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ABSTRACT

The FASBOL compiler system represents a new approach to tﬁe
processing and execution of programs written in the SNOBOL4 lan-
guage. In contrast to the existing interpretive and semi-inter-
pretive systems, the FASBOL compiler produces independent, re-
locatable assembly-language programs. These programs, using a
small run~-time library, execute much faster than under other
SNOBOL4 systems. :

With very little loss of flexibility, FASBOL offers the same
advantages as other compiler systems, such as:

1. Up to two orders of magnitude decrease in execution

ciﬁes over interpretive processing for most problems.

2. Much.smaller storage requirements at execution time

than in-core systems, permitting either small partitions

or larger programs.

3. Capability of independent compilation of different

program segments, simplifying program structure and de-

bugging and permitting overlays for very large programs.

4. Capability of interfacing with FORTRAN and machine-

language programs, providing any division of labor required

by the nature of a problem.
The FASBOL compiler is itself written in FASBOL, and implemented

on the UNIVAC 1108 under EXEC II.
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CHAPTER 1

Introduction

This chapter provides a brief description of the SNOBOL4 lan-
guage, the relationship that FASBOL has to it, and an overview of
the remaining chapters. In order to fully understand Chapters 2,
3 and 4, the reader must be thoroughly familiar with SNOBOL4; the
brief descriptiop below is only intended to give an idea of the
capabilities of the language and to refresh the memory of someone
who has had some previous experience with it.

1.1 History and short description of SNOBOL4 o

SNOBbLA is a high~level programming language incorporating non-
numerical and list processing features not found iﬁ other languages.
It permits the user to easily write programs containing string and
symbol ;anipulation, pattern matching, and arbitrary data structure
pfocessing; it has applications in areas such as compiler writing,
text processing, natural language recognition, and artificial in-
telligence. SNOBOL4 evolved from SNOBOL[1,2,3]*, developed at
Bell Telephone Laboratories, Inc., in 1962, and is a widely known
and used language [4]; it has been implemented on several different
computers, including the IBM System/360, UNIVAC 1108, GE 635, CDC
3600, CDC 6000 series, PNP-10, SIGMA 5/G/7, ATLAS 2, and RCA SPECTRA

70 gseries.

= -
Numbers in brackets refer to references in the back.



One type of datum in SNOBOL4 is the character string, and the
language provides operations for joining and separating strings,
testing their contents, and replacing segments of them with other

strings. For instance:
X = 'THIS COMPILATION WAS DONE ON '

assigns the string value (a literal of 29 characters) to the var-
iable "X" . Given this assignment, a subsequent statement might

be:
COMPILAIION.MESSAGE = X DATE() ' AT ' TIME.OF.DAY()

where the expression "DATE()" is a function call which returns a
string representing the date (similarly for "TIME.OF.DAY()"), and
the operation performed is a concatenation of four strings to form
a new one, which is assign;d to the variable "COMPILATION.MESSAGE".

This new string could be printed out and would appear as:
THIS COMPILATION WAS DONE ON @6 OCT 71 AT 19:50:3¢

Space need not be reserved ahead of time for dynamically varying
quantities such as strings, and no type declarations need be given
’ for'variablgs, which may hold data values of any type (e.g., strings,
integers, reals, etc.).

Another type of datum is the pattern, which is a specification
of an arbitrarily complex structure for a character string; in
order to test if a string fits a given pattern structure, a pattern
match can be executed which either succeeds or fails (each statement

provides for a separate transfer of control for either circumstance)



at the task. For instance:
FORTRAN.LABEL = (SPAN('0') | '') SPAN('0123456789') . LABEL

assigns to the variable "FORTRAN.LABEL" a pattern which both matches

a string of digits, and assigns to the variable "LABEL" the matched

string minus any leading zeros. This pattern might then be used in

a pattern match statement:
CARD.IMAGE (FORTRAN.LABEL | ' ') TAB(5) =

which recognizes a properly formed or missing label field in a

FORTRAN statement, truncates the first five columns off the string

- held in "CARD.IMAGE", and assigns the label, if any, to "LABEL".

SNOBOL4 provides for arithmetic on integers and real numbers,
and for conversion between them and their string representation.
Arrays may be created dynamically with any number of dimensions
and any dimension bounds; each element of an array, like any var-
iable, may hold a datum of any type, including another array. Func-
tions may be dynamically defined aﬁd redefined, and function calls
may be made recursively. An execution-timé symbol table provides
the capability of referencing a program entity (variable, label,
or function) via the string representation of its name. Additional
data cypes’may be program-defined and used to form linked-list
structures or extended elemenﬁary‘data; such as complex numbers.

Because SNOBOL4 has been implemented on many differeat computers,
and new languagelfeaturas have been ﬁdded as the language evolveg,
several different versions are currently in use. For the present

purpose, the language is considered to be defined, both syntactically



and(almost completely) semantically, by the Prentice-Hall publica-
tion [5] which describes SNOBOL4, Version 2, as implemented on the
IBM System/360. A later edition of the book (1971) describes
Version 3; it appeared too late for inclusion in the present work,
and in any case only contains some additional featurés which do not .

change the basic nature of the language.

1.2 Objectives of FASBOL

With one exception, all current implementations of SNOBOL4 are
interpretivé. A SNOBOL interpreter is best defined by its charac-
teristics and mode of operation. The intexpreter is a large program
which processes the SﬁOBOLA statements and translates them into |
some.intermediate notatioﬁ (e.g., prefix-polish with symbol table
entries).} After the entire program has been processed, the inter-
preter then enters the execution phase, where it acts as a table-
driven processor to perform the operations specified by the SNOBOL4
program. Interpretive execution (as opposed to compiled executionm)
is slow and requires the interpreter program as well as the trans-
lated source program to be resident in core at execution time.
Interpretiwve processing requires a translation for every execution
(unless the process is "frozen" and saved), and must deal with a
logically complete and self-contained SNOBOL4 program. One advantage
ovér compilation is the greater flexibility provided at execution
time; for example, a program can extend itself by processing strings
into intermediate notation and_then executing the newly created

prog:<am.
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The one exception (besides FASBOL) is a proprietary package

_for the IBM S/360 called SPITBOL(6] developed by one of the imple-
mentors of the SNOBOL4 interpreter. Although no information has
been released about its internal workings, it appears to be a semi-
interpretive system with a considerable execution speed advantage
over regular interpreters for certain types of statements. It is

_ alse an "in-core" system and the speed advantage seems to be de-
rived from the compilation into absolute machine code of the more
conventional features (i.e., arithmetic) of SNOBOL4, and possibly
from the transfer of control to the absolute program instead of thg
table~driven mode of the standard interpreter; howeQer, it appears
that patterns are generally still handled as they are by other im-
plementations (i.e., as data structures to be interpreted). SPITBOL
makes maximum use of the S/360 instruction set and its techniques
are generally not machine-independent.

FASBOL* was conceived as a true compiler for SNOBOL4; this was
achieved by discarding a very few, seldom used features (for example, the
CODE. datatype and function), and adding declarations. FASBOL has
separate compilation and execution phases, just like FORTRAN; the
compiler produces an independent, relocatable program; when the pro-

gram is executed, it makes use of a library of run—-time routines.

*The name "FASBOL", which has no other mnemonic significance besides
the obvious one, is here used interchangeably to mean the dialect

of SNOBOL4 processed by the FASBOL compiler, and the compilation
system itself. A preliminary version, named SUBBOL [7,8]), which did
not implement all the current features but did do compilation of
patterns, was started in the fall of 1969 and became operational
June 1970.

TSRV s mages s e e g s e s



The run-time library is small and modular; it provides predefined
functions and entries to do operations not easily realizable by
"in-line" code. One possible criticism of FASBOL as a compiler
is that executing programs do spend a lot of the time in the library
routines, and therefore it could Be.consideted an interpreter with
deferred execution. Although this criticism may be philosophically
valid, in practice many “compiler" systéms exhibit similar behavior
(for instance formatted 1I/0 in FORTRAN which could be compiled);
FASBOL depends heavily on the libraryvsgcauae most SNOBOL4 opera-
tions do not have counterparts in the instruction codes of digital
computers, and "in-line? code would produce excessively large pro-
grams in return for a very small increase in running speed. All
structural aspects of the source program, including patterns, are
compiled into executable code; it is conceivable that on an imag-
inary computer whose instruction set included string manipulation
and generglized stack operationsg, the library would be reduced to
a few primitives and utility routines such as free-storage and 1/0.
The primary design objective for FASBOL was to produce fast-
executing programs. The speed.advantage over interpreters is due
to several factors. Because control resides in the compiled program,
the "middleman" that does the interpretation is eliminated. This
effect is accentuated in the case of pattern matches, which FASBOL
executes as a series of re-entrant subroutines, but are interpre-
tations within-an-interpretation on other systems. Because the
types of some variables can be declared, gsome arithmetic can be

'execnted, in~line, FORTRAN style, rather than as a series of
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type-checks required by the typeless nature of variables in SNOBOL4.
Because there is no resident processor (the entire FASBOL library,
including all primitives, is less than 5K), the free storage pack-
age has more space available for dynamic storage allocation, which
improves the speed of execution. SPITBOL shares some of the above
advantages with FASBOL, but cannot produce FORTRAN-like arithmetic,
does not compile patterns, and uses more storage (but not as much
as the interpreters) for itself at run-time.

The execution speed of FASBOL has been compared with that
of four other SNOBOL4 systems, using the absolute times to execute
statements in three categories: GENERAL, ARITHMETIC, and PATTERN
(the first covering operations other than the latter two). ‘These
four systems are the UNIVAC 1108 interpreter, the CDC 6400 inter-
preter, the interpreter for the IBM System/360 (Model 65), and
SPITBOL (also on the 360/65).

The UNIVAC 1108 interpreter, implemented at the University
of Maryland from the macros supplied by the Bell Telephone Labor-
atories (used also for the 360 interpreter), runs under the EXEC II
operating system with a 65K of machine memory. It is a full imple-
mentation of SNOBOL4, Version 2, and provides a direct basis for
comparison with FASBOL since it runs on the same machine under
the same conditions. The various categories of statements were
timed by measuring the elapsed time for a number of iterations of
the statement, and then dividing by the number of iterations. The
results indicate that FASBOL is roughly 200 times faster on arith-
metic, 20 times faster on patterns, and at least 10 times faster

on other types of operations.



The interpreter for the CDC 6400 was implemented at the
University of California at Berkeley and is a carefully hand-coded
version which is not.a full implementation of SNOBOL4 but does an
extremely efficient job of processing large numbers of student pro-
grams at the University Computer Center. Since actual elapsed
time was not necessarily spent in SNOBOL4 execution, statement
times were measured by running two jobs that were incrementally
different, and then using time difference in chargeable CPU time
(divided by the number of additional iterations). This method
also factored our the "compilation" time, which is not reported
separately. In this comparison, FASBOL was approximately 100, 10,
and 5 times faster on arithmetic, patterns, and other operations,
respectively. An additional problem here (and with the S/360) is
to factor out the effects due to differences in the computers
themselves. Both the 1108 aﬁd 6400 are word-addressable with
roughly equivalent instruction execution times, but the 6400 has
larger words (60 bits vs 36 bits), whereas the 1108 has a capabil-
ity of referencing a partial word in memory (which helps in deal-
ing with packed character strings). Since each machine has its
own advantages, it is unlikely that hardware differences could
affect the SNOBOL4 execution times by more than a factor of 2
in either direction.

