted by indivicdial staterients in ite.

We shail, therefore, continue to define correctness of a
atrailght-line program in terms of initial and final nsrerticns
alones A complete definition of correctness for straight-I1 ne

programs may bLe stated as followgse

Glven a ptraishb-line program, gn initial assertion abeit the

variables of that progrem, and a final agsertion sbout Llese yvorie

ables, the progranm ig-sggrect (with respect o these two rrcsertions)

if, whencver it started with the initial assertion valid, it
-——, R e e S S——

ends with the final assertion valide.

We will often abureviate and say simply that "a prosram is

2

correct,”" but we should note carefully that, striletly zoealiing,

progran 1s always said to be correct with respect to zonetliinge

Also, vhcnever it ogpvears that we have no initinl nnmse—tion for o
Progranl, it is: w.iorstood that the initinl ac ertion
asscortiony’ which ig always truee Whan two or more ansert
riected by éonmas, "and" is understood; thuc, Tor cinmple, "4 -

-

a, D= Ry C = ¢" Cenotes the ringle assertion "A = a2 nand 3 - b ¢

1~2 Intermediate Agsertions

We shail'now prove the correctness of dur straight-line progran
to calculate tﬁ; 23fd power of Ay in its original forme. Our final
7 assertion is B = A23; there is no initidl assertion. In addition,
B and C are'the only variables whose values may be changed by the
prozram. |

Before we proceed to the actual proof, let us consider certain
objections which night be made on Intuitive grounds to the statement
that thils progran I1s corract. The first sort of dObjection drncerns
itself with the representation of varlables within a computers
Tor example, what 1f the 23rd powor of A is too big a nunmber to
fit into a word on the computer being used? In this cese, in order
for the program to be correct, we must specify that the valie of A
is small enough so that this will not happen. This then brcomes
part of our initial assertion. Similarly, if A is a floating point
number, there will probably be roundoff error in the calculations,
and the answer will not be precisely equal to the 23rd power of
the given value of A. In such a case, all of our qiantities mist
be asserfed to be subject to ronndoff error. Thus oir initicl as-
- gertion might sa& that A 1s equal to X * e, for some orror teorm e.
Our final assertion then says that B is now eqgual to ¥ + e', where
Y is the 23rd power of X and the error term e'! depends on e, and,
in general, on X as well,

It is evident from the ahsve that programs involving floatling
boint quanfities nay be proved correct with rcspect to the proper
assertionse The formulation cf these assertions req:ires rpecinl
techniques, which are the pror7ince of numerical analysis and are

‘beyond the scope of this book. Ir. the future, we shall always as-

SIUNe 4 when dealinc with integcrs and real numbers, thnt these nre
arvitrary Intecsrs =znd real numbers, not boxd by any rcestricilions

s to size or signifieance. It ig worth rencating thot trese oas-

a

o)

cunptions arve made solely in the interests of sinplici

-

T [o - PO - . -, - ~ ~ - 2 1 >
nothing to prevent us fron dropning them 1n an expanded theorye.

«

4

The gccorn” sort of objection to the statements which e have
made 2hn it our exanple program concerns the variables whoas . lucs
may he changeds Ao we saw in the preceding section, e uned only

Iock at eaclh: ztabement of the program separately in order ho nrove,

oo e e ge = . oty 1l e S v
i this eace, thot B and C sre the only sich variable Ve woold

v
2. SO o R ™, ~ -~ L T K|
infer thils from the fac tht 3 and C are the only varizbles oc-
cirrring on the laf) side of the equal sizgn in amy statenent in e

-

ok

progranes The troible is that this inference deprnds o *ha { ot

ovxr statements have no side offects. In some Jansumges, cuch ns

LLGOL, any aritimetlic staterent may have side efTectss thus |

r=?

or

’4
e

m

3 or C night be Tunctions with no parameters. There:

"')

‘ore, this nog~
sibility nust be explicitly or Implicitly exeluded as part of our
oroof of correctnnss.

t 1is usnally not too if-

| amad

Lven when side effects are present,

|42

ide elTocts 90 rot intor-

ficult To verily the stvtemen thet the s LGS
Tere vith the variables UlOSO values are helng coleulnted. . sifde
cifect 1s always the offect of some subrontine, or scrne function
coded as a subroitines any variable whose value is chanrsed hy the

side effect hes its value changed by some siatement snnearing in

tie definition of the corrcspondiing subroutine. This stolamant NI

i turn, have o oide effect, ~nd the nnaiysis nay be ear-icd Shronsh
several levels, but it never Teads o cireilar arminents, sven in

a3 « TMig 18 "weennge =17 the cor-

the con of recurstve alde o7 Toets

.

2 - - L Y
reevness sunteneats whleh we nnle about prorrama hold on™p for

procrans walch terminnte in 2 finite nunber of stepse If a Hrogrmn

terninateos in p steps, there can be no more than n recursion levals
in the runwinsvof vhat: progran,.

eving met these objectlons, let us return to the nroblen of-
proving that our final acserion will be valic azfler the given pre-~

gram has been rune One way to do this is to show exactly whet roes

on at each stage, as followc:

B=3BxC
o= A.23

astezd of two nsrertions, we now have seven, of which the first
i5 Jef* oubt since it is alvays true. The Tive new aszertions moy

ied internediate agsertionse Bach stat~ment In the »rogsran

not: has a2n assertion 'before it and after it, and may thus Dbe re-
garded ns a one-statenient "procram" whose correctness is being
proved. Let us wr’te, for example, the third statemcnt of the pro-
gram above, with its "initial assertion" and "final assertirn" in

this sense? 3
*B'—‘-A,C:-'fk

10

2 and

To prove this correct, we must verify that, if B = A
C = ,’\3, and then B is set equal to B X C, then we will have D =
A5 and C = A3. To anyone who Xnows what assigmment statements
nean, this is obvious. Iet us, howvever, briefly consider the
idea of mechanizing this proof process, that is, writing a com-
puter program which verifies single statements in this fashion,
and, it 1s hoped, larger programs as well. Chviously we would
need a convention to distinguish an assertion from a statemonts
we have used an asterisk preceding each assertion, which allovs
assertlions to lcolk lile comrents (in most programming lansw ges)
so that we can leave theﬁ in our programs when we run themn., We
would also need sone other method of specifying exponentiation,
such as ¥ ag it is used in FORTRAN. The character strings
1B = A®H2Y and 'C = A*M?!, representing assertions, and 'B =B X C!,
representing an assignment, must be combined by our program to
form 'B = A®5?® gnd 'C = A**31, This process depends for its va-
1idity on the mathematical meaning of assignments and assertions,
‘which will be more fully discussed in Chapter 3, For the prescnt,
we shall accept Ilantuitive arguments when they arise$ thus in the
'proof of the one-gtatement program above we shall simply say that
it 1s correct "by inspection." It is also clear that the entire
program 1s correct if each of the one-statement programs it con-
tains is corrects thus in this case the entire program is correct

by inspection.

v

1

1-3 Branch-Forward Programs

We now consider programs which contain transfer (or jump, or
‘branch) statements. The simplest of these programs to analyze are
the ones in which all transfers are in the forward directions
this is because such programs cannot contain any loopse. We shall
refer to them as branch-forward programs. |

The following FORTRAN II function calculates the absolute

value of X:

FUNCTION ABSF(X)

ABSF = X

r X)1, 2, 2
1 ABSF = =X

RETURN

‘END

We have chosen FORTRAN II because in most algebraic languages this
program would not require any branches at a2ll. In FORTRAN IV, for
example, we would have written IF (X .IT'e O) ABSF = «X3 in ALGOL,
we would collapse the whole program into ABSF := JIf X<O then X
else X. FORTRAN II, however, forces us, even in this simple case,
to consider the issue of branching.

Jt is clear that only the function varialle ABSF can have its
val'ue changed by this program. Let us st up inftermedi=te assertions

for this program, just as we dld in the proecediis section:

FUNCT ION ABSF (X)
ABSF = X

* ABSF = X
IF (X) 1y 24 2

12

*X < 0, ABSF = X
1 ABSF = =X
* ABSF EQUALS THY ABSOLUIE VALIE OF X
2 RETRN
END

The proof hrie ie o bit harder than the preceding one, because wWhen
we consider the YF statement we must distinguish two cases (in
general, three). If X wag less than zero, we pass to statement 1,
and the assertion there is simply that X is less than O (and that
ABSF is still equal to X, a fact which 18 not actually used here).
If X was greater than or equal to zero, we pass to statement 2,

In this case, ABSF will be equal to the absolute value of X because
ABSF = X and X > O. If statement 1 is executed, ABSF will then be
equal to the absolute value of X because ABSF = «X and X < O,

. All this 1is quite straightforward, and we would therefore 1llke)
to be able to dispense with the intermsdlate assertions and to say
that thils program is correct by inspectione. In doing this, it is
helpful to write out each of. the two paths which the program may take:

ABSF = X ABSF = X
x<0) x > 0)
ABSF = =X : RET URN

" RETURN

In each of these paths we have written the condition which actu-
ally holds whenever that path is takeny these conditions are en=
closed in parentheses to 1dentify them as conditions. It 1s not
necessary to include any labels in the specifications of the paths.
In each of the two cases above, the final assertion that ABSF is
equal to the'abgolute velue of X may be immediately verifiede

13
As another example of a branch-forward program, we consider
the sorting of an array of two elements, given here with inter-

mediate conditions at each stage:

*A(l) =X, A(2) =Y
IF (A(1l) oIE. A(2)) GO TO 1
*A(l)=X, A(2)=Y,X>Y

T = A(1)

*A(1) =X, A(2) =Y, X >Y, T =X
A(1) = A(2)

*A(1) =Y, A(R) =Y, X>Y, T=X
A(2) =T

* A1) = (X, Y), A(2) = XX, Y)
1 CONTINUE

Here we have used FORTRAN IVj maxX and min are the usual maximum

and minimum funetions (which in FORTRAN would be written AMAX and
AMIN when applied to real numbers, so as not to begin with I, J, K,
Ly My or N)e As before, the treatment of the IF statement must be
broken up into two cases. The only verification here which is not
immediately obvious is thatiinvolving the statement A(2) = T, and
this becomes clear as soon as we realize that, since X > Y, we

must have X = max(X, ¥) and Y = min(X, Y) in this case. Using the
shorter method, we may write out two paths as before. The first is

xA(L) =X, AR) = Y
(A1) g £(2))
* A(1) = mia(X, Y), A(2) = max(X, Y)

and the second is

1k

*A(Q) =X, A(2) =Y
(A1) > A(2))
T = AQ)
AQL) = A(2)
A(2) = 1 |
* 4Q1) = pin(X, ¥), A(2) = pax(X, ¥)

Here the values of X and Y cannot change, since indeed they do not
appear in the program at all, In each of these paths, there is both
an initial and a final assertion. We shall continue to precede these
assertions by asterisks, and to write Intermediate conditions in
parenﬁheses, since Intermediate conditions and assertions play
quite diffepent réles in verification. Each intermediate condition
must hold at the point at which it is encountered; thus in the second
path above we may infer from A(L) > A(2) that we must have had X > ¥
at the beginning of the path, so that X = max(X, ¥Y), ¥ = min(X, ¥).
Paths in programs, as illustrated above, are subject to certain
general rules which we may now state. A path consists of: an ini-
tial assertion, which may be omitted (and reads "always true'" if
it is omitted); followed by any number of assignments and conditions;
fBllowed by a final assertion. The path 1s correct (or verified, or
valid) if: whenever it 1s started with its initial asserti .n valid,
and if 1t 1s actually followed to its end (which means, in particu-~
lar, that each intermediéte assertion is true as it is passed),
then when it is finished the final assertion will be valid. The
length of such a path is the number of assignments and conditions
in it, irrespective of the initial and final assertion,

15
1=l Closed Ioops

A closed loop in a program is a sequence of statements, such
that it i1s theoretically possible for the program to proceed fron
the first of them through the sequence to the last and then mck
to the first. A straiéht~line program, or, more gcenerally, a
branch-forward program, cannot have closed loopse. It is possible
to write a program which has no closed loops and yet is not a
branch~forward program, as shown by the following example (again

in FORTRAN II):

FUNCTION SUMABS (X, Y)
A =X

IF (A) 3,5, 5

B=Y

IF (B) 7, 95 9
SUMABS = A + B

O O V1N

Jt

0 RETURN
A= =A
GO TO 5
B = =B

oo 3 F w

GO TO 9

This function computes the sum of the absolute values of X =znd Y,
The statements GO TO 5 and GO TO 9 are branches backward. We have
purposely included a statement number on every statement in this
progran to show that it 1s 1n fact a branch-forward progranm if we
interpret "forward" to mean "in increasing order of statement num-
bers." In fact, any program with ro closed loops may have its
statements ordered in such a wayj this follows from the properties

of partial orderings. In what follows, we shall assume that any

16

prezram with no closed ldops iz in fact a branch-forward program.

As a simple example of a program with a closed loop, let us

N

consider the following program to calculate A, in which the vari-

~ables whose values may be changed are X and I:

X=1
I=20
1 IF (I &£Qes N) GO TO 2
X=X*A
I=1I+1
GO TO 1
2 CONTINUE

In order for this program'to work, N must be an integér which 1s
either positive or zero. Let us write an assertion before each

statement of this program:

* N >0
X =1
*N>0,X=1
I=0

*N2 0, TSN X=al
1 IF (I EQ. N) GO TO 2
X N>0, I<N, X=Al
X=X*a
N>0, I<N, X=al
I=1I+1
*N>0, TSNy X=al
GO TO 1
* X = AN
2 ‘CONT INUE

17

- This example raises the question of how to figire out vwhat our
assertions should be, especially as our programs get longer. In
facty the determination of assertions in proofs of programs 1s

a task which is comparable to nrogramming itself. In this case,
we must lnow enough about how o:r program works to be able to
assert, for example, that wherever we get to statement number 1
(either the first time or at some later time) then N will still
be greater than or egual to zero, - I will be less than or
eqml to Ny and the value of Xy which is a "partial answer,"
will be exactly AT,

Now suppose that we verify what happens at each statement, just
ag we did befores This verification is obvious at the =tatcment
X =1, At the statement I = 0, we obtain I < N (clear, since I = O
and 1 > 0) and X = AL (clear, since I = 0 and X = 1)¥ At statement
number 1y we start with X = AI; if I = Ny then we clearly obtain
X =AY, If I # N, then since ve started with I < N, we get I < 1,
which is the only thing that changes. At the statement X == X * A,
the nnly thing that changes is that X = AL becomes X = AI+1, which
ic clear since AT * o = AT*l, At the statement I = I + 1, we start
with I < N and obtain I < N, which is true but depends on the fact
that both I and N are integors. We also start with X = AI*l ana
obtain X = AI, which 1s cleor since I has been increased by one,
Finally, the GO TO statement does not change anythinge.

It is strongly recommended that the reader work ti'roigch the
above verifications before nrocecding further, since abbreviated
arguments such as those made in the preceding paragraph will be used
constantly tiroughout this chanter. At the risk of ower-specificotiun,
we shinll write out one of these srgunents in full, Let us write the
atatement X = X * A together with the assertions which preccde ord

follow it:

O -1, If 0 as
ume 07 = Lo lude
hapter we &ss e mple, inc n for
* Throughout thjfs P en we must, for €XT Pinltial a_sse.rtigrogram.

oy asdh PPN e elng

18

*N>0, I<N, X =4l
X=X *A

*N>0, I<Ny X =04

f

I+l

This is a path of length l. We must verify that if N > 0, I < N,
and X = AL, and 1f we set X = X * A, then we will have N > O,

I <N, and X = AI*, These three conclusions are verified as
follows. We have N > O and I < N at the end because these con-
ditions were both true at the beginning and because neither N nor
I has been changed by the assignment X = X * A. We have X = AT+l
at the end because X = AT at the beginning and we have multiplied
the value of. X by A in the given assignment. Thus the path is valide
This entire apgument is then abbreviated, as we have done in the
X * A, the only
AI+1, which is clear

preceding paragraphy, to "At the statement X
thing that changes is that X = AT becomes X
since AT * A = pAT+Llon

]

What can we infer from these arguments? Can we, in particular,
infer that ow program is correct? Suppose that the program takes
n steps to execute, and suppose that, befare the first step, the
initial assertion is valid. We may now show inductively that, be-
fore the Jth step, which presumably consists in executing some
statement, the assertion given bafore that:-statement will be valid.
In fact, if this is true for i = k, the preceding arguments have
shown precisely that it is truwe for L = X + l. In particular, it
is true for 1 = p, so that, when the program terminates, the final
assertion will be valid. Thus the program is correct. The trouble
with this argument 1s that we have no way of knowing that the pro-
gram takes a finite numbezj of stepg at all, In other words, we now
know that g_f_._p_lle_g_ the program is correct gr it goes into an endless

loop. This situation is so common in proofs of correctness that it

.19

has a special name: partlal correctness. We now define correctness
and pertial correétneSQ in a ceneral frameworke |

Iet Pbe & program and et dys »ess &, Be assertions sbout the
yariables of P. let gg_c_:ggi- be asseclated with a statement F, of P.
Then P is correct with respect to :c_lgggi and the Ei if, whenever
it is started at sope I with A true, then it will eventually set
to some T, snd at that point A MALL be Brue. It is putislly
correct with respect to the 4, and fhe Ei ifr, waenever it is star-
ted at some E. with A Xrue, thep If It gver gots Yo soue F ‘the
assertion Ay wlll be true at that point.

If every statement of P has an assertion associated with it,
then the correctfiess of P with respect to 211 these assertions
is simply the statement %hat every path in P of lcngth 1 is valid,
Such 2 prdgram,.even though it is correct (not just partially cor-
rect), may still get into an endless loop. On the other haond, 8up-

pose that we choose for the F, the starting and stopping statanments

i
of the program, ~nd for the Ai the initial and final ascertions.
If we co1 show that the progran never returns to the start, then
the correctness of P now means that if the orosram is stanted %
the beginning with the‘in&tial assertion valid, then it will get
to the end,‘hnd when if does the final assertion will be valide.
As we have seen above, the pertlal correctness in this cise moy
be'profed by adding nore assertlons until every statenent has an
associated assertion, and then proving correctness (or partial
correctness, which is the sanec in this case) of the result. Thils
is a special case of the theorem of the next section. lote that
we may also allow herc for P to start and/or stop in i:ore than one
place. A straight-line program, of course, always starts at the
(pﬁvs;cal) beginning and stcps at the end, so that reference to

associated statenents 1s superfluous in this cese.

Ve o RN Al et a6 ey - IR Yo

20

1-5 Control Points and Control Paths

The exponentiation program of the previous.chapter is not only
partially correct; it is correct. Before we prove this, however,
let us showghgﬁ its partial correctnesévmay be proved more simply
by the uso.Bf paths of ;ength greater than l.

In a branch-forwa:é program, each path from the beginning of
the program to the end has a length which 1s less than or equal
to the total number of statements in the programe. In a more gene-
ral situation, however, this is not true. In ol exponentiation
program, we go around the loop N times, and therefore there is a
different path from the beginning of the program to its end for
each integer N > O. Because this program is so simple, we can, in
fact, analyze each of the infinite number of paths of this form;
but this is much more difficult for longer programs. There is,
however, a method by which we may always restrict ourselves to the
consideration of a finite number of pathse This is the method of
control points and control paths,.

A control point in a program 1s any statement for .which we have.
made an assertion. A control path is any path from one control
point to another, with no control points in between. If we have an
assertion attached to every statement in the program, then every
"statement 1s a control point, and every control path has length 1.
The other extreme 1s the case 1n which only the starﬁing and stop-
ping points of our program are control points; in this case, there
are an infinite nﬁmber of control paths unless the given progranm is
a straight-line or branch-~forward program. We would like to work
with an intermediate case, in which the nuuber of coutrol paths is
finite while the nmwuuber of condwol points Is as zimll, or nenrly hs

small, as possible.

21

In our exponentiation program, it is sufficient to consider
one control point in addition to the starting and stopping points.
Suppose, for example, that statement number 1 is a control point.
The assertion at this statement is the same as it was before. ILet
us write the program with assertions only at the control points

we have selecteds

*N >0
X=1
I=0

*N>0, TN, X=Aal
1 IF (I .EQ. N) GO TO 2

X=X *A
I=1+1
G0 TG 1
* X = Al
2. CONTINUE

Remembering that a control path gtretches from one control point
to another, with no control points in between, we see that there

are three control paths, as follows:

* N> 0 *N>0, I<N,Xx=4aT *nx>0,Igwm x=2al
X =1 (I=0N) (I #1N)
I=0 * X = AN : X=X *A

*N >0, I <N, X=al I=1I+1

T *N>0, I <N, X=AT

In the third of these control paths, there is a GO TO statement

(GO TO 1), which is omitted since it has no bearing on the valldity
of the path., This path is also an example of the fact that a con-
trol path may stretch from one control point back to itselfe

22

Suppouse. now that t~}e can show each of these paths to be volid.
Is the program still partially correct‘.? Let Fl be the starting
statement of the programj as we run it, let F2 be fchg firet con~-
trol point we encointer, let F, be the second one, and 'so one.

3

(Some of the Fi may be the same.) Between]5‘j and Fi-!-l there is a

control nath, and we see by induction that if the assertion at F

: 1
is valid then the assertion at F, is valid for each i. If tle pro-
grarﬁ takes a finite number of steys, then there will he a rfinite
number of Fi’ and one of them will be a stoppin; statement, sinece
such a statement is always a control point. The acsertion at this
point will be valid, and the nrogram is therefore partinlly ecorrect.
This 1s a special case of the following tlieorem:

Let W be a gset of pairs (’Ai’ F), where each A, gg assertion

which is associated with the s ’catemg;maF in the progrem P, and

all of the £y are distinct. Then B s correct with respect to any
subget ' € T if it is correct with respect to .

| I'Jorfﬁally, (Ai ’ Fi) € ! if and only if F, 1s a starting or stop-
ping statement of P. Dy inecluding a pair (Ai, Fi) € T for ovory
| statenent Fi of P, wep 6btain the method of the preceding sectiong
by ineclnding (Ai’ F i) € T only for control points Fi’ we obtain the
method of this section.

A collection of control points is gufflcient If every closed

loop in the program nust go tihrough at least one control noint,.
This condition assures us that the total number of control ratlhs
.is finit te, as will be proved in the ncxt paragraphe. In o' oxXpoinn-
tiation program, we have a sufficient collection of control no »ints
because there is only one loop in the program, and thnt loop nans
through the stalement numbercd L. If we tool, instead of thie state-
ment numbored 1., "Tl,," of the thren statencnts whilech follow 't ~m 2

control point, we would still have had a suf “iclent collection of

contrel points.

Iet us now consider control paths when the ¢ollection of con-
trol points 1s sui‘:’.‘,‘].‘cfent. Suppose that a control path loops back
fo sorie previous point ofi itself. Then this point nmust e its
starting point, be‘causx‘é otheririse there would be a closed Joop in
the bxjogram which contains no control points. Thercfore the o-‘_y
two statements in such a control path that can be the sane as its
étart and its end. But since each program contains only a finite
number of distinct statements, there can be only a f{inite number
of sequences of distinet statements followed by a single arbhitrary

statenente lience there are on.y finitely many control pa thse We

have proved that Whenever we have a gufficient coilection of con~
trol 292&&9 2he "total numper of control paths relative to thege
control points 1s i‘in,_i_tg. The converse is also true, proviced that
there are no loops which can never be reached.

In one sense, we have alrcady proved that each controi path in
our evponentlation program is valide In fact, by including (Aj., Fi)
inT for every statement Fi’ and in ! for the control points ;nly,
we infer froi1 our theorem that the walidity of control naths is =
¢onseguence of the validity of paths of length 1 (thic 4s also easy
to see directly), which we already lmov in this case. Let us, how-
ever, show 1ﬁéep<mdenth that each econtrol path is valids »s beforc,
we use abbreviated arguments, all of which may he "written out"

using the paths of length 1 a3 above. The first path gives ¥, O

j‘
v
J..

(clear)y I < N (clear from I = 0 and N > 0), and X = (= A0 = 1,
clear)e. The second path gives us X = Ay whieh is clear from X

= AY gince I = N. The third path gives us N > O (clear), I < 1,
and X = AL, Since originally I < ¥ and I # N, we rust lnve had
I<N, s0 that I + 1 < N (sirce T and N are integers). Also, X =

Alep = Ai"'l vhere 4 1s the o1d value of I3 but i+l is then the new

e e e e uh AP PORY - W R ARRT R oy ¢, b

2

value of I, so that X =,AI. This completes the verification.

One method of assuring that we have a sufficient collection
of control points, in most computer languages, is to choose the
labelled statements as control points. This works because in most
languages a closed loop must include at least one labelled state~
ment. In assembly language, in order to use this trick, one must
bevassured that the given program contains no transfers backward

to an unlabelled statement, such as a label plus or minus a constant,

25

1-6 Controlled Expressions

Let us now finish the proof of correctness of our exponentia=-
tion programe. We have seen that it 1s now sufficient to prove that
it always terminates in a finite number of stepse.

The proof of thls fact might have been easier if we had used
a DO loop, as follows:

X=1
DO 2 Izl,N
2 X=X *A

This 1s not quite equivalent to our original program, and is not
even correct for,N = O because of the way FORTRAN workse. But the
termination of such a program follows immediately from a theorem
which may be formulated specifically for FORTRAN. One merely necds
to check certain things: that I and N are never changed inside the
loop; that there is no inner loop (or that any inner loops termi-
nate); and so on. In any other language, with a different sort of
iteration statementy we may prove a similar theorem.

The trouble with this is that DO statements, and iteration
statements in general, are not very easy to handle when it comes
to proving partial correctness. In fact, when we prove partial
correctness by the methods outlined above, lteration statements
cannot really be considered as statements at all, in the sense of
being .asgoclated with assertions. It is possible to revise o
~methods so that they apply to programs containing iteration state-
ments, but it is simpler to "write out" all iteration statements;
that is, we include statements which explicitly:initialize, ine

26

crement, and test the controlled variable,

We must therefore consider the general problem of proving ter-
mination without iteration statements. The key to such proofs is
usually the quantity which, if we had used an iteration statement,

would have played the r8le of the controlled variable. Very aften

this quantity is in fact a single variable; in our exponentiation
program, it is I. Thé properties of the variable I which we shall
need in this program are:

(1) It ingreases each time we go around the loop;

(2) It is boynded at same statement in the loop.

In this loop, the statement I = I + 1 is the only statement
which changes the value of I, and thus I always increases when we
go around the loop. The assertion I < N, among others, appears at
statement number 1, and this shows that I is bounded. It is neces-
sary, of course, that the maximum velue of I, namely N, be constant
‘inside the loops It may, however, be changed outside the loopj for
example, it may be initialized at the start of the program.

We shall now state and prove, in informal terms, a theorem

- about the termination of programs which have exactly one closed
loop and exactly one control point in that loop. In this case,
there will be one control path which goes completely around the
loopy vwhich we call the loop control pathe. In general, a loop con-
zzgi_ﬁgzh in a program is any control path which is contained com-
pletely within a single closed loop of that program.IOur theorem

now reads as follows:

A program with one loop and one control point in that loop
always tegmiggtgg 1f there exists an integer expression whose vaiue

always inereases gg ve £o around the loop, and is bounded at the
control point by a guantity which does not change inside the loope.

(',

27

Hbre'we:have used the phrase "always terminates" to mean
"always terminates in a finite number of steps (i. ee, takes only
a finite number of steps to execute) when started with its initial
assertion valid." The statement that the program is bounded at the
control point implies that we have already set up an assertion
there, and verified it by showing that every control path in the
:program is valid. That is, when we are proving correctness, it
is assumed that partial cofrectness has already been provede

The proof of our theorem proceeds as follows. Suppose, in con-
tradiction, that the loop 1s endless. We start our program and run
1t until we get to ‘the control point., Suppose that the value of
our integer expression is now v

1
is bounded by a quantity whose value at this point we call b, Thus

3 we also know that this expression

we have vy £ be We now continue the program until we get back to
the control points suppose that the integer expression now has
value v,. By hypothesis; we have v, > vy and also v, £ b because
the value of the bound does nct change within the loope Continuing
in this way, we derive a strictly increasing sequence of integers
v1 < v, < .o;, all of which are less than or equal to the integer
b, which is impossible. Thus the theorem is proved.

Integer expressions such as the one discussed here may be called
controlled expregssionge. In general, a program will have several
closed loops and one or more controlled expressions. In this case,
we must determine how they interact with one another; this topic
will be taken up again in section 1=-11,

The simplest example of a situation in which a controlled ex-
pression does not aonsist of a single variable is that in which

the controlled variable decreases rather than increasing, such as

in the following program:

sy

28

X=1
I=0N
1 IF (I Q. 0)GOTO?2
X=X *A
I=I-1
GO TO 1
2 CONTINIE
This program alse ealculates AN. The varlable I is not a controlled

expression herey in the sense of the theorem above, because it does
not increase, We could, of course, prove another theorem about
variables which decrease, but it is simpler and more elegant to
consider the negative of a "decreasing controlled expression" as

an ordinary controlled expressione. Thus, in this program, the con-
trolled expression is ~I, let us rewrite the program with assertions

placed at control points:

*N>0
X=1
‘I=N

*N>0, I>0
1 IF (I Qe 0) GO TO 2

X=X *A
I=7T«1

| GO TO 1
11 *NZO,:[:O
2 CONT INUE

K

We have purpose;y omitted &ny assertions about X and A because we

are only interested here in the question of termination. (The pro-

29

gram is partially correct with respect to the given assertions,
but this does not imply, of course, that 1t computes ANy 1t 1s
now clear that the value of the expression ~I always increases
whenever we go around the loop; and that it is bounded (by the
constant zefo) at a statement in the loop, namely statement num=-

ber l.

30
1-7 Assertions in Loops

The art of proving the correctness of programs, as we have
suggeéted, consists to a great degree in finding the right asser-
tionse. This involves the ;dea of formalizing intuitive arguments,
which is quite familiar to anyone who has ever learned to [T ogram,
ory for that matter, to solve word problems Iin high school algebra.
. A person who has written a program usually has an intuitive idea
of why it workse In proving that program it is merely necessary
for him to translate this into a set of assertions at a sufficient
collection of control poihtso

The following examples are meant to give the reader expericnce
in finding such assertions in simple programs. Let us first finish

the example of the previous section::

X =1
S I=u
1 IF (I EQ.0)GOTO2
X=X *3
I=1-1
G0 1o 1
2 CONTINUE

Why does this work? To be precise, what 1s the intermediate value
of X at some point in the loop, such as statement number 1? Ex-
perienced pfogrammers might meke the intuitive statement that "it
doesn't matter, bécause it is obvious that the loop is executed N
times anyway.'! In proofs, however, this 1s not enoughj one must
always lookifor an assertion which may be stoted in formal torms.

In this case, the voriable I goes from N down to zero while the

31

power of A goes from zero up to Ny so that I is always equal to
N minus the power of Aj; or, ih other words, the power of A is

equal to N=I. This may be stated as the assertion X = AN"I, and,
after taking into account that i and I are the only varizbles

whose values may change, the setup is completc:

*N>0
X=1
I=N

*NZO, IZO,X=AN-I
1 IF (I EQe. O) GO TO 2

X=X *A
I=1I-1
GO TO 1

*Xgﬁl_f".

2 CONTINE

The control paths are now as follows:

*N>0 *N>0,I50,X=a"T xy>0, 150,x=all
X=1 (I = 0) (I #0)
I=N *x = AN X=X*A
*N>0, I>0,X=AaNl I=1I-1

‘ * N>0, I>0,X=alI

In the first control path, we have N > O (clear), I > O (clear
from I =N and N > 0), and X = AMT (= 40 = 1, clear). In the
second, we have X = AN, which 1s clear from X = AN"T ana I = 0.
In the third, we have N > O (clear), I >0,y arnd X = AL, since
at the beginning I > 0 and I # 0, we must have had I > 0, which
neans that J=l > O since I is an integer. Finally, we have X =
AN"IL* A =»'A(N"I)+1 = A’N"(_I"l), and subsequently the value of I
is decreased by one, giving X = AN-1 sgaine

32
The following program finds the sum of all the elements of an
array A of dimension N 2 1, while changing only I and 5

I=1
S =0

1 S =8 + A(I)
I=I+1
IF (I JIE.N) GOTO1
CONT INUE

What 1s the proper aésertion here at statement number ‘1? Clearly
it must, among other things, specify that S is equal to some par-
tial sutiy which depends on the wvalue of I. A 1ittle- checking will

* ghow, howéver, that S 1s not equal -to %A(x), but rather to
IZiA(x), at statement number 1. (By making the statement imvedi-
ately following statement number 1 into our control point, we could
'have used ZA(x)) Also at statement number 1, I is less than or

x=1
equal to Ne. We rewrite the program with assertions:

* N > 1
. I=1
g8 =0

I-
*N>1y I<N, 8 = £A(x)
x=1
1 S =8 + A(T)
I=I+1
Ig‘ (I JE. N)GOTO 1
v
= 2. Ax)
x=1

CONTINUE

The first pontrol path #s

33

*N21
I=1
, 8=0
*N > 1, ISN,s=x:A(x)

Here N > 1 is clear, I < N is clear from I =1 and N > 1, and S
1s agserted to be "a sum from x=1 to 0," which must clearly be

defined as zero, which is the value given to S. The second con-
trol path is

| .
*N>1, I<MS = ZiA(x)
X=

S =8 + A(I)
I=I+1
(Igm

*N>1y ILN, S =2 A(x)
i 24 ’ :Ei
Here N > 1 is clear, Iis N follows from the intermediate condi-
tion (I N)y and S = }:iA(x) is preserved because S = S + A(I)
adds the I-th term to the first I-1, and then I is increased by
one., The third and last control path is

I-1
*N>1y, ILN, S = Z:lA(x)
X=

S=S+A(I)
I=I+1
(I>1M

* 8 = Eg;A(x)
X=

Here we must have had at the beginning I +1 > N but I < ¥, there~

. fore I = N. The N-th term is added to S and the path thus becones

" clearly valide

3k

Termination of this program follows by the same arguments
‘that were used in the preceding section. The controlled expres-
sion is I, and, just as before, it is increasing as we go arsund

the loop and is bounded at the statement numbered L.