The IBM System/360 has a distinct advantage over the other
two computers when processing strings of characters; in additioﬁ
to being byte-addressable, it has specific instructions to manip-

ulate and compare character strings. Whereas the Model 65 has

-]
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instruction execution times comparaﬁle to the 1108, certain opera-
tions frequently used in string manipulation and pattern matching
can be done considerably faster. As a typical case, consider the
operation of moving a portion of a string from one position in
memory to another, as would occur during a:string concatenation.
Assume that there are N characters to be.moved from the source
string pointed to by Rl starting at characteé position P1l, to the
object string pointed to by R2 starting at position P2. This can

be accomplished by the single 360 instruction
MVC P2(N,R2) , PI1(Rl)

Where the total time in microseconds is given by the formula:

2,93 + .38N; N is the number of bytes moved. The 1108 must con-
vert the character positions to full words plus remainders, and
use an explicit loop involving execute tables and two register
pointers for each string. Assuming N,Pl, and P2 are in registers

A6,A0, and A2, respectively, the following sequence is fequired:

Instruction Comment Timing (usec)
DSA A0, 36 . Form Source .875
DI,L A0,6 . Pointer 10.125
A AO,R1 . .75
DSA A2,36 . Form Object - .875
DI,L A2,6 . Pointer 10.125
A A2,R2 . .75
LX1,L A0,l1 . Set Word Pointer 1.00
LXI,L A2,1 . Increments 1.00
LXI,L Al,l . Set Charaéter Pointer 1.00

LXI,L A3,1 . Increments 1.00



Instruction
AN, L A6,1 .
LOOP EX GTCHR1,*Al .
EX PTCHR2,*A3 .
JGD A6,LOOP .

The execute tables, indexed by

follows:

GTCHR1 L,C5 A5,0,A0 .
L,C4 A5,0,A0 .
L,C3 A5,0,A0 .
L,C2 A5,0,A0 .
L,Cl A5,0,A0 .
IMJ B1l1l,$+1 .
L,CO A5,0,%A0 .
LXM, L Al,0 .
J 0,Bl11 .

10

Comment Timing (usec)
TOT Chars - 1 .75

Get Source Char,Bump (.75+1.17)N
PTR

Put Object Char,Bump (.75+1.17)N
PTR

LOOP for each Char 1.5(N-1)+.75

the character pointer, are as

Get First Char .75 (with prob.1/6)
" Second " .75 "

" Third " .75 "

"  Fourth " .75 "

" Fifth " .75 "

Save Execute Loc .875)
Get Sixth Char .75 ) "

Bump Word PTR,Reset .875)
Char PTR, Return .75 )

Since the probability of any character position is 1/6, the average

time for one execute table reference is 7.00/6 = 1.17 usec (as used

in the sequence above). PTCHR2 is similar except that it stores

characters instead and uses the register set (A2,A3) for word and

character pointers. The total

time in microseconds is given by the

formula: 27.5 + 5.34N.; thus even the incremental speed factor

of the 360 over the 1108 in this case is 5.34/.38 = 14, Similar

-advantages occur in string comparisons, which are quite frequent

during pattern matching.

The execution times for statements under the interpreter and

SPITBOL on the 360/65 were measured in a similar fashion as on the

1108, and indicated that FASBOL is faster than the interpreter

(which is the definitive full implementation of SNOBOL4) by the
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same ratios as with the 6400 interpreter (100, 10, and 5). This
is only twic; as fast as the 1108 interpreter, and is indicative
of the fact that these interpreters are.both implemented from
macros in order to provide machine-independence so that the 360
version may not make full use of the instruction set available

to it. SPITBOL, on the other hand, does make full use of these
instructions and also avoids interpretive mode execution to some
extent. FASBOL is 4-5 times faster than SPITBOL on arithmetic, but
roughly equal in most other operations. Complicated patterns run
faster in FASBOL because SPITBOL cannot optimize them and reverts
back to an interpretive mode. Very simple patterns and string
cencatenations run faster in SPITBOL, where the 360 instructions
outperform their 1108 equivalents, as illustrated by the above
example of a string move. The FASBOL compilation techniques could
be applied on the 360 as well, in addition to the optimizations
performed by SPITBOL, resulting in even faster execution.

In addition tolmeeting the primary objective FASBOL has other
characteristics, common to compiler systems (and absent in the
SNOBOL4 interpreter and SPITBOL), which may be as important as fast
execution for some problems. FASBOL is capable of compiling sep-
arately main programs and independent subroutines, with the option
of making variables, labels, and functions either local or global.
This facility allows for the fragmentation of an otherwise insoluble
problem into manageable pieces which can be checked out before being
join2d. It also permits an overlay structure in storage for problems
that“would otherwise not fit or leave very little room for free

storage. FASBOL programs may call on, and more important, be called
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by FORTRAN or assembly-language routines; a mixed system of FORTRAN
and FASBOL routines is ideal for dealing with a problem involving
both numerical and non-numerical processing. Once a FASBOL program
is debugged, it need never be recompiled.

The interpreters (and SPITBOL) do have advantages over FASBOL
in some cases. Dynamic compilation is of course nqt allowed in
FASBOL; neither are other highly permissive features such as the
redefinition of operators. FASBOL has no explicit tracing capability,
sometimes making debugging more difficult. FASBOL has no particu-
lar advantage in certain environments where every execution is pre-
ceded by a compilation, as frequently happens with runs submitted

by students for a programming class, and for short-run programs.

1.3 Brief Outline of Remaining Chapters

Although currently implemented on a UNIVAC 1108, the run-time
techniques and compilation schemes used by FASBOL are largely machine-
independent. Certain features of the SNOBOL4 language which pro-
vided more flexibility than the compiler could efficiently deal with
are not implemented; they are generally not used by most SNOBOL4
programs. FASBOL provides both compile-time and run-time features
absent from other implementations, including additional predefined
functions for programming convenience and efficiency of operation.
Chapter 2 provides a full description of all deletions, changes, and
additions to SNOBOL4 in FASBOL, and (in conjunction with the SNOBOL4
manual)serves as a user's guide to FASBOL programming. Chapter 3
describes the important parts of the run—time system in reasonably

machine-independent fashion, and Chapter 4 gives a general functional

p-3
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description of the compiler, which is itself written almost exclu-
sively in FASBOL.
The chief unimplemented feature of SNOBOL4 is the run-time

compilation capability, involving the EVAL and CODE primitives,

direct GOTOS, and the CODE and EXPRESSION datatypes. The only

other major unimplemented feature is the tracing capability. features
that are implemented differently are small in number and of minor
importance (for instance, the character set differs in three char-
acters, and &MAXLNGTH is initially set to 32767). In addition to
some minor extensions to the SNOBOL4 syntax, extra features of
FASBOL include declarations and compiler options, more control cards,
and more primitives (pre-defined functions). The declarations can
be used to optimize the operation of the compiled program and/or
permit communication with other programs; the options provide user
control over certain run-time parameters or compiler operation. The
additional control cards permit more listing control, cross-refer-
encing capability, etc., and the additional primitives include rout-
ines for extracting or inserting substrings, performing logical
operations on integers, and controlling run-time parameters.

The FASBOL run-time operation is controlled by the compiled
programa which make use of the system library for repetitive and/or
global functions. Expressions fall into three categories in terms
of the code generated for them. Arithmetic expressions involving
only constants and dedicated variabl'es (see declarations) or
functions are compiled directly into the equivalent machine-langpuage

instructions. Other expressions which are not explicitly pattern
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structures are compiled as a postfix polish series of evaluations
using a single expression stack for temporary results. Explicit
pattern expressions are compiled as two separétely executable phases:
an avaluation phase to evaluate any elements of the pattern, using
either of the above code conventions, and a match phase, coded as

a re-entrant subroutine reflecting the structure of the pattern and
using two stacks operating in ofthogonal sequence.

The FASBOL compiler is a one-pass processor which generatés a
symbolic assembly language program and then automatically invokes
the assembler. It is structured in sﬁace/time as a main program
with five phases which successivelf overlay each other in main stor-
age. The main program proﬁides the control to pass from one phase
to the next, plus any subroutines needed by more tﬁan one phase.

The phases perform in succession, source inp;t éditing, declaration
processing, executable statement processing, program storage and

data allocation, and (optionally) cross-reference dictionary listing.
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CHAPTER 2

FASBOL Programming

This chapter provides all the additional information required
for writing FASBOL programs, given familiarity with SNOBOL4, but
does not cover the SNOBOL4 language itself. Most SNOBOL4 (Version
2) programs will run "as-is" under FASBOL, or will require only
the addition of some of the declarations described in 2.2.1. It is
anticipated that there will be‘future versions of FASBOL which will
incorporate additional features, such as some of the features of

SNOBOL4, Version 3.

2.1 General Language Features

FASBOL programs are -compiled into symbolic assembly language
programs and assembled to produce relocatable object programs. The
intermediate symbolic program may be saved, optimized, and then
asgembled by the experienced user who wishes to do so, and can answer
for his handiwork. The source statement for a given section of
assembly code is inserted as a comment line immediately preceding
that section. A future feature of FASBOL compilation will be direct
generation of relocatable object programs for improved efficiency.

FASBOL programs are executed by calling on the allocator (link-
ing loader) to produce an absolute element from the relocatable FASBOL
main program, subroutines, and library, aﬁd any other non-FASBOL
routines used. The absolute (non-relocatable) element can then be

immediately executed or saved for future use.
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2.1.1 SNOBOL4 Features Not Implemented

A detailed list of unimplemented features is given in Table 1.
The reason for most of these is the inability of the compiler to
control, or be present, during execution; this is the case with
items 1, 2, and 4. Other items, such as 3, 5, 6, 7, and 10, are
unimplemented because they would require a much larger run-time sym-
boi téble and/or induce far less efficient code; also, they are
seldom used. The remaining items are due to the nature of the run-

time code generated for patterns.

2.1.2 SNOBOL4 Features Implemented Differently

Table 2 is a list of features implemented differently in FASBOL.
Except for item 1, they have no major semantic effect.

Item 1 rectifies a quirk in SNOBOL4 which returned a STRING
datatype as a result of the unary . (name) operation on a natural
variable, instead of a NAME datatype. The FASBOL convention is more
consistent and useful; it is noted that the authors of SPITBOL[6]
decided on the same convention. NAME datatypes are useful in re-
taining access to a natural or created variable that would otherwise
require a new indirection (symbol-table look-up)or array/field re-
ference. To access or store into a variable pointed to by a NAME

datatype, the §$ (indirection) operator must be used. For instance,

if

N = +ARRAY <25>
sthen, to increment the value of the array element,

$N = SN <+ 1



 TABLE 1

Unimplemented Features of SNOBOL4 *

1. EVAL(), CODE() , and direct Gotos.

2. Datatypes

CODE and EXPRESSION.

3. Non-literal prototypes for DEFINE() and DATA().

4, All features, functions, and keywords having to(do with tracing.

5. Predefine

d VALUE() field.

6. Redefinition, OPSYN(), or APPLY() of primitives and fields.

7. Indirection or 1/0 association for keywords.

8. 1Two features of QUICKSCAN mode:

A. Continual comparison of the number of characters

remai

ning in the subject string against the number

of characters required.

B. Assumption that unevaluated expressions must match

at least one character.
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9. Explicit pattern structures in parameter lists (except as an

argument

to ARBNO)or as an argument to unary *

A. An explicit pattern structure is an expression

containing at least one of the following:

(1)
(2)
(3)
4)

B. The s

ture

Binary operator !, $, .
Unary operator *, @
Primitive pattern variable
Primitive pattern function

ame effect can be achieved by assigning the struc-

to a variable and then using the variable in the

parameter list, or as the argument to *.

*
Version 2
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10. &ARB, &ABORT, &BAL, &FAIL, &FENCE, &REM, &SUCCEED, and &DUMP
keywords. -




1.

3.

7.
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TABLE 2

Differences From SNOBOL4 *

Unary . always returns a value of type NAME, never a STRING
for naturél variables. Indirection(unary §) applied to a
value of the type NAME returns the same as value. NRETURN
is unnecessary and equivalent to RETURN. A NAME cannot be

generated for a label or a function.