‘0

35

. 1«8 Inductive Assertiong

I-1
The assertion S =]ZiA(x) in the last program above is rather
= . . ‘

awkward to present to a coi:puter program, such as a verification
program, as it stands. Subh assertions are, rather, defined in=-
ductively in this situation. If we let C(X, K) stand for the ~s-~
sertion X = ZE'A(x), then C(X, 0) is equivalent to X = O, while
C(X, K=1) isx;éuivalent to C(X + A(K), K) for K > O.

It is remarkable that such inductive definitions often lead
to simplified proofs of the validity of paths, even when the given
program is being verified by hand. For example, consider the second

of the three control paths in the last program above, rewritten to

make reference to the assertion C(X, K) above:

* 1:12 l,” I S I\I, C(S, I"‘l)

S =8 + A(I)
= I+ 1
(I<W

*N>1, I<N, C(sy I-1)

The argument of the prevlious chapter, using the summation sign, is
intuitive and rather tedious to formalize. The argument above,
hbwever, is immediate if we rewrite the first instance of C above
as C(S + A(I)y I)e The first assignment in this path now converts
this into C(s, I), and thé seccnd assignment converts it into
C(S,y I=1l), which is exactly the form given in the final assertion.
We shall give defining relations for conditions at the bhegin-
. ning of the program, preceded by two asterisks. As anotﬁérJéxample
of their use, we prove the correctness of a program to move an
array from one place to another. It is equivalent to the simple

DO loop

36
DO1I=1,H

l B(I) = ;"L(I)

The intermediate result here is that B(x) = 4(x) for all x (> 1)

}-

ess than or equal to I-le We call this assertion C(I-1), and de=

by

ine C inductively before listing the rrogrom, as follows:

ik C(O) = TN e
% C(X) = C(K-1) oANDs (A(K) = B(X))

x T

g2
—

i

1

I=1

*1< I, Iy, C(I-1)

1 B(I) = A(I)

I=I+1

I (I JJE. N) GO TO 1

Né note that if the second statement of this »rosram is renl-cad
by 4(I) = u(I), the same-agsértions still apnly; the differcnce, of
course, ls that such a program would chalﬂc the values. of olaments
of the array A, vwhuoreas ohe given nrogran Jdoes note. The ctatement
3(I) = A(I) will exccute properly only if the snbserint I is in its
rroper ranges thls is the sole reason for the assertion 1 LIa
statcmont number L. (One must 21so be zassured here that the dinmen-
sion sneeified-for the arrays 4 ~nd B is not less than .) The
control naths. are now listed =t the left, with th=zir acorragnonding

proofs =t the rirht:

N §
- T 2T 0olTows Prowt Io- 1y oot T 200 gy
I.1
I L oand Uz 1y 0(T=1) - C(O) ot e
LTy T, C(I=1)

37

*1 < I, I<N, C(I-1)
1 < Iis clear since I increasesy I L N

B(I) = A(I)
follows from the intermediate assertion
I=I+1 .
‘ "I < Nj C(I-1) at the end is by defini-
(ILN

tion C(I-2) and B(I-1) = A(I-1), each

*1<I, ILN, C(I-1)
of which follow from the pathe

*1<I, I<N, C(I-1)
~ We must have I = N at the beginning in

B(I) = A(I)
I l: order to have I > N at the endes There-
I= + :
I) fore C(N-1) holds at the beginning,
>N
‘ followed by B(N) = A(N), giving C(N).
* C(N) -

The controlled expression for this program is I; the argument is
the same as before. This gcmpletes the proof of correctness.

| We now consider a loop which has two exits. The followlng pro=-
gréam searches the array A for the quantity X3 the intermediate
result here is that we have not found X yet for as far as we have
searched. Specifically, just before we check whether X = A(I), we
must know that X # A(x) for each x £ I-l. We call thls asserticn
F(I-1), and define it inductively as before.

*k F(0) = IRUE
*% F(K) = F(K-1) oANDe (X # A(K))
* N> 1
1=1
*1 < I, I g Ny F(I=1)
1. | IF (X «EQe A(I)) GO TO 3
I=1+1 S
IF (I IE. N) GO TO 1

38

* F ()

2 CONTINUE

* F(I=1), X = A(I)
3 CONTINUE

Again we note the assertion 1 £ I, included for the same reason

as before., Since the program has two exits, correctness is proved -
with respect to three (seis of) assertions, one at the beginning
of the program,. one at statement 2, and one at statement 3. We

show the control paths to be valid as follows:

* N> 1
I=1
*1 < I, I<N, F(I-1)

1t
A

I follows from I = 1, and I < N fron
T=1and N> 1; F(I-1) = F(0) = ,TRE.

*

(X = A{I)

Follows immediately.

1 < Iis clear since I increases; I KW

X # A(D))
r follows from the condition I < N in the
= I+ 1
path; F(I-1) is F(I-2) and (X # A(I-1)),
(I<W :

hoth of which are clear from the pathe
*1 < I, ILN, F(I-1)

*1 <I, TN, F(I-1)
We must have I = N at the beginning in

X # A(I))

order to have I > ¥ at the end., There-
I=I+1 ,

fore F(N-1) holds at the beginning,
(T >N

and X # A(N), giving us F(N).
* F(N)

R LD iy e

et

39
The third of these paths is the only one which is a loop control
‘péth; The termination argument is agéin just as before; the con=-

.frolled expression is I, The only variable whose value may be
changed by this program is I.

Lo

. 1=9 Debugging by Proving Correctness

~ We shall how consider a very simple example of the payoff that
is to be expected from prbving correctness of programs. Namely,
we shall show h;w our methods may be used to find bugs in programs
that not only look correct, but actually are correct for most (but
not»all) possible input situations,

Let us write a program to test whether the number I is prime.
YWe;assume that we have access to the gtandard remainder function
MOD(I, J) whose value is the remainder when I is divided by J.
Since I will be non-prime 1f MOD(I, J) = O for suitably chosen
values of Jy we start our programming task by writing

IF (MOD(I, J) «EQe O) GO TO 2

where at statement number 2 we will note the fact that I is not
prime. Let us do this by setting the value of a function, called
PRIME(I), to o FAISE.; thus our program reads

LOGICAL FUNCTION PRIME(I)
IF (MOD(I, J) «EQ. O) GO TO 2
c o
2 PRIME = oFAISE,
RETURN

Now what do we want to do if MQ(I, J) is unequal to 0? We want to
increase J by 1 and loop back. We must make a test at this point,

and we may remember that if I is the product of any two integers then
at least one of them must be less than the square root of I. Since

it 1s easler to take squares than square roots, we write

41
LOGICAL FUNCTION PRIME(I)

1 IF (MOD(I, J) «EQe O) GO TO 2
J=J+1

IF (J*J JIE. I) GO TO 1
2 PRIME = FAISE.
RETURN

There are now three things remaining to be cleaned upe. If the test
on J fails, then I 1s in fact prime, and we must set PRIME to
oTRUE. We must remember to initiallze J to 2, rather than 1, since
" any integer is the product of itself and l. Finally, we must put

an END statement on the program. The result is:

LOGICAL FUNCTION PRIME(I)

J=2
1 IF (MOD(I, J) «EQe O0) GO TO 2
J=J + 1

IF (J*J LE., I) GO TO 1
PRIME = TRUE.
RETURN
2 PRIME = oFAILSE.
RET URN
END

We now have a program which seems fo work; we may compile it, and
it will tell us, for example; that PRIME(1?7) is TRIE. while
PRIME (28) is JFAISE. Let us, however, seek to verify its correct-

nesse¢ From what we now know about assertions, it is clear that we

42

must derive an assertion ih the loop, at statement number 1, for
example. This asseftion says that we have checked all integers
less than J (and greater than 1) for being divisors of I; that is,
I # gy i‘or integers x and y with 2 < ¥ £ J=1l. Let us call this
condition'C(Jkl), and write out the loop control path using it:

* C(J-1)
(MOD(I, J) # 0)
J=J+1
(T#J < I)
*:C(J-1)

This path 1s wvalid, since if MOD(I, J) # O and C(J-1) is true,
then so 1s C(J), and then J is increased by le Furthermore, c(1)

is ailways true, so that the initial control path of the routine

is valid whatever the initial assertion is. If C(J) is true for
some J with J*J > I, then we may infer that I is prime, and so

the path which includes the statgment PRIME = JTRUE. is valid.
This leaves the path which includes the statement PIIME = LFALSHe
If HOD(I, J) = Oy then I is certainly not prime unless J is equal
to 1 or I, How can we show that this will never happen? J is
certainly not 1, because it starts at 2 and increasess similerly,
J*J is tested to be less than or equal to I, so J should certainly
be less than I, lLet us incorporate these facts into our proof by
adding the assertions J > 2 and J*J £ I at statement number 1j

then T < I will follow immediately. The loop control path now reads:

C(Jml)y T 22y I I
(MD (I, J) # 0)
T=J+1
(J*J < I)

*C(T-1)y T 22, TN S I

L3

This 1s valid, since J 1s increased and hence the inequality
J > 2 is preserved, whereas the assertion J*¥J < I follows from
the condition J*J < I in the path., However, we must now also go

back and re-verify the initial control path, which now reads:

*I>0
J =2
*C(J=1)y T 22, XTI

Unfortunately, thisfpath is not valide. C(J-1) is C(1l), which is
always truey and J > 2 certainly holds, but J*J < I will not hold
unless I is at least 4.

Well, that is easy enough. We can verify the program with the
Initial assertion I > 4 —= in fact, we have already done so --
and then go back and check the special cases I = l, 24y and 3, For
I =1, for example, we have MOD(1l, 2) = 1, so we increase J by 1,
and then J*J is certainly greater than I. For I = 2 -- Good heavenst
We have uncovered a bugl

In fact, for I = 2 (and for no other poaitivé Integer value of
I)sy the program given above is not correcte. It will return PRIME(2)
= oFALSE, — that is, 2 is not a prime -~ when in fact it is. This
i1s the kind of bug that gives programming managers nightmares: a
program is written, checked out, the programmer goes on to something
else, maybe moves to another city, the program is included as a
subroutine in a larger program, which in turn is made into a sub~
?outine of one still larger, and then strange erronecus behavior
begins to appear. Often it takes weeks to trace the bug back to the
original program in which'it appears; sometimes it is not found at
all, and the larger programs are completely rewritten. In this case
it is obvious that, if we were testing numbers one at a time, it

would never occur to us to test such an obvious prime as 2; but if

NN

this routine is part of a larger one, the logic of the larger pro-
gram might very easily require it to test the primeness of 2.
Fixing the bug, of course, is very easy; and, in fact, once
the bug is fixed, the proo'i‘ of pai'tial correctness of the progran
follows immediately from what we have done up to nowe We revrite

the program in correct form:

** C(1) = JTRUE.

B C(K) = C(K=1) +AID, (I # Kez for integer z)
LOGICAL FUNCTION PRIIE(I)
*I>0
IF & .GTe I) GO TO 3
J=2
* C(J=l)y T 22, J*T < I
1 IF - (HOD(Iy J) oEQe 0) GO TO 2
J=J+1
IF (J*J JE. I) GO TO 1
3 PRIME = .TRIE.

* PRIME = JIRWUE. and I is prime
RETURN
2 PRIME = JFALSE.

* PRIIE = oFALSE. and I is net prime

END

To finish the proof of correctness, we need only note thnt J is
our controlled expression. It increases around ‘the loop, and the
assertion J*J < I, together with J > 2, serves to bound J at the

statement numbered 1.

45
1-10 Multiple Ioops

We shall now apply our methods to the verification of a
slightly larger program, one which finds all prime numbers from
1 to N using the sieve of Eratosthenes. Because this progran in-
cludes more than one loop, only its partial correctness will be
proved in this section. .

The program uses a loglcal (i. ee, Boolean) array vhrose size
will be left unspecifiedq'althongh 1t 1s assumed that this size is
greater than or equal to N. The purpose of the progrem is to set
the elements of this array, called A, in such a way that A(I) is
TR, if I is prime and oFALSE. otherwise. First, all elements
of the array are set to «TRUE.j then we start the sieve by "crbs-
sing out" (1. e., setting to oFAISE.) all elements A(I) such that
I is a multiple of 2, 3, ky.and so on. In crossing ont multiples
of J, 1t may be assumed that multiples of the form J*L with L < J
have already been crgséed out, since J*L = L*J, so that we first
cross out A(4), A(6), A(B), etc., then A(9), A(12), A(15), etc.,
and continue in this fashion. As in the preceding progran, we make
use of the fact that if N (or any number less than N) is the -ro-
duct of two integers, at least one of them nust be less than or
equal to the square rgot of N3 hence the last multiples to be crosscd
out are the multiples of M, where MM < N but (M+1)*(i+1) > He

Our first task is to determine precisely whot the intermediante
assertions should be at all labelled statementse. At statement
nimber 1, we have set each A(x) to JTRUE, for 1 < x £ I-1; we cdo-
wote this assertion b& U(I=1). At statemont number 2, wve lw.ve for
ﬁlx,lgasﬁhtmtA@):&Mmhifgwx@{mwmﬂmwmm~

tegers ¥ < zwlth 2 ¥y < I-1; and A(x) = -TRUE. otherwise; we

L6

denote this assertion by V(I-l). At statement number 3, we have
for all x, 1 < x < N, that A(x) = (FALSE. if _J_c_ = yez for poéitive
integers y Lz with 2 LY I-l, or if x < J=1 and x == Iz for
some integer z > I, and A(x) = oTRUE. otherwise; we denote this
assertion by W(I, J-1). Finally, at statement %, A(Z) is <TRUi.
or JFAISE. according as X is prime or not, for 1 < x < N. With
these assertions (for the moment not defined inductively; see
also section 2-6), the program reads as follows:

*N>0

I=1
* 1 < I,.)I < N, U(I-1)
1 A(I) = JTRUE.

I=1I+1
IF (I JIE. N) GO TO 1
I=2
* I > 2, (I-1)*(I-1) < N, V(I-1)
2 J = I*I

| Ir (J .GT. N) GO TO k&
* I >2, I*I < J, T < N, HOD(J, I) = O, W(I, J-1)
3 A(T) = JFAISE.
T=T+1
IF (J oLE. N) GO TO 3
I=1+1
GO TO 2
*A(x) = PRIE(R), 1< X < N
% CONTINWE

In the last ~ssertion we have used the PRIMS function ac delfined

in the previous chapter. There are seven control paths, 2o followss

b7
Pathl ~~ *N>O0
I=1
*Ix I, I<N, UC(I-1)

The assertion 1 < I follows from I = 1, and I < N follows from

I=12and N> 0. Also, U(I=1) is U(0), which is vacuously true.

Path 2 *1 < I, I<N, U(I=1)
A(I) = JTRUE.
I =TI+1
\ (I<W
*1<I, TN, U(I-1)

Here 1 £ I follows since I is increasedy, and I < N follows from
the condition I < N in the path. The reference to A(I) may be made
because 1 < I and I < No The assertion U(I-1) at the beginning of
the path and the assignment A(I) = TRUE. give U(I), and then I
1s increased by 1, giving U(I-1) agaln.

Path 3 *1 < I, I<N, U(I=1)
A(I) = JTRUE.
I=I+1
(I>N)
I=2

* I > 2, (I-1)*(I~1) < N, V(I-1)

Again 1 < T and I < N legitimlize the reference to A(I). The as-
sertion I > 2 follows from I = 2; also, (I-1)*(I-1) = 1, and

1 < N because at the beginning of the path 1 < T and I < N. The
assertion V(I-1) = V(1), that is, A(X) = <TRUE. for all x, 1 < X

S Ne This 1is the same as U(N), which follows at the end of the
path. since we must hafle I = N at the beginning of the path in order

L8

to have the intermediate condition I > W.

Path 4 * T > 2, (I-1)*(I-1) < N, V(I-1)
YT = IAT
(r >N
*A(x) = PEDE(X), L <X N

Since A() id JRWE. for 1 < x < N whenever it is not .7ALSK., and
the same is true of PRIME(X), it suffices to prove that PRIM(x) is
oFAISE. 1f and only if A(x) is. If PRIME(X) is FALSE., then x =

Yoz for yy 2z # 1, and ¥, 2 # gg'. We may assume y < z4 so that 2 <

Y<z<xs X y2I, theny <z implies 2z > I, and yez > I*I = J
> Ny which contradicts yez = x < No Hence y < I or y < I-1, which,
by V(I-1), implies that A(x) is FALSE.. Conversely, if A(x) is
 WFAISE., then X = Xz for positive integers y and z with 2 <y £
I-1 and y £ zy Which implies y # 1, g # 1y and hence y # X, z # X,
so that PRIME(x) is o FALSE..

Path 3 * I >.2, (I=1)*(I-1) < N, V(I-1)
T = I
(TN

*I>2, I*I = J, J < Ny, MOD(J, I) = O, W(T, J=1)

The assertion I > 2 1s unchanged by the pathj; I*I = J follows from
the assignment in the path, and J < N from the condition in the
pathe The assertion MOD(J, I) = O also follows from J = I*I, This
leaves W(I, J‘:-l)., whieh is W(I, I*I-1); but if x := Iez for some
integer z » I, then zé I*I, and we cannot have x < I*I~l. Thus
W(I, I*I~1) 1s the same as V(I-1l), which 1s preservoed frou the
beginning of the path sinece I is unchanged along it

k9

Path 6 * T >2, I¥I < Jy T < N, MOD(J, I) = Oy W(I, J=1)
" A(J) = JFAISE.
J=J+ 1
(J _<_: N)

Again I > 2 is unchanged by the pathj I > 2 Implies that J in-
creases along the path, which in turn Justifies I*I < J. The as=-
sertion J < N follows from the condition J < N in the path. Since
MOD(J, I) = Oy we have MOD(J+I, I) = O, which becomes MOD(J, I) =
0 at the end of the pathe This leaves W(I, J-1), and the only dif-
ference be‘cweén this at the begin~ing of the path and at the cnd
is that J has been increased by I. Since MOD(J, I) = Oy X = J sa-
 tisfies X = Iez with z > I since I*I < Jy but since we do not

have x g J=1 fofr‘":this % at the beginning of the path, this does
not figure in‘W(I, J=1) there. When J 1s increased by I, this is
thé only value of x for which A(x) changes in the description of
W(I, J=1); and in the path we indeed set A(J) = oFALSE.. is before,

the reference to A(J) may be made because 4+ < J and J £ Ne

th 7 *T>2, I < J, T < Ny MOD(J, I) = O, W(I, J-1)

A(J) = JFALSD,

J=J+ I
(T >N
I=I+1

* T »>2, (I-1)*(I-1) < N, V(I-1)

Here I > 2 since I is increased along the path, and (I-1)*(I-1)
< N follows from I*I < N at the beginning of the path and the fact
that I has inereased by l. The cordition V(I) is the sane as

W(I, N), and this follpws from W(I, J=1) at the beginning of the

50

path and the fact that A(JT) is set to JFALSE. (just as in the pre-

ceding path) and’ then liter J > N. Since I is increased by 1, V(I)'f

becomes V(I-1) again. The reference to A(J) follows in this path
in the same way that it does in the previous one. This completes

the proof of partial correctnesse

<

51

1-11 Multiple Controlled Expressions

NEWrwaiéhall derive some rules for proving termination of a
program which has nore than one loope. Using these rules, we shall
be able to prove the termination, and hence the correctness, of
the sieve program of the preceding chapter. In the derivation of
these rules, we shall use this program as an example.

It is not difficult to see that, even in the general case, we
may restrict our zttention to the loop control paths, i. eey those
control paths which are part of some closed loope In our example
progranm, there ar~ -even control paths, and four of these, namel;
paths 2, 5, 6, ar? 7, are loop control paths. We shall be secking
rules which generalize those of section 1-5, and thus, for each
loop control path, we shall be looking for an expression whose
value incréases along that path and is boundec at tre end of it,.
The quantities, in this program, which play the rﬁle of controlled
variables are quite obviously I and Jj; we see that I increases
along paths 2 and 7, while J increascs along paths 6 and 7. Also,
I i1s bounded at the end of paths 2 and 7, while J is bounded at
the end of path 6. Jeither I nor J increases along path 5, al-
though we may note that path 5 at least "progresses" in one sense:
it does not contain a branch backward,.

Suppose we Wefe ;imply to show that every loop control path
in a given progrém has a coritesponding expréssion which increases
along it, and is bounded at the end of it. Is this sufficient to
show that the program terminotes? The answer is no, as may easily

be seen by considering the following program:

52

1 I=I+1
J=J=-1
\ 2 I=I-1
T=T+1

GO TO 1

Considering the numbered statements as control points, I always
increases along the first control path, and J alonz the second
also I and J are bounded e#erywhere. Yot the program never termi-
natess v

We might say that in this case I increases along the first loop

control path, but J decreases along ity and yice versa for the

second loop control path. Thls, however, is not the real reason
why this program does not terminate, because exactly the same be=-

havior 1s shown by the program

1 I=I+1

J=J =1

Ir (I .IE. N) GO TO 1
2 I=I~1

J=J+1

IF (J JIE. N) GO TC 2

which does termirate. What is the differecnce between these two
programs, from the point of view of loop control paths? It is this:
in the first case the &wo loon control paths are joined together;
in the second, they are not. Vhen two such paths are vhysically
separate, it does not 'matter vwhat each of them doos to “he con-
trolled expression of the other. This means, in particulur, tint
path 2 in our sieve rrogram mey be considered on an entirely se-

parate basis from the other lcop control naths of Lhat progroma

53

It has the controlled expression I, which, 25 we havé seen, is
increasing'along it and is bounded at the end of 1t.

Let us now coqsider what h=ppens vhen two or more paths are
Joined together, as dur paths 5, 6, and 7. llere we would say in-
tuitively that we have an outer loop and an inner loop. Path 6 is
the inner loop, and paths 5 and 7 together are the outer loop.
The variable I controls the outer loop, and the variable J con~
trols the inner loop. The variable I is not changed at all in the
inner loop; but the variable J is decreased in the outer loop,
nemely along path 5., It turns out that this behavior is charsc-
feristic of inner and ouber loopsy as we now show by considering

a program with three levels of loops:

I=1

1 J=1

2 K=

3 A(I, J, K) =0
K=X+1
IF (K JIE. N) GO TO 3
J=J+ 1
IF (J IEs N) GO TO 2
I=I+1

IF (I JE.N) GO T0 1
Under the assumption that statement number 3 1s the only control

point, we have three loop control paths. Along the innermost one,
K is increased, and I and J remain constant, Along the outernost,
I is increased; J and X are also increased and then later de-~

- creased (vhen they are set to 1). In general, 1in an outer loop
control path, it does not matter what happens to the controlled

- expressions of inner loops. An inner loop control path, however,

is presunably.inside some outer loop, and the controlled eynracssan

5k

of the outer loop must not be allowed to decrease. This obser-
vation isufurther strengthened by considering the "middle" loop
in our last example. Here J increases, while I remains constant
but K decreases. The J loop 1s "inner" to the I loop, but "outer"
to the X loop. *
Suppo;a.that ve have determined all of the inner-outer re-
lationships which exist among the loops of a given program. Then
every loop control path is completely inside k levels of nested
loops, for some k. If these have the associated controlled ex-
pressions @y scey @ then the values of gll these expressions
must be nondecreasing along this pathe Also, any two loops which
do not ha#e an Inner-outer relationship must be physically se-
parate, Suppose, in particular, that a second loop control path
is completely inside p levels of nested loops, having the asso-
ciated controlled expressions ei, ceey eé. Then we must have e,
= e:{ for 1 < 4 < min(k, m). If k > m, then the first path is
inner to the secondj if k < m, then the second path is inner to
the first; and if k = m, the two paths are "in the same loop."
In our sieve program, paths 2, 5, and 7 are each inside one level
of loop, with the controlled expression I, whereas for path 6 ve
havé k=2, 8

= I, and e, = J. In the last example above, the

1 2
outerrost loop is associated with I, the next with I and J, and

[c]

the innermost with I, J, and K.

There remsins the problem of discriminating "prinary™ paths-
such as paths 2, 8, and 7 in our sleve program, along which con=-
trolled expressions inerease, from "secondary" paths such as path
5, along which they do not. We recall that path 5 contains no
branch backwardg this seems to suggest that the "program counter"

of this program (i. €.y the "variable" whose "value" is the num-~

55
ber of the statement currently'being executed) is a controlled
expression, In fact, this expression certainly increases along
path 5, and it is always bounded. As we gain more experience with
proofs of this kind, however, we will see that this use of the
location couﬁterg while héndy for short programs, becomes increa-
singly difficult as programs get longer, especially if the con-
trolled expressions involved are increaséd at the beginning or
the middle of a loop rather than at the end.

The real distinction between a primary and a secondary control

path 1s this: every closed loop containing a secondary control
path also contains a primary path in the same loop, or some
outer-level pathe. Thus, in our sieve program, every closed loop
which contains path 5 must also contain path 7. Both of these
paths are in the I loop only, and I does not decrease along either
of kheme Path 7 is a primary pathy I increases along it, and is
bounded at thé end of ite Neither of these things need be proved
for a secondary path; such as path 53 all we need to know is that
it is.Nin the same loop" -~ irretoéably -- as some primary pathe

56

1-12 The _t_[_‘g;minaflﬁion Theorem

We shall now state and prove, in an informal style,’'a theorem

which embodles our termination rulese

A program terminateg (when started with its initial assertion
valid) if ve may associate with each of its loop control paths a

sequence of expressiong with integer values, subject to the fol-

lowing rulesg:

(1) The value of each expression associated with a path must

never be strictly less at the end of the path (if started with itg

indtial assertion valid) then it was at the besinning of that path;

(2) For any twe paths such that one of them begins where the

other one ends, one of the two must be agsociated with the expres-

sions 89 soey 9—5’ with j < k, where the other is associated with

811 rees 8 |
(3) If 2 path is associated with €15 eeey &y then either:

(2) the wvalue of &, must be strictly greater at the end
of this path (when started with its initisl agrsertion.

valid) than it was at the beginning, and the finel ag-

sertion of this path must include a bound on) which

cannot change along any path whosc asgociated expres-~

slons are 89 ceey Epo with k <m, or

(b) every closed loop in the program which contains this

path must contain a path with property (a) above which

1s asgociated with €.y eses €,y Or any path vhich is

. =k
agsociated with €13 eves 84 for gsome j < ke

As indicuated in the preceding section, the exnrncsions 819 seey

ek which are associatcd with a given path normnlly corrcaopond to

the k levels of nested loops within which that path is containede

57

The expression e. controls the outermost of these loops, and the

1
expression ek the innermost. We have purposely omitted any spe-
cific reference to primary and secondary control paths, and to
inner and outer loops, in our definition. However, it is clear
that control paths satisfying condition 3(a) are primary, in the
sense of the preceding chapter, whlle those satisfying cqndition
3(b) are secondary. Also, if one path is associated with &9 eeey

s with J < k, while another is assoclated with e s then

eJ 10 *eer &
the first is inner to the seccnd, or the second is outer to the
firste We shall employ these terms even when j = ks and shall
speak of the &eécond path béing strictly outer to the first if J < ke
Two other points about our termination théorem are worth men-
tioninge. The condition that one path begins where ancther one ends
is not thé only way that two paths can have a statement in common,
and thus fail to be physically separatej hovever, it is the only
one needed here, Also, the restriction as to where the bourds on
controlled expressions'can change is quite weakj; these bounds may,
in fact, be changed in ény place outside the loop which is con=-
trolled by the given expreésion (and any of its inner loops).
Before we prove our theorem, let us apply it to our sieve
program., With control paths 2, 5, and 7, 2s mentioned in the pre-
vious chapter, we associate'the controlled expression Ij with path
6, we associate I and J. Then rulé 'l is satisfied, and also rule
2 (note that rule 2 would still have been satisfied if, for exam-
ple, we had used J in path 2 rather than I). The innermost con-
trolled expression is I for paths 2 and 7, and J for path 63 in
each of these cases, rule 3(a) is satisfiled, nnd in fact N necver
changes in the entire algorithm. Path 9, as wo have noted bofore,

is secondary to path 7. Thus the ciewve program terminateso

58

We note, in connection with our sieve program, that if we
consider only the statements numbered 1, 3, and % as control
points, then every closed loop in this program still must pass
through one of these points. With respect to the new set of control
points, there are still seven control paths, but only three of them
are loop cartrol paths. In general, although letting all the labelled
' stategents of a program be control points is a safe way of getting
a sufficient eollection of them, we may often eliminate some of
them in this waye. This normally makes the termination proof
shorter, although it may make the proof of partial‘correctness
~ longer,

. The proof of our theorem now proceeds as follovse Supposé

the contrary, and let us start the program for initial corditions
. (implied in some way by the initiai assertion) in such a way that
it never terminates. We have mentioned before the fact that our
program contains’oniy a finite number of control paths. Therefore,
some of these paths must be taken infinitely often. Among all such
paths, we choose one (call’it1T)'which is associated with the con~
trolled expressions-el,_.,},) where k 1s as small as possible.
Thus all paths associated with a smaller number than k expressions
are taken only a finite number of times; similarly, all non-loop
control paths in the program are taken only a finite number of times
(either zero or one). Hence we may rin dur program until each of
these paths has been taken for the last time. Thus, from now until
infinlty, the only control paths taken will be paths which are as=-
sociated with at least k controlled expressionse

We may now assume thatqr is primary. (For the purposes of the
-remainder of the proof, we use the terms primary, sceondary, inner,
outer, and §tgict;x‘ggﬁg; as indicated in the discussion nboves)

59

For if M is secondary, then any closed loop containing I must
contain another path which is outer toW, and this path cannot

be strictly outer, or else we would have a contradiction to our
choice of ke But rule 3 now specifies that this new path is rrie-
marye. Of all suéh nev paths, we may choose an arbitrary one which
is taken an Anfinite number of timesg this 1s always possible,
because‘ﬂiitself is\taken ;n infinite number of times. Vie now
simply call this new pathq{f; it has the same associated controlled
expressions .as the original M.

Now we contin.e the vrogram until ¥ is taken, and note the
value of ey at the end of i1tj denote this integer value by vl.
~Since 1T 'is primary, ey is bounded at the end of % by a quantity
which we call by thus vy < be We now show that, fronm now until in-
finity, the only control paths taken are inner to M. Suppose the
contrary, and let " be the first control path taken (after this
noint) vhich is not inner to M. Let W' be the path immediately
precnoding fi" in the flow of control (possibly M1* =)o Then "
begins vhere ! ends, and ther~fore, by rule 2, " is either
inner or outer to ff'. If " is inner to W*, then, since ' is
inner to iy we would have " inner to W, a contradicetion. There-
fore " is outer to f'e But T is also ovter to M, and therefore
T* must be either inner oq‘outer to M. Since it is not inner, it
nust be strictly outer, an&“we have a contradiction to our choice
of k.

Rule 3(a) nov tells us that the maxinum value of e, does not
change along any path which is inner to Ty and thus, by thé pre-
ceding paragraph, this maximunm value will be equal to b from now
until infinity. Furthermore, for the same reason, the controlled

expression e, can never decrease from now until infinity. We now

60

recall that the pathq is taken an infinite number of fimes. If

we run the program until 4i is taken again, then we may denote the

value of ey at this point by Voo We have v, < b as before, and
vl < v sihce the value of ek can never decrease and must be

strictly *ncreasing along the path . Continuing in this way we
obtain a strictly increasing sequence of integers vy < Vo < eooy
each of which is less than or equal to b, which is impossible.

This finel contradiction completes the proof.

61

l. Tor each of the following p?ograms, stote o final naner-
tion of the form ¥ = e, wherc g is an expression waich involves
oniy v&riqbles vhose vadues ore vot changed by the [fven program
Assume In each.caSH thét there is no initial assertion.

(@) . C

D= C *

]

B *A

e
i
S
!
a a

(M) A=6

ud
i

3o

=

Q
n
]
1
=
1
N
@0

s
Q
Q

*
Q

A
[]
Ii
R
+

(9)

i S =}

=

ol

Q
I

N

38

>
B

(@
i

=X =D
X=C/X

2, Consider the statement X = 5 - X as a one~statement progr
in each of the folloving cases, give a final assertion Tor this
arogram with the given initisl assertion.

(a) X =k

(h) X <O

(e) X

@Y

AA
t
s

N2
-
~

°

ey ama

Tl v @

62

3¢ Initial and final ~ssertions are givqn for the following

programe F111 in the intermediate assertions:

* B > MAC, A # O
=3B *B

fi

A*C
b %y
U~-W
Yu

2 * A

< o ¥ <
] it i

=
]

T=7V «3B
A=U/Uu
* X = (=DrYB24AC) /24

1

4. Initilal and fimel assertions are piver for %l Tollowinge
L

programe I'ill in the intermediate assertions:

*A<<B<KF<KC<D<E

T=F

QT
"
Q 13 a o

¥AKD<KCKD<«<uLT

5 7111 in the intermedinte ascertions in the following

branch-~forvard program written in I'OPTRAIN IV

*I >0, Ik
T (I o5Qe 1) ¢o T2 11
I (I J;Qe 2) GO TO 12

63

J=29
GO TO 13
11 J=1
GO TO 13
12 JT=1.4
13 CONTINUE
*J = 12

6. (a) Consi&er”all branch-forward programs having n state=-
ments, each of which requires an amount of time t to be executed.
What is the maximum time which can possibly be required to exe-
cute such a program?

(b) What is the maximum value, over all such programs in
which évery statement except the last is a conditional transfer

statement, of the minimum time required to execute the program?

7. Consider the following exponentiation program, slightly
modified from the one given in section l-k:

X =1
I=1
1 X=X *A
I=I+1 '
IF (I .LE. N) GO TO 1
CONTINUE

Write out all assertions and prove that this program is partially
correct with respect to them, as is done in the text. The final
assertion, as before, should be X = AN; the intermediate asser-
tions, however, will have to be quite different, as will the ini-
tial assertion (what happeng when N = 0%).

6l

8. (a) Show that for every program which has no closed loops,.
there exists a statement with the property thot no other stutenent
in the program immediately precedes it. (Hint: Yoo rnny consiract
a closed loop directly 1f such = stotement focs not exist.)

(b) Use the result above to show that every statement in a ro-
gram with ho :2losed loops may bz given a number, such Shat the

progran becomes a branch=forword progran if "foruard" refars

[
i

2 statement numhers. (Mfint: Tme indnedion oo the Lotnl
nunber of citatements in the mrograme) .

9. Cohsider the following evponentfation progran:

L=A

H.
il

0

1 I=I+1
IFr (I EQ. M) GO 7¢ 2
X=X =*A
GO TC 1

2 CONTIHUG

M

Assume that the ~ssertion at statement number 2 is X = 4l
(a) With thé initial-assertion N > 1, this program is partially
correct.s Is it partially correct without that cssertiony (Be core=-
ful, What, exactly, haﬁpens\in this program when i < 0%)
(b) Prove the partilal correctnecs of this program, using only
the final assertion given above, plus an initial agsertion and an
assertion at statement number 1.

10, Conzicder the following programs

>

65

A = B(X)
1 CTF (A oEQe 0) CO TO &
C = D(X)

2 IF (€ «EQ. 0) GO TC 5
 IP(C JEQ. 1) GO TOM
3 A=A~1

GO TO §
Iy C=C =1

GO TO 2
5 B =P

Ir (E EQe O0) GO TO 1

in each of the following cases, state whether the given statements,
together with the beginning and end of this program, form a suf-
ficient colleétion‘ofﬁcqgtrbl points (see section 1=H).

(a) Statements 1, 4y and 5,

(b) Statements 1, 34 and 5.

(c) Statement 4 alone.

(d) Statement 2 alone.

11. Consider what would happen in the exponentiation »rogran
of section 1-4 if we had no initial assertione. Clearly the nrogran
would sometimes go into an endless loope Why is I not a controlled

expression in this caze?

12, A'wéry common programning error made hy beginners which
rectlts In endless looping Is to inelude the initialization of
the irdex within tre loop. fiuppore that we dAid this in the exbonen-
tiztlon program of section 1=+ by changing the statenmcnt numbers
s¢ that the first =tatement of tlie nrogram is statement nimbher L.

Why is I not a ecoantrolled exrresrion in thid case?

66

13. Prove the partial correctness of the following program
(slightly modified from'that given in section 1.7):

* N> 2
T I=1
S = A(1)
1 I=I+1
S =8 +A(I)

IF (I .ITe N) GO TO 1

*5 = ;g;A(x)
&=

14, Prove the correctness of the above programe
15. Prove the correctness of the following program (slightly
modified from that given in section 1l.8):

's?* C(0) = TRUE,
** C(K) = C(X=1) .AND. (A(K) = B(X))

* N>1

I=0
1 I=I+1

B(I) = A(I)

IF (I .,NE. N) GO TO 1
* C(N)

CONT INUE

16. Prove the correctness of the following program (slightly
modified from that given in section 1l.8):

*x F(0) = JTRIE.
*x F(K) = F(K-1) AND. (X # A(K))
*N>1

I=0

67

1 I=I+1

IF (X EQ. A(I)) GO TO 3

IF (I .NE. N) GO TO 1
* F(N)
2 CONTINUE
* F(I=1), X = A(I)
3 CONTINGE

17« The following program, given with assertions, is a m~ii-
fication of that given in problem 15 above:

* C(0) = .TRUE,
*% C(K) = C(K=1) +AND. (A(K) = B(K))
* N3l
I=0
1 I=I+2
B(I=1) = A(I=1)
B(I) = A(I)
IF (I NEo N) GO TO 1
* C(N)
CONT INUE

The point of this modification, of course, is that it takes the
computer Just as long to do I =1+ 1 as I =14+ 2, and we need
todo I=1I+2 .only half as many times as we would need to do
I=1I+ 1, There is, however, a bug in the above program. Try to
prove the correctness of this program and show exactly where such

a proof breaks down.

18, Fix the bug in the program of the above problem, while
retaining the statement I = I + 2 and the property of it mentioned

68

above. Then prove the correctness of the resulting programe

19, Consider the following program:

*N>0
M=N
X=1
I=1

3 IF (I .CTo N) GO TO 5
I= 2%
GO TO 3

5 IF (I EQs 1) GO TO 7
I=1/2
X = X%
IF (I .GTe M) GO TO 5
X = X%
M= M-I
GO TO 5

* X = AN

7 CONTINUE

This program calculates exponentials for large values of N much
more efficiently than the previous exponentiation programs do.
Consider this program as being run with N = 13,

(a) What will be the value of I when the program first passes
statement number 57

(b) How many times does the program pass statement number 57

(c) When thé pfogram passes statement number 5 for the third
time, what will be the values of I, X, M, and N? Can you see a
‘relationship which holds between I, i, M, and N, where X = AJ?
Does this relationship still hold when the program passes state-~
ment number 5 for the fourth time? For the first time?

69

~ 20, In the program above, consider that the assertion xI =
AN=M has been inserted before statement number 5.

(a) Show that with this assertion only, none of the paths
which start at statement number 5 is mec¢éssarily valid.

(b) Add the assertion that I is a power of 2, i, e¢y I = 2
for some J > O, at statement number 5. Show that with these
assertions only, the path from statement number 5 to statement
number 7 1s not necessarily valid, but the other two paths which
start at statement number 5 are valid.

(c) Add the assertions I > M and M > O at statement number 5.
Show that all three paths starting from statement number 5 are
nov valid,

(d) Complete the proof of partial correcthess of thids program,

21. Consider a control path in a program from a certain con-
trol point to 1tself, Suppose we have an expression which is
bounded at the given control point. Suppose also that there
exlists another statement in this control path, such that the
given expression i3 increasing along the given control path if
that path is considered as starting and ending at the new state-
ment. Show that these conditions are not sufficient for the pro-
gram to terminate, even if this control path is the only loop
control path in the program. (Hint: Consider the program

1 J=J +1

4.¥; := J,
I=1
GO TO 1

as a counterexample,)

70
224 In all of our discussion of bounded expressions it is
assumed that the bound does not itself change. It would seem,
however, that it would do no harm for a bound to decrease. Show
tilgordously-that this 1is true. (Note: This 1s not as tedious as
it might appear., let I be an increasing expression and let N be
a decreasing bogpd on I. Consider the expression I-N. Generalize

to arbitrary expressions.)

.23, In the definition of a secondary path (as given in sec=-
tion 1-12) there afe two possibilities for a closed loop con~
taining such a path; 1t may contain a primary path in the same
loop, or some éuter-level path, Write a program which demonstrates
that the second of these conditions is sometimes useful., (Hint:

A 1linear search algorithm inside an outer loop will do nicely.
The secondary path 1s the one along which the quantity being

searched for is found,)

24, Prove the statement made in section 1-12 that the ¢ondi-
tions of the termination theorem may be weakened so that the
bound on a controlled expression may be arbitrarily changed in
any place which is'not on any control path controlled by that

expression,

1

2 COPENCTRESS OF PUOGPAMS: FRTHER TTICINI S

The badlc principles giver. in the preceding chapter have sti1ll
{

left us a ibng way from befng able to prove the correctness of
programs which we encounter in practice. The discovery of the
proper assertions and éontrolled expressions which will prove z
program correct requires a conciderable amount of experience. Also,
there are no mechanical methods which will invariably guide us to
the construction of a proof of correctness. We may say that proving
programs correct is an art, just as proving theorems in any other
bfanch of mathematics is an art, even though, when a thecorem is
finally proved, a scientific fact has been established.

This cﬂapter gives further techniques for proving the correct-
ness of a ﬁrogram besides those of the precrding chapter. .is beforc,
all techniques are given in intuitive form, without the use of Tormel
matheratical modelss An importent theme running throughout this
chapter is the universality of our methods of proving correctness,
In the preceding chapter, the vrograms which were nroved were vwrit-
ten in FORTFELN, and had a very simple structure. In thiz chopter,
_however, we will see how to prove programs using input-output. ox -
Written in assembly languagey nnd we will develop special technigucs
for programs which rearrange data. Even programs which modify thewm-
selves are subject, as we shall sce, to the same sort of analysiz

that we have presented for cthor programse

e

2-1 Using Matlhematical Facts

When we are proving ithe correctness ¢f a program which com=-
putes the value of a mathematical function, we may need to prove
certaln facts about this function for use in verifying the pro-
gram, We saw an exampl.c of this in the program of section 1-10
to compute primeé by Llie slieve method, specificallj in path U4,
where we effectively used the fact that any nonprime has a factor
greater éhan 1 and\lesslﬁhan or equal to its square root. A fure
ther exampia is providsd Uy consldering a modification of this
program to improve its e filclciey. Lot us gilve the stétement I=
I+ l:between statements 3 and 4 the statement number 5, and let

us add a new statement Jjusht before statement 3, as follows:
IF (JNCTo. A(I)) GOTO S

The point of this is that if I has already been "crossed out,"
then éb have all its multiples. In particular, using this change,
we no longer "cross out" the multiples of 4, 6, 8, 9, etec.; onlyu
multiples of primes wlli be crossed out, and in fact each nonprime
should now be creossed vut once and onliy once.

Iet us see hdﬁ the veoriification of thils program is changed
by the given modificatlon. It is actually changed very little, ' |
mainly bédause the modificatidh . indbroduces no new assignment state-
ments and because 1t serely eliminates waste motiony rather than
causing things to be done in a different order. All of the as-
sertions given with the program in section 1-10 still apply, and
even the verifications of the control paths still hold. The only
one of these paths, in fact, which is changed at all 1is path 5,

and even here the proof still works because no new assignments

73

are introduced. (We assume, of courss, that statement numbe; 5
is not a control point; and, in fact, it does not need to be.)

There 1s one new path, which we shall call path 8, as follows:

I>2, (I-1)(I=1) < N, V(I-1)
= IxI
(T <N
(A(I) = FAISE,)
I=1I+1
% I>2, (I-1)*(I-1) < N, V(I=1)

Here I > 2 is clearly preserved since I increases; also, (I=1)*
(I-1) < N is clear from the condition J < N in the path, with
J = I*I, followed by I = I + l. The only differende -between
V(I-1) at the beginning of the path and at the end is that, at
tmem,%mthWl@)=Juw.ﬂg=;quueiggmd
1 is the value of I at the beginning of the path. It is in the
verification of this fact that we must resort to a mathematical

'argument; We know that A(l) = .FAISE., and since V(I-1) -- that
| isy V(i~1l) =- holds at the start of the path, we may infer that
1 =yez vhere £ < z and.2 'y &4~1s But then 1f x = Jew then
X = (yoz)ey = ye(zow), where y < z-w (actually, y < z-w) and
2 <y <i-1; and V(i-1) implies A(x) = FALSE. already in this
case. This campletes the verification of path 8., The proof of
termination &f thé modified progrem is the same as before, with
the additlon of the treatment of path 83 it is primary, and is
associated with the controlled expression I.

We shall now give another example of the use of mathematical

facts to prove correctness of programs. The following program
1s an extremely simple version of Euclid's algorithm for finding

the greatest common divisor of two integers M and N:

T4

*M>0, N>0
=M
J=N
*I>0, J>0, GCD(I, J) = GCD(My, N)
1 IF (I-J) 2, 4, 3
J=J=-1
GO TO 1
3 I=I-7
GO TO 1
* T = GCD(M, N)
L CONTINUE

This program is often very inefficienty for example, it always
takes g'stgps to determine that the greatest common divisor of

n and n-1 1g l. It works by successive subtraction; faster versions
wbrk by successive division and taking remainders, and terminate
Vhen a zero remainder.is obtained. This version terminates when the
two quantities I and J are equal, We have included an intermediate
assertions the point of it is that, as we continually decreaée the
values of I and Jy their greatest common divisor remains unchanged.

The control paths of this program are as follows:

*M>0, N>0
I=M
J=N

*I >0y J>0, GED(I, J) = GCD(M, N)

Follows by direct substitution,

*I>0,J >0, GED(I, J)
(I=7)

]

GCD(M, N)

75

Here we use our first mathematical fact about the GCD function =-

namely, that the greatest common divisor of X and x is X.

*I >0, J >0, GCD(I, J) = GCD(M, N)
(I<J)
J=J -1

*I>0, >0, GED(I, J) = GCD(M, N)

The assértion I > 0 is preserved along the path since I is un-
changed, and the assertion J > O follows from I < J and J = J = I,
but for the last assértion we need another mathematical fact, If
I>0,7> 0,.and J-I > 0Oy then GCD(I, J) = GCD(I, J~I). We may
prove this. by verifying that any positive integer dividing both

I and J also divides J-I, and, s8imilarly, any positive integer
dividing I and J-I also divides J., Hence the greatest integer
which divides both I and J must be the same as the greatest integer
dividing both I and J=I,

* I>0yJ>0,GCD(I, J) = GCD(M, N)
(I>7)
. I=I-7
* I>0,J >0, GCD(I, J) = GCD(My N)

This path 1s the same as the previous one with I and J reversed,
provided that we now GCD(I, J) = GCD(Jy I), Thus it, like the
previoas one, is valid.

To complete the proof of correctness we need to identify the
controlled expressions. This may be done in any of three ways. We
may associate'thé.exprgssion -3 with the third path above,y.and =J
and -I with the fourth; hsre ~J increases along the third path
(because I > 0) and -I along the fourth (because J > 0), and each
is bounded at the end of the corresponding path. Or we may associ-

76

ate simply -I with the fourth path, and ~I and -J with the thirdj;
the arguments may then be constructed correspondingly. A third
way to prove termination here is to construct a ‘single controlled
expression f(I+J)3 this expression must increase along each of the
two loop controi paths of the program, and is bounded at the end
of each of these paths. :

77
2-2 Innut-Outpuk

Sn———

Up.to now we have assumed that the specification of a progran
may be made entirely in terms of the variables with which it is
concerned. It night sgem’that this is no longer true wvhen a pro-
gram accepts input or produces output. We shall, however, adopt
a point of view according to which input files and output files
are simply collections of variables of a special kinde Thus the
general theory developed in the preceding chapter is Imediately
applicable to file processing programs as welle

There are always 2 number of different ways in vhich the sane
file may be regarded as a collcction of variables. In a card file,
for example, we may regard every column of cvery card ~s a semrnie
variable whose values are the posgsible characters which vy aypear

in that colirme Ve may also, however, resard each hole (or, rother,

o

ach position at which a2 hole might appear) on each card as a va-
riable whose values are O and 1; or, taking a more global vicw,

we micht consider a card as a variable whose values are the pos-
siblc contents of that carde. This last point of view usually t=rns
out to be the easiest to work with, althcugh there is a still nore
zlobal viewpoint in which 21] of the information in an entire carc
deck is talkeu as the value of a single variable represcnting thnt
decks All of these viewpolnts are equivalent, in a way which is
intuitively obvious and which will be moade nrecise in Chanter 33
the mnltiblicity of nodels for the sane situation is derived fron
the hierarchical structure of card files. Himilarly, we ray regard
output characters, lines, or entire listings as varinbles; and T.ue
saﬁc for tapes, tope files, tzape rccords, nnd tope sqiinrese.

wo sholl restrict our atlention for the morent to goagvcntial

filegsy which are processed from begimning to end. 111 card, Lope,

ané printer files are sequential files, ~nd go ore “he Alsic Piles
which gimilate them, Reading:and writing a sequential file beur o
number of similarities to the processing of an arxay fron one 2nd
to ‘che other; indeed, arrays wvhich are processed in “hin wvey are

; often called "internal files." Iet us consider, for exrrinle, Lthe -
program of section 1-8 which moves the valiues in one r~rrcy %o

- anothers:

I=1"
1 D(I) = A(T)
I+1
IV (I JIBe) GO 70 1
COUTING
Here the arrays A and B are collections of n veriablos ench, for

some n not less than the value of N, and each of %tlecse variables
may take (normal ly) 'v.ny floating point values. In a vrogran such ne
this we may easily substitute a deck of cards for tne arroy A ooand
a printer listing for the array By the progran then becomes one
which lists a deck of n cards. Instead of flosnting roint numbers,
we have character strings as values of the A(L) =nd the B(L); the
naximum length of t‘:ese str g8 is the mexinum nunbver of chhr-~ctors
which may appear in a punchen card or a rrinted linc resnectivelr.
The trouble with this analogy as it stands is tbat there is
no aprarent conmferpart of the index veriable I. That such A cow~
terpart is actually essential may be secn, for examrle, by consi-
| dering the operation of rcading a card. The question is, _w‘uch
card is to be read? This iz the question which is answercd for zan
internal fille by reference tc the index variable. At any tire du~
ring the reading of a card file, one card in the declk will be the

"current card" which has just been read, or which iz to be read

w!

79

next. Since different cards become current at different tiwes
during the running of ‘the program, each card may be considered as
a value of the variabie qgantity "eurrent card." Thls variable
quantity could also be théught of as representing the card reader,
and its current value as representing the current position of the
input deck within the card reader. We shall refer to this quartity
as the file position variable for the card reader. Similarly, there
will be a file position variable for the printer, whose value tells
us which line has just been printed, or is to be printed next.
Zvery sequential file has a position variable whose value de-
termines which square, record, etcey is currently being read or
written, and whichlis initialized by opening the file. The posi~-
tion variables of sequential Input files perform certain other
functions similar to those of the index variables of internal files.
They may be tested to determine when a file process should termi-
nate, and they may serve as controlled expressions in file proces~-
sing programs. As an illustration, let us rewrite the progranm above

in equivalent form, together with its file processing analogues

I=1 OPEN INPUT FILE

J=1 OrEN OUTPUT FIID
1 X = A(I) :

1 READ X

I=I+1

P (I .GT. ¥) GO TO 2 IF END OF INPUT GO TO 2

B(J) =

PRINT X

J=J+1

GO TO 1 GO TO 1
> CONT INUE 2 CONT INUE

80

The variables I and J are here the input and output file position
variables respectively. Each statement st the right is the ana- .
logue of the statement or statements opposite it at the left.

| When a program uses input-output instiructions of a variety of
types, the effect of{each of these types on the file variables and
file position variables must be specified iIf the program is to be
proved correct according to our metheds. in example of such specifi-
éation will now be given for a simplified collection of input-output
instructions. Iet fn denote any file nzme, and let the position »
variable of the file named fn be dencted by pve.fn. This file is made
up of file variables iz;gg(i);]the variable fv.fn(pv.fn)lis the one

which.has just been read or written. The values of pv.fn are as-
sumed to be positive.lntegers, 6f which the largest is denoted by
ien.fn; the valupes of e fv,fh(l) are assumed to be the same as the
values of X. Note tﬁat, in opening the fils, pv.fn must be ini-
tialized to zero, rather than 1lj also, when we réad or write, we
"perform the incrementation of the file position variable before

- the file reference. In the previous example, A(I) and B(J) denote
the elements which are about to be read cr written, rather than
those which have just been read or written. Thus I, for example,
assumeg the final value N + l. In the example below,‘however, the
final value of the position variable is the length of the file.
The meaning, .for verification purposes, of each prototype state-

ment at the left is given opposite it at the right.

OPEN FIIE fn pVefn = O

READ fn, X DVofn = pvofn + 1, X = £v.fn(pvefn)
IF (EOF, £n) THEN ... IF pvefn > len.fn THEN ces |
WRITE f£n, X E¥afn = pvefn + 1, fv.fn(pvefn) = X
END FILE fn len,fn = pv.fn |
REWIND fn pvefn = O

81

BACKSPACE ;fn pvefn = pvefn - 1

POSITION fn, N pvefn = N

POSITION FORWARD fny N pvefn = pvefn + N
POSITION -BACKWARD fn, N pv.fn = pv.fn - N

These definitions may be extended so as to allow reading of more
than one variable at the same time and in various formats, or to
assure that the positioning instructions, for example, do not
"run off" either end of the file.

If a single variable is used to represent a file, 1ts values
ére sequences (x1, ceoy xn), for various values of n, where each
xi is a possible value of X above, The file position variable still
has much the same function as before. When a file 1s processed in
one direction only, there is another approach which eliminates
the file position varilable entirely; this consists of regarding
the sequence (xi, co0y xn) as representing those file elements
which are still to be read on input, or which have been written
on output. This approach fails, however, in more complex situa-

tions, such as when a file 1is read, rewound, and read again.

2=3 Permutations and Sort#dpess

In proving the correctness of programs which rearrange data,
such as sorting and merging programs, certain assertions are mde
whose properties depend on a study of permutations. The simplest
of these is the assertion that an array has bcen sorted; Let us

consider the following array of four elements with values given:
A1) = 13 A(2) = 19 A(3) =11 ACs) = 16

If we wvere to sort this array and place the sorted results in a

new array By without changing the original array, we wo:ld hoave
B(1) = 11 B(2) = 13 B(3) = 16 B(k) = 19

Here we clearly must have B(1) < B(2), B(2) < B(3), and B(3)
B(+)e But to prove the correctness of a program which perfomms
this sorting, it would be a mistake to regard the above relations
as the entire final assertion. If we did that, then o "arrting

program” which terminated in thé case above with
B(1) =1 B(2) = 2 B(3) = 3 B(4) = k&

would be just as "correct." We also need to Ymow that B(1) == A(x),
for some value of x with 1 < x < W3 and similarly B(2) = A(y),
B(3) = A(z), and B(+) = A(w). Moreover, we must know that X, ¥,
2y and y are all distinct. '

Let us refer to X, ¥, 2, @nd w as £(1), £(2), £(3), anad £(),
respectivelys Then B(]) must be e%1t1al to A(ﬁ(j,)), for 1 < 4 < U,
The values of the function f lie betweon 1 and % irﬂclusive, and
they are all distinet, which means that { 1s a permutation on the

integers 1 through L. In the case above we have

83
£(1) = 3 f(2) =1 £(3) =k) =2
We could just as easily have written here A(1) = B(g(1)), for
g(l) =2 g(2) = & g(3) =1 g+) =3

and 1 < 1 < %. The function g is also a permutation; it 1s the
inverge of £, and £(g(1)) = g(£(@)) =L for L < 1 < ke

Now suppose that, ’i‘nstead of placing our sorted results in a
new array, we ;a.re sorting an array in placee How shall we express
the assertion that the new values of the elements of our array are
a rearrangement of their old values? What we must do here is exact=-
ly what we did in section 1=2: we must introduce new variables in-
to our program for the sole purpose of allowing us to state our
assertions properly. If the array A is being sorted, we may invent
a new array -- call it A0 —~ with A(x) = AO(x) for 1 < x < N, vhere
the dimension of A is Ne This 1s then our initial assertion, and
then our final assertion says that A(x) = AO(f£(x)) for some permu-
tation £ of the integers 1 through N, and also that A(x) < A(x+l)
for each 'g, 1 <x < Ne It 1s to be noted that this subterfuge is
necessary only when there is no other known array in the program,
or its equivalent, which contains the values of the elements of A,
For example, 1f a file 1s read into memory and sorted, we have the
same data in two places — in memory and on the file -~ and so our
initial assertion may simply be that each variable A(x) has the
same value in one place as 1t does in the other,.

Let us denote by PERM(A, B, N) the assertion that A(x) =
B(£(x))s 1 < x < N, for some permutation £ of the integers from 1 to
No If A(X) = B(X)y 1 £ X < Ny then certainly PFRM(A, B, N) holds, be~
cause we need only to set f(x) = x for each x3 this 1is the ldentity
permutation. Thus PERM(A, B, N) becomes an initial as well as a

8l

final assertion in a program tn sort the array A. It 1s not sur-
prising that, in many sort programs, it is also an internedizte
assertiony that is, it remains true as the sort prozresses. This

is, in particular, true of the various interchange sort progranms,

in which an array is sorted by successive interchanginz of vorious
elements of ite
We now prove that PERM(A, B, M) is actnally preserved by a

’

vroperly chosen interchange; that is, we shall show that the path

A(T)
A(I) = A(T)
A@@) =T

is valide This prototype situation may then be apnlied to a wilde
variety of interehange sort programs. Suppose that A(x) = B(Z(x)),
1 <X < 1n, at the beginning of the above path, wherc n is the value

of N. Let g be the permutation defined as foliows:

, E@) =1, gli) =41, g@ =xfor 1 <x<n, X7 31,1

IN

where 1 and J are the respective values of I .nb.d J (note that the
volues of Iy J4 and N are not c’nﬁnged in the above path)e. The
function h defined by h(x) = £(8(x)), 1 £ X < &, 1s then also a
permutntione We shall prove that A(x) = B(h(x)), 1 < x <1, at tle
end of the path, tlms verifying PRRM(A, B, 1) there. In fnct, if
x# 1, 1, then h(x) = £@), and A(x) = B(;‘_(_J_c_)) = B(h(x)) at the
beginuing of -the pathj since A (x) is not élmnged anywhere in the
path, this relation still holds true at the end. This Jenves only

the cases x = 1 and X = J, and since h(i) = £(1) = h(]) = 1@,

85

ve must show that if A(L) = B(Z(L)) and A(1) ~ B(E(1)) =t the
beginning of our path, then A(1) = B(£(i)) and A(]) = B(£(1))
at the end of ite. This is intuitively clear from the fact thatl
A(I) and A(J) have been interchanged; but let us prove it formally.
After the first assignment, we have T = B(£(1)) and A(J) = B(L(1)).
After the second, we have T = 3(£(1)) and A(L) = B(£(1)); finally,
after the third, we have A(]) = B(£(1)) and A(1) = B(£(i))e The
legitimocy of the operations or A(I) and A(J) and the existence
of the permutation g follow from L < I <Ny L L J < 1o

Many réarrangement programs also pose interesting problens
with regard to termination. Tt is quite comion to write an inter-
change sort in such a way that it simply keeps looking for adjacent
pairs of elements to interchange, stopping only when it camot find
any nore. The fact that such procedures always terminate may be
shown by introducing a concept called sortedness. If A is an array
of 1 elements, the sortedness of A 1s

‘E (If A(L) < A(Q) then 1 elge O)
1<i<i<n |

That is, it is the number of pairs (A(1), A(])) which are in ordcr,
is eey 1 < J and A1) X A(]). Tts maximum value is- 2;1 , and it
takes this value if and only if A 1s sorted. If-1its Yalue is zero,
A is sorted in reverse order. The statement A(1) < A(]) in the
definition of sortedness does no imply that these have to be inte-
gers or real numbers; any other simple ordering may be substituted,
the definition then depending upon the orderinge.

The sortedness of an array ls an integer expression, und we
would 1ike to be able to treat it as a controlled exprcssione
Clearly it is always bounded, since its value can never be reater

than Qﬁg:ll o We shall now prove, for the prototype control path

86

of the preceding section, that the sortedness of the given array

is alwayg greater at the end of the path than it was a2t the begin-
ning, provided that A(I) and A(J) were out of order to begin withe

That is, we shall prove this with the additional assertions I.& J

and A(I) »> A(J) at the.'begint'xing of the path. .
Clearly the palr (js J), which was out of order, is placed in

order by },t,he givan opei;ation; this increases by one the number of

palrs in :ordero We complete the proof by showing that for any

pair (§, 3) which ié in order and is put out of order by the in-

terchange of § and J» the pair (§, x) will be out of order and

| will be placed in order; a similar statement may then be proved

if we start with a pait-(Jy x) which-is pub out of order, and hence

‘there can be no further net decrease in the sortedness. Let (i, x)

be in order; then either x < 1 and A(x) < A(1), or else i < x and

A(L) < A(x)e In the first instance, x < J since i < j, and so

(1, x) cannot be put out of order by the transposition. In the

second, in order for (i, x) to be put out of order, we must heve

X < j. By hypothesis, A(1) > A(]), and since A(L) < A(x) we must

have A(x) > A(]). But this shows that (j, x) is out of order be-

fore the transposition, and in order after it. As mentioned before,

a simila® argiment holds in rcverse, and the proof is thun complete,

87

2= Sort Routines

We now apply the results of the preceding chapter to the

proof of corrcctness of a typical Intercl:ange sort ro:ntine:

** ASC(1) = «TNUE.

*% ASC(K) = ASC(K-1) .AlDe (A(K-1l) < A(X))
*k INIT(0) = TR UE,

** INTT(XK) -- INIT (K~1) «ANDe. (A(K) = AO(K))
* 1§ > 2, INIT(N

I=1
x1 <1, I<N, PERH(A, AO, W)y ASC(I)
1 T (A(I) .GTo A(I+1)) GO TO 2
I=I+1
TF (I JE. 1i) GO TO 1
GO TO 3

2 T = A(T)
A(I) = A(I+1)
A(I+1) = T
IF (I Qe 1) GO 70 1
I=I-1
GO TO 1
* PENM(A, AO, H), ASC(N)
3 CONTIITE

This routine loolks through the array A in the forward direction
for an adjacent pair of elemecnts (A(I), A(I+1)) which are out of
ordere It 15 always assumed that each pair (A(x), A(x+1)) is in
order for X < Ij this condition 1s denoted by ASC(T)e If tie
routine finds theot the pair (A {X), A(I+1l)) 1s In order, then I

is Increased by 13 If this pair is out of order, it is intor-

88

changed and I is decreased by l. When the program gets to the end
of the array, 211 pairs must bc in order. -

At the start of the routine, A(x) = AO0(x) for all this con~
dition is denoted by INIT(N). The assertion PiRM(A, AO, H) was
defined and discussed in the preceding chaptere. It is clearly
preserved here throughout the algorithms that is, each tine we
make an interchange, we still have some rearrangement of our ori-
ginal data. The aqjertion I < N, of course, implies I+l < 3 this
and 1 £ I justify +ue references made to A(I) and A(I+Ll) at various
points in the élgorithm.

The control paths are as follows:

Path 1 * N > 2, INIT(N)
I=1
*1 < I, I< N, Purk(A, A0, N),y ASC(I)

Here 1 < I follows from I =13 I < N follows from I = 1 ~nd N 2 23
and ASC(I) is ASC(L), which is always true. The fact tha PR
A0, N) is implied by INIT(N) in this form follows from our riscus=

sion of the identity permutation in the precrding section.

Path 2 * 1'5 T, I < N, PERM(A, AO, I1), A3C(I)
(A(I) < A(T+1)) |
I=I+1
(I#10

*1 < I, I<N, PERNM(A, AO, N), ASC(I)

The inequality 1 < I is preserved because I increases. The initial
assertion I < N bécomes I+1 < Nor I < N, and since I # I in the
path, we rmust have I < N. The assertion PFRM(A, AO, W) is un-
changed by this path. Finally, ASC(I) at the bheginning of the
path, together with A(I) < A(I+l), glve ASC(I+1), mnd then I j

89
increased by 1, giving ASC(I) againe

Path 3 *1 < I, I<N, PERM(A, AO,), ASC(I)
(A(I) < A(I+1))
I=I+1
(I=N)
* PERM(A, A0, N), ASC(N)

Again PURM(A, AO, N) 1s unchanged by the path, and, just as in

the previous path, ASC(I) holds at the end; since I = N, this
becomes ASC(N). |

Path & * 1 < I, I<N, PERM(A, AO, N), ASC(I)
(A(T) > A(T+1))
T = A(T)
A(I) = A(TI+1)
A(I+1) = T
(I=1)
*1 < I, I<N, PLRM(A, AO, N), ASC(I)

The assertions 1 < I and I < I are unchanged in this path. The
fact that PERM(A, AO, N) is preserved in a sequence like this
follows from the discussion in the preceding section (note that
I < N implies I+l < N at the beginning of the path). Finally,
ASC(I) is ASC(1), which 1s always true.

Path 5 *1< I, I<N, PiRM(@A, AO, N)y ASC(T)
(A(I) > A(T+1))
T = A(I)
A(I) = A(I+1)
CA(T4Y) - T

(I#1)
I=I-1
*1 < 1y I < Ny PERM(A, AO, N), ASC(I)

Here 1 < I because clearly at the beginning of the path 2 < I
(since 1 < I and I # 1}, and then I is decreased by l. The in-
equality I < ﬁAis preserved since I decreases., PEiRM{(A, AOy N) is
preserved here just as it wes in the preceding pathe. Finally, let
us write 43C{I) 2t the peginming of the path as ASC(I-1) JAND.
(A(I-1) < A(L)}o Then ASC(l=1) is preserved by the first three
assignments in this path, since it is a condition only on values
A(x) for x < I-l. When I is decreased by 1, ASC(I-1) becomes
ASC(I) againe This completes the proof of partial correctnesse
To prove termination we need only consider the loop control
paths, namely paths 2, %, and 5. In paths 4 and 5, as we have
noted in the preceding éectiong the sortedness increases. This
fact is not changed, of course, by the introduction of conditions
or assignments involving I after the interchange has been made,
In path 2, the sortedness is constant and I increases and is
bounded at the end of the path. Thg sortedness, of course, is

always bounded. Thiis the given sort program is correct.

121

2-5 Merging Routines

A dif?erent'kind of rearrangenent of data takes place in n
sutine which merges two sortcd arrays to produce a single sorted
array.’Whereas rearrangerient of data in place corresponds to a
permutatibh, rear -angement of data out of place corresponds to
a more genefal mapping from one set of variables to anothere.