The third argument to OQUTPUT() is an association length (as
in INPUT()), rather than a FORMAT string.
The 1108 character set requires three characters to be dif-

ferent:

360 characters 029 code 1108 character 029 code
" 7-8 i 3-8
7 11-7-8 \ 11-7-8
| 12-7-8 ! 11-0
Compiler-generated statement numbers are always listed on the

left.

SMAXLNGTH is initially set to 32767.
If SABEND is nonzero at program termination, it causes a
DUMP of free storage only; any post-mortem dump (PMD) is the

responsibility of the user.

APPLY() will accept either more or fewer arguments than the user-

defined function being called, and rejects/null fills formal

arguments accordingly.

*
Version 2
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; the proper context for NAME Datatypes is specified by the syntax

in Appendix 1;

2.1.3 Additions to SNOBOLS

The chief additions, besides minor extensions to the syntax,
are the implementation of declarations and compiler options, a full
set of control cards, and more pre-defined (primitive) functions,
all of which are described in the following sections. If declara-
tions and/or options are used, they must precede all executable
statements in the program.

There are three additions to the syntax of SNOBOL4:

(a) Quoted strings may be continued onto a new line, but note
that the continuation character (. or +) is replaced by a single
blank.

(b) Comment and control lines (* and - ) may start inside a
line image (after 3;), an& consume the remainder of the line image.

(c) The syntax of the DEFINE and DATA prototypes has been
‘loosened to conform with the rest of SNOBOL4 syntax, with blanks

allowed after (, around , , and before) .

The full Syntax for FASBOL, including the declarations and

options, is given in Appendix 1.

2.2 Declarations

The set of declarations in FASBOL have been divided into
"Required" and "Optional" classes, the difference being that some
SNOBOL4 programs must use some of the "Required" declarations in

order to function properly. The general form of a declaration is
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a call on the pseudofunction DECLARE, with two to four arguments.
The first argument is always a string literal specifying the type
of declaration, and the other arguments specify the parameters

upon which the declaration has effect. The following descriptions
are by declaration type, and contain examples of all possible forms

of the declaration.
2.2.1 Required

2.2.1.1 INDIRECT Declarations

There are six forms of the declaration: INDIRECT.VARIABLE,

INDIRECY.LABEL, INDIRECT.FUNCTION, NOT.INDIRECT.VARIABLE, NOT.INDIRECT

LABEL, and NOT.INDIRECT FUNCTION. One deliberate incompatibility

between the interpreter and FASBOL is that, whereas the interpreter
retains a full symbol table for the program during execut:ion, FASBOL
provides only a run-time symbol table (if the program requires one);
this method is fully coﬁpatible with SNOBOL4 programs provided the
only entities accessed via indirection (unarv $) are created variables.
However, any natural variable, label, or function that at some time
during execution will be referenced via a string (identical to its
name) ,must generally (exceptions noted below) be declared INDIRECT,
so that it can be explicitly inserted in the ruh-time symbol table
by the compiled code. All possible cases where these declarationsl
must be made are given here.

(a) Natural variables referenced via the § operator. For

example, if

then
EQ($X,25)
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will succeed only if "A" has been declared INDIRECT, as in

DECLARE (' INDIRECT.VARIABLE', 'A,B,C,D")
On the other hand, none of the following uses of § require declara-
tions, provided they are intended to refer only to created variables:

S$INPUT = 'RANDOM.CREATED.VARIABLE'
PUSH.STACK I = I + 1

$("STACK' I) = VAL
POP,STACK VAL = $('STACK' I)
I = I - 1

$'F(X,Y)' = F(X,Y)

(b) Labels referenced via the § operator, except if the operand
is a string literal. The latter case is because it usually repre-
sents a simple GOTO to a label that does not satisfy the syntax

rules for identifiers. For example, 1f
I = J - (J/4) *4 : ($C'CASE.' 1))

CASE.O
CASE.1
CASE.2
CASE. 3

Then there must be a declaration

DECLARE( ' INDIRECT.LABEL', 'CASE.0 CASE.l CASE.2 CASE.3;')

; on the other hand,

:($'>>>1")

>>51

Requires no declaratiom.
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(c) Labels referenced via non-literal second arguments to
DEFINE, as in

DEFINE('F(X,Y,2)', 'CASE' I)

(d) Natural functions referenced via non-literal first argu-
ments to APPLY, or non-literal first or second arguments to OPSYN.
For example, if

DEFINE('F(X)')
Y = 'F'
Then

APPLY(Y,A)

will work (i.e., be equivalent to F(A) only if "F" is declared

INDIRECT, as in

DECLARE( * INDIRECT.FUNCTION', 'F,G,H')
; on the other hand,

OPSYN('G','F')
requires no declaration.

(e) Natural variables referenced via non-literal first argu-

ments to INPUT, OUTPUT, and DETACH. For instance,

X = 'INPUT' ; INPUT(X,5,72)
requires "INPUT" to be declared INDIRECT, whereas

DETACH(' INPUT')
does not.
If it is more convenient to declare all variables (or labels,
or fuﬂctions) INDIRECT, the second argument to the declaration is

the dummy variable "ALL" :
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DECLARE (' INDIRECT.LABEL', ALL)
; exceptions can then be made using the NOT.INDIRECT declarations,
such as
DECLARE ('NOT.INDIRECT.LABEL','LAB1 LAB2 LAB3;')
It should be noted that the quoted parameter list for label
declarations uses blanks for separators and a semicolon preceding
the closing quote, the latter also used in other declarations where

labels appear.

2.2.1.2 Other Required Declarations

These are the INPUT.ASSOCIATIONS, OUTPUT.ASSOCIATIONS, and

FIELD declarations, and may be required for reasons given above
and/or because of the one-pass nature of the compiler. The cases
in which these three declarations must be made are, respectively:
(a) Natural variables which either occur as non-literal first
arguments to INPUT or are referenced in the compilation sequence

before their appearance in an INPUT call. For example, if

X = 'INPUT1' ;s INPUT(X,5,73)
and

READ.IN = INPUT2

INPUT('INPUT2', 5, 60')
then the variables must be declared by

DECLARE('INPUT.ASSOCIATIONS','INPUTl,INPUTZ')
In the above example, "INPUT2" need only be declared if the

execution sequence will pass through the INPUT call before using
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"INPUT2" as an input-associated variable in a statement preceding
the INPUT call. The compiler must know, when it encounters a var-
iable, if there is a possible input assoclation for it, and this
information can only come from instances of literal first arguments
to INPUT, or from the declaration.

(b) Natural variables which occur as non-literal first argu-
ments to OUTPUT. Similar to (a), but not constrained by the one-
pass problem.

(c) Field names (of programmer-defined datatypes) which are
referenced in the compilation sequence before they appear in the

argument to some DATA call. For example

NEXT(A) = TOP(B)

DATA(' BLOCK(NEXT, TOP ,MIDDLE,BOTTOM) ')
requires
DECLARE( 'FIELD','NEXT,TOP')
Since the usual programming practice is to place the I/0
association and datatype definition statements at the beginning of
a program (they must be executed before their respective effects

are usable), these declarations are seldom actually needed.

2,2.2 Optional
The remaining declarations provide more flexibility for the
programmer in specifying inter-program communication or direct

the compiler to perform optimization of some of the generated code.
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2,2,2.1 Dedicated Declarations
Variables can be dedicated to certain data values by declaring

them as STRING, INTEGER, REAL, or PATTERN. Normally, values in

FASBOL are represented by descriptors for one of the seven basic
types of data (STRING, INTEGER, REAL, NAME, ARRAY, PATTERN, and
DATA), and variables correspond to single storage locations contain-
ing such descriptors. Whenever a value is used in an operation,

it generally must be checked for correct type (and possibly con-
verted) before being used. Frequently, however, certain variables
have a '"dedicated" use, 1.e., they are always assigned only one

type of value, such as INTEGER; this is always the case in FORTRAN.
By passing this information to the compiler, expressions in which
these variables appear can be optimized.

INTEGER and REAL dedicated variables correspond to single stor-

age locations which are used to hold an actual integer or floating-
point number. The compiler generates FORTRAN-like code for express-
ions involving these variables; either as a subexpression for a
larger descriptor-mode expression, or as an entire statement. In
addition to simple arithmetic involving dedicated variables and
constants, FORTRAN function calls also return dedicated values, as
do the predicates LT, LE, EQ, NE, GE, GT and the primitives NOT,

AND. OR, XOR, LSHIFT, and RSHIFT with dedicated integer arguments.

For example, the statement
I = LE(I,100) I + AND(RANDOM, 1)
will be executed as a completely dedicated statement and about ten

to one hundred times faster by the additional declaration
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DECLARE( ' INTEGER', 'I,RANDOM')

PATTERN dedicated variables are similar to undedicated var-
iables, except that they may only be assigned pattern descriptors
or the null string descriptor. This dedication is natural for a
variable that is used as a shorthand notation for some pattern
structure, and serves to optimize the code generated when that

variable appears as part of another pattern, as in

ABC = A|B|C
STRING Z ABC X | X ABC Y | Y ABC Z

with declaration
DECLARE( 'PATTERN', 'ABC')

STRING dedicated vatiables are useful only in passing string
arguments to or from FORTRAN programs, and are less efficient than
undedicated variables otherwise. A string variable is declared
with a maximum character count, and corresponds to a series of
storage locations containing, respectively, the maximum character
count, the current character count, and the string itself. The
FORTRAN interface provides a pointer to the first word of the string,
which can be considered an array in "A6" format. An example of a
STRING declaration is

DECLARE( 'STRING', 'CARDIMAGE(80),NAME(6),LETTER(1)")

Type-checking and/or conversion is automatically performed when
values of descriptor mode must be loaded from or stored into dedi-
cated variables, or when a dedicated expression appears inside a
descriptor-mode expression. Dedicated variables cannot have I1/0

associations.
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2.2.2 SNOBOL.SUBPROGRAM Declaration

This declaration indicates that the program being compiled is
an indépendent subprogram, not the main program. The second argu-
ment is a quoted identifier conforming to the syntax for external
symbols which is used to name the subprogram; it is an entry point
with no arguments which performs any initialization required by
INDIRECT declarations or the TIMER option (see 2.3) for the whole
subprogram, then returns. If a subprogram uses neither of the above,
any other entry point in it may be called without ever calling the
subprogram entry; otherwise, thq subroutines will execute without
benefit of the INDIRECT and/or TIMER declarations until the sub-
program entry is called. For example, if a subprogram contained a
set of entries (see 2.2.2.4) to do complex arithmetic (i.e.,CMPADD,
CMPSUB, etc), it might be declared

DECLARE ( ' SNOBOL.SUBPROGRAM' , ' COMPLX"')
where the entry COMPLX need never be called, provided there are no
INDIRECT/TIMER declarations. On the other hand, if the subprogram
does use either of these, the call

COMPLX()
should be executed first, by some program before any other entries

in the subprogram are called.

2.2.2.3 EXTERNAL Declarations
Items that exist in some external program can be declared using

EXTERNAL.VARIABLE, EXTERNAL.LABEL, and EXTERNAL.FUNCTION declarations;

their names must conform to the syntax for external svmbols. The

purpose of these declarations (and those of 2.2.2.4) is to allow
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communication between separately compiled FASBOL programs by de-

fining certain variables, labels, and functions on a global level,

rather than on a local level for each subprogram. For example
DECLARE( ' EXTERNAL.VARIABLE', 'ALPHA,ALPHAL')

DECLARE ('EXTERNAL.LABEL', 'XTL1 XTL2 XTL3;')
DECLARE (' EXTERNAL.FUNCTION', 'CMPADD,CMPSUB, CMPMUL, CMPDIV')

implies that all the items declared exist in some other program, and
they are referenced by their external names when they appear in the
code. (Rather than by their compiler-generated internal name if

they were local to the subprogram.)