In a'éimple merging routiney a sorted array of length M is
being merged with another of length N to form a third sorted
array of length M+N, Three pointers are kept, which we shell nall
I, J, and Ke The first =1 elcments of the first array and the
first j-1 élements of the second have already been merged to form
the first g}l'elements of the result, where 1, Jj, and k are the
respective values of I, J, and Ke The rearrangement irplied by
this statement will be dennted by MERGE(I-1, J-1, K-1)3; this as~
sertion says that there exists a certain function £ from variables
to variables, such that each variable y in the domain of f has the
same current value that f£(v) cdoes. The range of f consists of the
first k-1 elements of the resulting array, while its donain con-
sists of the first i1-1 elements of the first array together with
the first j-1 elemcnts of the seconde (We could have constructed
a similar function for PERM(A, AO, N); its domain and rahge would
have consisted of the variables in the arrays A and AO respectively,)

In order to determine the kth element of the new array, we
look at the jth element of the first array and the Jjth element of
the secondj the smaller of these two, in the gilven order, bhecomes
the nev kth element, and K is increased by l. In addition, 1f the
smaller element came from the first array, then I is increased by

1; otherwise, J is increased by le. Taking Into account the specinl

2

cases in which we are completely finished with either one of the

original two arrays, we may write our program as follows:

*% ASC(Z, 1) = TRUE.
** ASC(Z, K) = ASC(Z, K=1) AND. (Z(K-1) < Z(¥))
* ASC(A, M), ASC(B, 1)y M > 0y N> O

I=1"
J=1
X =0

*1 < I, I<M, 1< J, T<N, ASC(A, M), ASC(B, I),
* MERGE (I~1, J=1, K)y K= I + J ~ 2,
* (K= 0 +0Re (K> 0, C(K) < A(I), C(K) < B(J), £5C(C, K)))
1 K=K+1 |
IF (A(I) < B(J)) GC TO 3
C(K) = B(J)
T+l
"IF (J oIE. N) GO TO 1
* 1 ¢ I, I My T=1+ 1, ASC(A, M),
* MERGE(I-1y J=1, K), K= I + J =~ 2,
K > 0, C(K') < A(I), ASC(C, K)
2 K=K+ 1
C(K) = A(T)
I=I+1
CIF (I JIE. M) GO TO 2
GO 10 §
3 C(X) = A(I)
IT=1+1
Ié‘ }(I JIE. M) GO TO 1

*

n

93

* IT=M+1y,1<Jy J <Ny ASC(B, N)
* MERGE (I~1ly, J=1y K)y K= I + J = 2,
* K >0, C(K) < B(J), ASC(C, K)
b K=K+1

C(K) = B(J)

J=J+1

IF (J oLE. N) GO TO 4
* MFRGE(M, N, M+N), ASC(C, M+N)
5 CONT INUE

The result of this routine is that the values in the new array
are some arrangement of the values in the two original arrays,
and also thét they are sorted. We denote these two assertions by
MERGE (M, N, M+N) and ASC(C, M+N) respectively.

As the values of I, J &nd K increasé, the function whose
existence is implied by MERGE(I-1, J=1, K) éxpands its domain and
range and takes on new values, althoﬁgh its 0ld values remain the

sameo, To see how this happens, let us examine a typical control

path in the above routine:

*1 < Iy, I<M 1Ty TN, ASC(A, M)y ASC(By),
* MERGE(I-1, J=1, K), K= I + J = 2,
* (K= 0 «Re (K> 0, C(K) <A(I), C(K) < B(J), AZC(C, K)))
 K=X+1
(A(I) 2 B(I))
C(K) = B(J)
J=J+1
(T <N
*1 <I, I<M 1<, <N, ASC(A, 1), ASC(B, W),
* MERGE(I-1, J-1, K), K= I + J =~ 2,

* (K= 0 Re (K> 0, C(X) <A(I), C(K) £ B(J), ASC(C,y K)))
' |

ol

This path starts at statement number 1 and reinrns there. At the
beginning of the path, we have IfNGH(i~1, j~1, k), where 1, i, and
X are the current values of I, T, and F. Tha domaiﬁ of the corre-
sponding function I includes the first -1 elements of A ond the
Tirst J-1 elements of B. Since J increases bv 1 along the nath,
the domain of the new function, which we shall call £', inel des
the domain of £ plus the element B(j)s Likewise, the range of £
includes the first k-1 elements of C, while the range ol It con~
sists of the range of £ together with C(k). We now construect L¢
by simply sett ing £Y(BC)) = C&K) and £ (v) = £(v) for ¥ # 3(i).
Since v and £(y) have'the same values, sc do ¥ ond £'(v) for ¥ #
B(Jj), while B(]), which is tlLe only element of B whose wvalue
changes, receives a new value equal to that of £r{(B8(j)). Ince the
new function £' preserves the property churncteristic of £ which
is necessary for MENGE(I-1, J-1, K) to be true at the end of this
pathe

The other assertions in this path may be seen to follow [o¥s
arguments which we have met before, We shall give these argunents
nowy partly as an example of how to handle alternatives (0Pe) in
assertlonse In general, any final assertion may be validoted nsing
one alternstive appearing In the initial aszertion, but it must
then be ré-verifjed using the other one. Clearly, when the fin
assertion contains alternatives, only one of them need be verified,
although both of them may be under differing circumstznces. In this
case, we actually will never have K = O at the ond. In verifying
K > 0 at the end, we must treat separately the cases X = O and

K > 0 at the beginning. In both cases, the argument is clear since

K is increased by 1 along the path.

9%

At the beginning of this path, we have IERGE(1-1, j-1, k), where

I

s 1, cnd X are the current velues of I, J, and K. The domain of
th: corresponding function £ includes the first i-l elcments of A4
and the first j-1 elements of B, Since I increases by 1 along the
path, the domain of the new function, which we shall call f!', in-
cludes the domain of £ plus the element A(l). Lilewise, the range
of £ includes the first k-1 elements of C, while the range of f'
consists of the range of £ together with C(k). We now construct
£! by sinply setting £'(A(1)) = C(k) and £*(¥) = £(¥) for ¥ # A(1).
Since ¥ and £(v) have the same values, so do ¥ 2nd £'(v) for ¥ #
A(1), while A(1), which is the only element of A whose valne
changes, receives a new value equal to that of £'(A(1)). lence the
new function £! preserves the property characteristic of f which
is necessary for MPRGE(I-1, J-1, K) to be true at the end of thir
pathe

The other assertions in this path may be seen to follow by
arguments which we have met before. The assertions J = N + 1 ~nd
ASC(A, M) are unchanged by the pathy while 1 < I #ni K > O are prc-
served because I and K increase along the patho.The aszertion I < I
follows from the condition I < M in the path, ~nd the assertion K -
I+ J -2 is preserved since bHoth I and J have been increased by e
The zssertion ASC(L, M) at the beginning of the path, together with
1 <Iand I<M (from I+l < M later on), implies A(I) < 4A(I+1) ~nd
thus C(X) < A(I) at the end of the path, and also C(K-1) < C(I),
which, when combined with ASC(C, K~1) (fron AnC(C, K) a2t the be-

zinning of the path), ylelds .9C(C, K) at the end of the n2th,

2~6 Asgértions Before and After Assignments

Iet us recall the fact that in section 1-10 we introduced a
sieve program whose assertions vere defined in terms of -their
total behavior, rather than being defined inductively. In fact,

we could have defined the assertion U inductively by writing

*% 17(0)
Nk U(K)

«TRUE
U(K-1) JANDe (A(X) = JTRUES)

i

The assertions V and W, however, are not so easy to define in-
ductively. In fact, they cannot be so defined using «AlD. as ahove.
Notice that the assertion U(X) implies that U(X~1l) is true, and,
in addition, something else is true. If V(K) is true, however,
V(K-1) is false as it stands. The reason for this is that V(X)

and V(K~1l) involve the same variables; namely the A(x) for 1 < X

< N, and sohe of these have different values when V(K) is true
than when V(X~1) ise If the value of X is 2, for example, then
V(X) implies that A(2x) is JALSE. for x > 2, whereas V(K-~1) im-
plies that A(x) is .TRUE. for each Xo The 2ssertion U(K), hwicever,
involves only the variables A(x) for 1 < x £ K, and, in particnlar,
it involves A(X), which U(K-1) does not. This is what makes it
possible to use JAlDe In the inductive definition of U,

We shall now iniroduce two operators, after and before, which
will, armong other things, enable us to nake ilhductiwve definitions
of V and W above. If A is any assertion and 0 is any acssigument,
then (A after S) means the rélation among the variables of tle
program which is true after U 1a performed, if A wia true helore
i was performeds Similarly, (A bhefore 6) is the relotion which wes
true before‘S is performed if A is true alter O is perforneds lere

are a few examples of the use of these operators:

le (I<N) after (I=1I+1)is (TN +1).
2. (I < N) before (I=1I+1)1s (ILN=1)or (I +21 <.

I-1 T
3 (8 =S A(x)) after (S =5 + A(I)) is (B = A(x))
x=4 ¥4
T
Lo (8 = EE_A(z)) before (S =S + A(I)) is (6 = %: A(x))y or -
pe s
I .
(s + A(I) = 2 A(x))e
x=4
5e U(K~l) (A(K) = TRUE.) is U(K) (where U is as ahove).

60 U(K) before (A(K) = QTE":IEQ) iS U(K"l)o

Tt is clear from these exsmples that before and after are in-
erse to each other, although this does not hold in both directions.
If A is the assertion (U = V ANDe X = ¥) and € is the assignment
(X = Y), then (A after S) is the same:as.A, whereas (A before'8) i=
simply (U = V). However, ((A before S) after S) is always the same
as Ae The last two examples albove 2}dustrate the fact thet our
uses of JAND. in inductive assertions may be replaced by after;

thus we could have written

*k U(O) = oTRE, /
Bk J(K) = U(K~1) after (A(K) = JTRIUE.)

as a definition of U above. Notice, however, that (A(K) = <TLiUE.)
is herc an assignment, whereas before it was an assertion.

Examples E and 4+ above suggest a general rule for calculating
the result of bsfore. If ¥y is any simple (non=subseripted) vari-
atle and e is any exure““ion, then the assertion (A before (v = e))
may be obtained by substituting e for y wherever v appears in the
(complete) description of the assertion Ae Thus in example 2 ébove,
Als (I N), vis I, and g is I + 13 1f we substitute I + 1 for I
in A, we obtain (I + 1 < N), vhich is one form of the result spe-

cified in example 2. This is called the back substitution rulej; it

o

breaks d_own, in general, when ¥ i1s 2 subseriptced variable,. -
Let us now redefine the ertions Uy Vy and W in our sieve

program, using after:

wt U(0) = JIT e

=r U(XK) = U(=1) after (A(K) = o TRUH.)

*k V(K) = WK, K)

¥ W (2, 2) = U(N)

#% W(K+1,K+1) = W(K, K*L) JAlD. (K*(L+1) > M), for ¥ > 2

ok W(K, K*¥L) = W(K, K*(1-1)) after (A(K¥L) - o1 i'e)s Tor K,IpP

il

Our earlier definitions of U, V, ~nd W may now be »rovaed using
these definitions o At the same time, we mey prove that V(¥), -lerc
K*¥K > N, implies that A(x) = PrOE(X) for esch Xy L <X < e

First let 1 £ x < W3 ve show that U(y) imnlies that i(x) =
JIRIE. for each ¥y X < ¥ < Ne This certainly holds for ¥ - z3 if
it holds for y = z - 1y 2 > X, then it holds for y = z, «ince 3
x and A(g) is the onl v variable involved in the tranzition from
U(z-1) to U(z). In particular, U(N) implies A(X) = o770 ik., for
1 <x< Yo Now let x = pegy where py g # 1 2nd p, g # X« Then
W(ps p*g) implies that A(x) = oFALS5E.; we show that this is lile-~
wise implied by W(p, p*r) for sach pr > g. In fact, this holds for
T = ge 2and if it holds for r = g=l, wherc g-1 > g > 1{6 D 2,
then it ¢éertainly holds for p = g, since, in the transition, no
elerment of A is set to any value other than JF LSIMee Inn Marticulrry,
this holds for g*r > N, so that A(X) = PiLi7. Is aleo impiicd by
W(p+l, p+l), vhere, as before, p > 2. Continuing in thé sine way,
we see that A(x) oFALSD. is inmplied by W(p+, p+7), ond in gen-
oral by W(g, \) for each g > »+l. This is the same as V(g), ~nd,

in narticular, this shows that V(g) Cor g¥g > N fiplics thed A(x)

“wl

99

= PRIME (x) whenever PRIME(X) = FALSE«y L. <X < N Now suppose
that PRIME(x) = oTRIE.; then W(2, 2) (= U(N)) implies that A(x)
= (TRUE., as detailed above. Then W(K, K*L) impllies that A(x) =
eTRUE o g fbr.eany applicable values of K and L, since in:the indue-
tive definition of W the only changes ever made to the array A
are to values-,,A(g’;g)" for p > 2, ¢ > 2. This implies that A(X) =
oTRUE. follows frvo.m-V(‘g,) in this.cése as well,in particular vhen
g*q > N. This comtn.letles the proofoe

100

2-7 Assertions About Lists

List proecessiis programs exist on two levels. We mey work Adie-
rectly v 5th pointers to construet lists and other data ntructures,
using zan algebrale langusge or an assembly language. Or we nay he
given a higher-level language which procesgses lists directly, and
in which each statenent specifies a list-processing opcration which
ve may assume to be perfermed correctly. Each of these levels hns
its own verification tecnniqueso

In oiur discussion of list processing we shall use ce:rtain ter-
minology from the language LISP, although our actual prograrving
exariples will not be given in LISP. 4 list is a sequence of n
objects X_9 ocees X, 5 any of these may be lists themselves, bat if

1
they are not lists, they are called atoms. The notation (zl see xr)

to dencte the list of objects Xys eeey X, 1s called the S=-cinrescion
of that listj; here any x which is itself a“list apperrs as the

S-expression of that list. We write L = (x1 eoe xn) to denobe hLie
fact that L is the name of the list of objects xl, eoey xq. it L=
(X]. eee Xn), then C&;:(L) = xl and Cdr(L) = (3(2) Xn); 1 g == l,
then ¢dr{L) is the empty list, which is denotod by nil.

-

If vie are doing list vrocessing withont the use of o hMigher

level language, we rvist first opucbllSh cortain conventions rela-

ting to the representation of listsg in nemory. For the nurposes of

verification, our next step is to define crrtain assertions zhout

lists, using thzse conventions. isually what is being asverted 1s
2

thot a certain list is represented in memory according %o the con-

¢

ventions. 3y the nature of list pfocessing, these cenventions arc

not specificy a list may be represented in memory in « vorliety oF

wayse but the corresponding assertion will he sntisfied If 1t 1s
? i

‘>

101

;epresented in gome legal way, no matter what that way may be.

The following is an example of a set of conventions for the
processing‘ of lists of integers without sublists, using an alge~-
braic language, A free storage area is given as an integer array
FS of size ‘ég. 'Each item in a list is a pair (FS(23-1), FS(21),
for 1 < 1K m. Here the integer FS(21) 1s the content of the given
item, and FS(24~1) is the pointer to the next itemj that is, it is
of the form 2j-1, where (FS (2j-1), Fs(2j)) is the next item. If
there is no next item, 1. ey if (FS(21-1), FS(21)) 1s the last
item in its list, then FS(21-1) = O. The list whose S~-c¥pression
is (xl oo xn) is then represented by p such items; 1f the kth
item, for example, is (FS(2i~1), FS(21)), and the (k+1l)st item is-
(FS(21-1), FS(21)), then FS(21~1) = 21-1 and FS(21) = xX,. |

We may now define,,relative to these conventions, an assertion
LV(LPy, L) (read "the 1ist value of LP 1s L"), where LP is an ordi~
nary integer variable‘-aqd L= (xl 0es xn) is a list of integers
without sublists. This asserts that L is represented as n p=irs
in the manner described above, and that the value of IP is a pointer
to the first of these pairs. The assertion LV(LP, L) for L = (X7 ese xn;
is the assertion that there exist integers il’ cesey in with LP =

2i,-lamdl g1, <0, Fs(2i -1) = 2 -1, and FS(213) = x, Tor

A
J J+l - d
each jy 1 < J £ n,y except that for §J = n we have FS(2ij-1) = Qe
(Having made this éefinition, it 1s not hard to prove that all these
integers 13 must be distinet.) lowever, LV(LP, L) may also be de-

fined inductively, using the LINP terminolbgy above. In fact,

LV(LP, L) = (I4f L = nil thep LP = O else
(LP is odd and FS(LML) = gar(L) and LV(FS(LP), cdr(L))))

This definitlon 1s actually more inclusive that the prcceding one,

since it covers the case in which L is nil.

102

e emphasize the faect that these delfinitions repnresent only
one set of list revresentation rules. The spnecial pninter which

marks the end of a list noed not be zorog it may he deteciable Iin

sone other way (r.,, Cor exanple, in LI7P). Our nointers “ﬂ‘;;_-L. nave !
baen talken in the form J or 2]y rather than 2j-13 or the;” could
X
have been the absolute addresses of the corresnonding pairs (if
these are aveilable in the given language). Owr vairs misght heave
been reveorsed, with the first olement of each pair, ratlier than
the second, denotinz the content of the items or two arrays FOIL and
Fg2 nicht hrve been used, with FSL1(L) and FOZ2(1) constituting a
single pairsg or ve }:‘1igh‘c have ugsed a double array, in vhich'a pair
consists of FS£1, 1) anid FS €2, 1), or FS{i, 1) and (i, 2). Ve
might cven have co"xc‘natraued 211 the informction in a list iten
into a 'single element.of the array TS, as e would nrobably do,
Tor example, in as ”emolj langunge. otill further couventions woula
be needed to handle lists of real nimbers, or of compler nunbers,
or lists with sublists, or list striectures with multiple lin's.
"Jz‘ th each of these, we would construct an assertion lilke IL¥(LP, L),
Let us define elt(l, L) as the ith oclement of iie 1list Ij
that is, if L= (% .. X)y thon glt(l, L) = x,. The LISP cfini-
tion of glt is | |
elt (i, L) = car(edrn(i~1, L))
vhere \
cdrn(0, L) = L, cdrn(i, L) = edr(edrn(i-1, L))

The function edrn is the usual LISP function gdd...dr, where the
number of occrirrences of d is the first argunent of gcdran. Using olt
and cdrn, we may set up assertions for the proof of corrocincsas of
a progran which "wwinds" a list, copying its elenents ore by one

into an array, as follows:

%% E(Q) = oTRUEo

103

*% B(K) = E(K-1) «AlDo (A(K) = elt(K, L))

* LV(X, L)
I=1
GO TO 2

1 A(I) = FS (X+1)

I=I+1
X = FS(X)

* B(I-1), LV(X, cdrn(I=1; L))

2 IF (X .NE. 0) GO TO 1
* E (length(L))
COIT INUE

ere length(L), the Jength of the list L, is defined as usual by

length(nil) = O and lcngth(L) = length(edr(L)) + 1 if L # nil. The

control paths here are verified as follows:

* IV (X, L)
I=1 ’
* B(I-1), LV(X, cdrn(I~l, L))

* E(I-1)y LV(X, edrn(I-1, L))
| (X # 0)
A(I) = FS(X+1)
I=I+1
X =FS(X).
* 1 (I-1), IV(X, edrn(I-1, L))

E(I-1) is E(0), which is truej

LV(X, edrn(I-1, L) is LV(X, L)
(which holds) because cdrn(I-1, L)
= ¢drn(0, L) = Le

The definition of LV shows that
¢drn(I-1, L) # nil at the beginring,
and FS(X+1) = car(cdrn(I-1, L) =
elt (I, L), so that E(I-1) and

(A(I) = FS(X+1)) give E(I), and
then I is increased by 1, ziving
B(I=1) ngaine Also X = F3(CI) gives
LV (X, edr(carn(I-1, L))) =

IV (X, cdrn(I, L)), which, when I is

increased, becomes LV(X, ¢drn(I-1, L)).

104

* E(I-1), LV, cdrn(le, L)) THere the, definition of LV shovs

(X = 0) - that ¢drn(I-1, L) = nil at the
* B (length(L)) . - beginning, so that I-1 = len;th(L)

(as may be easily s shown) and

E(I=1) becomes E(length(L)).

Thus the program is partially correct, The fact that it terminates
follows from a conslderation of the controlled expression I, which
is bounded along the loop control nath since it can never hacome

larger'%hah length(L). The Initial assertion, 1nvol lug a 1ist L

of finite length, is, of course, crucial to “he termin~tion of

this program.

e

105

2-8 Assembly Language

We shall now'show how to prove the correctness of assembly
language programs, using the methods developed thus far. ¢ ﬁch
programs have certain special problems, due to the possibility of
self-modification; in the next section, we show how these are solved.

Superficially, from the viewpoint of verification, instruc-
tions in assembly language are much like very simple statements
in an algebralc language. Indeed, each assembly-language statement
has its algebraic-language counterpart, provided that we regard
each register as a‘variable with a special nameo If we have one
accumulator“éalled ac, for example, then "store X" becomes X = ac,
"add X" becomes' ac = ac + X, and "shift' left by k bits" hecomes
ac = ngzk; This last.correspondence is not exact, of course, since
we must make allow;nce for those bits which are shifted off the
left=hand end of the accumulator. But rat her than. writing out the
complete (and cumbersome) definition of the shifting operation each
time it is used, we may simply use the fact that the above simpli-
fied definition holds whenever the leftmost k bits of the accumnlator
are all the same, as they almost always will be if the shift is use?
for arithmetie purposes. This then becomes an assertion to be asso-
cizted with the shift instructjon, much like the assertion 1 £ I
which is requlred at any FDRTRAN Iv statement which mukes
reference to A(I). If we are using a shift for a non-arithmetic
purpose, we use a different property of it, such as one which con~
siders the aécumulator as being broken up into fields.

| Indexed transfers in assembly language cause a problem whose
method of solution will help us understand the treatment of self=-

mndification in the next section. One way in which indexed transfers

106

may be used is in analogy with switches, controlled GO TO statements,

and the like, in algebraic languages. Consider the FORTRAL statemant
GO TO (21, 22, 23, 65, 99), K

This specifies a transfer to one of five different statementse. We

may have to consider the possibility that this statement does not
transfer at a2llj this will hapren in some versions of FOFTLLY when
K is unequal to 1, 2, 3, 4%, or 5. But at any rate there are at most
six different next statements after this onej this is important
tecause it sharply limits the number of control patns in the pro-
gram. If we were doing this in assembly language, we would load K
into an index register and then make an indexed transfer., If state-
ment number 21 corresponds to the label L21, and so on, our progran

might look like this:

LOAD XR,K
JUNP *,XR
JUMP 121
JUMP 122
JuP 123
J OMP L6%5
JUMP 199

Here XF stands for the index register (or its equivalent) which we
are using; this is loaded with the value of K, aﬁd then we jump to

* (meaning "the current location") plus the current value contained
in XRe This jump 1s what causes the difficulty, becanse throretically
it could go to any address in the entirce compitler o Jf there urc
324768 words in memory, it wonld scem that we nmust consider (nt
least) 32,768 diffcfent control paths in every assembly langucge

progran,

(2

te

107

.Oneé way to avbid‘thia 1s to add some instructions which test
the vaiué 6f‘k andcthen:perform the’indexed transfer only if this
value 1s 1, 2, 3;‘ha or 5. In this way we may directly consider all
32,768 (or however maﬁy) paths, and show that only five (or six) of
them are ever actually takens In fact, this is what wbuld be done
if this assembly language program were the result of a FORTRAN com-
pilation, at least in some versions of FORTRAN., Owr verification
theoryy however, would not be very general if it did not allow for
the possibility of omitting this test in the interests of efficlency.
This, after all, is what programmers do in practice; they say intui-
tively thaeu"thé valueaéf K is always going to be in its proper
range anyways, so why teéﬁ?" What we do in ﬁhis case is to make the
assegtion that X is equal to 1, 2, 3, 4, or 5, and associate this
assertion with the start of the assembly language program above.
This agsertion is then proved, jJust like any other assertion.

Let us now consider a slightly more complex case. Suppose that
wé are using a subroutine call instruetion which leaves the return

address in the register XR., To return from a subroutine, we would us
JUMP 0,XR

Suppose now that a ceftainzsubroutine is called in p different placec
in a prog:am,,with corresponding return addresses 819 seey Ape At .th.
point at which we return from the subroutine, we must have an as-
sertion that XR containg some one of these return addresses. If

the subroutine calls another subroutine, using the same type of

call instruction, then it will have to save the return address at
the beginning, and restore it at the end. It is clear, however, that
whether the'retur% address 1s kept in XR or in some saved location,
the assertlon that it is in fact one of the g; must be verified over

every control path of the subroutine, If it is kept in XR, we must

108

make sure that no instruction of the subroutine changes F. If
it is saved, we must make sure that ne instruction of the sub-

routine changes the save area, excent for the one which actuall]

‘¢

does the savinge
It moy seem that we have z clircular argument bere, In ordcr .
to limit the total number of control paths, we need the asseriion
that the return address is propver; but in order teo verify this
assertion, we need %o malke a complete analysis of all of our con-
trol pathse In fact, however, this type of argunment s porfectly
valid, and is not circulare. ALl assertions at a single poin® in
the program are combined into one, using "and"j among these will
be the assertions about return addresses., We nust now verify oach
control path in the programe. In verifying each assertlion separatcly
at the end of the path, we may use all the assertions at the begin~
ning of that path, in combination if necessary, Thus wé mAy nesunie,
for exampley that the number of control paths in our progran is
properly limited, and thit our other.1ntermediaté‘cohdipions are--
valid as well; and we may then procced to nrove both these things
at once, hy verifying each of our ascumed control nutls and ghvw

that our return address remains prepér at the cnd of noch of then,

4 3

109

2-9 gelf-Modifying Programs

As long as our programs cannot modify themselves, the control
paths in them remain fixed. It would, however, appear that when
& progran has the capébility, for example, of chahging an ordinary
assigmment staﬁement into a transfer statement during exccution,
then a new control nath is created. How do we extend our method
of control points and control paths to cover this situation? The
answer is that we do not extend it at allj instead, we extend our
model of the program to one in which the control paths, as pronerly
interpreted, remain fixed throighout the execution., This will now
be illustrated for assembly~language programsj most other languagcs
do not allow true self-modification,

Zven when an assembly-language program does not modify itself,
this fact must be proved. Otherwise, we would have no way of being
sure that the control paths in the program are what we say they are.
We shall now indicate how this is done. Suppose that our program has
been loaded into memory and is ready to start. Each instruction word
in this program will contain 2 certain pattern of zeroes and ones,
which directs the computer to narform some instruction. low this
statement is itself an assertion, albeit a highly complex one. The
memory cells in which the instruction words are kept may ceriainly
be thought of as varishles, since theoretiecally their contents ey
change at any time. Since this program does not modify itsclf, how-
evcery the contents of these cells will not, in fact, change J ring
the running of the nrogram. Thls means that the assertion thnt eéach
instruction word econtains its owm proper inétruction code 1is true

hroughout the running of the programy and this fact méy,be nroved
using the same methods we have used before. Along eachi control path,

-ve must show that this assertion is preserved; that is, if the in-

struction words have their indicated contents at the hesin-ing of
the path, then they stvill do at the end of it, llormally this is

to observe that none of our

1o

very sinplej all we have to do
st tements affects the contents :of “any instruction cell. It is
important to rememnber, however, that no assembly-language program

is »roved correct until this tyne of verificu

'-.ll

nn has been moacdea.

2

Let us now consider a self-rmodifying progrem. Host zelf-
moéifying programs nodlfy themselves in only a very few ploces,
et ns first consider those instruction words which aroz not
nodified. Each of these has certain eontents at the begintinrg ol
the program, and, by assumption, these contents zre not nodified

s of

e

121ys

during execution, Consequently this part of the a a
self-modifying program proceeds in exactly the same wny us if it
did not modify itself. That is, we must prove that 211 of these
contents remain constant when we go along each control path of

the nrogram. Of course, it is no longer true that our statements

do nét affeet the . contents of any instruction cell, dbut they 2t
least do not modify the contents of those cells which we have iden-
tified os never being modified.

t remains to consider the instruction words which are modi-
fied during execution, and how these affect the construction of
the‘control vathse Taking a very simple caze, suppose that we have
an instruction which unconditionally transfers to leocation Z, and
supnose that this instruction is later modified to eéntain "no
operation" or some other statement which never transfers. “ow 4o
we set np our control naths in the presence of such an instruction?
We set them up exactly a2s if the instruction had been a conlitional
transfer to Z. In fact, it is a sort of conditional trnnsfer,
sonewhat life the "zero test" instructions thrt mean "if X i zero,

then skin the next instruction,” If X denotes the Jocation of this.

‘Q

instruction, and ¢ is the instruction code of the transfer %o Z,
then the meaning; in context, of this instruction is "If X = t,
then transfer to Z."

In a broader sense, this 1s true of every inctruction word
in every assembly language program. Suppose that tl, ey tn are
the various possible contents of the instruction word ¥, where
there are b bits in an instruction word and n = 2P, Iet Il’ ceey
In be tﬁe instruections corresvonding to tl, ceey tn roaprcetivelye.
Then the meaning of theiinstruction word X 1s "If X = tj, Tor wny
Jy then do I." Some of the I,. of course, will be meanircless or
il’egals. But in any case,ﬁif we wish to verilfy our progrars, we
will have to be able to prove Lhat, when we get to X, the contents
of X will be sharply limited. In the extreme case, we can prove
‘that X can have only one possible value; this is the case we
treated earlier in connectilon with non-self~modifyiné DIOLTAMS o
If X has k possible values, then X must be treated as 2 k~way con-
ditional instruction., This does not necessarily mean, of course,
that there are k different ‘control paths to consider here, bcecruse
sone of these instructions may not transfer, and others may all
transfer to the same place. The shortness of our vrroof, Larever
will depén§ to a greoat extent on how well we can linit the n'mber
of different possibilities to consider.

The statement that the instruction word X may contain only +’e
instruction. codes Uyy ecey Uy (epending on X), is, of co:wrse, an
assertion. In orde?r o prové this assexrtion at X, we will normally
have to qtrengthen it a bite The assertion at X must not only say
that only the instruction codes uj will occurj it must also tell us
uncder what conditions (on the other variables in the progrum) anch

Uy w11l nctually be the contents of X. In verlLlying »71 the nssepr-

tions of this type in our program, we make valid use of thn snme
seamingly circular argunent we encouniered in the nraceding snetion.
nat 1s, in setting up our control mmths, ve zsrune the volilisy
of ceriain assertions about the instrueticn words; to »rove these
ssertions, it ig encagh to annlyze only those control »2ths wihiich
we have set np under the zesumptions we hovs nivee
ilany nrograrmers attempt to avoid selif-rodilicuzilon entirely

-

when they write assenbly~langunge progransas The conventions which

are nused with certain comvuters for subroutine hradling, NoUGVor,
male a certain amontt of self-nodification unatvoldeble. Cr nmny
computers, the standard instrneiion which ezlils a cathroatine lorves

the return address in the address field of an insiraehion word, snd
then treonsfers to the next inshruction worde Raturn from such A

subroutine is accompliched by tronsferring to its first Instriccion

3 ERN s

vord. I possible, this is done with indirect nddressingj OvaCTVise,

v

the operation code 1 01d of this word will contuin the oncravion

-

code for an meonditional transfer, which in snie cases may he

nlaced there by the ecallling ins sructione In cither case, this Tirct

tnstruction word is nodified curing exccution of the nrograre On
other commuters, when a retrn address 1s saved, 1t is saved in the
address Tield of an instruction word at the end ol its suiroutise.
This instruction word is later executed, and the res:1t Is %o trons—

fer control to the return addrest. Tlere again we have an “natruetion

word wnich is modified by the nrograne

113

2~10'Subroutines

The exlistence of subroutines in a program being proved corrcct
gives rise to a problem concerring the proper construction of con-
trol paths in that program. We know, even when we are not working
in assembly languagey that one of the functions of a suhroutine
call statement is to transfer control to the entry point of the
corresponding subroutine. Suppose, however, that we constructed a
control path which entered the subroutine when it came to a call
statement, The only way that our control path, or some future con-
trol path, could get back into the calling program is through the
return statement of the subroutine. But 1f the subroutine is called
more than once, the return statement can return control to a number
of different places. The only way we can tell where the return state-~
ment is going to lead us 1s by reference to the return address; and
in most languagés,'the return address is kept carefully hldden from
thé view or cohcern of the programmer.

In assembly language, of course, our return addresses are in
full view., We may, if we wish, construet control paths which lcad
from call statements into subroutines, and whose final assertions
involve the return address, The initial assertion of a control path
leading through a return statement will then involve a ret irn ad-
dress, and this assertion will allow us to determine which'way to
go after the subroutine is finished. If we do this, however, the
assertions In our subroutines will be guite complicated. Consider,
forr exampley the first control polnt in a sulrontine. If this sub-
routine is ecalled from p diffevent placesy we will have n liffercat
control paths which end here, and we will have to construct an as-
sertion at this point which is truc no matter wvhich control path

~we have taken. If Al’ eeoy A, are assertions which hold at the n

114

are the corrosn nding

o

different call statements, and A7y eeey 3

return addresses, then
ox (4

(Al and (r=a.)) or (A2 and (r=a_)) O o.o
» sub-

an assertion whiﬂh will be true at the begimming of the
ti 124 nrovided that each call statement left its ret.rn zdfress
th before a

i

&}

> control pa

Tou
l}’ dt th& au
11 have to coistruct an

the register re Sinilar

atement in the subroutine, we
ry retirn addres

~h
3

rbitra

at the

.plt

(

return s
will lead correctly to an
return ad-iresss

assertion that
seoy A! are assertions which hold

If Ai,]
respectively, then

sevwy an

e L
(A! and (f—a)) or (A; and (r=a,)) O «.. Or (A! and (r=a_))

routire.

will hold at each return statement of the subrontine, provided trat
it transfers control to the address in the register re This division

es to

trans
into cases will then be carried throughout the proof of the sub

Normally, the assertions A will have certain similarit

each other, which will tend to reduce somewhat the labor of vroof,

The difficulty of this approach to proving subroutines correct be~
are mi {‘*J

If routine A calls B at n places and routine B calls C
then there are nem assertions connected by "or™ in the

subroutines.
above. Further levels will lead to firther mltiplica-

at m places,

routine C as
tion, .

There is another method of proving subroutines correct which
introduces into the proof process the same sort of division of Jabor
i gramyning

that thie use of. subroutines: introduces into programmlig itself.
Suppose that we have a subroutine X which does hot call any other

subroutines at further levels. We may then prove this subroutine

115

correct as a separate program, without reference to any other
routine which calls it. We will have to do this with respect to
some initlal assertion A and some final assertion A¥; at the same
time, we note‘that X changes only the values of certain variables
Xqy eeoy xk, Now suppose that the program P calls X at n places.,

At each of these there is an assertion Ai, and at the next state-~
ment following a given call stotement, 1, e.; at its return address,
there is an assertion Aio If Ai = A and Bi’ and Ai = A' and Bi’
where Bi does not involve the variables Xy9 seey Xy then the path
from the call statement to its return address, through the subroutine,
is valid. We may thus regard the call statement as if it were an
assignment statement of a special kind. Hence our pontrol paths,

in partlcular, do not need to lead from a call statément to the
start of the cprrespondingAsubroutine; rather, théy lead directly
through the call statement to the return address. This considerably
simplifies the proof of programs with subroutines.

For a subroutine with parameters, the process is slightly more
complexs. The assertions A and A' above will now depend, in general,
on what the actual parameters are. If a subroutine is meant to be
called with m actual parameters, we may denote them by Pys eees Do
and construct assertions A(pl, eeoy D) and A'(pl, eesy D)o In the
proof of correctness of the sulroutine, certain assertions will in-
volve one or mofe of its formal parameters. Each such assertion is
then understood to be a parametrized assertion as above, in which
each formal parameter occurring in this way is replaced by the cor-
responding actual parameter symbol pi. When the subroutine is called
the validity of a control path through the call statement to its
return address in the calling nrogram is established by noting the
actual parameters with which the sabroutine is called, substituting

these into A(pl, seey pm) and A,(pl, ceey pm), and fOllOW'ing the

116

implicatlons of the correctness of the corresponding path of length
1 through the call statement,

The decomposition of the proof of correctness of a program with
subroutines into the sebarate proofs of correctness of the progran
and of the subroutines is a process which must, of course, be ri=-
gorousiy Justified and not taken on faithe. In fact, it is very easy
for this process to be constructed incorrectly. Suppose, Tor example,
that routine A calls B using a calling instruction which leaves the
return address in register R, and routine B calls C using the same
calling instruction. An experienced programmer will now notice that
B must save the return address somewhere; otherwise it will be lost
when B calls Cy and we will never return to routine A (and in fact
we will probably enter an endless loop). But the statement that B
saves and restores R is not necessary~in order to vrove that B is
correct., Thusy if B does not save Ry the routines A, By, and C may
all be correct separately, but not when they are combined. We must
therefore state a set of rules which will be used whenever subrou-
tines are called, and we must then prove that, if thesc rules are
followed, the correctness of a collection of routines separately
is equivalent to their correctness as a wholeo

For programs in algebraic and higher-~level languages, the sune
method may be used. It is clear, in particular, that in order for a
program written in such a language to be execnted correctly, the
compiler or other language vrocessor for the given ?anngge'must
itself be correct. But if the compiler is correct, then the object
code must be produced in a corvect manner,y and this incliades the
statemont that the rules which are followed by all objoct coile in
its hondling of subrontines nre valid in the senso delin.d 2hove,

dince these rnles nre valid, we do not need Lo wore s aboot Lhen in

117

writing our programs in such a language. We simply prove each
subroutine cdirect,‘;nd trust to the compiler to execute the pro-
g;am correcfly as a whole, automatically.

For recursiv‘e"programs, there 1s one further consideration.
A collectlon of fecursive programs may be separately correct, and
a reasonable collection of rules may be strictly followed witp
fespect to communication between subroutines, including the handling
. of a push~-down list, and yet the collection of programs as a whole
mé.y be only partially correct. This 1s because of ﬁhe problem of
unlimited growth of the push-down list, or, what is the same thing,
unlimited increase in the recursion level. The fact that this can-
not hapﬁén_mﬁst therefore be shown separatelys it is a consequence
of the fbllowing fact,‘ghich is usually true for eorrect recursive ’
Aroutin?sg Iet Py, eesy P, e routines which call each other mutu-
ally, and et the various arguments with which these routines are
called be ordered in some way.(ifctheretexist an infinite number
of possible sets of arguments, these must be well-ordered). Then
if Pi is called with a set Sx of arguments, and Pi proceeds to céll
Pj with a set Sy of arguments, we must have Sy.S Sx in the ordering
of the sets of arguments; in sddition, if 1 > j, we must have

SY < Sxo

118

2«11 latrix Hlltlp —pavroa

As ouar final exenple of a slightly longer prozren, we shall
prove the partial correctness of & matrix multinlication ro.sine.
This wil be used in the next section, vherc we disciss wys of

ebbreviating comuonly occurring correctness arpuwiorts .

Three indices, I, J, and K, are nsed in this program, and ench
of them has its corresponding loop. The statement numbercd 3 is
common to 211 three loops, and thereforé 1t is the only necesrary
control roint, aside from the starting and stopping}points. Our
firét tasky therefore, is to determine precisely whet the interme-
diate assertion should be at stztement number 3. It is clesr that
this aszertion depends heavily on I, J, und K. The first I-1 row
of the matrix C have already been filled in at this points this
assertion will be denoted by RGWS (I-1l)e The first J-1 clemcnts of
the I-th row have also been filled in, and this assertion is de-
noted by ROW(I, J-1). Finally, 35 contains a partial sum correspon~
ding to the J-th element of the I-th row, this partial sum inclu-
ding all terms below the K~th term. We denote this last assertion
by ESUM(S, I, J, K=1), The final assertion of this prozram is now
ROAS (N), and the auqertlons at statement number 3 include RW<(I-1),
ROW(I, J=1), and ESUM(S, I, J, K=1), together with the statemont
that each of the indices I, J, 2nd K has an integer val.ae betucen
1 and N inclusive. As before, the statements that I, J, ~nd I are
strictly positive nre necded only to insure that the vurious sub-
seripts in the program will all be in their proper ranges. Ve give
the program with its asscrtions, first maFlng inductive definitions

of ROWa, RO4, and ISUM:

119
** ROWS (0) = TRIE.

*k ROWS (I) = R’ows(I-l) JAND. ROW(I, N)

* ROW(I, 0) = oTRUE.

*k ROW(I, J) = ROW(I, J-1) «ARD. (C(I, J) = S) .AND.
ok ESUM(S, I, J, N)

** ESUM(S, I, Jy 0) = (8 =

** ESUM(S, I, J, K=1) = ESUM(S + A(I, K)*B(K J),

*N21 |
I=1
1 J=1
K=1
s=0

*1<I, ILNy1gKJy,JEN, 1<Ky KN,
* ROWS (I-1), ROW(I, J-1), ESUM(S, I, J, K=1)
3 S =8 + A(I,K)*B(K,J)
K=K+ 1
IF (K +IE. N) GO TO 3
C(I, J) =8
J=7 + 1
IF (J JIE. N) GO TO 2
I=I+1
' IF (I JIE. N) GOTO 1
* ROWS (N)
CONT INUE

This program has five control pathse. The first is

* N > 1
I=1
J=1

K=1

120

S =0
*1<I, TSN 1T, TSN, L<K KT,

* ROVS (I-1), ROW(I, J-1), Bouli(s, I, J, K-1)

Here 1 < Iy 1< J, and 1 < K follow from I = 1, J = 1, ond X = 1
respectively; I £ ¥, J < Ny and K £ N follow fron these and Trom
N > l. The remaining conditions are true by definitionj; specifi-
cally, ROWS({I=1) = ROS(0) = TLUB.y RO4(I, J-1) = RCI(I, Q) = \
IRE., and E3UM(S, I, J, K-1) = BESUM(S, I, J, O) = (T ~ 0), vhich
iz clearly true., The next three control nzths zre the loop control

vaths; the one for the innermost loop is

*1<I, I<H,1<J, LN, 1<Ky, K<y
* ROUC (I=1), ROW(TI, J=1), BAUIN(3, I, T, E=1)
S =8 + A(I,X)*(K,JT)
K=X+1
(X< 1)
*1<I, I<N, 1T, TSNy, 1<Ky, K<L,
* ROWS (I-1), ROS(I, J=1), BOUM(S, I, J, ¥=1)

Here 1 < K is clear because K increases, K < ¥ is clear from the
condition K < ¥ in the path, and ESUM(3, I, J, K=1) =% the be;in-
ning of the path becomes ESTM(S + A(I,K)*B(K,TJ), I,.J, K), which is
succéssively transformed .into ESUM(S, Iy Ty K) 2nd then -Gili(l, I,
J, K=1). The other conditions at the end of this path sre 'mehanged
by the path because 3 and K are not invoived in thene The next

outer loop control nath is

*1< T, TSN, 1T, T<il, 15K K< H
* RG‘-’S (I"l), R ’WT(I’ QT-'].), E\(:'{R’z(s’ I, J., I:"l)
S =8 + A(L,K)*B(K,J)

121

K=K+ 1
(X > N)
C(I, J) =68
J=J+1
(T <M

*ROUS(I—].), RW(I, J"l), ESUM(S, I, J, K‘l)

The arguments for 1 < K, K < N, and ESUM(S, I, Jy K=1) herc are
the same as in the first path, and those for 1 < I, I £ N, and
ROWS (I-1) the same as in the second. We have 1 < J at the end
since J increases, and J < N from the condition J < N in the pzth.
Wé must have K = N at the beginning of the path in order to have
K > N vhen it appears as a condition, and thus ESUM(S, I, J, N)
holds up through C(I, J) = 83 when combined with this and ROV (I,
J=1), the result (by the definition) is ROW(I, J), and then J is
increased by one, giving ROW(I, J=1) again. The dutérmost loop
control path is

*1<I, IT<Ny1KJTyTLN, 1<Ky KN,
* ROWS (I-1), ROW(I, J-1), ESUM(S, I, J, K=1)

S =8 + A(I,K)*B(K,J)

K=K+ 1

X > N)

c(I, J) =8

J=J+1

(T > N)

il

122

I=I+1

(I<m

J=1 ‘
K=1

S =20 .

*1<I, ILNy1Ty,TLN, 1<Ky, K<,
* RO4S(I-1), ROW(I, J=1), ESUM(S, I, J, K=1)

Here we have 1 < I a2t the end since I increases, and I < ¥ from
the condition I < N in the path. As before, we must have K = I
at the beginning of the path, and also J = HNj also as before,

we have ROW(I, J), that is, ROW(I, W), valid just before the
statement J = J + 1, and combining this with ROWS (I-1) gives
ROW3(I) by the definition, following which I is increased by one,
giving ROWS (I-1) againe. The other conditions in this path follow

as in the first path, Finally, there is the path

 *1<I,ILN,1<£J, TN, 1<K, K<,
* ROWS (I-1), ROW(I, J=1), BSUM(S, I, J, K~1) .

S = 8 + A(I,K)*B(XK,JT)
E=K+1
X >N
C(Iy, J) =8
Jd=J+ 1 9
(J > N)
I=T1I+1
(I>m
* ROVS (N)

~de

In this path, by arguments resembling the preceding, we rust heve

had I = ¥y J =N, and K = ¥ at the beginning. 25 in the preceding

123

path, ROWS(I) holds just before the statement I = I + 1; but this
1s ROWS (N), and ROWS (N) continues to hold through the end of the

pathe Our program has thus been proved partially correct,

"'l-._ ftf’ld@rd .\:JI‘.',-,

The proof developed in the preceding section hos mnde patently
obvious the need for efficiency in the proof nrocess. The nrogran
whose partial correctness was proved there uses only the most
eclementary of programminé techniguese It consists of twelve state-

ments, plus CONTIVIM ot the end, and it is equivalent to

DO1I=1, N
DO1J =1, 1

S =9 + A(I, K)¥(K, J)
1 C(I, J) =5

which contains only six statementse Yet its wroof took over threc

gps, although admittedly half of the proof consisted in listing
paths, If we are to be able tc verify programs of any reasonable
length, we must learn to skip steps; we must identify certain
arguments which are very often used in proofs of this ¥ind, and
agree not to make such arguments explicitly in the future. We shnll
now specifically identify four of these standard argunents, and
postpone the proof of termination of our matrix miltivlication
program vntil the next sections

Each of our four arguments will be piven an Idntilying lester,

When this letter apnears 1In porentheses after an as:sertion ni the
end of a control pathy the corresponding standsrd argument o ng-
sumed to apply. As an illustration, we have ennstructed a hypo-

thetical control vath using all four of these arsumerts, as followss

‘o

125

*1 <I, ILNy F(Sy7T)

K=1
I=I+1
(I<N)

*1<I(I), TSN (©)y K=1 (&), F(S, T) (V)

The meanings of the identifying letters are as follows:

(U) The assertion is unchanged during the path. That is, an
asseftion at the end of the path is identical to one at the be-~
ginning, and none of the variables which appeared in thaf asser-
tion were changed by any assignment in the path. Thus, in our
example, the assertion F(S, T) appears both at the beginning and
at the end of the pathy and the two given assigﬁments change only
X énd I, Notice that S and T could have appeared, although they
did not,y on the righi sides of these assignments and in the in-
termediate condition.

(A) The assertion is the result of an assignment which is
made on this path and whose varlables are not later changed. If
the assignment is ¥ = e, where ¥ 1s any variable and g any ex-
pression, then the condition may be (¥ =e), (¥ <e)y (X > 2)y
(e = v), etec. In the example, K is set to 1 as the first assignment
of the path.'Note that X could have been set to something else be-
fore the statement K = 1 in this path, although not afterward; also
K could have occurred in right sides and intermediate conditions,.

(C) The assertion is the same as an intermediate condition
appearing in the path; whose variables are not later changed.

Thus in our example the condition I < N implies the final asser=-
tion I < Ne. Here again, I and/or N could have appeared on the
right side of an assignment after the intermediate condition

I < N, or in any other intermdiate condition, or on the left side
before (I < N), as here in the assignment I = I + 1.

126

(I) The assertion is an inequality which is "strensthened"

by the path. For an inequality of the form a < b, for example,
b may increase during the path, or a may decresse, but not vice
versa. The same lmequality is presumed to hold st the bhes ginning
of the path and at the end. Thus, herey the inequality 1 < I is
strengthened by the statement I = I + 1.

Of the 3% assertions needed in the proof ofyb’ur matriz male-

tiplieztion program, 18 follow directly from these four cizndurd

s\i

argumentse. We shall rewrite the five paths of thig nrogran with

the standard arguments specified, omitting all nroofs:

~5 (&4

* N> 1
I=1
IT=1
K=1
& =0

"

13T W), ILH, 15T @), IT<H, L7 (),
* K S N‘, RO‘v‘urS (I“l), RO‘V’I(I, J-l)’ 1;::‘]1‘(3, I’ J, IC"l)

*1< I, ILH, 1Ty, TN, 1<K, K< il
* OIS (I-1), ROW(I, J=1), ESM(5, I, J, K~1)
S = 8 + A(I,K)*B(K,T)
K=K+ 1
(K < M)
*LLI WM, I N, 1T Dy, TN (D,
*1 <K (1), K< W (C)y ROS(I-1) (U),

ROJ (I, J-1) (U), BSUMG:, I, J, I=1)

*

127

*1<I,I<N1<J, TSN, 1<K, K<,
* RO‘\IS(I"’J.)’ ROW(I, J‘l)’ ESUT’I(S, I, J, K“l)
S= 8 + A(I,K)*B(K,J)

K=K+ 1
X > N)
C(I, J) =8
J=J+1
(F SN
K=1
S =0

*1 <I(U)y ISN (W), 1T (I)y TN (),
*1 <K (A)y K < Ny ROWS (I-1) (U),
* ROW(I, J=1), ESUM(S, I, J, K=1)

*1<T, I<N,1<Jy J<H, 1<Ky, K< N,
* ROWS (I=1)y ROW(I, J-1), ESUM(S, I, J, K~1)
S = S + A(IQK)*B(K,J)

K=K+ 1
(X > N)
C(I, J) =S
J‘;J+l
(T >m
I=I+1
(I N
J =1
K=1
S=0

*1 < I (1), ISKN(EC)y 1T W, TN,
* BSUM(S, I, Jy K-1)

128

*151,ISH,ZLSJ,J’gN,l-g}:,st?, |
* ROWS (I-1), ROW(I, J=1), ESUM(S, I, J, F-1)

S =8 + A(I,K)*B(K,J)

K=K+1

(X > n)

C(I, J) =8

J== J+ 1

(J_ > N)

I=1I+1

(I>N)
* ROWS ()

127

*1 < I I<Ny 1Ty TN, 1<Ky KN,
* RO‘MS(I‘].), ROW(I’ J-l)’ ESUT'I(S, I, J, K“'l)
S = S + A(I,K)*B(K,J)

K=K +1
X > N)
C(Iy J) =5
J=J+1
(T<WM
K=1
S =0

*1<I(W, ISN(W,15 T (I)y TLN (),
*1 <K (A)y, K < Ny, ROWS(I-1) (U),
* ROW(I, J=1), ESUM(S, I, J, K=1)

*151,ISN,ISJ,JSN,ISK,KSN,
* ROJS (I"”l)’ ROW(I, J"‘l), ES[M(S, I, J, K"‘l)
S = S + A(I,K)*B(K,J)

K=K+1
(X > N)
C(I, J) =8
T=J+1
(T >N
I=I+1
(I <N
J=1
K=1
S=0

*1 < I (1), ILKN(EC)y1<T W, TLN,
* BSUM(S, I, Jo K=1)

*1<I, ILH, 15T, J<N, 1<K, X< 5,
* ROWS (I=1)y ROWN(I, J-1), BIUM(S, I, J, ¥-1)

S =8 + A(T,K)*B(X,T)

K=K+ 1

(K > 1)

C(I, J) =8

J= J+ 1

(T >N

I=TI+1

(I >N

* ROWS (1)

128

2]

129
PROBLEMS

1. The following program computes the square root of X to
within a tolerance of 10“5, under the assumption that X is posi-
tive, It 1s given with assertionsj ABS denotes the absolute-value
function. We repeat, as noted in sectlon 1l-2, that roundoff error

and other types of etror assoclated with floating point are to

be ignored.
*X >0
A=X
B=1

TOL = 1,0E-05
* A¥B =X, A >0, B>0
1 A = (A + B)/2.0

B = X/A

IF (ABS(A-B) > TOL) GO TO 1
* ABS (A=SQRT (X)) < TOL

Prove the partial correctness of this program. (Note that if the

final assertion-had been ABS(A-B) < TOL , the partilal correctness
would have been trivial.)

2. (a) Consider the path in the above program which starts
and ends at statement number l. Verify this path with the addi=
tional assertion A > B at statement number 1. (Hint: Write A =
P~4d, B=p+ g3 theng::(A+B)/2°0andX=A*B=22-_qz<22.)
(b) If X < 1, the assertion A > B will not, of course, hold
at the end of the control path which starts at the beginning of
the program. Therefore, let us use (A = X «(R. A > B) instead,
Re=verify thé partial correctness of the entire program with this

e
Lo
o)

new assertion at statement number 1.

(¢) If A > B and A*B = X, show that E&EQ -"fif <'%{A - 7%},
(Hint: First show that the absolute value signs may be removed.)

(d) Add to the program the statement I = O at the beginning
and the statement I = I + 1 somewhere within the loop. Add the
assertion ABS(A-B) g ABS(X=1.,0)*(2,0**(~I)) at statement number
l. Using (c¢) above, verify the partial correctness of the ex-
panded program.

(e) Verify the correctness of the expanded program. (The con-
trolled expression is obviously I; therefore all we need to do
is to add, and verify, another additional assertion at statement
number 1, giving a bound on I.) | ‘

(f) Give an intuitive argument to the effect that the cor=-
rectness of the expanded pregram is equivalent to the correctness
of the original program. (Consider the fact that no new statements
were added which may change any variables not present in the ori-

ginal program,)

3. Translate the following program according to the rules

given at the end of section 2-2:

OPEN FILE INPUT
OPEN FILE OUTPUT
1 READ INPUT, X
IF (EOF, INPUT) GO TO 2
WRITE OUTPUT, X
GO TO 1
END FILE QUTPUT

e}

It is assumed that INPUT and OUTPUT here are file names.

131

4, (a) The program of the preceding problem is an adaptation
of the program given in section 2-2, and in this section it was
stated that this program is in turn equivalent to one glven in
gection 1-8. Formulate the initial, intermediate, and final as-
gertions for the program of the preceding problem which correspond
to those of the program in section 1-8.

(b) Prove the correctness of the program of the préceding}

problem with respect to the assertions obtalned as above.

5., (a) Suppose that A(1) = 3, A(2) = 5, A(3) ="7, A(¥) = 5,
B(1) = 5, B(2) = 5, B(3) = 7, and B(4) = 3. Is PERM(A, B, &) true?
(b) Suppose that A(1) = 1, A(2) = 2, A(3) =3, A(k) = 3,

B(1) = 2, B(2) = 3, B(3) = 4, and B(4) = 1. Is PERM(A, B, 4) true?

6. What .12 the sortedness of éach of the following arrays?
Assume that the elements of each array are ordered as gilven.

(a) 64 3, 8, 10y 2,

(b) 19, 174 12, 10y 3, 2, 1o

(c) 4, 8, 2, 11, 1, 12,

(d) 1, 2, 3, 44 55 64 74 84 94 10o

7. In the program of section 2<%, suppose that we alter the
condition in statement number 1 from .GTe. to .IE., and rearrange
the other statements accordingly (without changing them), as
follows:

I=1
1 IF (A(I) oIE. A(I+1)) GO TO 2
T = A(D)
A(I) = A(I+1)
A(I+1) = T
IF (I Qe 1) GOTO1

132

I=I-1

GO TO 1
2 I=T1I+1

IFr (I .NE. N) GO TO 1
3 CONTINUE

(Notice that, in the process, we have reduced the total number
of executable statements in the program from 12 to 11.) How does

this change affect the proof of correctness of the given program?

8+ Suppose that we change statement number 2 (in the ori-
ginal program of section 2-~4, not as modified above), together

with the following two statements, to

T = A(I+1)
A(I+1) = A(T)
A(I) =T

How does this change affect the proof of correctness of this

program?

| 9« In the following problems, assume that MERGE(I, J, K) is
defined, as in section 2-5, relative to the arrays A, B, and C.,
(2) Suppose that the arrays A, B, and C are given by
1, 6, 8, 12, 17
2, 12, 17, 19
1, 2, 6, 8, 12, 17, 19
(that isy A1) = 1, A(2) = 6, A(3) = 8, etc.) Is MERGE(5, 4, 7)
true?
(b) Suppose that the arrays A, B, and C are given by
1, 6, 8, 12, 17

2""" 259 299 319 33
7. 6. 8. 12. 17, 24 25_ 29. 21. A

133

Is MERGE(5, 5, 10) true?

10.

(a) Suppose that A(1l) = A(2) = eee = A(10) = 17, Is

ASC(A, 10) true?

(b)

Suppose that A(1l) = <%, A(2) = =3, A(3) = ~2, and A(4)

= =1, Is ASC(A, i) true?

11,
(a)
(v)
(c)
(d)

12,
of each
(a)
(b)
(e)
(@)

13.

What is the value of each of the following?
(K = 2) after (K = K + K)

(I<J+5)afteg (J=10=7J)

(W = Y) after (W = Y*Y)

(K # L) after (K=K + 5)

Use the back:substitution rule to determine the value
of the followings

(5 = SIGMA(A(K), Ky 1, I)) before (S =S + A(I))
(MERGE (I-1, J-1;, K=1)) before (K = K + 1)

(T < U+ V) before (U = 2%7)

(O >E + 5) before (D = E + 3)

Modlfy the definition

LV(LPy, L) = (if L = nil then LP = O elgse

(LP is odd and FS(LP+l) = gar(L) and LV(FS(LP), cdr(L))))

given in section 2=7 for the assertion IV ("list value") &s di=-

rected by each of the following modifications in the list pro-

cessing conventions given Just before that definition. Some of

these modificetions are mentioned in the paragraph following the

definitionj each one is to be considered separately.

(2)

The special pointer which marks the end of a list 1is

taken to be a constant called NIL.

100

(b) Any pointer to the j-th item in the free storage is given
by J, rather than 2j-1.

(c) The first element of each pair denotes the content of
the item, and the second denotes a pointer or zero sas originally
specifled for the first,.

(d) Two arrays FS1 and FS2 are used, The j-th item consists
of FS1(j) and FS2(j); by a pointer to this item we mean the in-
teger j. The content of the item is in FS1(j) and the pointer or
zero is in FS2(j).

(e) A double array is used; otherwise, same as (d) above,

with FS1(J) replaced by FS(1, j) and FS2(j) replaced hy FS (2, 1.

14, In each of the five cases above, state in detail what
changes must be made in the list wwinding program of section
2=74 and in its proof of correctness, in order for it to remain

correct with respect to the assertions given,

15. The following operations and pseudo=onerations in an

imaginary assembly language are found in Programming s An Intro=

duction To Computer Techniques by Maurer. We shall assime that
our computer‘has an accumulator, which is the only register with
which we shall be concerned, plus an unspecified number of memory

words which have names I, Jy Ky eeo o The pseirdo-operntion
n RE 1

where n is any name, reserves one memory word and gives it the

name n. The pseudo=~operation
n co k

- where a1 is any nome and k is any constant, reserves one memory

135

word and gives it the name pn and the initial contents k. The

following instructions are given with their approximate alge-

braic~-language counterparts; here ac denotes the accumulator,

1D
AD
SU
MU
DI
ST
TR
TZ

H <K K K K K

BETA
BETA

ac =Y

ac =ac +Y
ac =ac=~-Y
ac =ac *Y
ac=ac /¥
Y =ac

GO TO BETA

IF (ac = 0) GO TO BETA

The following program now represents in this assembly language

the exponentiation program of section l-l:

Mo =2 H

ZERO

RE
RE
RE
RE
co
Cco

O H K R M M

ID ONE
ST X

D ZERO
ST
LD
SU

- R; 2 O oH O H

TZ
ID
MU

ST X
ID I
AD ONE
ST I
TR L1
L2 (continue)

Prove the correctness of thils program in the same way that the
correctness of the original program was proved in Chapter 1l.
Assume, for the moment, that the approximate algebraic-language

equivalents given are in fact exact,

16. Translate the prime-testing program of section 1-9 into
the assembly language of the preceding problem, and prove its
correctness in this fbrm, nder the same assumptions as above.

You may use one additional instruction:
TP BETA IF (ac > O0) GO TO BETA

Your initial assertion should be I > 4% (as mentioned in section
1-9, the program is not correct for I = 2). Note that the MOD
function may be translated into an assembly language using a
divide instruction which does not compute remainders (as the one
defined above) by dividing, then multiplying, and finally sub-
tracting; thus, for example, MOD(7,2) = 7=(7/2*2) = 7=(3*2) =
7=6 = 1,

17. Suppose that a computer with no index registers and a
maximum of 4K 18-bit words has the assembly language defined in
problem 16 above. There is one instruction per word, and standard
(not base-~displacement) addressing is used; the first six bits

of an instruction are the operation code, and the remaining 12

137

bits are the address. The operation codes for the instructions

which we have introduced are given as follows in octal:

ID -- 21 MU — 25 TZ - 50
AD - 23 DI — 27 TR == 60
SU == 24 ST ~= 22 TP — 52

Suppose that the program of problem 15 above is loaded into
memory, starting at octal address 0206. Formulate the precise
assertions about the instruction and data words of this program
which should be made at its beginning and at Ll and L2 in order
to complete the proof -of correctness of this program begun in
problem 15, taking now into account the fact that it must be
proved that this ﬁrogram does not modify itself,

18. The following program represents, in the assembly lan-
guage of problem 15 above, the summation program of section 1~7.

It 1s assumed that the pseudo-operation

n RE m

where n is any name and m is any integer, reserves m memory words
for an array called n (of dimension m)e All variables are assumed

to be integers.

| RE
I RE
S RE
A RE 100
ONE Cco
ZERO CO
INST AD A
START, D INST

ST L2

LD ONE
ST I
ID ZERO
ST S
Ll ID S
2 RE 1l
ST S
1D 12
AD ONE
ST 12
LD I
AD ONE
ST I
ID N
SU I
TP Ll

Suppose that this program is loaded into the computer of problem
17 above, starting at octal address 105l. Prove the correctness
of the program with respect to assertions derived from those in
section 1=73 the initial assertion must include N < 100 because
of the restriction in the program above on the array A. Note that
this program modifies itself; the operation code for an add in-
struction is such that the sign bit in the instruction word will
be zero, so that, as an integer, the instruction word will be

positive. (This insures, for example, that adding 1 to

AD A
will produce

AD A+l

no matter how negative integers are represented.)

o

139

19, The following FORTRAN subroutine is given with assertions:

SUBROUTINE ROOT
COMMON K, By C, N

*C >0

B = SQRT(C)
*B =YC

RETURN

END

It is called by the following FORTRAN program with assertions:

REAL N

COMMON Ay B, Cy N
*N>0 ‘
o C = 1,0

A = 0,0 "
*N>0,c>0,csN,A=)§Y§
1 CALL ROOT
2 A=A +B

C=C+1,0

IF (C oLE., N) GO TO 1

* A = gﬁ

X4 .

The COMMON statements In the program and in the subroutine, of
course, insure us that all variables here are globale Assume that
the subroutine is correct (the proof of this would involve the
correctness of the further function SQRT called by it).

(a) Prove the correctness of the program under the assumption
that the statement CALL ROOT may be replaced by its effect (i. e.,
by the presumably correct subroutine).

140

(b) Prove the correctness of the program urder the assumption
that the statement CALL ROOT is the same as "Set R = 2 and go to
ROOT" and that the statement RETURN 1s the same as "Go to the
stétemenx'whose statement number is given by the value of R,"

Assume that R is an integer variable.

20, (a) Suppose that we were to add the statement A = 0,0
after B = SQRT(C) in the subroutine. Does this affect the cor-
rectness of the subroutine?

(b) Does it affect the partial correctness of the main pro-
gram?

(c) Where does the proof of correctness of the main program
break down under these conditions?

(d) Suppose, instead, that we were to add the statement C
= 1.0 before B = SQRT(C) in the subroutine, Does this affect
the correctness of the subroutine?

(e) Does it affeet the partial correctness of the main pro-
gram?

(f) Where does the proof of correctness of the main program

break down under these conditions?

21, In the matrix multiplication routine of section 2-11,
we used the variable S as a partial sum, rather than C(I, J),
for the sake of efficiency. Suppose, however, that we do not do
this; that is, we eliminate the statement C(I, J) = Sy and re~
place S by C(I, J) everywhere else in the program. How does this

change affect the proof of partial correctness?

22, Complete the proof of correctness of the routine given

in section 2-11.

1

23, Identify the standard verification arguments (see sec-
tion 2=12) which may bs used in the proof of partial correctness
given in sections 1-4% and 1=5.

24, Identify the standard verification arguments which may
be used in the proof of partial correctness given in section 1-10.

1h2

3 STATE VECTOR FUICTION THEORY

v

)
M

The title of this chapter “7oes not edeyaately convey its sen~
eralitye State vector function theory, as we shall develon it, is

nothing less than the theory of programs as tley are actually run

on computers. Various other "theories of programs" or "thcories of
algorithms" have been formulated, but most of these are »hout nro-
grams for artificially constructed machines, such ags Turing raclines,
A Turing machine has gtotes, which uay be thought of as intecger val-
ues of 2 single varizble which constitutes the entire "innerds" of
the macnine. A digital computer, on the otler hand, has gtote vec-
tors, and so does afprogram written 1n an algebraic or higher lavel
language. Fach state vector is a get of states.or values, one for

each variable. State vector functions are then functions on state

veetors, 1. e.y functions £(5), where S 1s a state vector.

In developing state vector function theory, the fundamental
object is the memory, which is a set of variables together with a
way of telling what values each variable can take. The reader who
is familiar with other mathematiecal theoriles, such as group theory
or automata theory, may make comparisons between the way in which
2 group. ah aufomaton, OT a memory (in our sense) is dcfined in
terms of sets and functiong. Once this is done, we may deline the
éoncepts of state vector and state vector function in formel terns.
We may then develop certain tlieorems, then use these to prove nore
complex theorems, and ultimatelyr build up a theory which ey then

be applied in proving assertions about arbitrary »nrogramse.

L/}

‘>

»

143

3~1 Sets and Functions

In order to develop our formal mathematical models, we shall
start with some basic facts abont sets and functionse. These may
also be foind in textbooks on elementary set theory, modern clgeima,
or fhc like.