2,2,2,4 ENTRY Declarations
These are the logical counterparts to the EXTERNAL declarations.
For example,
DECLARE('ENTRY .VARIABLE', 'ALPHA,ALPHAL')
DECLARE('ENTRY.LABEL', 'XTL1 XTL2 XTL3;')
DECLARE('ENTRY . FUNCTION', 'CMPADD(ARG1,ARG2)')
DECLARE ('ENTRY. FUNCTION', ' CMPSUB (ARG1,ARG2) ')
DECLARE (' ENTRY. FUNCTION', ' CMPMUL(ARG1,ARG2) ")
DECLARE ('ENTRY . FUNCTION', 'CMPDIV(ARG1,ARG2)')
complement the declarations of 2.2.2.3. The variables and labels
declared here are local to this subprogram, but can also be refer-
enced globally via their external names. The same is true of the
functions, but in addition the declaration has the effect of pre-
defiuiing the function, so that no DEFINE call is needed for that

function. It should be noted that only one function éan be defined

by each declaration, and that there is an optional third argument
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(like the optional second argument to DEFINE) which specifies a
starting label, as in

DECLARE ( 'ENTRY.FUNCTION', 'F()LOC1,L0C2', 'START;')

2.2.2.5 TFORTRAN Interface Declarations
FORTRAN functions (or subroutines) that are to be called by

a FASBOL program are specified using the EXTERNAL. FORTRAN. FUNCTION

declaration, which in addition gives the type (integer or real) of
each function either implicitly (by FORTRAN conventions, if the first
letter of the name is I through N, it is an integer, and real other-

wise), or explicitly. For example,

DECLARE ( ' EXTERNAL . FORTRAN ,FUNCTION' , ' IFUNC, RFUNC,QFUNC=
INTEGER,KFUNC=REAL')
declares IFUNC and QFUNC to be integer-valued FORTRAN functions and
RFUNC and KFUNC to be zmeal-valued FORTRAN functions. In addition,
if there is any possibility that a FORTRAN program, after being
called from FASBOL, will in turn call a FASBOL program, it must be

declared 'OPEN'. For example,

DECLARE( ' EXTERNAL . FORTRAN. FUNCTION','F,G','OPEN')
implies that within the FORTRAN functions }F and G there are calls
on FASBOL programs.

An entry into FASBOL that is to be called from FORTRAN is speci-

fied using the ENTRY.FORTRAN.FUNCTION declaration. This declaration

also serves to declare the type(implicitly or explicitly) of the
function value, and the types and number of formal arguments to the

function. In addition, a third argument specifies a unique label,



31

associated with the declaration, to which control is transferred
in order to return to the FORTRAN program. An optional fourth
argument specifies a starting label,if different from the function

name. For example, the declaration

DECLARE('ENTRX.FORIRAN.FUNCTION','FﬂINTEGER(I,JﬂREAL,K(G))',

.'FRET}','FSTART;"')

specifies an integer-valued function F callable from FORTRAN, which
starts at label FSTART, and which returns when a transfer to FRET
occurs. It has three formal arguments: an integer, a real, and a
string with a maximum length of six characters. A side-effect is
that F and I are dedicated integer variables, J is a dedicated

real variable, and K is a dedicated string variable. The maximum
character count for K may be set higher by a separate STRING
declaration. The function variable (in the above example, F) can

only be of type INTEGER or REAL.

2.3 Options
Options are conditions which affect the operation of the run-
ing program in a global or subroutine-by-subroutine way. Except

for NO.STNO and TIMER, they may only be stated in the main program.

The general form of an option is a call on the pseudqfunction
OPTION with one of the following arguments:

'QUICKSTORE' speeds up the free storage mechanism by making each
acquired block non-returnable. This is usable only {f ihe program
does not acquire more than the available storage before terminating.

'NO.LOOK~AHEAD' disables double-buffering on drum amd tape input;

necessary only if some non-SNOBOL I/0 operation is concurrent on the
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I/0 unit.

'HASHSIZE=N' overrides. the standard bucket table size (64, for

N=6). N must be between 1 and 13 and is the bit width of the hash-
ed index for the symbol table. Useful for reducing bucket table
size in programs that barely do (but.gg) use it, or for enlarging
it in programsfthac make extensive use of it.

'NO.STNO' sets a mode in the compiler that cuts out the book-

keeping on &STNO, SLASTNO, and &STCOUNT; it makes an appreciable

difference in dedicated arithmetic statments.

'TIMER' sets a mode in the compiler that causes timing statis-
tics to be kept for each statement and printed out when the execu-
tion terminates. This mode can be set selectively in the main pro-
gram and subroutines. The time expended by a function call is
included in the statement in which it occurs. TIMER and NO.STNO
are imcompatible. Intermediate timing statistics can be produced

for any program by calling the primitive EXTIME.

2.4 Control (in addition to -LIST and -UNLIST from SNOBOL4)

-NOCODE, ~CODE turn off and on, respectively, the listing of

object code between statements. The normal mode is off (NOCODE).
-EJECT causes a page eject in the source listing, and inserts
an eject control in the object code.

-FAIL, -NOFAIL* turn off and on, respectively, a feature which

*
Full credit for this idea goes to the authors of SPITBOL who also

inspired the inclusion of the primitives DUPL,LPAD,RPAD, and REVERS
(next section).
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traps unexpected statement failures. When the feature is on (NOFAIL),
any statement within its scope that does not have a conditional GOTO
and which fails, will cause an error exit. Note that an unconditiomal
GOTO is equivalent to none at all, and will be trapped if the state-
ment fails. Normal mode is off (FAIL).

~NOCROSS,-CROSSREF turn off and on, respectively, the cross-

referencing capability of the compiler. The normal mode is off
(NOCROSS), and no cross-reference listing is produced unless it is
turned on at least once. Either the entire program or selected parts
can be cross-referenced.

-NOASM, -LISTASM control the post-compilation assembly, which

is normally done with listing turned off. NOASM prevents assembly,
and LISTASM causes it to be done with listing turned onm.

-SPACE [N] spaces N (or 1, if missing) lines in the source
listing.

~-NEWSTNO N resets the statement number to any value (N) greater

than 0.

2.5 Primitives  (* indicates new primitives)
2,5.1 Pattern Primitives
(a) *BREAKX(String)
Equivalent to: BREAK(String) ARBNO(LEN(1) BREAK(String));
but faster and less space~consuming.
(b) *NSPAN(String)
Like SPAN but succeeds even if no characters are spanned.
(c) *STRVAL(String)

Used to (1) induce string concatenation within a pattern
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expression, and/or (2) optimizes a pattern expression by

specifying a given element to have a string value.

2.5.2 Expression Primitives

(a)

(b)

(c)

(d)

CONVERT (any, string)

Now will also convert reals to integer by truncation.
*EJECT()

Causes page eject on printer, returns null.
COLLECT(integer)

Sets the blocksize (Default=128) at which the free
storage mechanism releases accumulated unused blocks

and merges them back together if possible. The trigger
is set whenever a block is requested that causes free
storage to use or split a block equal to or greater

than the collect size. The qualitative effect of
setting the collect size to a small value is to minimize
free storage fragmentation but causes frequent collections,
whereas the effect of setting it to a large number mini-
mizes the collection overhead but leads to more storage
fragmentation (which may be desirable), and possibly
premature storage overflow (which is not). Returns null.
*BUFS1Z(integer)

Sets the maximum number of words+l(Default=136) allowed
to be used for output buffering of tape and drum records.
For instance, the Default allows for 9 ((14+1)#%9=135)
l4-word records (card image size) and 5 ((22+1%5=115)
22-word records (print image size) on each active tape

or drum unit. Returns null.
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(f)

(g)

(h)
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*SUBSTR(string,integer,integer)

Returns a substring of the first argument starting at
the position specified by the third argument (same con-
ventions as POS primitive), of length specified by the
second arg, and fails if it is not a proper substring.
For example: SUBSTR('ABCDEFG',3,1) = 'BCD', and
SUBSTR('ABCDEFG',4,4) fails. This is equivalent to,
but much faster and less space consuming than the
pattern TAB(INTEGER) LEN(INTEGER).VAL
*INSERT(string,string,integer,integer)
Returns the string formed by replacing the substring
specified by the last three args by the first in the
second arg, or fails if not a proper substring. Example:
INSERT('A', 'SYNONYMOUS',2,0) = 'ANONYMOUS';equivalent
pattern: STRING2 TAB(INTEGER) . PART1 LEN(INTEGER)
REM . PARTZ ; VAL = PART1 STRINGl PART2
*DUPL(string,integer)
Returns the string formed by duplicating the first

arg the number of times specified by the second arg

*LPAD(string,integer,string)

Returns the string formed by padding the first arg on
the left with the character specified by the third

arg to a length specified by the second arg. If the
first arg is already too long, it is returned unchanged.

If the third arg has more than one character, the rest
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1

(k)

(2)

(m)

(n)

(o)

(p)

(q)
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are ignored. If the third arg is null, blanks are used.

*RPAD(string,integer,string)

Same as LPAD but pads to the right.

*REVERS(string)
Returns the string formed by reversing the order of the

characters of its argument, e.g., REVERSE('ABC') = 'CBA'.

*AND(integer,integer)
Returns the integer formed by the 36-bit logical AND

of the two arguments.

*OR¢integer,integer)

36-bit logical OR.

*XOR(integer,integer)

36-bit exclusive OR.

*NOT(integer)
36-bit one's complement
*RSHIFT(integer,integer)

36-bit logical right shift of first arg by second.

*LSHIFT(Integer,integer)

36-bit logical left shift of first arg by second.

XEXTIME(string)
Prints out timing statistics for program whose name is
given by the argument, and returns null, or fails if

program is not being timed.
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(r)  *REMCOR()
Returns an integer which is the total amount of free

storage remalning unused.

2.6 FASBOL Programming Techniques

Most of the programming techniques described in the SNOBOL4
manual (5] apply to FASBOL programs as well, with a few exceptions
described below. 1In addition, several new techniques should be
noted when writing FASBOL programs, due to the greater opportunity

to optimize code.

2.6.1 Dedicated Expressions

Arithmetic in FASBOL is most efficient when as much of it as
possible is performed in dedicated (non-descriptor) mode. The rules
for forming dedicated real expressions are:

(a) A dedicated real variable, a real constant, or a real FORTRAN
function call is a real expression.

(b) An arithmetic expression consisting of real expressions,
unary + and - , binary 4, - , *, and /, and parentheses is a real
expression.

(¢) An arithmetic expression consisting of at least one real
expression, undedicated variables with no input associations, the
above operators, and parentheses is a real expression.

The rules for forming dedicated integer expressions are analogous

to the above, plus:
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(d) An arithmetic expression consisting of integer expressions
and binary ** is an integer expression.

(8) A function call on one of the integer predicates LT,LE,
EQ,NE,GE,GT or one of the integer logic functions NOT, OR, AND, XOR,
LSHIFT, RSHIFT with integer expression arguments is an integer ex-
pression.

In addition, the concatenation of any number of dedicated integer
predicates with an integer (or real) expression is an integer (or

real) expression.

2.6.2 FORTRAN Interface

The arguments to a FORTRAN function call in FASBOL must be
either dedicated integer or real expressions, in which case a pointer
to the storage location holding the value is passed to FORTRAN
(normal convention), or dedicated string variables or string literals,
in which case a pointer to the first storage location of the string
is passed, which can be treated by the FORTRAN program as an array
holding the characters in "A6" format.

When a FASBOL entry is called from FORTRAN, the arguments speci-
fiec in the calling sequence are copied into the formal argument
variables; this process is reversed upon exit, achieving the effect
of call by name. In the case of a string argument, the amount of
the array copied into the string variable is determined by the maximum
character count in the ENTRY declaration, which may be smaller than
the maximum count for the variable.

Care must be taken not to form a recursive loop involving the

same FORTRAN program at more than one level, since FORTRAN does not

=
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have re-entrant capabilities.