The notion of =a g_é‘i:is fundamental to all mathematics. . set
contains elemeﬂtg, and each of these elements 1s a menber of the
set. If the element x is a member of the set X, we say that x is
in X, or x€ X. If x is not in X, we write x ¢ X. It is always
true that either x€ X or X ¢ X, for any element x and any set D

If X and Y are sets, then the union of X and ¥, or I Y ¥,
is the set of all clements which are in either X or ¥, und the

intersection of X and ¥y or X 0 ¥, is the set of all elemcnts

which az"e in both X and Y. Every set has a certain number of elc-
ments, and this numbér may be finite or infinite. If it is finite,
it may be positive‘ or 7zero. There is exactly one set vhose number
of elemcnts 1s zeroj this set is denoted by §, and is called the
null set. If X N Y = 4) for the gsets X and ¥, then X and ¥ are
called digjoint. If the number of elements in a set is infinite,
it is called an infinite set; otherwise, a finite set.

A finite set nay be specified by listing nll its elements
in braclkets. Thus X = §2, 3, 6, 7} means that X is the act con=-
sisting of the four elements 2, 3, 5, and 7. The set of all in-
tegers between m'and n inclusive will sometimes be abbreviated
£ s :
Fmy m+ly eeey ng3 if m = 1, we wwite {1y ouy nge

If evory elament of the set X 1s also an eloment of the

!

set Y, then we say that X is contained in ¥, or that Y contains Il.
These may be abbreviated XC Y and ¥ D X. If both X C Y and ¥ € X,
then X and Y must be the same set, i. eey X = Yo A subset of Y is
any set X contained in Y. Any property of the elements of a set
defines 2 subset consisting of all elements which have that pro=-
pértye. The set of all elements of Y which are greater than zero,'
for example, is a subset of Y3 it may Dbe dencted by %y € Y: y > O%.
A subset of Y is called proper if it 1s unequal to Ya

A function f witb domain X, where X is a set, is a way of
associating a value, called f£(x), with every element x € X. The
set of 2ll values of the function f is called the range of f. If
X is any set which contains tle domain of £ and ¥ is any set which
contains the range of f, we may write f: X—=> Y, and we may say that
f is a function from X to Y. Such a function is called total (or a
total function) if X is equal to its domain, and it is called
onto {or onto ¥) if Y is equal to its range. If £ is not neces-
sarily onto ¥, it is called into Y3 if £ is not necessarily totel,
$t is said to be pertial. (Partial functions may be thonght of s
"partially défined',“ 1e ey £(x) does not necessarily exict for

X € X, where 3 X > Y.) A function £ is one-to-one if f(a) = £(b)

always imnlies a = b.
THIOREM 3=l=l. A total funetion fi1 X ->X, where X is a [irite

set, is one~to-one if and only if it is onto. (Such a function 1is

called a permutation.)

PoCOR, If £ i not one-to-one, then there exist a € X, b € X
such thet f(a) = f(b). If ¥ contains n elomants, then the rarge of
f consists of £(g) together with the (at most) n-2 values £(x) for

x # ay X # Do There are thus 2t nost n~=1 values in thiz runge, vhich

ta

>

k5

shows that X 1s not equal to the range and therefore £ is not onto.
400nverse1y, if £ is not onto, the range of £ can contain at most

‘n-l elementsj since there are n quantitles f(x), for x ¢ X, at least
two of them must be the same, which shows that x 1s not one-to-one.

The restriction of the function f: X-> Y to the subset X' of
X 48 the function gt X? > Y such that g(x) = £(x) for all x £ X',
It is abbreviated f/X.

Iet £3 X— Y be a function and let X® be a subset of X. The
get of all £(x) for x ¢ X? is a subset of Y, If we denote this
gubset of Y by Y', we may write £(X?) = Y?, This notation is very
often used, although it would be more accurate to write f'(X!) =
Y:', where f? is the function from the set of all subsets of X to
the set of all subsets of Y defined by £/(X') = "y - Yt y = £(x)
for some x £ X?:, for each subset X' of X,

The inverse image of an element y € Y under a function f:

X Y is the set of all x ¢ X such that £(x) = yo

A function may be specified by listing all its wvalues if its
domain is finite., In particular, suppose that the domaln of a
function £ is the set 71, 2%, Then the function is completely spe=-

cified by giving £(1) and £(2), If £(1) = x and £(2) = y, then the

146

function is completely specified by writing (x, y). The expression
(xy ¥) 1s called an ordered pair, and the set of all such ordered
pairs (x, y)y for all x in a set X and all y in a set Y, is called !
the cartesian product of the two given sets X and Yy or X x Y,
(It is also possible to define functions in terms of ordered pairs,
rather than ordered pairs in terms of functions. In fact, the set
of all ordered pairs of the form (x, £(x)), for some function f,
may be taken as a definition of f£,)
Unions, intersections, and cartesian products may be extended
to the case of more than two factors. If xl, Xa, seey Xn are sets,
then their union is the set of all elements which are in any s
- of them, and their ;_nteg_grecfion is the set of all elements which
are in all of them. The union of the sets X
by U X,y and their intersection by n X

FEY I |
Xlx X2 X eoe X x is the set of all ordered n-tuples (xl, X5 eeoy

X), where each =, is a member of the corresponding xi. Following

the definition of an ordered pair above, we define an ordered

19 9 coey X 1s denoted

e The cartesian product

n-tuple as a function whose domain 1s the set 51, ..., n}, speci- ,
fied by giving the value f(i) for each i. In the ordered n=tuple '
(119 sees X,)y considered as a function £y x, = £(i) for 1 < 1 < ne

1
These constructions may be taken a step further. Iet I be a
gset and for each 1 ¢ I let Xi be a set. The union of all the Xi is
the set of all elements which are in any of the X 1? and is denoted by

'U 7 X40 The intersection of all the X, 1s the set of all elements

o

which are in all of the X49 and is denoted by Qr X4+ The gartesian
produet of all the Xy Wwill be defined as the set of all functions

f with domain I which are such that £(1) ¢ X:l for each 1 € I, This
preduct may be denoted by 17 Xi.

xeX
The identity funetion im any set X is the total function

1h7

e: X—X such that e(x) = x for all x ¢ X. The composition of
two funetions £f: X—Y and gt Y- Z 1s the function h: X—> 2
such that h(x) = g(£(x)) whenever this is definedj we write h =
f o go A function £: X~ Y has an inverse g: Y —>X if and only if
£fcg=eo

THEOREM 3-]1=2. A function has an inverse if and only if it
is one-to-one, and this inverse is itself one-to-one. Thé inverse
of a function is total if and only if the function is onto, and
onto if and only if the function is total.

PROOF. If the function f3: X —Y is not one-to-one, then
there exist a € X, b € X with f(a) = f(b). If £ were to have an

inverse g, then a = e(a) = g(f(a)) = g(f(b)) = e(b) = be Converse~

]

1y, if £ is one-to-one, we may define g: Y—>X such that g(y) = x
whenever f£(x) = yo This function is well defined, because otherwise
we would have g(y) = x, and g(y) = x, for x # X,y Or r(xl) =y =
f(xa), and f would not be one-to-one, If g were not one-to-one,
ve would have g(yl) = g(y?_) for vy #) i. eoy there exists x
with £(x) = Yy and £(x) = y2, which is absurde. The function g will
be total if and only if, for every y € Y, there exists g{y), 1. €.,
there exists x with £(x) = y, and this is true if and only if £ is
onto. The function g will be onto if and only if, for every x € X,
there exists y with g(y) = x, 1. 60y £(x) = y, and this is true if
and only if £ 1s total.

A total function f£: XY which is one-to-one and onto is
called a one-to-one correspondence.

COROLLARY 3«l-l. The inverse of a one-to-one correspondence

is a one~to~one correspondence.
A one=to-one correspondence is natural (or sometimes canoni-

cal) if there is a particularly easy way to define it. This, of

1he

course, is not a precise concept., When we state that there exists
a natural one-to-one correspondence between two sets, however, we
mean the following: (1) there is a one-to-ons correspondence; (2)
we are now going to define a particular one-to-one correspondence
which will be considered from now on as "the natural one" between
these two particular sets. As an example of this, we now define a
particular one=-to=-one correspondence which is very widely used.

THEOREM 3=1=3. Let X be any set and let P(X) be the set of
all subsets of X (including the null set and X itself). Lot B be
the set {true, falset of two elements, and let F(X, B) be the
set of all total functions £: X - B, Then there is a natural
one=to-one corregpondence between P(X) and F(X, B),

PROOF. For each subset X? of X let the corresponding f:
X-—>B be defined by £(x) = true if x £ X' and £(x) = false other=-
wise. This €arraspondents:13:tetals it-is-aled:-enssto-ene, because
different subsets clearly correspond to different functions. If
f: X—> B is an arbitrary total function, then the set of all x € X
for which f(x) = trus is a subset of X from which f is derivable
in the above way. Thus the correspondence is also onto.

A binary operation on any set X is a function f: X x X X.
For example, the operator + on a set X {if it 1s defined) corre=-
sponds to the binary operation f: X x X=X defined by £(x, y) =
X + Yo The domain of £ is the set X x X, 1o @., the set of ordered .
pairs (x; y) with x € X and y € X, and hence we should properly
write £((x, y)). However, when the demain of any function is a
cartesian product we shall drop the extra palr of parentheses. An
Dp-ary operation on X is a function £t X® X, where X® is defined
to be the cartesian produet of p copies of X, i, e.s; the set of
all total functions from {1, ecoy N% into X,

149

A relation on a set X is a map f: X x X—>3$true, false%.

For example, the operator < on a set X (if it is defined) corre-
sponds to the relation f£: X x X—>§true, false! defined by £(x, y)
= true if x < y and f(x, y) = falge otherwise. A relation may also
be thought of as a subset of X x X, by the preceding theorem. In
general, when we have a natural one-to-one correspondence between
two gsets and we are given an element of one of these sets, we may
regard it just as easily as an element of the other. In this case
the set of all subsets of X X X and the set of all maps f: X x X
ftrue, false: may be thought of interchangeably as the set of all
relations on X. As a subset of X x X, a relation is the set of all
ordered pairs (x, y) for which the relation holds true (x < y, in
our example). If a relation is called Ry and (x, y) is in the cor-
responding set (or, thinking of R as a function, R(x, y) = true),
we may write xRy.

A relation is reflexiye if xRx is always true and irreflexive
if xRx 1s always false. A relation is gymmetrie if xRy implies yRx
and antisymmetric if xRy and yRx imply xRx. (This includes the
possibility that xRy and yRx are never true at the same time.) A
relation is transitive if xRy and yRz imply xRz. A relation is an
equivalence relation if it 1s reflexive, symmetric, and transitive.

A partition (or a decomposition) of a set X is a set & of sub=
sets of X such that D N D = ¢ for any two elements D, D! ot D ’
and also D‘é{b D = X, That is, each element of X belongs to exactly
one D € S,

THEOREM 3slelt, There is a natural one-to-one correspondence
between the set of all equivalence relations on any set X and the
set of all partitions of X,

PROQF. Let R be an equivalence relation on X. For each x ¢ X,

150

let D_ = {¥ € X: XRy}o. (The set D_ is called the eguivalence
class of x in X.) The corresponding partition |/ is now the set
of all the D, for x ¢ X, with the restriction that if two ‘or more
of the D, are the same set then this set 1s counted only once.
Since R is reflexive, x & Dx and thus 9%39 D = X¢ Suppose that
Dy N D # ¢ 3 we will show that in this ease D_ = Dy There
exists z ¢ X such that xRz and yRz; if a ¢ Dx; gince: R 1s sym~
metrie, zRy; since R is transitive, xRz and zRy imply xRy, and,
again since R is symmetrie, yRx. If a & D, then xRa; since R is
transitive, yRx and xRa imply yRa, and a £ Dy. Conversely, if
a ¢ Dy then yRa, and since R is transitive, xRy and yRa imply

Y
xRa, 0 that a £ D;o Thus D_ = D_o Now let D be any partition,

and define the corresponding rethion R as a subset of X to be
the set of all (x, y) where x and y are both in the same element
D £ Do Clearly (xy x) € R for each x, so that R is reflexive.
If x and y aré in the same element of O , this is the same as
saying that y and x arey; so that Ry implies yRx; thus R is sym=
metric, Finally, if x and y are in the same element of §, and so
are y and 2, then, clearly, so are x and z. Thus xRy and yRz im=~
rly xRz, and R is transitive, which completes the proof that R is
an equivalence relation.

A relation is & partial ordering if it is reflexive,
antisymmetrie, and transitive, It 1s customary to dencte a re=-
lation by & if it is an equivalence relation and by < if it 1s a
partial ordering., A partially ordered get is a set X together with
a partial ordering on X. A partially ordered set has a gmallest
element x if x < y for 2ll y, and a greatest element y if x <y

for all xe It has a meximal element x if x £ ¥ implies X '=.ye and a
minimal element y if x < ¥y implies x = y.

]

A directed graph is a set X together with a set of ordered
pairs (x, ¥y)y £ € X, 7 € Xo If the ordered pair (x, y) is in this
set, we write x> y. The elements of X are called the nodeg of the
graph and the ordered pairs (x, y) are called the links. If x and
¥y are nodes, then we say that there 1s a directed path of length n
from x to y if there exist nodes xog esoy xn, Xy =Xy Xy = 7 wlth
xhl-) zi for 1 < 1 < n. There 1s always by definition a directed
path of length zero from x to x. A directed path of length greater
than zero from x to x is called & directed eycle. A graph with no
‘directed cycles is called acyclis. (By “graph" we shall always
mean a directed graph.) '

THEOREM 3-1-5. On any acyclic graph the relation Ry defined
by Ry if and only if there exists a directed path (of length > 0)
from x to y, is a partial ordering. {(Acyclic graphs are acco:bd:lngly
sometimes called ordered graphs.)

PROOF., By the above paragraph, R is certainly reflexive., It
is also transitive, beéause if there exlst nodes Xy ceey Xns xo =
Xy X, =T x1_1—> xi for 1 < 1 < ny and also nodes yo, ooy ym,

To =9 ¥y = By Yy 3> Ty for 1 < 1 < ny then we set Zg4n = Ty
1l <1 m and the nodes X _y coey X +m then satisfy Xy = %9 X

0 n+n
>X forl<ig<nand ntl < 1 < n+my 1. @0y

1<1gnim,e Thislmy :nd YRz imply xRz, If xRy and yRx, then bthe
above ‘6ématyuetion givea & directedrpath frem x to x which can have
length zero only if the original two paths do, 1. esy X = y. Since
the graph 1s acyelie, this must bs the case, which shows that R is
antisymmetric,

A node x of any directed graph is initisl if y — x does not

= Ya = %y and x

152

hold for any node ye It is terminal if x-5 y does not hold fer
any ncde yo. These definitions hold in any directed graph; if a
graph is acyelic, initial nodes are minimal nodes (in the partial
ordering of the above theorem) and terminal nodes are maximal nodes.
' There are a number of special set-theoretical conventions
' which we will use., The fAotation AC B (or B D A) means that A is
a subgset of B which is not necessarily proper; that is, it msy be
that A = B (and we will not use the notation A C B or B2 A)e The
identity funection on any set will be denoted by e. The ecomposition
of two functions £ and g is denoted by h = £ <« g, where h(x) =
g(£(x)) (and not f£(g(x)), as used by some authors); thus £ - g
means intuitively "first apply f, then apply g." The inverse of a
function £ ig the function g such that £ v g=e (not g~ £ = e,
although this follows immediately). The cartesian product of the
sets X4, for all 4 € I (for some set I), will be denoted hvyITTX1

(and not X X,)e
wT i

153

3-2 Memories

We shall take the fundamental position that all characteristics
of memory may be inferred from the values which are gurrently assumed
by certain Eﬂgﬂgﬁi As applied to human memory, this statement, of
course, is debatable; although there is nothing which prevents us from
conjecturing that the human mind, in this way as in so many other
waysy 1s like a computer. If a person®s behavior depends on whether
he is happy, sad, frustrated, etc., one might postulate a "brain
varlable" called mood, whose values are "happy," "sad," "frustrated,"
etc. For the presant, however, we shall confine ourselves to consi-
dering the memory of a ccemputedr, or of an algorithm. Even in this case
the statement made above 1s not at all obvious; one must decide what
to do about input-output, c;tn-rently inactive variables, push=down
lists, etc. However, in what follows we shall glve evidence indicating
that the given statement 1s in faet applicable to all such situations.

The fundamental relation between variables and their values is
that of legality. That is, given a variable m and a value ¥, one must
be able to determine wlr}ether ¥ is a legal (or allowable or permissible)
value of me If M is thé set of all varlables and V is the set of all
values, then the set ‘of all ordered pairs (m, y), such that v is a
legal value of my is a sub;et of the cartesian product M x V which
we call the degality relation L. It is clear from experience that
no finiteness restfictions ought to be imposed on M or V, and, in
fact, these may be arbitrary sets. Thus an (ideal) algor ithm or com-
puter may have an infinite number of variables, and any of thése may
have an infinite number of legal values. Thése:considerations are now

made precise as follows.

154

DEFINITION 3-2-1l. A memory is an ordered triple M= My, Vy L),
where M and V are arbitrary sets and L is a subset of M x Ve The
set M is the set of variables of‘P; the set V is the gset of walues
of '3 and L is the legality relation of f.

We have the following simple examples of memories:

(L) M= (B, 30, 1}, B x §0, 1}), where B is the set of all bit
positions in the registers, core, tapes, etce.y of a certain binary
digital computer. In this case, every value-is always legal.

) I'= (M, Vy L), where M = %’al, ooy By Dy eee b3, Vs
the union of two sets R and I, and L contains the pairs (33’ r) for
r € R and <b3’ 1) for 1 € I. This is the memory of an algorithm
whose declarations are rea Qy9 eeey an and integer bl’ ceey bmo
The sets R and I are sets of real numbers and integers respectivelye.
The legaliiy relation assures us that no real variable may have an
integer value, or vice versae.

(3) I"'= (¢y ¢y ¢), the null memory.

Whenever we are given a memory. [’y we may deniote its set of vari-
ables by ™M, its set of values by ['V, and its legality relation by
ML, Thus in the first example above we may write "M = B. If one memory
is the union of two others, its set of variables, set of values, and
legality relation are the respective unions of the corresponding

components of those twc memories. Thus for the memories Fl and Pg,
we have
ro- M vV . oV b L
l"l vly = u!’g, f‘lu 59 \"lu)

In particular, the memory of the second example above is the union

of its "real variable memory" rl = (§al, XXX an%, R, ial, XXX an} X R)

and its "integer variable memory" Pa = (§b1, consg bmi, I, %bl, ceey

1]

155

bm} X I). This éxampie shows that the property of a memory that
every value is alwas;s legal is not preserved when we take the union
of memories. Another way to specify the definition of the union of

two memories is to write

M_ M M
(F‘l v Pa)v = f‘%) l"%
(Fl V) PQ)L =f’% UF% |
(f':L U f'2) = f’l) P2

In the interest of trevity, we shall sometimes specify a memory
as an ordered bair "= (M, V), rather than as an ordered triple. In
this case we assume that ‘eviery value is always legale Thus our three
examples above may be written "= (B, §0, 1%), I = (ial, ceey 8%y R)
U (5bys eeey ByEs I)y and ' = by d)e

The legality relation of a memory may be specified completely by
giving a set of (legal) values for each variable. Conversely, such a
specification of sets uniquely defines a legality relation. If two
variables have the same set of values, we commonly speak of them as
being "of the same type"; likewise in programming languages we have
quantities called typegs which specify roughly what values are per=-
mitted for a variable. We shall now make this concept precise by
defining a type fupetion in an arbltrary memorye

DEFINITION 3~2~2. The type function TT of the memory I" is the
function from M into the set of all subsets of 'V defined by T (m)
=5v¢ rVs (my, v) € FL? for each m € MM, The set I'T(m) 1s called the
type of m in [, -

Thus, in the second example above, R is the type of each variable
aj (1. eey each "real variable") and I is the type of each variable
by (each "integer variable"). In the first example, £0, 1% is the
type of every variable.

In'préc ticegs the~type -’,o:f.’- a varlable dependd on whether we are

156

dealing with "ideal" or "actual" situations. In an 1deal memory,

the type of an integer variable, for example, will be the set of all
integers. In an actual nemory, this type will be merely the set of

21l those integers which will fit into a word on some actual computer.
This assumes that single precision is usedj if multiple precision is
allowed, the type will be some larger, but still finite, set. In

what follows, we will denote any of these three kinds of type set

by integer. All of the key words, in fact, which normally define

types in programming languages, such as integer, real, and Boolean,

will be used here to denote sets. Of these, only Boolean has a con=-
stanf, universal meaning, namely Boolean = §true, falset. In parti~
cular, real (as used in FORTRAN and ALGOL) may be the set of all
real numbers or the set of all allowable floating point numbers.
In PL/I, a type is uniquely identified by a particular base, scale,

mode, and precision.

157

3-3 State Yectors

o The most important property of the values of variables 1s that
they change during a computation. Every computation goes through a
series of "states" TO’ T1, esoy Which may either be infinite (in
which case we speak of an "endless loop") or finite. At each point
in the computation, the value of every variable is determined; this
means that each state corresponds to a function from variables to
values, If T is a state and m is a variable, then T(m) 1s the value
of m associated with T Such states depend on the memory associated
with the processj in particular, T(m) must be a legal value of m by
the legality relation of the memory. These considerations are for-
malized as followss

DEF INTTION 3=3=1. A gtate vector Bfcé memory-f is’a function
?: MM 93TV such that (m, T(m)) € ML for each m ¢ MY, The set of all
state vectors of a memory I' is the gtate vector domain I'P of I,

State vectors are also called content functiong, anhd the value
T(m), as abovey may also be ealled the contents (or current contents)
of m. Our use of the term "state vectors" is partly derived from
the fact that, in the following sections of this chapter, we shall
be studying varilous functiéns whose domain is [P, Such functions will
be called state vector functionsy it would be slightly alkward to
call them "content function functions," State vectors are sometimes
also called "snapshots" (from the term "snapshot dump") or simply
"states" by analogy with automata theory.

When the set of variables is finite, say (M = imyy eoey m 3,
every state vector may be identified with an n~tuple, namely (T (ml),
essy T(m)), where T is the state vectore This construction justifies
the use of the term "vecter;" The domain in this case may be iden~

158

tified with the n~fold cartesian product Xl X eeae X X where .’}{i
= PT(mi), 1 <1< B. Ingeneral, a state vector domain may be iden=-
tified"in this way with a finite or infinite cartesian product of
sets of values of variables.

It "= (M, Vy, L) is a memory and M! is a subset of M, the state

vector T: M-V has the restriction T!: M*— V defined in the usual

Wayy 1. €oy T'(m?) = T(m?') for 2ll m' € M!, As usual, we denote this
restriction by T|M!. It specifies a legal value for each variable
in M!', and is therefore itself a state vector of the memory [=
(M*y VY, L1), where V! =$v € V: {m € M' with (my, v) € L? and L* =
LN (MY V?), In fact, the domain of ['* is the set of all restric-
tions to M! of the domain of e We refer to 't as a submemory of [’
and write " ¢ I', In general,

Mc M pVv V pL _pL M v
Mieledic iy el M=rynel I

We have defined state vector domains in terms of memories, but
there 1s a sense in which the state vector domain is the more fun=-
ciamental concept. The situation is analogous to that in physiecs
where density functions, temperature functions, and the like mey be
defined in terms of coordinate systems, but nevertheless have a
nature which is independent of the coordinate system. In the same
way, there will generally be a large number of ways of constructing
a single memory, and the state vector domain (and all state Vectbr
functions) will be essentially the same for all of these wayse. To
start with, there are two trivial ways in which this is so:

(a) Let " = (M, V, L) and suppose thaf certain values in V are
always illegal; that is, suprose that V! = §v & V:dm ¢ Mwith (m, v)
€ L} is a proper subset of V. Then L'is.a subset of M X V!, and every
state vector of [" is also a state vector of ['* = (M, V!, L). In light

fo

f]

159
of this fact we may generally assume, for any memory, that: each of
its values is always legal for at least one variable. Under this
condition it is clear, in particular, that a submemory is complete-
1y specified by its set of variablesy 1f I') C I, then r‘{ =$ve ng
Im ¢ T'l]f with (m, v) € Fg‘io

(b) Let I' = (M, V, L) and suppose that some variable in M has
no legal values. It 1s then clear from the definition that this
memory has nc; gstate vectors at ally, and thus becomes uninteresting.
But now suppose that there are certain variables, each of which has
exactly one legall value. Spqcifically, let us break up M into two
sets, M' and M", such that .if m € M there is one and only one v £ V
(which we denote by v(m)) such that (my v) € Lo If T is a state
vector of I'y then clearly T(m) = v(m) for each m € M', and T is thus
defined solely by its values on M!, If 't c I i3 determined by M* as
above, then each state vector in the domaln of [corresponds uniquely
to one in the domain of ["', Thus the two state vector domains are
identical. .

In light of this fact we might think that an axiom should be
set up specifying at least two legal values for each variable. Sheh
an axiom, however, would not correspond to situations found in prac-
ticej read-only memories, for example, are such that each variable
in them has one and only one value.

A deeper method of constructing large numbers of memoriles, all
of which have effectively the same state vector domain, may be found
by considering somé$ new:éxamples of memories, »in addition to the
ones mefntioned earliers -

() ['= Oy 105 1y suey 236-03) U (g 0, 1,y euey 215.13),
Here M36 is .the set of all 36=bit words, registers, etc., in some
binary digital computer, and M15 is the set of all 15-bit registers.

160

(5) "= (§A;, Ay Ays By, B, Bys Cq5 Cp» C35 D,y Dyy Doy real).
This represents a collection of four real single arrays, each of
dimension 3. Each component of each array is a variable, and its
values are real numbers.

6) r’='(§A, By Cy D}, real x real x real). This also represents
four real single arrays of dimension 3. Each array is a variable,
and its values are three~dimensional real vectors.

It is sasy to see that there is a natural one-to-~one correspon-
dence between the state vectors of the last two examples. A state
vector of the mémory of example 5 gives a real value for each vari-
able; these may be collected into real three-dimensional wectors,
one for each array. But this gives us a 3tate vector of the memory
of example 63 and’the argument clearly works in reverse. The same
sort of correspondence méy be drawn up between the state vectors
of the memory offéxample 4 and those of example 1, provided that
the set B is chosen properly. In fact, B should contain 36 elements
(bits) for each element of Méé’ and 15 elements for each elemenf of
Mi5° A state vector will now give zero or one as a value for each
of these bitsy and from these we may determine an integer less than

236 as a value for each 36-bit register and less than 215 a5 a walve

for each 15=-bit register. This gives us a state vector as in example U4,

We shall refer to the passage from example 5 to example 6 above
a8 the process of combining variables. The variables Al, Ayy and A3
are combined into a single v@riable A, and similarly Pfor the otler
three arrays. In the same way, the bits in the memory of example 1
are combined into words and registers as in example 4., When this is
done, the legal Valﬁes of “the variable formed by the combining rro=-

cess are the state vectors of the submemory determined by the vari-

ables which were combined. Thus, in example 6 above, real x real x real

(2]

)

161
is efféctiv_vely the set of state vectors of the memory [! =
({Al, Ay A;i, ge;g.g;),' or Qf Y = ({Bl, B,y BB}, real), etc. Tha-
corréspondence ~between the two state vector domains will now be
set up in the most general case.

THEOREM 3=1=l. Let I' = (M; Vy L) be an arbitrary memory and
let D be' a decomposition of Mg that is, & 1s a set of disjoint
subsets of M whose union is M, For each D ¢ § let p" be the sub-
memory of I'y as defined above, such that p'™ (1. eey OMM) =D,
let V! be the union of all D'P (1. e., (/)P) for all D¢ D, and
let I#C D x V? be.such that (D, T) € L! if and only if T € DID,
Then there is a natural one=to-one correspondence between ("D and
KD, where K = @, ve, L9),

PROQF. Iet T € "D and define T € KD by T¢(D) = T|D for each
D € Do Bj-the definition of state vectors in Dr, we have T|D ¢
D™, and thus (D, T*(D)) € L* for each D € §, which shows that
Tt is actually in K°, If 7,5 T, € ['? correspond to T, T} ¢ K
in this way, then T} = Té implies T1|D = T21D for each D € D5 and

1
thus T, = T, since the union of allD €D is M, If Tt € KD, then

we mayldefine T ¢ 'D py £%s following rules if x € M, then x ¢ D
for some D € B, and letting U = T(D), we define T(x) = U(x).

It 1s then clear that T|D = U= T!(D), so that T% is derived from
T by the given correspondex_;cec This completes the proof,

This theorem may be made intuit ively' clear by considering our
state vector domains as cartesian products. The domain P is the
cartesian product of the value sets T(x) for each x € M¢ The domain
X0 is the cartesian product of a collection of subproducts, each of
vhich involves the value sets I'T(x) for each x in some subset D C Mo

The product ig the same no matter in what order it is taken,

162

3~k Computation Sequences

We shall now take a viewpoint about state vectors which seems,
at first glance, to be quite restrictive., Subsequently, however,
we shall give evidence indicating that this viewpoint is completély
natural in any computing situation, provided only that we take ac-
count of all quantitles which play the role of variables.

When a computation goes through a series of states which are

represented by state vectors TO’ T eeey each state vector, ob-

l’
viously, depends on the preceding one, Does it, however, depend on
anything else as well? Our viewnoint is that the answer to this

question is nog that is, each state vector in a computation is de-

termined by the preceding state vector, and by nothing else. A

corollary to this is that anything which might affect the choice of

a2 new state vector must be incorporated into the current state yector.

Let us first deal with two points which immediately come to mind:

(1) The values of those quantities which are normally thought
of as varilables in a program do not, by themselves, determine the
next state vector., One must also know which statement is currently
being executed. This situation, however, may be treated be admitting
a new variable whose values are the statements of the program itseclf,.
{Such variables are sometimes called location counters, p~counters,
instruction counters, program address registers, etc.,) If this vari-
able 1s called X, then the value T()\) for any state vector T tells
us which statement we are working on. This, in turn, tells us what
the next statement 1s, so that the value of T*(A) for the next state
vector T!' is determined, as well as all tle other valnes of T?¥,.

(2) If a computational process involves inpunt-output, the next

state vector may depend on the valies which have bcen read in. Fur-

fa.

(]

163

thermore, a process may be receiving input from several sources

at the same time., This situation is treated by considering each
input device as a variable, or, rather, as several variables which
may be combined into one by the combining process of the preceding
sectione Bach square on a tape, for example, is a variable, whose
legal values are the symbols which may be written on the tape. If
all these sqﬁares are combined, the legal values of the single
resulting "tape variable" are the possible contents of the entire
tapes In a different situgtion, we might wish to combine these
variables in a different fashiony so that records or files would
be variables, rather than entire tapes, The same considerations
hold for card readers, paper tzpe readers, and all other input de-
vices; each of these is ineluded, when appropriate, as one or more
conponents of the state vector., lNote that it does not matter whether
our tapes, card decks, etc., are finite or infinite, since the set
of variables of a memory may be infinite, and correspondingly an
infinite number of wvariables may be combined into one,

It is also convenient to include output devices as variables,
whether or not the information they contain may be read back into
the computatione The reason for this is thaty when a computation
terminatesy the resulting output may be determined directly from
the final value of the state wvector. Output devices, of course, are
variables in the same sense that input devices arej; that is, each
o itput device may be thought of as a sequence of variables, whose
values are characters, printed lines, punched cards, tape squares,
etc., or these variables may be combined into a single variable for
each output device,.

Having Justified our point of view, we now make two important

definitions.

164

EFINITION 3=h~l. An execution function is a total or partial

function f:\rD-+ FD, for some memory ' which is presumed to contain

a location counter A. Any sequence TO, Tl’ eeey such that Ti+l =

f(Ti) for each 1 > 0 is called a computation sequence of f,

These definitions imply what we have postulated about compu-
tationss that is, each state vector depends on the preceding state
vector, and on nothing else. The execution functions are allowed to
be incompletely defined; that is, it 1s not necessarily true that
every statelVector leads to an identifiable next state vector. The
most important case in which this is true is when the value of \
specifies a stopping statement of the program. In this case, the
computation sequence terminates., This phenomenon will be tzken up
in more detail in the next section,

It is clear that every digital computer has an execution func-
tion. If we are given the value zero or one for each bit in core,
on tape, in the registers, etc., then this determines a state vec-
tor. The next state vector is now determined by the current state
vector alone., That is, the location counter specifies an instruction;
the instruction specifies an address§ and the instruetion is execcu~
ted. Simultaneously, any input-output channel has a state, which
is part of the current state wvector, and the next state vector in-
cludes the results of input-output transmission of data determined
by this state. It is, of course, true that the timing of input-output
Introduces some uncertainty into the determination of the next state
vector; and we could also imagine a computer being subject to inter-
mittent errory in which the next state vector would be given only in
probabilistic terms. Proofs of algorithms under such conditions re-
quire special techniques.

b

Similarly, every program wriltten in a vrogramming language has

an execution function., There are a number of feat:wres of programming

2V

(]

165

languages which make if geem that the next state vectar is de-
termined partially bthugntities other than the values of the va~
riables. In each sugh case, however, these quantities will them=-
selves be considered as variables, Here are a few examples:

(1) A variable whoge type can ghange during the course of a
computation has an associated type=variable whose legal values are
the applicable types. For example, suppose that we are working with
a language in which the statement K = I + J is executed with integer
values of Ky I, and Jy and then executed again in the same program
with real (floating poiht) values of these variables. In order to
execute thils statement the computer must first Interrogate the types
of XKy I, and J, which a;e presumably kept in memory at execution
time, before deciding whether to use a fixed-point or a floating-point
add instruction. In such a situation, our memory will include K, I,
and J in its set of variables, and all applicable integers as well
as real numbers will be legal values of Ky I, and Jj but the memory
will also contain other variables (&% us call them K', I', and J')
whose legal values are the gets (real and integer) of all applicable
floating point numbers andvintegers respectively.