2.6.3 Use of ? and . Unary Operators

A frequent occurrence in some applications is the successive
access and assignment of an indirect variable or array element, as
in

$X = S$X + 1 ; A<25> = F(A<25>)

A more efficient practice is to first generate the name of the var-
iable, using only one symbol table lookup or array mapping, and then
use an Iindirect reference on the name for all future access or assign-
ments on the variable. In the above cases, a more efficient way
would be

= .$x 5 $Z = $Z + 1
Z = LA<25> ; $Z = TF($2)

Field references are sufficiently efficient that the above technique
does not pay in their case.

The name of an array element or field is only useful as long
as the array or instance of a programmer-defined datatype exists;
attempts to access or assign using the name afterwards will have
unpredictable results.

Another frequent occurrence is the concatenation of null-valued
functions for their sequential effects and/or succeed/fail potential.
The compiler never generates code for concatenating elements that
ft knows will have null values, such as predicates and other null-
valued primitives, as well as expressions preceded by ? and l,
Therefore, preceding é non-primitive function call with the ?

operator has the effect of suppressing code to concatenate it.
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2.6.4 Pattern Matching
Frequently a programmer wishes to write a degenerate-type
statement consisting of a concatenation of elements executed for

their effect, as in
F(A) F(B) F(C) F(D)

This syntax, however, is parsed as a pattern match, and, though
having the same effect as intended (providing the match is success-
ful), is less efficient in both space and time. The original intent

can be achieved by enclosing the series in parentheses
(F(A) F(B) F(C) F(D))

although the compiler will induce that effect if it knows all the
elements will have null values (such as a series of predicates).

One SNOBOL4 programming technique that is not generally good
in FASBOL is the assignment of patterns to variables in order to
eliminate repetition of evaluation and construction of the same
pattern. Since patterns are compiled as re-entrant subroutines, no
"construction' ever takes place during execution, and only non-con-
stant elements are evaluated. Furthermore, every variable substi-
stituted for an explicit pattern structure costs some overhead
during a pattern match due to the extra stacking and pattern-recursion
involved. There are cases, however, when pattern assignment is more
desirable. One case is if the pattern is large and appears in several
places, it can be assigned to a variable and the variable used in its

place; this saves writing and produces less object code. Another

case is when the pattern contains an element which requires costly

vyl
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evaluation, such as a programmer-defined function call, or character
class pattern primitive (SPAN, NSPAN, BREAK, BREAKX, ANY, NOTANY)
with a non-literal argument.

A generally applicable rule for all of FASBOL progrémming is
that it is more efficient to use, wherever possible, literals instead
of variables with constant value. This is especially true in pattern
expressions, both for literals appearing as pattern elements and as
arguments to pattern primitives. For example,

ALPHAB = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ; COL = 74

KEY = 'IF'
LOOP INPUT BREAK(ALPHAB) RPOS(COL) KEY :S(LOOP)

is in every way less efficient than

LOOP INPUT BREAK('ABCDEFGHIJKLMNOPQRSTUVWXYZ') RPOS(74)

. 'IF' :S(LOOP)

In cases where integer constants cannot be used, it is still
helpful to use dedicated integer variables, which are also ideally
suited to be the objects of unarv.g (cursor position assignment).

The primitive STRVAL is specifically designed to optimize the
appearance of non-literal strings in patterns. One of its uses is
to declare to the compiler that its argument is a string and need
not generate code to cover the possibility of its being a pattern.
Another use is to induce string concatenation within a pattern
expression, where otherwise pattern concatenation would be compiled.

For instance, if B, C, and D hold strings

PAT = A | B C D
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causes three consecutive pattern/string matches to be executed for
the second alternative of PAT whenever it is executed (as part of

some other pattern). On the other hand,
PAT = A | STRVAL(B C D)

compiles into only one simple string match for the second alternative;
the string concatenation of the values of B, C, and D is formed when
PAT is assigned, and it is this value which is matched during execu-
tion of a pattern involving PAT.

Since FASBOL does not employ the QUICKSCAN heuristic of assuming
at least one character for unevaluated expressions, left-recursive
patterns will produce infinite loops at execution time, as they would
in SNOBOL4 under FULLSCAN. Usually a set of patterns involving left
recursion can be re-written to eliminate it; for instance, the simple

case involving a pattern like

P = *P lzt | !Yl
that matches strings of the form 'Y', 'YZ', 'YZZ'. 'YZZZ', etc.
could be re-written as the pair of patterns

P1L = 'z' *p1 | "

P = 'y Pl

Finally, it should be noted that, as in SNOBOL4, changing the

value of &FULLSCAN during a match may lead to unpredictable results.
A similar caution applies to re-assignment of PATTERN variables
during a match in which they themselves are used as unevaluated

expressions.
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2.6.5 Timing and Storage Management

The TIMER option permits the programmer to monitor the opera-
tion of any (or all) separately-compiled program(s), and provides
feedback on where the time is being spent. It is usually the case
that some small sections of code account for a large percentage of
the execution time; the programmer's time 1s spent most efficiently
optimizing those areas and ignoring the rest. Of course, after a
series of optimizations, a new "bottleneck" will develop, which in
turn can be measured and optimized, and the process can be iterated
until the law of diminishing returns takes hold.

The QUICKSTORE option should be used by all programs that have
a reasonable expectation of terminating before using up all available
free séorage. This case is roughly equivalent to an interpretive
execution which never performs a garbage collection, except that
much more storage is available to the FASBOL program because of the
small run-time library.

When using the normal free storage mechanism, it is helpful to
structure arrays and programmer-defined datatypes taking into account
the fact that free storage blocks are dispensed only in sizes of
powers of two. Of that amount, two storage locations are consumed
in overhead, making 2, 6, 14 ... (2m - 2) the ideal number of array
elements or fields for a datatype, and a number one greater than
these results in the greatest waste of space. The prinmitives COLLECT
and REMCOR provide the user with powerful tools to guide and monitor
the free storage mechanism. Consider, for instance, a situation

where many lists of items are being built over a period of time
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directly related to the amount of data input; such would be the
case for a program producing a cross-reference listing of some text.
An efficient storage management technique which minimizes overhead
in this case would be to first call COLLECT with a large block size
and construct the lists as chains of datatypes. Storage fragmenta-
tion will be high and the overhead for adding an item to a list will
be low. Periodic calls to REMCOR would monitor the amount of space
left, and when it falls below a fixed amount, a consolidation strategy
is employed, as follows. COLLECT is called with a small block size
to ensure maximum recovery of storage in contiguous blocks. The
larger (or all) data chains are turned into strings (which occupy
less space), in a single concatenation for each chain. The p;ocess
is then ready to start over; if it never reaches the consolidation
stage, it is simply making maximum use of the available storage.
A certain amount of storage may be wasted by circular data.

structures unless the programmer explicitly breaks the ring when
the structure is no longer needed. For example, the sequence

DATA( ' NODE (FATHER ,MOTHER, BROTHER, SISTER) ')

OEDIPUS = NODE('JOE','JANE','DICK','SIS')

FATHER(OEDIPUS) = OEDIPUS

OEDIPUS = 'DEAD'

will result in the datatype (presumably) no longer being used, but
not released to free storage either (since it still has a use count
of 1 due to its circularity in the "FATHER" field). This problem

is easily solved by the statement

FATHER(OEDIPUS) =
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immediately preceding the last statement above.

2.6.6 Global and Local Definitions

Generally all names used within a given FASBOL compilation are
local to that program. A name becomes global (at execution time)
when it is declared EXTERNAL or ENTRY, or when it is entered in the
run-time symbol table. For example, if program "A'" wishes to access
a natural variable in program "B", the former should contain an
EXTERNAL and the latter an ENTRY declaration for the variable; either
program can then reference it by its identifier.name. Another, less
efficient, way would be for program "B'" to declare the variable
INDIRECT and program "A" to reference it via indirection (§); the
only advantage in this case would be to prevent the name from being
externalized, should there be a naming conflict with some other exter-
nal entity.

Datatype names are also global, although not via the run-time
symbol table. The reason for this is to allow a program to operate
upon a programmer-defined datatype generated by a separately-compiled
program. Each program must still execute its own DATA primitive call
for the datatype definition before generatihg or accessing one. The
names of the fields need not be the same for both programs, but their
number must be the same, and they will be equivalent by their respec-

tive ordering.
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CHAPTER 3

The FASBOL Runtime System

3.1 Introductory Remarks

FASBOL run-time operation is a blend of compiled code and library
routines. The compiled code provides the structure of the program
and builds elementary components such as elements of concatenations
and patterns, out of specific instances of symbols in the program.
The library routines handle the general operations which are applied
repetitively to each particular set of elements in the structure.

To give an example, the (string) concatenation of N elements is
compiled as a structure consisting of the consecutive evaluation of
the N elements, interspersed with N-1 calls on the expression-
stack pushing library routine, and followed by a call on the conca-
tenating library routine (with N as a parameter).

The execution of expressions and statements also include commu-
nication with a set of system variables and stacks (one of which is
the expression-stack), in order to control inter-statement execution,
depth of recursion in functions and pattern matches, and other global
bookkeeping such as dynamic storage allocation (free storage), run-
time symbol table, or optional timing.

It is difficult, because of their interdependence, to introduce
all the concepts in a bottom-up fashion without some circularity of
explanations; however, the most interesting (and involved) items,
mainly how patterns and free storage work, should come after most of-

the operating details are clear.
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3.2 Initialization, Termination, and Interstatement Operation

The system initialization routine is called immediately upon
beginning execution of the main program, and takes care of the
initial setting of the system registers and variables, as well as
the initialization of free storage. The operating system parameter
tables are accessed to determine the amount and location of core
storage not used by the program, and this storage is given over for
use to the free storage routines.

When an END statement in the main program or any subroutine is
executed, control passes to the system exit routine which prints
out the execution statistics and returns to the operating system.

If an execution error occurs ("illegal data type", "call of undefined
function,"” etc.), control passes to the system error routine which
prints out information about the error and where it occurred, and
makes an error return to the operating system. To aid in debugging,
if the &ABEND keyword is on during a normal or error exit, a core
dump of the free storage areas is done. This can be supplemented

by the user by including a PMD (post-mortem dump) card to call for
the post-execution dump of the program area.

Each statement is a self-contained unit of operation from which
control passes internally to and from the library routines; the only
time when control passes, during execution of the statement,to any
other non-~library code is for function calls, and pattern structures
not contained in the statement. A statement is executed either by
control passing to it in sequence or by some other statement executing

a goto to the label attached to the statement (or if it is the first



48

statement of a programmer-defined subroutine, when that subroutine
is called). After execution of a statement, control may pass sequen-
tially to the next, transfer unconditionally or conditionally to

some other statement via its label, or exit from a programmer defined

subroutine via RETURN or FRETURN (NRETURN is equivalent to RETURN).

3.3 System conventions, Stacks, and Variables

The run-time system maintains some global variables and stacks
to coordinate the various steps of executing statements and levels
of recursion, both in functions and patterns.

PP, the parameter block pointer, indicates the location of a
block which contains the program name for identification purposes,
and‘also (if timing has been specified) a timing block pointer.

FE, the failpoint exit pointer,is used to hold the address
of the current expression failpoint. For example,when entering a
statement which contains some general expression (but not dedicated,
see below) which may fail,FE is loaded with a pointer to the address to
which control should be transferred in case the statement fails
(which depends on the goto field). FE also contains an indication
of the type of failpoint it is; when entering a negation (unary
1 I&_on the 1108]),the current value of FE is saved on a stack and
FE is reloaded to point to the local failpoint for the negation.
When the negation terminates,FE is unstacked and the reverse logical
result of the negation is done (i.e., fail if it succeeded, continue
if it failed).

EA, 'the expression accumulator, is sometimes used to hold the

current expression value, when the fast register which normally is
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assigned this task is overwritten.