(2) A push~down list may be considered as a variable whose
values are sequences of quéntities which may be pushed down. If Q
is the set of all such quarltities, then the legal values of the
push=down liét variable are finite sequences of elements of Q.

(3) ;ggétive variables in a program are represented by a vari-
able which very closely resembles the one constructed above for a
push=down 1list. Let us conslider, for example, a language with block
structure., When a block is entered, certain declarations made within
the block involve variable names which hawve already been declared,

either in some othér block or recursively in the current block.

166

The current values of these variables, therefore, have to be saved,
and this operation is mathematically the same as if they were
placed on a push=down list. In practice, this does not actually
happen, because it would take too much time; instead, we allocate

new storage, and make reference at all times to variables in terms

"

of the current storage allocation. It is quite rossible to include
storage allocation informafion itself as variables in menmory, and
we may construct execution functions on this basis. This, however,
has the disadvantage that the meaning of a program ié defined in
terms of a particular scheme for interpreting or compiling that
programs,

Another type of inactive variable 1s found in string vrocessing
languages, where the names of those identifiers which are to be
given values during a computation may be constructed as strings
by the same computation. In such a case, every syntactically valild
identifier is potentially a variable in memory. No distinction need
be made, however, between potential and actual variables; we may,
indeed, consider a memory in which every possible variabhle name cor-

responds to a variable,

"\

167
335A§tate Vector Functions

The execution functions defined in the preceding section are
a special example of state vector functions -- that is, functions
on some state vector domaine In the next few sections, we shall see
how to construet sféte vector functions that correspond, not only
with programs, byt with various things that are found in programs
such as assignment stafements, conditional statements, expressions,
termsy and factorse.
' The correspondence between state vector functions and the con-
stituents of a program provides an answer to what might appear to
be a serious problem in our theory: how can we prove anything about
execution functions, in light of the fact that most of them which
we encounter in practipé are so extremely complex? It is clearly
no good to have a theory which deals effectively only with small
programs, and the executipn function of a program is clearly as
complex as the program itself. Of even greater complexity is the
execution function of a digital computer§ indeed, the entire com-
puter operations manual is, in a sense, a description of this func-
tion. Much the same thing, of course, could be sald about programs
themselvess for example, one could say that it takes the entire
manual of a programing language to define that language. But when
we break up a program into statements, the statements into ex-
pressions and the 1like, the expressions into terms and factors, and
so on, we diséover that at each individual stage in the analysis the
passage f;om lower to higher complexity 1s simple and stralghtforwarde
A term, for example, is nothing more than a sequence of factors
separated by multiplication and dlvision signse In the.same way o

when we assoclate a term, for example, with a state vector funetion,

168

we do so by combining the state vector functions of its factors
in a standard and simply stated way. The fact that a program with
a given execution function produces correct results may then be
proved in stages, just as would the fact that a program has no,
syntax errors in it,

These state vector function correspondences will be made pre-~
clise In the next few sections. For the moment, wad give intuitive
explanations of seven of the commonest types of state vector
functions. In each case we assume that the memory [does not in-
clude a location counter variable; the domain of each funetion is
ro,

(1) Given a state vector and an assignment statement, we
may perform the assignment and obtain a new state vector. An
assignment statement therefore corresponds to a function from
state vectors to state vectors, i. ee., a function f: FD-%’FD.

(2) Given a state vector and an arithmetic expression, we
can substitute for each variable in the expression its valne as
given by the state vector, and then evaluate the expressinng le €.,
find a value for it. An arithmetic expression therefore corresponds
to a function from state vectors to values, i. e, a function
£: Dy Ty where T is the set of all possible values of the given
expressione g

(3) Given a state vector and a statement in a program, we
can determine the next statement. If a program P is viewed as a
finite set of statements (which may have an additional structure,
depending on the programming language) then there thus corresponds
to every such statement a funection g: Mo p (as well as, in gen-

eral, a function £: "P 91D a5 avove).

-

169

(4) Given a state vector and a left side of an assignment,
we can determine which variable is changed by that assignment. A
left side of an assignment thus corresponds to a function from
state vectors to the set of possible variables which may be changed,
1, 0y a function £: I?-> [(This assumes that only one varisble
is being so changed.)

(5) A condition may be viewed as an expression whose set of
values is {true, '_fg‘_g_j_._g_e__“g. Ascin (2).above, ‘there corresponds to the
condition a function f} l'ﬁ-.,~> 3 true, falset. A condition may also
e thought of as the set D? C I'D of all state vectors for which
the condition is true. This dual view of conditions follows also
from Theorem 3-l~3, .

(6) Given a state vector and a program (with a designated
place to start), we can run the program, and, when it terminates
f(if it does), we have a new state vector. A program thus corre-
sponds to a function from state vectors to state vectors, i. ey
a function fs TD-} MDs this function will be partial ﬁnless the
program always terminates.

(7) Given & state vector and an expression with a gide effect,
we obtain both a value for the expression and a new state vector
which expresses the values of all the variables, some of which
may have been changed by the side effect., Such an expression
therefore correspunds to two functions -~ the expression function
as in (2) above, which is a function f£: P> T, and the side effect,
which is a function s: P> I'D a5 in (6) above. Conditions may also
have side effectss hers, as before; we simply set T = 7true, falsef.

170

3-6 Assignments

An assignment in a programming language corresponds to a funce

7]

tion from a state vector domain to itselfe This is true whether or
not it involves a subscripted left side, nmultiple replacement, type
conversion, parametcr references, or side effects,

In the simplest type of assignment, there 1s a2 single variable
on the left side, whose new value is the value of'the expression
on the right. The new values of all other variables arc the same as
their old valueé, These two sentences completely determine the
state vector function. As an example, let us consider the memory I' =
(2, A, B, Ct, real), ahd the assignment Z = A + B + C. A state
vector corresponds to a Y-tuple (z, a, by c)y vhere z, a, by, 2nd ¢
are the respective values of Z, A, B, and C. (If the state vector
is S, viewed as a function, then the corresponding h-tuple is

(S(Z), S(A), S(B), S(C)).) The function f: P3P is then defined by
f(z, a, b, C) == (a+b+c, a, b, C)

In general, provided all}variables arc real, the membry will contain

the above memory as a submemory. In this case we define
£(s) = 3!

where S is an arbitrary state vector and St is defined in terms of S

as follows:

S1(Z) = 5(A) + 5(B) + 8(C)
S1(x) =S(x) for 211l x £ 2

It is Immediately apparent that the state veetor frnetlions of

assignments may be quite complicated. Lven In the exrmple above,

171

which 1s very simple, we have, at the very least, a function of
four-dimensional vectors whose value 1s a four-dimensional vector.
Before we go any further,ttherefore, we need to assure ourselves
that the rule, in any situation, for forming the state vector
function of an assignment will be simple enough to be easily under-
stood. In order for this to be so, we must proceed step by step,
juét as indieated in the preceding section. An assigmment has a
left side and a right side, and each of these has 1ts own corre-
sponding state vector function, which we can assume is known. These
functions may now be combined according to a standard rule, which
varies f:om_one programming language to another, in order to con=-
struct a state vector function for an expression.

Let us geview briefly-the nature of state vector functions
for the left and righf sideg of an asgignmént, as indicated in
the last section. We assume, first of all, that V. 1s the set of

1
all legal values of the right side, and V.. is the set of all legal

values of thg variable on the left side (ir of any variable in the
array which the left side refers to), Furthermore let % be the
standard type-conversion funetion fromV1 to V o (As anrexample; if
= real and V ;g_ggg;, then t 1s the entier function, with, for
example, t(6.H37) = 6.) If V; = V,, then £ will be the ldentity
function. Let [" be a memory such that all variables referenced on
both sides of the assignment are contained in ™™, The left side
now . corresponds to a funetion v: PDJ'P, and the right side corre-
sponds to a function e: FD-é‘Vl. From these we must construct a
funetion as I'P~ I'D which corresponds to the assignment. This may

| be done by the following rule:
a(s) =st, st (v(s)) = t(e(s)), St (x) = S(x) for x # v(S)

Thus, in the exampleé above, v 1s the constant function whose value

172

in M 1s always Z, while e(S) = S(A) + S(B) + S(C) for each state
vector S € fD, (The plus sign here refers, of course, to a specific

binary operation which must be defined on the set real.) For an

v

example in which v is not 2 constant function, consider the assigne-

ment A[I+1] = A[I], where A is an array. In this casec the value of

]

v{S) is the variable ALx] where x = S(I) + 1, while e(S) = S(m)
where m is the variable ALS(I)J.

The state vector function of an assignment depends not only on
the assignment but also on the memory involved. If we add extra
variables to 6ur memory, we may immediately derive a new state vec-
tor function by éssuming that the assignment does not affect the
values of any of these new variables. Specifically, if CIEZ FZ and
flz Tg—)\"g is the state vector function of an assignment with the
memory f&, then the state vector function £,¢ Pg-é»Fg of the same

assignment with the memory Pz is given by

£,(3) =1, sty = fl(S[Fgf), St(x) = 5(x) for x ¢ ri‘f

We say that f2 is a memory extension of f.. In section 2-7, we shall

1
make a very general definition of memory extension, and we shzl1l show
that every assignment defined on a finite number of varilables his a
"primitive memory" containing every memory on which it may be defined;
menory extensions then give all state vector functions of thet as=-
signment,

When several assignments are executed one after the other, the
result may be represented by a single state vector function which is -
the composition (in the usual sense) of the state wvcetor functions
corresponding to the individual assignments. This assumes a single
memory large enough to contain all variables which are involved in

these assignments. If fl and f., correspond to the assignments ay

and An9 then we shall write 15‘.l o £, for the function which corre-

173

sponds to a_, followed by~a2; here if g = fl o fé, then g(x) =

fz(fl(x)). ;uch a compogsition has the same domaln and range as

the functions of which it is composed; this corresponds to the

fact that a succession of assignments plays the same role in a
prbgram as & single assignment (for example, one box in a flowchart
may contain a succession of assignments). If several assignments
have state vector functions on different memories, it is essentilal
first to take the union of all these memories iIn order to form the
state vector function of the sequence of'assignments as the com=-
position of'al; these memory extensions.

It is well known that assigmments have different meanings in
different prog&amming languages. This fact may be interpreted to
mean that the rule for forming the state vector function of an as-
signment depends on the programming languagee. The rule we have
given assumes that there are no side effects and no references to
parametersj these are taken up in seetions 3=11 and 3«12 respec-
tively. A separate state vector function rule must be specified for
avlanguage allowlng multiple assignments . This is one feature of

algebraic languages whose meaning is not at all obviousj for

example, consider the multiple assignment
I=J=MJ]1=K (or I, Jy M[J] = K)

What does this mean? Do we put X first in I, then in J, and then
in M{J]? In this case MLJ] will alweys be M(K]s Or do we put K
first in M[J], then in Jy and finally in I? This is the sort of
question which is most effectively answered by reference to a rule
for forming state vector functions. Suppose, for example, that we
have already defined the sﬁate vector funetion g for a simple

17h4
assignment with left side ¥ and right side g. Now let Vs eeer ¥V,
be left sides and let 81y eeey B be the state vector functlons
of the simple assignments Vv_=€4 eeey vnée. Then the nultiple as=~

1

signment ViSees=V =0 (or vi,...gvnée) would be defined, in the

absence of side effects, by

‘8. © eee © @
1 . n

in the first case and

& 2 ece O 2

n 1
in the second. If side effects are present, of course, still fir-
ther rules might be formulated; for example, we might wish to take
the side effects from left to righty and then the assignments from
right to left.

a4

175

3-7 Expressions and Conditiong

Expressions in programm:lng ‘languages correspond to functions
from state vectors to values of the expression. The ways in which
these functions are constructed reflect the characteristics of the
given programming language.

, As an example, consider the expression A X B + Cs (A8 in the
‘preceding section, we defer until later the possibility that A,

B, or C might be a parameter, or have a side effect.) If the given
memory is f':= (fA, B, C}, real), so that A, B, and C are real vari-
ables, then I'D m&y‘ be identified with real X real x real. If the
values of A x B + C are also elements of real, then the correspon-
ding state vector function £: P~ real is defined by

f(a, b, C) = aXb"'c
vhere ay by ¢ £ real, or by
£f(8) =s(@) xs8(B) +s8(C)

This last equatioh has the advantage that it remains.valid when [
is replaced by séme larger memory which contains ' (as above) as a
submemory.- These equations; however, are still not precise defini-
tions of the }éor.responding functionsy and, in fact, are subject to
some ambiguity. We have not yet specified the precedence of the ope-
rators + and x4 or, indeed, whether they are subject to any prece-~

dence at all. In the language APLy the equation for f would be
£(s) =s(@) x (S(B) +5s(C))
whereas in FORTRAN, ALGOL, and PL/I it would be

£(S) = (S(A) xs(B)) +8(C)

176

Tlis meang that when we are working with expressions, just as with
assignments, our state vector functions must be constructed step

by step.

ey

An expression may be built up from two subexpressions with an

operator between them. The simplest expressions are often called

t

primary expressions or primaries; these may be constants, variables,
or function references. Parentheses may he handled by considering
an arbitrary expression in parentheses to be a primary expressione
In APL, the operator following the leftmost primary is epnplinod to
that primary and the subexpression to its rightj; thus AXRB+C, Tor
example, is formed from A and B+Ce If we know the state vector
functions p and ¢ corresponding to A and B+C respectively, we can

form from them the function f corresponding to AxB+C. Specifieally,

p(S) = s(A)
q(8) = 5(B) + s(C)
£(s) =s(A) x (8(B) +s(C))

and thus

£(s) = p(s) x q(s)

This, then, is the general rule for forming £ from p and ¢ whenecver

the operator is X, assuming.that f, py.and q axe all defined on the

same state vector domain, with the same memory. Any other operator

has its corresponding rule. _ 4
In FORTRAN, ALGOL, and PL/I, the situation is more conplex, lo-.

cause of the existence of precrdence., Usually, what is done is to

define for cach prececdence level a specific type of exypression which

is formed from the expression types at the next lower level using

operators at the current level. Thus in ALGOL theore are three pre-

cedence levels for arithmetic operators and three types of arithmetic

177

expressions, known as glmple arithmetic expressions, termg, and
factors. ’(We- ignore for the moment the ﬁnary minus sign and the
use of ﬁ, then, and else.) The simple arithmetic expression
AXB+C 1is made up of the terms AxB and C, and the term AXB is in
turn made up of the factors A and B, When a simple arithmetic
expression is made up of more than two terms, the rightmost term
is combined with the remaining subexpressiom using the operator
at the left of that term, and similar statements hold for terms

. and factors, Within this framework, however, the rules for forming
state vector functions are much the same as before. If fy py and q
are state vector functions which correspond to AxB+C, AxB, and C
respectively, then £(S) = p(S) + q(S)s3 similarly, if £y py and ¢
correspond to AxB,’A',' and B, then £(s) = p(S) X q(S).

All of these rules are subject to slight alteration if the
state vector functions to be combined are defined with respect to
different memories. If p: P - real-and q: Yo résal are to be conm-
bined using the + operator to form £3 WD—> real, then W = UTuv V amd

£(s) = p| ™) + q(s|v™)

for each state vector S € W,

When we have a rule’ such as £(S) = p(s) + q(s) (or £(8) =
p{th) + qs|v™)), we would 1like to write simply £ = p + qe We
shall now: justify a form of abbreviation of this kind. Let plus
be the binary addition function on the set real, i. e., plus(x,y)
= x + ¥y; the following construction allows us to extend plus to a
function plug*, which is such that we may write £ = plus*(p, q)

in either of the above two casese.

DEF INITION 3"?“19 Let f: Xl ¥ o0o0e ¥ Xn-—) Y. Then the gtar-
extension f*(el, ceoy en), where ey r?_-v Xi’ 1<1<ny is the

178

function gs '’ v, where " = Fl U ooe b [' defined by g(s) =
jf(el(sll’;‘), seey 0, (5]1¥)) for each state vector s ¢ I'D,

- In the example above, plus is a function from real x real iqto
real, so that n = 2 and X; = X, = ¥ = zeal. For an example in which
Xl’ Xz, and Y are not all phe samey congider the definition of a
relational expression such as A+B < C¥, This is a Boolean expres-
siony and the range 'of its corresponding state vector function £:is
therefore true, falge?s the function itself is given by '

"true 1f S(A)+S(B) < S(C)*(D)
f(S)--{ 8 (A)+s8(B)

false otherwise

" If p and q are state vector functions corresponding to A+B and C*D
respectively, then we may write £ = (p < q), or, using star-exten=
sions, £ = less*(pyq), where legs is a function from real x real
into §true, false? with less(ay,b) = trup if a < b and false other~
wise, For an example in which n =3, let Y be any set and define
cond: {true, false§ x Y x Y->Y by cond (trus, ¥, y*) = y and
cond (false, ye', ¥?) = y% If £ and £? are stateiwector :functions
with values in Y which correspond respectively to e and et, while
g coi'responds to the Boolean expression b, then cond*(g, £, f?)
will correspond to (if b then e elge e')., Here if Y = preal, we
get a conditional real expressiong if Y = {true, false?, a condi-
tional Boolean expression; if Y is i%selfisémestate vector domain;
a conditional assi'gnmntg ‘and so one In this last case, where e and
e? are assignments, we can abireviate by writing (if b then e)
if e! 1s the null assignment, corresponding to the identity state
vector function,.

There are various miscelleneous rules for forming state veetor

functions of expressions. Unary operators may be treated using

]

179

star-extensions, just like binary operationsj if peg: Y—>Y is

the function given by neg(y) = =y, then peg*(f) is the state vector
function of =g v}hehe'ver £ is the state vector function of e. In
this case we mgy write md're' simply £ o neg, rather than neg*(f).
Constants k have constant state vector functions £(S) & k3 simple
variables ¥ have state vector functions f£(S) = S(¥). Array refe-
rences A[el, Teoy en] -hatre state vector functioﬁs:a*’(fi;r:.-.a,:~fn-);
Nhare:'.thevri’:m state. 'vactor functions corresponding respectively
to the ey, and a(il, ceny in) stands for a variable (on the left
side of an assignment) or its current value (on the right side).
Function references F[el, cooy en] have state vector functions

f*(fl, ceny fn), where the f, correspond to the e, as above and f

1s the function computed by I‘j;. This assumes, agaijx, that there are
no side effects. We shall see in section 3~11 that a different kind
of star-extension must be used when side effects are present.

The state vector functions of expressions are subject to a form
of memory extension. If f Fg - Y corresponds to an expression and
M2 FO, the function g: fDo v corresponding to this same expression
may be defined by g(S) = f(S'P I\O'I)o If a defining relation such as
£(S) = S(A) * S(B) + S(C) holds for f, then & eorrespending retation
suth as g(8) =s(@) * St(B) + 8(C) holds for g, since for any variable
VE f'}é we have S(V) = S".(V), where S? = S\Plgo

Conditiong -in programming languages, let us repeat, are trented
éxactly like expressions. They correspond to state VOCtC.’I‘ functions

- whose values are either true or false.

180

3~8 Memory Extensions

’

We now défige memory extensions in thelr complete generality,
and show that all state vector functions arise by memory extension
from ’primiti'tr;é ones, progided that the underlying memory is finitee.
(& memory [" 4s said to be:we_ 1f TM 15 a finite set.) For the
state vector functions of‘axpressiom f(xl, sesy X,) and assignments
V= f(xl, seey X,), the corresponding primitive functions may be
identified with £ itself, viewed in the proper way as a state vec-
tor functione

DEFINITION 3~8-]. Let A, B, Uy V bo memorles withAS U, B& V,
an’dfle»f fs AD'f;b P, Furthermore assums that V<€ B v Us Then the
Mgﬁm g: W37 of £ 1s defimed by g(s) = 8¢, vhere St(x)
= 8(x) for x ¢ BY and S¥(x) = 8"(x) for x € BY, with s" = £(s{a'),
~ Up to now we have not treated furxcfions from one state vector
domain to a different one. We will now show how an arbitrary funce
tion of n arguments may be regarded as just such a functione Let the
arguments be %49 1 £ 1 <1,y and let each argument x, be required to
have 1ts values in a set X;o If A is the union of all the one~element
memories ({xi 9 Xi)’ then AP may be identified with the cartesian
product Xq K oeo X Xn’ which 1s the domain of £. Now let Y be the
set of all possible values of f, and let B be the one-element memory
(1y}s Y)o Then B® may be identified with ¥, since each state vector
in it has exactly one component, which is an element of Y. Since ¥
is the range cf £, we have represented f as.ia function from AP to BP,

let us now conside® memory extensions of this state vector
funetion., We may add new variables to either A or B, or both; the
condition V € B v U means that any new variables added to B must

‘,_either be in A or added to A. This is necessary, since the new

181

values of these variables must be the same as their old values,

and the old values mu;st therefore exist., Specifically, S is a func=-
tion on U, and S' on V; in the definition of S*', if x ¢ BY, then

x € T and thus S(x) is defined. We are particularly concerned with
two special cases of the condition V€ B v U:

(a) V = B, Here VP may be identified with Y, and the memoyy
extension gt P=> Y of £ is defined by g(S) = £(s|AM). The result
is precisely the general form for the state vector function of an
expression, as mentioned at the end of the preceding sectione

(b) V = Us In this case W = UD, and the memory extension g
P> P of £ 1s defined by g(S) = S?, where S'(x) = S(x) for x #

y and §%(y) =£8|aAM) = £(8(x))s oe0y S(x)). This is precisely -
the general form for the state vector function of an assignment,
such as the one given as an example at the begimning of section 3--6.

We now consider the problem of finding memories A and B, as
small as possible, and a funetion £ AP = BP which may be extended
to a given function g: P VD in the manner described above. If
¥:is’any vapiable~in VWwhoge -valud: never changes under the agtion-
of‘g, then it 1s not necessary for v to belong to BM, since the
memor}y extension will express precisely the fact that the wvalue of
v never changes. Hence ‘BM should consist of those variables in ¥¥
vhose:values’ x_n;_a_z.vchange; as well as those which have no old values,
i. esy which are not in . The memory B will thus include all
pessible results of the computation represented by ge Likewise,

. 1f u is any variable in UM whose value cannot affect any possible
result of g, then u does not need to belong to AM, since these re-
sultsy 1. eey the values of g(s) on BM, depend only on the values
.of‘ S on AM by the definition of memory extension. Hence AM showla
consist of ‘:bhose variables in UM whose values may affect the results
of ge The memory A will thus include everything which is used by

182

the computation represented by g. We may think of g as "taking its

input from A" amd "leaving its output in B," This is now made mre-

cise as follows.

DEFINITION 3-8 Let"g- P - V0, Then the putput region (R(g)

is defined as {v € v“- et (St(x) = 8(x) for all 8 € ™, where St

= g(3)% and the ipput region IR(g) is defined as {u e v ZSl, S
€®, v € ®R(g), with 5,(z) = 5,(z) for all z # u, but 5(y) #
Sé(y), 'w.rhere Si = g(Sl), 83 g(Sz)}. The input memory IM(g) and
the output memory OM(g) are those submemories of.U and V respec-
tively which are such that (MM = R(g) and (oM(g)) = ®(g)o
The input domaln ID(g) is defined to be (IM(g))P; the output domain
W(g) is defined to.be (OM(g))°s

The rather awkward definition of OR(g) is meant to cover two
cases; S(x) may not exist, or it may exist but be unequal to SU(x)
for- some S € w, Clea:t"ly, if UD = VD, for example, only the second
6f these cases applies. The definition of IR(g) depends on that of
OR(g), which may seem like putting the cart before the horse. How=-
BVEr, this definition is necessary, as may be seen by the theorems
which follow. The first of these 18 valid with no restrictions on
‘the size of the memorye)

THE CREM 3~8-1. Iet g: P> VP be a memory extension of £
425 B, Then T(g) € A¥ and ®(g) ¢ BY. | | |

PROOF. If v € V¥ and v € BY, then S(v) = 8t(v) far all 5 € P,
where, S;*‘r= g(S), and this implies that v ¢ ®(g). Hence R(g) £ B‘ﬂ
I u € 0" ana u & AY, then consider S1s S, € W with S, (z) = §,(2)
for z # W. Since Sll AM = Szl AM, we have f(Sll A = f\(SzlAM), and

thus Si(v) = S;_')(v) for all v € B", vhere 8] g(Sl)9 sd g(S2).oA_

" Thus u q IR(g), and therefore IR(g) < AM, Thia.completes the proofe”

<4

n

183

This theorem does not imply that g 1s always actually a memory
extension of £ with IR(g) = AM and @®(g) = BY. The proof of this
statement for finite memory depends upon the following lemma.

| LEMMA: 3-8-1,. Let g: P - VD, where U 1s finite (i. e., where
W™ 1s finite), and let S,, S, € WP, If Sl\IR(g) = szlm(g), then
' =gt $ = ? = .
s1|®(e) = 83| R(e), where 51 = £(5;), 8] = £(5,)

PROOF. ILet Wy eeey w be those elements of the finite set UM

far which 8, (u,) # 8,(u,)3 by hypdtissia, each u, § T(g)e Iet T,

seey T € ™ be defined by T, (u,) = 31(“3) for £ < 3, T,(u,) =

] 173
Sz(ud) for 1 > J, Ti(x) = Sl(x) = 82(8) for x not qual to any Ugo
Then To = Sl’ Tn = 82, and Ti(Z) = Ti_'l(z) for all z # X, 1<1i<n.
= § }—3 | —-—] -
If U, = g(T,)y 051 <ny then U, =51y U, s2y and Ui(y) Ui_l(y)

for each y € ®R(g), 1 <4< n, by definition of IR(g). Hence U {y)
= -Un(y) for eaqh y € ®R(g)y 1o €0y Si\aﬂ(g) = Sz'\m(g). This com=~
pletes the proof,.

THEOREM 3-8-2. let g: P—> VW0, where U is finite. Then there
exlsts a function f£: AP - BP, where A = ID(g), B = D (g), such
that g 1s a memory-éxtension of f,.

PROOF. Let S € ID(g) and consider any 5, € WP such that S;(R(g)
= Se We define £(S) to be S;_ R (g)y where Si = g(Sl). If §, is any
other state vector in WP such that SleR(g) = 8, then, by the lemma,
Sél(ﬁ(g) = SilOR(g), where 8§ = g(S,), and thus £ 1s a well-defined
functione. The memory extension of £ to a function hs P>V 1s such
that h(s) = §7, where 5%(x) = S(x) for x ¢ (R(g) and S*(x) = S"(x)
for x & R(g), vhere S" = F(S|R(g))o But if we set S* = g(s), then
S¥(x) = S(x) for x ¢ R(g) by definttion of OR(g), whereas S'|®R(g)
= s"|R(g), where S" = £(S[IR(g)), by definition of f. Thus g = h,

and the theorem 1s proved,

184
Neither the preceding theorem not the lemma holds 1Al the

presented form if the memory is allowed to be infinite. A slight
extension of the concepts. of memory and stéte vector domain is
needed in this case for the theorem to holde Let M and V be finite
setsy let L be a subset of ‘M x V denoting a legality relation, and
det T be a particular state vector. We now defim 4 memory as a
Letuple (M, V, L, T), and we define its domain as the set of all
gstate vectors which differ from T in only a finite number of '
places. (For example, M might contain an infinite number of vari-
ables denoting tape squares, and T mlight be the state wector such
_that T(x), for éach tape squmre X%, 1s a "blank character." .The
dorﬁair; is then the: set of all state vectors which specify only a
finite numbé’r of non~blank characters on the tape.) With respect
to this extension of the definition, the lemma and theorem above
hold trues

T

{4

185

3-9 Programg

We may now carrﬁr oui' analysis one step further, and derive
the state wvector functlon of a program from the state vector
functions of the assignments and other types of statements in it.

In section 3-4, we agsociated with each program an execution
funétion £: D2 FD, for some memory P, one of whose variables
is presumed to be a location counter A, The set of legal values
of A represents the finite set of statements of the program. From
the definition of f we deduce the statement that

if we kpow the values of all varisbles including M
Xhen we know the new values of all these variables

Let us now construct a sentence equivalent to the above:

if we know the value of A then
(1f we know the valueg of all variables

of all thegse varilables)
and if we know the value of A then
(1f we know the valueg of all other vari-

This suggests that with each value of Ay 1. ey with each state=

ment In our programy, we may associate two functions on Pg, where

o is the submemory of " obtained by excluding M. One of these has
range Fg and gives us the new values of all variables except Aj

 the other gives the new value of), and 1ts range is the set of

statements in the program. This will now be made precise as follows.

DEFINITION 3~9-1. A program on a memory I' is a finite set P

186

of statementg, such that tlhere is assoclated with every étatement '
7 an action A !'D-) f'D, and & next-statement function £N: \"D-—) Pe
| We have the following simple examples of statements: |
(1) An a§signment gtatement congists of an assignment which i‘s

placed in a program in such a way that it is clear which statement
comes nexte. I the assignment statement is 3 énd the next statement
#5 S, then & is the state vector function corresponding to the
assignment as in saction' 3=6, and sV 15 the constant function
whose‘value_e for any state vector is J'.

 (2) A go~to statement ¥ has null action, 1. e.y E% is the iden-
tity function, wherens ¥ 15 the constant function whose value for
any state vector is the staterent which carries the label referenced
inZae

(3) A conditional go-to statement ¥ has null action (unless there

_are side effects in the condition) and a next-statement function
with k different values, for a k-way branch. For an ordinary two-way
branch ¥ with next statement X', ZN is the function whose value is
the statgment. to which trensfer 1s made if the glven state vector
satisfies the givé‘;x ,coﬁdition, and whose value 1s 3! otherwise. As
before, S is the identity function. If the given condition is al~
ways true, ve obfain the ordinary go=-to statement ag a special case.
Our definition of a program was motivated by the desire to be
able to construct an execution function. Before defining the exe=
cution function of an arbiltrary progranm, we consider what happens
when either 4 or ZN, for some statement Z, is a partial function. |
This is by no means an uncommon occurrence. If S 1g a state vector
and TA() is not defined, this means, intuitively, that computation
cannot be bérifqrmed for ' some reasone. ror example, Z'migh‘c be an

assignment statement which males subseript refcrences, and 5 might

v

4]

187

be a state vector which specifies one of the subseripts to be
outside its proper range. On the other hand, if IN(s) is not
defined, this means that there is no next statement, 1. es, this
is the’end of the computation. If the last statement in a program
is a conditional transfer statement ¥, then sN(s) will be defined
if and only if S satisfies the given condition,

Now let P be a program on a memory \"O and let ' be the memory
l" with the location counter A added, ie €ey | = f’ V (5\%, P).
Then "2 may be identified witlr' PD X P, since a state vector in [0
is a function Tz "1 'V which 1s determined completely by T]F”
I’D and T(A) € P. Using this correspondence, we would lite to de~
fine the execution function of P as the function f3 VD~> PD, vhere
£(s, F) = (SA(s), TN(S))$ this 1s in line with our previous in-
tuitive discussion. However, S* and s¥ may be partial functions,
and it 1s quite possible for some S and some 7 that Z’A(S) is de-
£ined but SV(S) is not, or vice versa. We can handle functions
which are ofxly partially defined, but we cannot hondle finctions
whose values z;.re themselves functions which are only partially de-~
fined. Therefore, 1n order to decfine our execntion functions, we
must be sure that the above-mentioned behavior does not occur. Ve
therefore make the following c¢efinition.

DIFINITION 3-9-2., A program P is camplete if, for each states
mént § of “P, the domain of sA 45 the seme as the domain of TN, If

P is a complete program on a memory I"O, the execution funetion of
P is the function f: FDHPD, where [= FO u ()%, P), defined by
£(0) = 20 where TP = @OA@[PH) ana TV = xANTE|TD.

(By the definition of a complete program, one of these will be de-

fined when and only when the other one is.)