AP, the assignment pointer, is used to hold the NAME datatype.
of the variable in any nondedicated assignment (including immediate
and conditional value assignments and cursor position assignments).
For example, in a simple assignment statement, AP is loaded with the
evaluated name of the variable at the beginning of the statement.

FLF is the faii flag and is used by the RETURN and FRETURN
library entries to determine the course of action after achieving
the previous level of recursion.

RST is the RESTART indicator which serves to indicate to a
nested (i.e., independent) pattern that it is being either started
or restarted during a pattern match (more details later).

8J, CC (index register), CW(index register), RC, CF (register),
serve to hold parameters for an active pattern match. SJ contains
the string descriptor for the subject of the match (the string that
the pattern is being matched against), as well as both the final
position in the subjéct at successful match completion and the initial
position in the subject (which may be other than before the first
character if in unanchored mode). CC (current character) and CW
(current word) serve to point to the current position in the subject
being matcted (the 1108 is not a byte-oriented machine and two index
registers élus several execute tables must be employed to provide
efficient chgracter -by-character access to strings). Together with
RC (remaining characters in subject), CC and CW specify cursor position
and are the parameters which are saved and restored to reflect differ-

ent restart positions during the match. CF is the character fail
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indicator which is set when the match runs out of characters in the
subject.

DT  (index register) is active during either a pattern evalua-
tion or a pattern match, and holds a pointer to a data block corresp-
onding to an instance of the pattern structure currently being executed
(the data segment of the re-entrant pattern).

™ is used to hold various parameters for the timing option
when active.

SL (index register) is the (system) return link generally
used fof library calls and function calls. In order to minimize the
saving and restoring of return links and other volatile registers,
the run-time system is organized into a heirarchy of volatile regis-
ter levels, with the lowest level having the smallest complement
of registers, and each higher level including all the registers from
the previous level plus three more (one index, one arithmetic, and
one r-register). The highest level is the one governed by SL as a
return link, and is the one that the compiled FASBOL program operates
on. There are five stacks used by the run-time system, and although
different in purpose, they all share the same design. A stack is
represented by a series of blocks of storage chained together with
forward and backward pointers. The block size for each stack is
individually parametrized, and the.current position of the stack is
held in a variable; the stack position is specified by a pointer
to the base of the current stack block plué an index within the block
(which is held in an index register when the stack is active). When

a given stack block overflows, the stack position is moved on to the
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next block in the chain, or a new block is acquired from free

storage for this purpose. Once the stack is popped (unstacked)

bey;nd any block, the chain is left untouched on the (purely heuristic)
assumption that once a stack achieves a certain general depth, it is
likely to come at least close to that depth again. Thus the only
physical limit on any stack dépth is available free storage.

The five stacks are SS, ES, AS, CV, and RS, representing respect-
ively, the system, expression, assignment, conditional value, and
release stacks. SS uses SX as an index register (always active),

ES, AS, and CV share EX as an index register (although usually con-
trolled by and active for ES), and RS uses a volatile index. It is
also efficient to maintain backup (or base position) values for the

last four stacks (in ESP, ASP, CVP, and RSP, respectively). The

reason for these backup values is to be able to easily reset the
position of a stack (withoqt methodically unstacking) under conditions
which have not returned it to its initial state. Such is the case,
for instance, when failure inside an arbitrary expression, which may
have pushed ES to any depth,causes a jump to the failure routine;

all this routine does (after determining that it is a global fail by
checking FE) is reset ES from ESP and jump to the location pointed

to by FE. SS has no base since it is used to hold levels of recursion
and/or stacking and is always in control of everything else. When

a function call (programmer-defined) occurs in an expression, for
instance, a new base must be established for ES at the deeper function
level so that the intermediate results on ES from the expression will

not be disturbed by anything that occurs in any statements executed
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at any further level of recursion. Therefore, one of the actions
taken when entering the new function (and rever;ed on exit) is to
save ESP on SS, and update ESP to conform to the current value of
ES, thus providing a new base value for the new function level. These
base values have no connection whatsoever with the stack block bases,
which use a completely independent mechanism which is invisible to
the routines which use the stacks. Thus SS can be thought of as a
stack~of stacks, although it is used to hold other things, too.

ES is used within expressions and patterns, AS and CV are used

only by pattern matches, and RS is used by the free storage mechanism.

3.4 Statement Types, Statement Execution, and Gotos

Statements can be either dedicated or not. A dedicated state-
ment can be either degenerate (see syntax, Appendix 1), consisting
of a dedicated real or integer expression, or an assignment of a
dedicated expression to a dedicated variable of the same type (includ-
ing one dedicated string assigned to another). When a dedicated
expression fails, it jumps directly to the statement failpoint instead
of to the failpoint routine. This is also true of dedicated ex-
pressions, inside a non-dedicated statement, that are on the top level
of evaluation, i.e., are not nested inside non-dedicated expressions.
A dedicated statement normally begins with execution of the library
statement accounting routine, which updates &LASTNO with &STNO, update
&STNO with tbe statement number, increments &STCOUNT (checking it
against &STLIMIT and causing error termination if it exceeds the
limit), and does timing accounting on the previous statement if timing

is in effect for the routine. If the '"NO.STNO" option is used in
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compilation, the routine is not called and no accounting is done.

Every non-dedicated statement begins with execution of a library
routine that does the above statement-accounting (but bypasses it
in '"NO.STNO" mode), sets the failpoint, if any, into FE, does the
(optional) timing accounting, and checks the free storage release
flag. This flag is set by the free storage package (and sometimes
by a returning function call, see below) when a free storage request
causes the acquisition or splitting of a block greater than some
gspecified size (parametrized and modifiable at execution time by the
COLLECT() primitive). If the flag is on, it is reset and a routine
is called to release the blocks currently on RS for the given function
level delimited by RSP, (see free storage). Within the statement,

a failure will jump to the failpoint routine which (if it is a global
failure) will increment &STFCOUNT and transfer control to the state-
mené failpoint. If the entire statement succeeds, control passes
sequentially into an unconditional or success goto, or into the next
statement.

ES and ESP start out equal at the beginning of each statement,
with EX containing the index for ES. This is the consequence of the
preﬁiously executed statement terminating successfully or the fail-
point routine resetting ES from ESP due to failure of the previéusly
executed statement. Since a goto expression cannot fail, rhis will
also be the case following execution of any type of goto which is not
just a simple label.

RS and RSP are regularly made equal by the free storage release
which occurs whenever the flag is set. When a function is called,

RSP is saved and RSP is set equal to RS; upon return, RSP is restored
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to its previous value.

A goto can be a simple label or an expression to calculate a
label's location via indirection. A simple label is a jump (if it
is a success or unconditional goto) in sequence following the code
for the body of the statement, or simply becomes the statement fail-
point (if it is a failure goto). If the goto is an expression, the
compiled code is located sequentially following the statement body,
except if it is a failure goto, in which case the code ia allocated
under an independent location counter and the statement failpoint
is a jump to the beginning of the goto code. The latter is necessary
to keep the failure code out of the way of the success exit sequence
(i.e., avoid jumping around it).

A non-dedicated assignment can be of various types. It can be
degenerate, in which case the non-dedicated expression is simply
evaluated. It can be an assignment where a non-dedicated expression
is evaluated, and then value stored in a dedicated variable (after
checking/conversion). The four other remaining types are general
assignment, pattern assignment, match and replacement.
| The first two are differentiated by the fact that an explicit
pattern expression appears on the right side of the equals sign in
the second. In a general assignment statement, the variable is
evaluated and stored in AP, then the right side (object) is evaluated
and the assignment library routine is called, which also checks
pbssible output associations and performs the output if an associa-
tion is in effect. In a pattern assignment, again the variable is

evaluated and stored in AP, but the object, which is a pattern
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consists of O to N independent evaluations of pattern elements
that need evaluation, with each resulting value being saved in the
data block for that pattern. The compiler generates the pattern
match phase of the code side-by-side with the evaluation, but under
an independent location counter. Eventually it is the pattern data
block (which represents one instance of the pattern and points to
it) which is assigned (if all element evaluations succeed) by the
assignment routine. Patterns will be treated in more detail later.

Match and replacement statements differ only in the fact that
in the former case, the subject is only a value used by the match,
while in the latter case the subject must be a variable whose value
is used for the match and which will be assigned the value generate&
by the replacement after a successful match. Both cases have a

structure similar to the pattern assignment for the pattern section.

3.5 Normal and Dedicated Expressions

Whenever an expression contains integer or real constants,
dedicated variables, or FORTRAN function calls, the compiler attempts
to generate in-line, machine instruction code for as much of the
expression as possible. With real expressions, this will be the
case for arithmetic operations (except **, not defined for reals
[use FORTRAN library})on the above-mentioned primaries. In addition,
any undedicated variable without possible input associations which
is arithmetically involved with any expression that is explicitly of
type real must contain a real (descriptor) value at run-time, (or a
type error will otecur) so the compiled code generated forces a conver-

sion to dedicated real value and includes it in the dedicated
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:expression. All of the above holds true for integer expressions,

except that exponentiation (**) is added to the arithmetic, and

the scope of the expression is extended to cover integer predicates
(LT, LE, EQ, NE, GE, CT) and integer functions (NOT, AND, OR, XOR,
LSHIFT, RSHIFT) with dedicated integer arguments. So that we may
consider certain frequently appearing assignment statements as being
entirely dedicated, a concatenation of a series of dedicated integer
predicates followed by a dedicated expression is also a dedicated
expression of the type given by the non-predicate element. For
instance, éhe statement

REAL1 = EQ(INTGl, INTG2) REAL2 * REAL3
is a dedicated real assignment.

An arithmetic operation at a given level of expression evalua-
tion cannot be compiled as a dedicated operation if at some nested
level (below it) there is a library call, which over-writes the
registers used by the dedicated expressions. In such a case, the
equivalent arithmetic library call is compiled instead, in consonance
with the general descriptor-mode scheme described below. A failing
predicate within a dedicated expression at the very top level of an
expression evaluation will jump directly to the statement failpoint,
whereas if it occurs at some lower level (i.e., after ES has been
pushed), the failure jump will be to the failpoint routine instead
(to restore ES). Dedicated expressions within descriptor-mode ex-
pressions (or assigned to non-dedicated variables) have their results
transformed to descriptor mode. '

Normal (also referred to as non-dedicated or descriptor-mode)

expressions are those which are neither dedicated (except a converted
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dedicated expression) or part of the pattern match execution section
of an explicit pattern expression. Normal expressions are compiled
following a uniform convention for descriptor values, stacking opera-
tions on ES, and appropriate library calls. The descriptors and
associated formats are briefly described in Appendix 3. During an
expressions evaluation, the most recent result of some element or
operation is expected to be a descriptor, held in a known register.
This descriptor can then be assigned to a variable,used by some op-
eration, or pushed onto ES for use by some binary or N-ary operation.
This technique uses ES to hold temporary results and parameters to
function calls. The compiled code gives a suitable indication, when-~
ever the expected number of parameters is variable, of the actual
number supplied. Each operation or function call unstacks ES and
returns ES to the state it was in prior to evaluating the first
parameter; in addition, the result of the operation/function is left,
available to the next level in the expression evaluation. For
example, the expression:

IDENT{(A,B) C ¥(D + E,F,G)
(with D and E unpredicted) is compiled as the following sequence:
evaluate C ; push ES ; evaluate D ; push ES ; evaluate E ; call
undedicated add library function ; push ES ; evaluate F ; push ES ;
evaluate G ; call F (three args) ; call concatenation libr;ry function
(2 args). The‘compiled code for evaluating a variable is usually
just a load of the descriptor into the accumulator, but can also
involve conversion to descriptor mode if it is dedicated, or possibly

input processing if it has such an association. Note also that the



58

compiler realizes IDENT will have a null value and does not include
it in the concatenation. If IDENT fails, it will jump to the fail-
point routine. The result in the accumulator after the above evalu-
ation will be the concatenation of the value of C with the result

of the function call.