188
An important special cése of completeness is the_gonditibn
; that SA and TN are either (a) both ;‘ev‘erWhere defined or (b) both
nowhere.défined,\fbr an 3;bitrary étatement Zlof‘P. A statement
| satisfyingvcondition;(Ej;above may be called an exit stotements
it serves no. purpose .in the computation itself, but merely denotes

where that computation ends,

e

Q3

®

‘ 189
4
3-10 The Effect of 4 Program

The execution funetion f of a progranm gives the state vector
£(T) which results from executing & single step of the progranm,
givéi the state vector T. The gffect of a program (vhen started
at a given point) 1s a function § which gives the state vector
6(S) which results from running the entire program, having started
with the state vector S. This is, in general, a partial function,
‘since 6(S) is undefined whenever the initial state vector 5 di-
rects the program to run endlesslyo

When a progran has an execution function -- i, e., when it
is complete - 1ts effects are very easy to define., (We will often
abbreviate and simply refer to "the effect of a program," but,
‘strictly speaking, an cffect of a program is always with respect

to some particular starting point.) Let the program P be defined
on |y, and let r F L ({AZ, ?) and MP = PD X P as in the pre-
ceding section, If S & FD and>Z'is the desicnated starting point,
then (8, Z) =T, € 2, We now define T)s Ty Ty etCay by T

3 .
é(Ti_l), where & is the execution function of P, The T, will then

be the successive state vectors of PD which constituteithe conpu=
tation sequence (see section 3=4) of P when started at TO. It thié
corputation sequence 1s finite, let TZ be its last elementj; then
ve define £(5) = T [, where f is the effect of P with respect

to Eo That is, T

z.will be of the form (£f(S), 3'), for some state~

ment i,

We will now make a slightly broader definition of the effect
6f a program, which includes the possibility that the progran is
- incomplete. Let P, FB,‘F, Sy Ty amd TO be as above. Let 5, :+ 5 and

: y o« « o |’\ 4 o o
FO P z; then TO == (uo, FO). Let u:!"_l = I“t(S1) and T = Fil(ui) Tor

141

190

each 1 > 0O for which both Si and Fi are defined; ve set ‘1‘i = (uj, Fi"
Let & be the function we are seeking to define, 1. e¢sy the effect
of P when started at Z. There are now four cases:
(1) 3, ang F, are defined for all 1; in this case 8(S) is un-
defined.
(2) Si and Fi are defined only for 1 < Z, for some zj in this
case, 8(5) = 5,0 (These are the two cases we discussed above.)
(3) 8, is defined for i g z+l, and F, for 1 < 7. Thus T, =
(%55 F,) has the property that Fg-(sz) is defined but F;I(Sz) is not.
In other words, this is the last statement of the program, but it
has an action; it is not an exit stztement. The result of that
action should therefore be the value of 8(5), i. ey 6{5) = Sz+1'
&) S; 1s defined for i g z, and F, for 1 < z+1; thus Fﬁ(sz)
is defined, but F§($Z) is not. Thus a next statement would be de~
fined if the action were defined, but the action is not in fact
defined. This means that the computation sequence has terminated
improperly. Since it may be nccessary in this case to exanine vhat
" the program has done so far, we define this as the effect, i. e.,
€@) =5,.
Hoting that in cases (2), (3), and (&) above €(5) is defined
as the last of the S; to be defined, we make our formal definition.
DEFINITION 3-10~l. Let P be any program on F ond let £: MDD
be its execution fanction, where [= Fb v (§\E, P) and P is tden-
tified canonically with (‘g X Po Then the effect e: Fgér g of P
with respect to the starting statement ¥ of P, or simply %he "effectl
of P when started at Z," is defined as follows. Let 89 = Sy Fy = Zy
and, if Si and Fi are defined, I > 0, let Si+l = Fg(si) ard let-Fi+1
= FJ(5,). If each s 4 is defincd, for i » O, then e(S) is undefined;

if the 8, are dofined for 1 < 7z only, then we define e(G) = S,e

no

e

191

We now show that any progran may be modified very slightly
so that it becomes complete, without'changing any of its effects.
This will justify the restriction of some of our later definitions
to the case of a complete program.

" THCOREM 3-10-l1. Given any program P on Ib, there is a complete

program P! on f’o (called the completion of P) such that:
| (1) The statements of P! are the statements of P plus two
exit statements (call them U and V)e

(2) The action of each statement of P is a restrictlon of its
action as a statement ofi P'a

(3) The effect of P when started at any of its statements is
the same as the effect of P! when started at that étatement.

(4+) Whenever P! terminates improperly, it terminates at U.

(%) Whegever P? terminates properly, it terminates at V.

PROOF. We define the action of each statement of P! (except
U and V, whose action is nowhere defined) to be the action of P
wherever that is defined,; and to be the identity whenever the ac=~
tion of P is not definede. We define the next~statement function
of each statement of P! to havé the value V whenever its value in
P is undefined; to have value U when its value in P is defined but
the value of the corresponding action 1s undefined; and to have the
same value as it does in P when that value and the value of the
corresponding actlon are both defined. U and V, of course, have
next-statement functions whicl are nowhere defined. Properties

(1)=(5) above may now be verified in a straightforward manner.

192

A program with g statements may be replaced by an altered
program of at most n®+2n statements, each of which is of one of
the special forms discussed above, i, eey an assignment (with
possible side effects) or conditional transfer, and without chan-
ging any of its effects, according to the following theorem.

THEOREM 3~10~2. Let P be a program on FB; then there exists
a program P! on Fb such thats

(1) Each statement of P corresponds to a statement of P!j

(2) The ‘effect of P when started at a given statement is the
same as the effect of P! when started at the corresponding state-
ment §

(3) Each statement of P? ig either an assignment statement
with possible side effects (1. @ey its next-statement function
has at most one value) or a conditional transfer without side
effects (i, ee; its action is the identity function).

PROOF. Ist 274 eeey 5, be the statements of P, The statements
of P! are of the forms‘zi and 22, 1<£1<n, and Zﬁj’ 1 <41 £ ny
1<} £ ne The statements zg are conditional transfers without
side effects; that is, each zg- is the identity function, while
E{N(S) = Sij whenever Zf(s) = f-fj, and Z;_N(S) = 2‘; whenever Elf(s)
1s undefined. The statements Eg are assignments with possible
side effactas; we have ZEA =‘$%: while ZEN'is nowhere defined,

The statements Zij are @lso assignments with possible side effectss
we have 2?3 = Z%, and ng hag the single value 23. The statements
L} corresponds to the statements Z&, and thus conditions (1) and
(3) above are satisfied. To verify condition (2), let ¥ be any
statement of P and let To = (Sy Z)y Té = (Sy Z')s Iet Ti and T{ be
the computation sequences of P and P! starting with TO and Té

(I

X
F;), where F; corresponds as above to Fx' This is true for x = 03

9

i

T - - '
respectively. We now show that, if Te = (Sx’ Fx), then T2

193

sé: we may assume that it 1s true for x = i. We have T1+1 = (F*%(Si),

N ki — A (o N o (o]
Fy(8,)); but, by definition, T3, . = (25,0 F1T(54)) (oi’;?kj)
= i N = t = T = o
where Fi = Ek and Fi(si) = E;]’ and thus T21_,_2 (T2(1+1)) (ij(ui),

Z!lg;](si)) = '(Zﬁ(‘si), 2'3) = (F‘;(Si), 25), where 25 corresponds to Zj
= FJ(s ;)+ Thus the given statement -4s true for x = i+l, Now let e
and e! be the effects of P and P' starting with Z and ¥' respective~
ly. If the sequence Ti continues indefinitely, then so docs the se-
guence Ti, so that e(S) and e'(S) are both undefined. Otherwise,

- 't = 1),
let T, = (5,9 FZ) be the last of the Ti’ with T2z (SZ, FZ) If

o= ; = t =
Sz+l = F%(SZ) is undefined, then e(S) 8,9 Whereas e (s) .
‘whether Téz o;' ngﬂ is the last of the Tie If 5,41 1s defined,

then e(S) = S, Since T, is the last of the T,, Fg(sz) is unde-
fined, and thus Téz-#l = (SZQZE:), where F, = 2,3 Zi‘cN(SZ) is nowherce
defined, but ZUA(s) 1s; so that e(s) = 28A(s,) =Zh(s,) = Fi(s,)
= S 43¢ Thus in all cases e(S) = et(S) or both are undefined, and
the theorem 1s provedo

We may specialize still further and allow each of our condi=-
tional transfers to be a two=way conditional transfer, since a
k-way conditional transfer is the composition of k=1 two-way trans-
fers. It is not possible in geaeral, however, to restrict ourselves
to assignment statements without side effectse An exchange state-
ment, for example, is one-to-one as a state vector function, where-
as ény assignment which is not the identity 1s not one-to-one, as
long as-everything 1is fix,;ita (in this case, 4a long '4s éack varlable
can take only a-finite nuibef of distinct values). It is clear, of ~
course, that a one-to-one, ron~identity function cannot be the

conposition of funetions whiecl are not one~to-one.

194
3-11 §ide Effects

We are now in the position to be able to define rigorously

0

vhat. 1t means for an expression, tem% factor, etc., to have a

side effect, Iet us consider the FORTRAN statement ~
Z=A+TFX)+B

Here the menory [ineludes Z, Ay By and X, and also any interme=-
late variables which are used in computing Fe. Assuming that a1l
these variables have values in the set peal, the expres:ion A +
I'(X) + B has a state vector function f£3: P9 real. It also hus the
side effect s FI)->(ngnwhich is the effect (in the tecinical sense
introcduced in the vnreceding chapter) of the function Fy vhen star-
ted at its designated starting point.

: Any expression, term, factor, or condition which has a side
effect is associated with two state vector functions. The domain
of each of these functlions is the given state vector domaine The
first of these functions represents the expression, term, Teictor,
or condition in the usual way, and its range is the set of its
values in the unsual sense. The second ls the side effect, and its
range 1s ﬁhe same;és 1ts domain. An assignment, even with a side

effect, has only one state vcetor fimetion, since an assignnent ond

Al

the effect of a finetion have the same form as state vector {:netions.

When an expression has several side effects, the composition

(8

of the effects of the corrcsponding functions is called the-side

elfect of the glven oxpression., I'or exampla, the expression
A+ FQ) + 3+ 6(Y)

has the side effect formed by comnosing the functions £z [P D

195
and g: MP=>T"D yhich are the effects of the functions F and G re-
snéctively. That is, the side effect of the expression is h: [P
FD, where h(§) = g(£(s)). for each S £ [P, The order of composition
mizht: be the other way around under different conditions; for exam-

ple, consider the expression
F(X) + B*G(Y)

Herc it would seem that the order should be the same as above, but

in many compilers an erpression of the form A+B*C is compiled as

"load. B, rultiply by Cy add A." Unless a special form of comﬁila-

tion is used when there are side effects, we will have h(S) = £(g(5)).
The c\omposition‘of side erffect functions in expressions, terns,

factors, and conditio.ns may always be gpecified to be fron left to

right by using the gtar-extension with side effects, as follovs.
DEFINITION 3-11-1. Let £3 X; X eeo * X =Y, and let s M2,

Then the g"tg:e-extensio;; (f9 SO)*((el, 31), XXX (en, S.n)), vhere
. D)

e, f'i-;n{i and Sy

g: PP > Y and s: P > "D, vhere [= PO U T’l U oee U ", defined as

followse Let si: rD-) D be the memory extcnsion of s, to f'D, for

:Pg-&l"g, 1<4%<n, is the pair (gy s) for

o

1

0 <i<ny and for each state vector S € P 1et S1 =S and S =

i+l
s1(5,)y 154 <y then) = f(el(slll’}f), veey 0,5 IM) 2nd
s(3) = s(')(é‘m_l)o,

In this very general definition, each ey corrcsponds to an ex~ |
pression énd Sys i >:0, corresponds to its side effect, while S5 is
the side effect of £ Any or all of these side effeccts may be the
identity function, in which case we say that certain expressilons
"huve no side effects"j if all side effects are the ldentity, this
form of” star=-extenslon retiuces to that of Definltion 3-7-l. I ey

and 849 for some 1, are origiiall:- defincd on different stute vectlor

196

.\v

demning,. say Ag and Bg,kthen ve may define f; = Ailj B#’and

the memopry extensions of e, and 8

ke
» g to Fg before proceeding. Hote
that if we write 5 =38, S;1 = si(si), and s(8) = sé(SO) in the i
above, we obtain right-to=-left evaluation, rather than left-to-ri‘hty
in either case, the function evaluation, with its side efrect, 2
follows gll argument evaluations with their side effects.

The above definitionlailcws us to build up an exprescion from
primaries with and without side effects, If such an expresszion 1s
the right side of an assignrent, theré will be two’ different
prlansible interpreta%ions for that assignment if 1ts left =ide is
subscripted anf the s&&é‘éﬂfect of the expression changes tlie val-
ve(s) of the subscript(s). The problem here, of course, is whether
we should use the new wvalue(s) or the old. Thus in the assignment
A(I) = F(I), where I is initially 1, A(I) is a subscripted vari~
able, and ¥ is a function which increments I by 1, we obtain A(2)
= F(I) according to the first interpretation above and A(1) == F(I)
accordihg to the second. If v: [P r}[corresponds to the left
side of our assignment and e: [P V corresponds to the right
side, with the side eoffect s: P> [P and the type-conversion
function %, then the resulting assignment corresponds to a fine=-

tion a: P> MNP defined by a(s) = S*, where
St(v(s(S))) = t(e(S8)), St(x) = S"(x) for x # v(a(S)) with 3" =-s(s) .

according to the first interpretation above and

&

SP(v(S)) = t(e(S)), ST(x) = 8"(x) for x # v(S) with 8" = s(3)

according to the seconds The nractical difference bhetwveen these
Ttwo viewpoints is that the first corresponds to a simpler inter-

pretational étrategy, aécordiqg o which the entire right side is

197
handled first, then the result stored in the place indicated by
the.left sidej whereas the second presents the simpler viewpolnt
to the user, according to which the expression is considered from
left to right in the ‘sense that whatever happens on the right does
not affect what happens on the lefte. To implement this strategy,
we first déaléulate and save the subseript(s) on the left, then
treat the right side, retrieve the subscript(s) on the left, and -
finally store the value of the right side in the indicated location,
Of coursey if v is a constant function, i. e.y the left side is
not subscripted, then the two viewpoints coincide.

All of this assumes that the left side of our assignment does
not itself have =z si@e’effecto This wlll always be true in FOTTRAN
II, but in most other aigébraic languages the left side of an as-
sipgnment may, for exampley, be a subseripted wvariable vhose sub-
script(s) ma& have side effects., In such a case, we nust first cal-
culate the single side effect u:s PD'* PD assoclated with the left
side v: NP M using the definition of the pair (v, u) as a
star-extension with side effects. Once this is done, taking the

second of the two viewpoints above, we arrive at the rule

a(s) = 81, S*v(u(s))) = tle®E))),

St(x) = 8" (x) for x # v(u(s)), where 8" = e(u(s))

We repeét that no matter how many side effects the compononts of
an assignment have, the resulting assighment-cdrresponds to only
one function from state vectors to state vectors, ratrer thnn tvo.
It is a well~known fact that many compiler optimization techs
nigques are incompatible with the interprctation of multiple side
effects on a strict left-to-right (or right-to-left) brsis. Any

such techniijue corresponds tc a rule, alternative to that which

198

we have given for the star-extension with side effects, for con-
structing the state veetor function of an arbitrary expressiong

however, most such rules are difficult to work with in practice.

Optimization of generated code for expressions is best carried out -

either in the complete absence of side effects or under guarantees
(as may sometimes be given by the structure of certain lang ages)
that side effects will involve only variables not prosenﬁ in the
current expressiono

Conditions can 2lso have side effects. In fact, the action of
a conditional go-to statement, in the sense of Definition 3-0-1,
is precisely thé side effect of the condition which it contains.

Thus in the FORTIAN IT statement
Fr (A +FX) + B) 21, 22, 27

the action is the side effect of F; if F has no side effect, tlere
is no action, i. e., none of the variables in the program have
their values changed by the statement. The next-statement function
is not affected by the presence of side effcctse nelations such ns
A + B > CX) + Dy of .course, have state vector functions and
ide effects which may be conztructed in the-general way described

ahove, uéing the star-extension as givén by Definition 3-11-1.

/@'

7

199

Each reference to a function, with or without actual parame-
ters, constitutes a primary e:pression and thus has a correspon-
ding state vector function., For example, consider the function
GCD(M, N), called by writing (say) GCD(K1l+kK2, K3*kk). The corre-
sponding state vector funetion £ is then given by £(8) =
‘ged (S (KL)+5 (K2), S(K3)*%s (K4+)), for each state vector S; it is,
and e, are the

1 2
state veetor functions corresponding to K1+K2 and K3 *K4+ respec=-

in fact, the star-extension gcd*(el, e,), where e

tively. One way to implement this function reference is to per=-
form the assignments M = KI1+K2 and N = K3*K4+, followed by cal ling
GCD, in this case, we would have £(S) = ged (S (M), S(N)). The ad~
vantage of this is that, when the GCD function is coded, the va-
riables M and N have the same status as any other variable. For
example, M is a primary expression, whose state vector function n.
within the coding of GCDy is given by m(S) = S(M)e The function f,
in-fact, does not depend at all, in thls case, upon the actual
parameterse ‘

Iet us ﬁdw considerla function EWCLID (My Ny X) which sets K
equal to GCD(M, N). If this function is called by writing
EUWCLID (K1+K2, K3*K4, K5), then it may not be inplemented using
the above scheme unless certzin modifications are made. We nay
pebform the assignments M = F1+K2 and N = K3*%, as before, but
we cannot then do K = K5 and call EICLID§ we must first call
I'ICLID, and then we must set X5 by doing K5 = K. If thls is done,
then the statc vector fm;ction corresp: nding to BUCLID (1, Iy I)
will still depend onJ'.y on the formal paramcters M, il, and K; one
must; hovever, make a distinctior between parameters which are

used in a routine (such 48 M and N) and those whose valies are

200

returned (such as K). This is done in the JOVIAL lancurge, wherc,
for exanple, SICLID(M, N3 K) would denote the fact that X is o

"ret:irned" parameter, since it follows the semicolon, vierens 1f

-4

ond I are "ugsed" paramstors.
Formal norsmeters as descrihed above, which are sct Lo +he
valucs of the corrnsponcing actual parameters (or the raverse)

wiex the given rovtine is called, are said to bhe called rovrlue.

I some comnater languzges, ~ieh as JOVILL and SI0B0T by 213 pom
ranghers are alveys called by valuee. Therc ere, hovever, two
otier standard wiys of calling neraneterss we spealr of narsiwetors

catled by reference (somntires "by Iocetion® or "by addrcss") :nd

c¢aliced by nan

o In each of thosé eases; the execution of the iven

Tanetion or snbr-~ tine depends in a nuch ore Tundamesntal wa~r 1 0
- o A

tiie forn of the aetunl parar~ters than if enlling by value hod teon

K3

usede This inmplies that each usage of a formel parsmeter called (%

. - -

referonce or by none within the coding of a2 routine is to be in-

-
¢}

terpreted In a2 GLfT 1<nt way than if it vere en ordinary vericblc.

Call :ilg by reference 1s very comion, beins wed, Tor exnmnla,
in FO TTANe The Tforrmal nerancters ar:. here imnlerented as r¢Mmronce
voricleg (sonctines calléﬂ "pointer varicohles"). It gerral, the
value of a rcference variable is another variable; if [" = (i, v, L)

ve

is » nemory, then the legal valics of a refercnce variable in I

are thenselves in Il (besides being in V). If NIELID (FL4I2, ID ?ﬁv

(¥

5) is a2 ¢all to the subroutine BWLID(My Ny ¥K) in which the narr-

meters are called by reference, then M, N, nnd K hecorx roference

79

varinhles; the viulue of K becones K5, whareas the valicvs of If and
N become temporary variables ihose values are the valiies of the
expressions. K1+I end E3*i+ respec ctively (just before RUGTLID is

a2

called)s Such temporary varizables are always uscd unless the cor-

201

responding actual parameter consists of a single variable or a
singie constant. The state vector function m corresponding to the
primary expression M in the coding of the subroutine is now given
by m(S) = S(5(M)), rather than m(8) = S(1). Here S(i) gives the
current value of M, which 1s another variable, and then 5 (3 3a0))
cives the current valfie of that variablee

The use 6fﬂca11 by reference 1s less efficient in simple cascs
than the use of call by walue, because of the extra calculation
necessary whenever a perameter is used. (Some schemes for irmple-
menting call by reference do not use ‘any extra time at thls peint,
but they use it elsewhere.) On the other hend, call by reference 1is
much more nathral than call by values in particular, a paramecter
called by value which 1s both "used" and "returned" must be men-
tioned twice. It i1s also to be noted that call by value in ALGOL
allows only-“used",parameters, whereas call by reference always ~l-
lovs parameters,tb be elther "used" or "returned." If i, as aiove,
appears on the left siée'of an agsignment statement, tﬁe correspon-
ding state vector Tunction is piven by m(S) = S(M); its values are
themselves variables,‘as for the stete vector function of the left
side of any assignmente |

Call by ncme is defined relative to a transformetion on the
progran vhich results in a new program without any calls at 211e
Bach call to a procedure (= subroutine) is renlaced by the entire
text of that procedure, if'which each formal parsméter enlled by
namé #s réplaced by the c@rresponding actual parametcere. When the
actual parancter conaistggof a single condtant or a single unsub-
SCTiptéd'variéble without side offectay aall by name I8 eaqulvalent
to call by refercnce. When an actual parameter congists of n niore

goneral expression, however, this expression must be evaluated inew

202

each tine the parameter 1s used. If the values of any ~f the vari-
ables appearing in the expression have changed, the volue of the

expression will nornally choge as well.

re

It is possible toimplement'call by name according to the ori-
ginal cdefinition; that is, the given program is tronsformed in
such a way as to elininate procedure calls. Thc new form of %he
prograrn, hovever, would normelly toke up excessive space, and so
what is usually done instead' ig to treat each usage of a parnnmeter
called by name as a function which evaluates the corrcsponding
actual narametor. A reference to this wvalue is then retnrned
by the fzmcfion; this refercnce is a temporary varizble unlesz the
norometer is a si;‘lgle'; variaple, just as in call by relercnce. 3ince
2 procedure.may he called from more than one place, with 4iflering

actual parameters, such a parameter usage is a funetion variable,

whosc values are state vector functions. For the formal parameter
¥y callnd by name, the state vector function of M as a primorr ex-
nression ig ziven by m(S) = S(h(S)) whore h = S(@i1), znd its state
vector function as the left side of an assignment is riven by n(0)
= h(3). Any side effect of h becomes the side effcct of m whmaver
S (i) = hy the total side effect of m is then tre function s whose
(state vector) value s(S) is the value of the sice effect of 3(I).

A mathenatical proof of the eqnivelence of this scheme for
handling parametars called by name with that of the original def’~ (
nition is beyond the scope of this Dbooke Such a nronf nust, of

course, be a part of any complete proof of correctness of an ALGOL

(3

systems urther examples of the equivalence of parareter handling
sciacries are quite common i worlsing with programing lengieses.

ilost algebraic language procescorsy for exanple, use calling se-

n
o
2
3
t%
o
0
(o]

uences, wirich are scquences of Tormal parsmcter values as

203
above. There is then within each subroutine a single variable

whose values are (pointers to) calling sequences. Such a subrou~
tine is called by setting the valie of this single variable to a
particular calling sequence and transferring contvrol,‘ which is
faster than setting several parameter variables and transferring
controle In the EUCLID routine, the ecalling sequences are of the
form (,l, ¥ X)s where ?,9! and ¥ are either integers (ecall by value),
integer references (call by reference), or integer=-refercnce-valued
functions (eall by name)e If R is the calling sequence variable,
then the state vector fg;nction of My for example, as a primery ex-
Vpression is now given by m(S) =p (or S(ft), or fL(S)) where (/‘, ¥, K)
= S(R)» This 11lbistrates only the mest rudimentary ealling sequeice
schemes 1f a language processing system euploys such a scheme, then
the proof of correctness of the system must {nclude a proof tiot
the scheme is valid -~ normally, a proof of the equiwvalence of the

schene with that by which the given language is defined.

204

2«13 Correctness

The theory presented in Chapters 1 and 2 on correctnnss of

5

programs will now be given a formal mathenmatical basise. Ict P he

program on the memory [0’ as in Definition 3-2-1, ~nd Jet [T =

o

P u (fA%, P), so that f'D may be canonically identified with l"g
X Peo By Theorem 3~10-2, we may assume that P iz conplete, :nad if
it is co”vmete then 1ts exccution function f: P FD ia oiven by

Definition 3-9=2, If TO = \"D, then the computation seduaince TO’
Tl’ T,y eeay starting from TO is given by Ti-l—l = f(Ti) for i . 0
s)

¥
as In Definition 3-k-1, An os-ertion ahot the variables of P is

vhe same as a condition on thems that is, it is a state vector

anction whose values are true or false. We chall view every as-

iy

sertion about P as a subset of FI()) (or sometimes of FD, if this is
explicitly stated); this is justified in scetion 3=5. A state vee-
tor S for which the assertion A 1s valid is vrecisely one wihich

belongs to A as 2 set. We may now make formal definitions of cor-

rectness and part:.?l correctnesse.

DYFINITION 3-13~1. Let T be a set of pairs (F,, 4,), where

each F, is a statememt of a complete program P on PO and each A,

€ Fg. Let f’, £, and computation sequences be defined as above.

Iet R € P be the set of all (8 845 Fy)y for all s 3€ f‘?) nd ~11
(Fi’ Ai) € T, and let Ry € R be defined by (uj, F)(Ry if ond
only if S, € A s Then P is partilally correct with respect to Yl

J i
if no computation sequence TO’ Tl’ saey fOT TO € Iy contoing ele-

ments of R~Ry. It 1s gorrect with respect toT if it is puritielly

correct with resnect to‘]T an? if, in addition, each co.r.tation

“ony f‘or T e R, contains elements of R

sequence .LO, T 0 ne

1,

o

205

THEOREM 3=~13~1, If P is partially correct with respect to M,
then it is partially correct with respect to any subset‘f['C W.

23_(_)@. Let R and R, relative to 1! be denoted by R! ami R(!)o
Then Rt £ R, R(')_C_ RO, and R'-R(')_C_R-RO. It ‘I'O, Tl, eses 1s a com~
nutation segquence for TO € R('), then certainly TO é RO’ 2nd the
sequence contains no elements of R-RO, aind thercfore no elonents
of R'-R('). This completeés '_the proofe

This proof is deceptively short, because we have defined par=-
tial correctnes's relative to ontire computation sequences, r:ther
than control paths. The following theorem indicates, as we did In-
tuitively earliery how partial correctness is proved.
| THEMREM 3=13~2, Using notation as in the definition above, sup-
pose that whenever TO’ Tl’ ceay 18 a conmputation sequence with TO
€Ryy and T, € R but sach qug R for 0 < J < k, we have Tké RO.
Then P 1s partially correct with respect to T,

PLOOF. Supnose the céntrarys; then there exists a computation
sequence T,O’ Tl, eosy With T0€ Ry» containing elements of R-R.
Let T, be that element of R—Ro"in this sequence whose index z is
as small as possible, so that T§¢ ReRy for 0 < J < z. Let T

YQ

¥y < z, be that element of R, in this sequence whose index is as

- large as possilble; certainlg Ty exists, since Toe RO. We then have
TJ é ‘CR-RO) U RO =R for y < §J < z., Consideration of the computa~
tion sequence beginning with Ty leads us to a contradiction of the
‘ hypothesis. This completes the pro_of. (The converse is obvious.)
COROLIARY 3-~13-1l. If for each statement F 1 in P we have (Fi’ Ai)
€T for gome Ai’ then P 1s partially correct with respect to T if
and only if T(R‘dﬂ € R, (that 1s, T € Ro inplies £(T) € Ro if £(T)
existe). '

- This follows lmmediately “ron the fact that R = ™ in thie cane.

| 206

DEFINITION 3=13~2. Using notafion as in tre definition above,
2 path in P is a sequence (EO, cony Zn) of statements of P such
that for each 1, 1 < i < n, there exist S, St & f‘% with £(, E, ;1))
= (8%, 5y)e A Jgop in P is a path (Fjy eeey T) in P with z‘o = Z’n,
A control path of T is a path of P such that (Z'i, Ai) € T for some
A; if and eonly if i = 0 or n. A 1gop control path of T is 2 control
path of T cvadainsd in some loop in Pe A control path of N is verificd
if for each computation seq ence (So, Zols ooy B g,) of P (for
the path (Zo, cousy Zn)") we have 8o € A.O implies S E A s for (Zg,
Ag)s (2,5 A,) € Te The set T is gufficicpt if each loop in P con-
tains some Si with (Z'i, A ,‘) € T for some A

1
THIOREM 3=13~3. If every control path of M is verified, then

P is partially correct with respect to ’W.
PLO0F. Let Ty = (SO, Z'o), Tl = (Sl, Zl), «eey be 2 computation

sequence for some Eo, Zqs oeej then for each k, (2'0, ceey Zk) is a

14

path in P, by definition of a coinputation sequence. If Toé R 0’

T € R, and each qu R for 0 < J <k, then (Z,, ««o; g,) is a con~
trol path of T by the definitions of R and RO' By hypothesis, it is

"therefore verified; since'Toé R.y we have SOG_ AO, and thus Sk €

0

Ak. This, combined with Tke R, yields Tke RO, and thus, by Theo-

rem 3~13-2, P is partlally correct with respecet to T,

TILOREM 3-13~lto If T is sufTicient, then T has only o finite

nunber of control pathse 2nd these are of bounded lengthe
PrO0F . Let (fo, 0oay Zk) he such a pathe We first show that

&

Zj, where we may assume 1 <€ jo Then by considering (5 1 zZ

y eves Zy_q 2re all Qistinct. Suppose the contrary, so that Zﬁ -

417 %
z .1>’ we wonld hove o contradiction to the statement that T is sul-

ficient. If thaore are n statemends in the program, then There nye ©

P

wost nl cholces for (£,5 eeey £, ;) if these ave all distinet, and
at moast n.choices for each of X a and 21,. Als0, ‘the maximimn length

of each such path is clearly nt+l, This completes the proofs

Ve 4

vy

207
TITI0REM 3-13~5. Suppose tlwmt T is sufficient and that each con-

trol path of T is ve’}ified, and let J be the set of all integers.
Suppose that for each loop control path C ~ ('KO, ..-.._,Zk) ve may
associate b, ro - Jy €.8 PD-—) Je eeey © 32 FD Js cuch thuts
c 1 n - : |
(1) For each computation sequence (SO, EO), ceey (Sk, Sk) with
5, € Ay (for (ZO, AO) €) ve have
E \ 7

(a) ei(Sk) p ei(So), 1<1<n,

(h) en(S}_) > en(So) i” C is primary (see (3) bclovw),

(ec) bK(Sk) = bK(SO) for each b, associated with each

KX
loop control path K of T (including ¥ = C)j

(2) If el, XX enis ascociated with C = (ZO, XXX Z.!’_) ond
ei’ ceny er:: with C' = (26, ceey Zl'{), then fk = Z6 17.!-‘.?1.7.1';33 ei = e:{
for 1 <1 < min(m, n) (in which case C is cnlled inrer to Ot if

m < n, outer to C* if m'> n, ~nd strictly outer toc C! if m > n)j

(3) Bach C = (Z5 eeey &) associoted with @)y ooy e in cither
(2) primary (see also (1) above), in which case 3 € ., (for
(Zka :“'xk)é) inpliles en(S) < bC ©);

(b) secondery, in which case each loop in P eontuiniug C

contains sorne C' wiich is wnrimary and outer to C, or
which Is.strictly outer to C.

Then P is corrzsct with respect to each subset TP of T vy Iving
all termizmtion stotenonts of P (i. eey Ty 4A) € T=-* innlins
£((G,Z)) is alveys cefined for S € A).

P OCFe Since ench control vath of is wverified, P is n»rtisil:-
correct *ith respcet to M, anl therefore with respect to Trte Lot
©or Eg)s g5 Z1)y eees wlth (Fgy 4p) € T 54 € Ao be & o
tatior sequence; it is sufficient to derive » cowtrav;ictim::, 7.93 i1~

-

=ne that the segqience 1s infinftee (If it rust bhe fivite, then 1%
wuds 2 sone (S, X)), with (g, Ak) ¢ ! by the hynothesis on M?!;

since P is partinlly correct with respect to ', we have :;ke lLk,

208
and therofors P is correct with respect to Tte.)

Let 1 (= 0) < i, < 12 < eos be those indices for vhich (L1

1
A;) e the control paths which this sequence traverses are Cj
=&, 2 E

=1 J=-1
there are infinitely many 13 and hence infinitely many CJ. Since

+10 ...,z:ij) for each J > O. Since T is sufficient, |

there are only a finite number of distinct Cj’ some nust apnear
an infinite number of times. Of these, let Cx be associated with
B9 ooy €y for n nas small as possible, I Qx is>primary,'take‘c§
=?Ci; otherwise, ahy loop in P ’¢ontaining €, contains somé C? wvhich
must’be primary snd associated with 819 eeoy € by the choice of X3
we choose such a C' which appears an infinite number of times and
call it Cy“ There are‘a finite nunber of Cj each of which appears
a finite number of times, ending at ¥y for various ij; let C,;, cnd
at the largest of thesé 15, and let ﬂo (=ﬁy Scu9?<?ji <, < eee be
those indices for which Cj = C « Such indices exist because Cy ap=
pears infinitely often. Let Vi = enKSk_)’ 'bk = bck(sk) for each
k > 0; by hyvothesis (30), vjis bﬂifo: sach i, since Cji is mrimary
We now show that each C,y z > v, 1s inner to C_. Suspose the
contfary, and let z be the smallest integer with z > v but Cz not
inner to Cye Then z-1 > v and C__4 1s inner %o Cy. By hyrothesis
(2), either C,.1 is outer to C, (impossible, because then C, would
also be inﬁer'tp‘cw) or Cz-l is inner to Cz. But then C, 1is either
inner or outer %o Cw; since it is not inner, it must be strictly

~F

outer, and we have a contradiction to our choice of Cx‘ lence each S

(@]

59 3 >V, 1s innor to Cgyy ant this implies immediestely by inductlion

>
v, S vy and and by = by for all b >a > v.b¥ higpotheses (1la), (Ic). ~

Sy hypothesis (1b), Vi.-1 <Vj for each 1, and since vj 1 SV 9
i 3 Yi-
wve have vj < V5 <V, < a0 and each v, < b; = b. ’ mJ““h is
0 1 d2 1= 31 o

inipossibles. This completes the proofe

LFt]

209

PROBLEMS

1. (a) Let A be a set of m elements and let B be a set of n
elements, How many total functions f£: A ->» B are there?

(b) How many of these are one=to=one?

(¢) How many partial functions f: A -> B are there?

(d) How many of these are one-to-one?

2o A relation 1is called a gtrict ordering if it is irreflex=~

ive, antisymmetric, and transitive., Show that there is a natural

"one=to=-one correspondence between the set of all strict orderings

on & given set and the set of all partial orderings on that set,
(Note: If a partial ordering is denoted by < or 2, the correspon-
ding strict ordering is often denoted by < or >.)

	Copyright notice 1972
	ERL-315
	Copyright notice 1971
	ERL-315 (1 of 4)
	ERL-315 (2 of 4)
	ERL-315 (3 of 4)
	ERL-315 (4 of 4)