3.6 Programmer-Defined Functions

A programmer-defined function name corresponds to a storage
location which contains a jump to the current definition for the
function; until some DEFINE() or OPSYN() primitive is executed
to define the function, a call to the function will cause a jump to
an error exit (initial value of function location), except in the
case of functions predefined by the "entry function" declarationm.

A function can be redefined by executing the original DEFINE with
a new starting label, by a different DEFINE, or by OPSYN.

Associated with each DEFINE() primitive function call is a stor-
age block called the function block, which contains a parametrized
description of the function prototype. These parameters are used
by the generalized function call/return library routines to perform
a reference to the defined function. The execution of a DEFINE call
causes the starting label to be evaluated and stored in the function
block, and a jump to the function block to be stored in the function
location. The execution of an OPSYN call results in the contents of
one function loéation being stored in another. The actual parameters
held in a function block are: A pointer to the program parameter
block of the main program/subfoutine in which the function definition

is compiled; a pointer to the storage block pool for the function
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(explained below); the number of formal arguments, local variables,
and total variable value storage required for re-entrance; a starting
label (pointer); a name descriptor for each formal argument, each
local variable, and for the variable corresponding to the function
name (function variable). A function storage block is a dynamically-
acquired block of étorage used to hold values and system parameters
saved when the function is called (in order to provide re-entrance).
When a function returns, the block is chained into its function stor-
age block pool and not released to free storage; the same heuristic
applies here?fn stack blocks. The storage block is a more effi-
clent way of saving re-entrant information than pushing the items
individually onto a stack; only one item (the storage block pointer)
need be pushed onto the stack

When a programmer-defined function call is executed, the follow-
ing sequence occurs:

1. Null values are pushed onto ES for missing arguments, or
extra valués (beyond the required arguments) are unstacked from ES
and ignored.

2. A function storage block is acquired from the pool (or from
free storage).

3. The function block pointer is saved in the storage block
and the storage block pointer is pushed onto SS.

4. SL (the function return link), DT, FE, AP, ESP, RSP, TM+l,

&STNO, and PP are saved in the storage block.

5. For the function variable, and for each local variable:
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(a) The current value is saved in the storage block; for
undedicated, integer, real, and'pattern variables, one storage
location is required; for dedicated string variables, the maximum
size attainable by that string is required.

(b) A null value is assigned.

(c) Possible output associations are performed.

6. For each formal argument:

(a) The current value is saved(as in 5a)

(b) The new value is popped off ES.

(c) For undedicated variables, the use count (see free
storage) of the new value is incremented and the value is
stored in the variable (checking possible output associations).
For dedicated pattern variables, the value is first converted
to a pattermn, if necessary, before doing the above. For other
dedicated variables, the value is converted to the appropriafe

dedicated form and stored in the variable location.

7. Vanishment insurance (see free storage) is performed on
all the values on ES for the current level (from ES current to ESP)

and ESP is set to the current value of ES.

8. RSP is set to the current value of RS, &FNCLEVEL is incre-
mented, PP is set to point to the new program parameter block (will
be the same as the old one unless control has passed to a separately-
compiled program), &STNO is set to zero, and control is transferred

to the starting label.
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When a jump to RETURN, NRETURN, or FRETURN is executed, the

following sequence occurs:

1.

2.

A flag (FLF) is set to note success or failure.

PP is used to check if timing was active in the program

in which the return occurred. If it was, timing is completed on

the last statement executed.

3.

4.

The storage block pointer is popped off SS.

The function block pointer is restored from the storage

block and the storage block is chained back into the storage block

pool.

5.

The value of the function variable is saved in EA; it is

first converted to descriptor mode if it is dedicated.

6.

For each formal argumeat, for each local variable, and

for the function variable:

7.

(a) If the variable is undedicated, or dedicated pattern,
the current value has its use count decremented and the

old value is restored from the storage block.

(b) 1If the variable is dedicated integer, real, or string,

the old value is restored from the storage block.

&TNO, PP, TM+1l, RSP, ESP, AP, FE, SL, and DT are restored

from the storage block. If there is excessive released block accu-

nmulation (RS current is more than two stack blocks away from RSP),

the release flag is set.

8.

The proper string is stored in &RTNTYPE, &FNCLEVEL is de-

cremented, and, 1f FLF indicates success, the accumulator is loaded
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- with the function value from EA and control is returned to the orig-
inal calling sequence. Otherwise (failﬁre) control goes to the
failpoint routine. |

A function call used as a variable (appearing on the left of
an assignment) must return a value ﬁf type NAME (i.e., uging the
.+ operator), and will be checked for such before being used in an
assignment; NRETURN, required by the interpreter for such a case,
is unneecessary in FASBOL.

A DATA() primitive function call also gives rise to a function
definition for the datatype name, fully compatible with redefinition
by other function-defining primitives. When a function has been
most reéently defined by DATA(), however, a function call of it
" during execution transfers to a library routine which:builds the
appropriate datatype out of any. arguments supplied (null if not |
supplied) and returns it as the function result. Field references,
although identical in appearance to function calls, are compiled in
a special way which causes the execution of a library routine to
provide a pointer to the field withiﬁ the datatype (provided as an
argument to the field reference). This routine must also assure
that the field is appropriate to the datatype provided and/or
provide one of a set of field positions in the case of a field name
used in more than one datatype. The compiled code converts the
field pointer to a NAME descriptor, if a variable is required (i.e.,

field on left side of assignment), or fetches the value pointed to.

3.7 Free Storage Operation and Usage

The run-time system employs a set of conventions which enable
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the executing program to acquire storage for a value dynamically,
retain the storage block as long as it is needed, and have it
released for re-use or merged with a contiguous block when no
longer needed. Traditionally, there have been two basic approaches
to this dynamic storage allocation problem (see Knuth[9]), the
first referred to here as '"Garbage Collection" and the second as
"Use Count'". 1In the garbage collection scheme, the available
storage is continuously depleted, irrespective of the fact that
previously acquired blocks become available for a re-use, until
only a small amount remains; at this point a 'Garbage Collection"
takes place wherein all the active blocks in storage are marked,
and then all remaining storage is made available for re-use.
Besides some inherent problems involving storage fragmentation and
garbage collection stack depth, which will not be discussed here,
the reason this scheme is not used by FASBOL is that it requires
global knowledge, at execution time, of the location of every
variable that might contain a value residing in free storage. One
advantage of the garbage collection scheme is that, until a col-
lection is required, the overhead for using the scheme is low.
The "Use Count" method, in contrast, constantly monitors the
availability of storage blocks by maintaining a use count for each
block, which depends on the number of places it is currently being
used in the program. When the use count goes to zero, it is again
made available to hold new values, or merged with a contiguous
block to form a larger available block. This general method is
used by FASBOL, but there are some significant differences in de-

tail, of an original nature, which make a considerable difference
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in the efficiency of operation and overhead consumed by the free
storage mechanism.

To begin with, the compiler permits a QUICKSTORE option for
eliminating virtually all free storage'overhead in programs that
do not expect to consume all available storage (equivalent to the
case, using the garbage collection‘scheme, where no collection ever
takes place). Of course, no recovering is possible should there
be an overflow, but the point is that if there is an overflow,
theré would also have been a garbage collection,putting the over-
head again on a par with the modified "Use Count' system described
next.

At least two key factors enter into the amount of overhead
required by a use count system; the first is the method by which
available storage is monitored and recombined, and the second is
the methoc by which the actual ''Use Count' mechanism of determing
the availability of a block is implemented. These factors are

covered in the following two sections.

3.7.1 Modified Buddy System Algorithms

The method for dispensing storage used by FASBOL involves
two separate mechanisms, suggested in part by the separation of
unused storage into two noncontiguous areas by the 1108 EXEC II
operating system, and illustrated in Figure 1. The area in
Bank 1 is allocated as '"non-returnable' storage, which means that
when a block is requested from this area, there is no expectation
of it being returned. A pointer is maintained to the next avail-

able location; after a request for a block of size N, the pointer
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is inéremented by N. This is a suitable way of acquiring blocks
for stacks, function storage, etc., which in fact are never re-
turned. The area in Bank 2 is allocated as '"Returnable'", using

a modified version of the "Buddy System"[10]; this system, orig-
inally used by the L6 (L-six) language, has a distinct advantage
in speed of operation over other system, with a small disadvan-
tage in space utilization. It eliminates any possibility of long
searches down a list of available blocks for one of the right size,
and it assures quick and optimal coalescing of contiguous blocks.
However, blocks are required to be of size 2K, so that some space

1 and ZK is requested.

is wasted whenever a block of size between ZK-
The method described by Knuth is to maintain a separate list of
available blocks of each size ZK, 0 < K <M. The available memory
for allocation consists of ZM words; starting at a location which
is a multiple of 2M.When a block of ZK words 1s desired, and none
of this size are available, a larger available block(initially

ZM) is split into two equal parts; ultimately, a block of the right
size ZK will appear. When one block splits into two, these two
blocks are called buddies. If at some later time both buddies

are available, they merge back into a single block of twice their
size, and the process can then repeat itself. The important thing
to note is that given the address of a block and its size, the
address of its buddy can be easily computed as the exclusive-or

of the two, since the address of a block size 2K is a multiple of
ZK. A tag field is employed to indicate when a block is in use

and when it is available, and available blocks are linked together,

'
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by forward and backward links of a doubly linked list, to the
appropriate list head for the given size. In FASBOL, the initially
available storage is not a power of two, nor does it start on such
azéonvenient boundary; furthermore, the free storage system, which
uses the Bank 2 area for returnable storage initially, will convert
the remainder of the Bank 1 area to the buddy system if the for-
mer overflows. Therefore, the FASBOL free storage system uses an
additional algorithm to prepare any arbitrary area for use by the
buddy system, which is modified to cope with the possibility that
not all buddies of blocks within the area are also within the area.
Furthermore, the buddy system liberation algorithm (for returning
a block), as described by Knuth, has a serious deficiency in that
it will only work if blocks are released in the reverse order from
that in which they were acquired. It turns out that available
blocks must also carry information as to their size, since a start-
ing location for a block of size 2K can also be the start of any
smaller block, and when a block is released and its buddy computed,
it is not sufficient to know only if it is available but whether, .
if available, the '"Buddy" is also of the same size. The L6 papen[iO]
does mention this parameter.

Three algorithms used by the FASBOL free storage system are
given below, corresponding to initializing an area of storage for
use, acquiring a block, and returning a block. The free storage
system maintains an array of entries AVAIL(1l) through AVAIL(M) which
serve as heads of the list of available blocks for the correspond-

ing power of two. The fields LINKF and LINKB of these entries, and
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of thé first word of an unused block, are the forward and back-
ward chain pointers for the lists. Defining LOC(A) to be the
address of item A, an empty list for size K is indicated by
LINKF(AVAIL(K)) = LINKB(AVAIi(K)) = LOC(AVAIL(K)). The field
TAQ of a block is 1 if the block is in use and O otherwise; the
field SIZE of a block is the size (1 to M) of the block. KMAX is
the largest block size in use by the system (largesg found during
any initialization). In the acquisition algorithm given below,

when TK exceeds the release block size, the release flag is set.

Initialization Algorithm

Let UB,LB be the upper and lower bounds of the storage area
to be initialized.

Let SADR = BIKS = ZM » K= M

Ll (Find window in storage)
If K=0 , OVERFLOW (no space available)
If SADR > LB, go to L2
BLKS + BLKS/2 ; K+ K -~ 1 ; SADR + SADR + BLKS
Go to L1

L2 If SADR< UB , go to L3

BLKS « BLKS/2 ; K« K - 1 ; SADR + SADR - BLKS
Go to L1
L3 - KMAX + MAX(KMAX,K)
SAVE SADR,BLKS,K .
L4 (Staircase UP)
If K=0, go to LS

If SADR + BLKS < UB, BEGIN

)“ '
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Call ADD(SADR,K) ; SADR + SADR + BLKS END
BLKS « BLKS/2 ; K+ K -1

Go to L4

RESTORE  SADR,BLKS,K

(Staircase DOWN)

If K=0, FINISHED

If SADR =~ BLKS > LB , BEGIN SADR « SADR - BLKS
Call ADD(SADR,K) END

BLKS +« BLKS/2 ; K+ K-1

Go to L6

ADD Subroutine

ADD(SADR, K) ADD BLOCK to AVAIL list
LINKF(SADR) + LINKF(AVAIL(K))
LINKB(SADR) + LOC(AVAIL(K))

TAG(SADR) <+ O

SIZE(SADR) + K

LINKB (LINKF(SADR)) + LOC(SADR)
LINKF(AVAIL(K)) + LOC(SADR)

RETURN

Acquisition Algorithm

< 2

L1l

k-1

Let K = power of 2 such that 2 " < required block size

TK < K
(Search for available block)
If TK > KMAX , OVERFLOW

SADR + LINKF(AVAIL(TK))



If SADR ¥ LOC(AVAIL(TK)) , go to L2
TK« TK + 1
Go to Ll
L2 LINKF(AVAIL(TK)) <+ LINKF(SADR)
LINKB (LINKF(SADR)) + LOC(AVAIL(TK))
L3 (Look for right size)
If TK+# K, BEGINTK « TK - 1 ; go to L4 END
TAG(SADR) « 1
SIZE(SADR) « TK
FINISHED (with address of acquired block in SADR)
L4 (Split Block)
TADR < LOC(SADR) = ZTK
CALL ADD(TADR,TK)

Go to L3

Return Algorithm

Let SADR = LOC of block being returned
Let BOUNDS = {(LB1l,UBl) , (LB2,UB2), ..., (LBN,UBN)}

i.s.,the set of N areas allocated to the Buddy System.
(merge loop) '

Ll K + SIZE(SADR)
If K = KMAX , go to LS
TADR + XOR(SADR,2%)
T <1
L2 (Bounds Loop)
(LB,UB) + BOUNDS(I)

If LB < TADR < UB , go to L4

70
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L3 If I=N, go tol5
I+«I+1
Go to L2

L4 If TAG(TADR) = 1 , go to L5
If SIZE(TADR) # K, go to L5
If TADR < SADR , SADR « TADR
LINKB (LINKF(TADR)) + LINKB(TADR)
LINKF(LINKB(TADR) < LINKF(TADR)
K+«K+1
Go to L1

LS CALL ADD(SADR,K)

FINISHED

3.7.2 Use Count Algorithm

The algorithms given in the previous section are part of a
larger mechanism which provides for the creation, maintenance, and
release of values requiring dynamic storage. Each free storage
block that is in use has a use count field and an RS flag field,
the former being an indicator of its required existence and the
latter an indicator of whether the block (descriptor) is on RS
(0 if not on, 1 if on the release stack). The general philosophy
is to increase the use count of a block when the value it repre-
sents is used in a new place in the program, such as being assigned
to a variable. When a value is replaced by another or discarded,
the use count is decremented; what actually happens is that if it

is not on RS already, it is put on RS, and otherwise the use count
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is decremented, since being on §§.ié equivalent to one léss use.

A series of policies is now described which together form an algor-
ithm for both minimizing the manipulation of use counts and effect-
ing an automatic and efficient return of unused blocks (to the
third algorithm of the previous section). Since a block is not
actually merged back into free storage until the release stack is
purged, this algorithm has the effect of concentrating most of the
overhead into a series of pseudo-garbage collecﬁioﬁs; by delaying
the re-merging of buddys, the situations where the same block(s)
are repe;tedly broken apart and then merged back together are
minimized.

(a) Any storage value that results from the evaluation of
any part of an expression does not have its use count incremented.
For example, when the value of a variable is used, it is simply
loaded into the accumulator. Even though it represents a fresh
use of the value, the use is considered an intermediate result.

(b) When a library routine is forced to acquire a free stor-
age block to nold some newly created value, such as the result of
a concatenation, the block is given a use count of 1 but is also
put on RS, thus having an effective use count of 0.

(c) When a new value is assigned to a variable,the use count
of the old value is decremented and the use count of the new var-
iable is incremented. This applies not only to explicit assign-
ments, but to any situation where a new value replaces an old one,
such as in elements of arrays or fields of datatypes, active input

associations, etc. In some cases, there are no old values to be
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replaced, such as in the creation of a new instance of a pro-
grammer-defined datatype.

(d) At each function level, there is a segment of RS which
contains the accumulation of blocks that were either created or
had their use count decremented at that level (and were not already
on RS for some previous higher level). If, upon entering a new
statement, the release flag is found set, the free storage pack-
age is called to release all the blocks on RS for the current
level. This goes as follows:

1. If RS current = RSP , FINISHED.

2. POP a block off RS and decrement the use count
field. If not 0, go to 1.

3. If the block corresponds to an array, data or
pattern value, put each element value on RS (or decrement its
use count if already there). What this means is that when a
complete item such as an array ceases to be used, theré is one
less use for each of its elements.

4. Exercise the return algorithm on the block and go
to 1.

(e) The above policies prevent the extra incrementation and
subseqéent decrementation of intermediate values and provide for
the automatic release of unused created values. Because of the
teruous existence of intermediate values, however, an additional
policy is required for the execution of programmer-defined function
calis, called 'vanishment insurance'. For example, supﬁose variable

"X" has a string value, and X 1s the only place where this string
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is currently used, giving it an effective use count of 1. Further-
more, the string value has not been put on RS for any reason, and
X 1is used in an expression where it is an element of a concatena-
tion. Another, subsequent element of the concatenation is a
function call, and within that function X 1is assigned a new
value. This will cause its previous string - value to have an
effective use count of 0, so that if a release is also ﬁriggered
ingide the function, the storage used by the string will be re-
claimed by the free storage package and re-used, despite the fact
that it is still needed by the expression wheFe the function is
called. Indeed, the descriptor for the string is on ES, but the
descriptor points to an area that may contain something completely
different. To prevent, in general, the release of values still

in use at a higher function level, the library function which
performs programmer-defined function call entries, after unstack-
ing the function's actual arguments, does a vanishment insurance

on every value which is on ES between the current value and ESP.
This insurance consists of putting all values which are not on

RS onto RS and also incrementing their use count, values already

on RS are unaffected. Although not changing the effective use count
of any value, tﬁis policy insures that the values cannot go onto

RS (and be returned to free storage) at some deeper function level.
Eventually, a release triggered at the level of the function call
will take the value off RS. This always occurs between statements,
and in particular after the value has been used in the concatena-
tion, etc., so that if its use count goes to zero, it can be returned

without any problem.
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3.8 Patterns and Unevaluated Expressions

Perhaps the most novel idea in FASBOL is the way in which
patterns are treated. Interpreters and semi-interpreters evaluate
pa&terns as intermediate-language data structures, and perforﬁ
pattern matches by executing a generalized routing which uses the
intermediate data structure as a template to compare against the
subject string. FASBOL compiles each explicit pattern into two
logically separate sections of code, which are generated side-by-
side under separate location counters. The first section corresp-
onds to the evaluation of the pattern, and the second is a re-entrant
subroutine corresponding to the execution, during a pattern match,
of an instance of the pattern. Associated with each instance of
a pattern is a data block, consisting of a pointer to the pattern
subroutine an& the values, if any, of its elements. During pattern
evaluation, any element of the pattern that has a non-literal value
(such as a variable) is-evaluated and its value saved in the data
block. No evaluation is required for the actual structure of the
pattern, which consists of the arrangement aﬂd use of cdncatenations,
alternations, immediate and conditional value agssignments, cursor
position assignments, unevaluated expressions, primitive patterp
variables and primitive pattern functions. When the pattern routine
is executed during a pattern match, it uses any values that are
in the data block as parameters for the match. For example, the
pattern element ANY('0123456789') requires no code for the evalua-
tion phase (since it has a literal argument), and generates the
following code for pattern matching: Load break table; call 'ANY'

library routine; jump to failpoint. A break table is a bit table
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specifying a set of characters (in this case the digits 0-9) which
ié used by ANY to see if the next character in the subject is a
member of the class, and it will skip over the failpoint jump in
the code if it is successful.On the other hand, the pattern ele-
ment STRVAL(X) generates code for the evaluation phase that loads
the value of X and stores it in the data block; the match phase
code loads the value from the data block And calls the string match
routine to compare the value with the subject.

The illustration in Figure 2a. is an abstract symbol for re-
presenting the external characteristic of any pattern, either simple
or complex. "START" is the entry into the pattern, ''SUCCEED" is
the exit after a successful match, "FAIL" is the exit after an
unsuccessful match, and "RESTART" is the entry at which the pattern
can be restarted after an initially successful match. The actual
code generated for the pattern métch execution follows the conven-
tions of Figure 2b. "START" and "SUCCEED" are accomplished by enter-
ing and leaving the code sequentially, while "FAIL" is a jump out
of the immediate pattern code to the fail point (dictated by the
structure surrounding the pattern) of the immediate pattern. ''RESTART",
for patterns with alternatives (implicit or explicit), is a label
on a line of code inside the pattern which, when executed, will
restart the pattern match on a new alternative of the immediate
pattern. If a pattern has no alternatives, "RESTART" is equated
to "FAIL"; thus any number of patterns can be made transparent to
backup, a restart going directly to the la;t pattern with alterna-

tives. Figures 3 and 4 should help clarify some of the above ideas;

[
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Abstract Symbol for a Pattern
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Figure 3 is a symbolic representation of the pattern structure
corresponding to the concatenat;on of three other patterns, and
Figure 4 gives both a symbolic ;nd a functional description of the
alternation of three patterns. A pattern structure can be thus
recursively described, from the outermost structure of a pattern
assignment or match, down to the individual elements which are

not structurally composed of others.

Pattern match execution involves two stacks, ES and AS, which
operate in orthogonal fashion to each other. ES gets deeper (more
items on the stack) as the match progresses successfully along
the subject string, and is deepest upon successful completion of
the match. It is used to save items which are required if and when
the match backs up upon failure and must restart its last alterna-
tive. Such items are, for instance, the position of the cursor
at each point in the subject where several alternatives could be
matched, and the next restart point of a group of alternatives
(see Figure 4). AS get deeper with nesting of patterns within con-
ditional or immediate value assignments and/or re-entrant calls
to other patterns compiled elsewhere; AS will be at its initial
position upon successful match completion, and is used to hold
return links and data block pointers when pattern subroutines are
called, as well as initial cursor positions for immediate and con-
ditional value assignments,éggggﬂ) parameters, etc. A third stack,
stack, CV, is used to hold parameters for conditional value assign-
ments; although it operates in general synchronism with ES, it

provides a more convenient way to access any conditional value
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parameters upon successful match completion, instead of having
to unstack ES looking fér them. Figures 5 and 6 provide additional
illustrations of how the stacks are used, in this case by primi-
tives. Note the evaluation phase in Figure 6, due to a non-literal
argument in SPAN.
The evaluation phase of a pattern assignment statement is
executed as follows:
1. Evaluate the variable and save it in AP.
2. Call the 'GET PATTERN BLOCK' library routine which:
(a) acquires and zeros a data block from free storage
(b) Stores in it a pointer to the pattern match routine
(c) Pushes the data block (pattern descriptor) onto ES

and stores it in DT.

3. Evaluate each element of the pattern that requires evalua-
tion, increment the use count of the resulting value, and store it
in the data block.

4, fop the pattern descriptor off ES and perform the assign-
ment (just like other types of assignments).

The execution of a pattern assignment generates an instance
of the pattern, represented by the data block, for specific values
of the elements at the time of assignment. Like any other storage
value, that particular instance of the pattern lasts as long as it
is used in at least one place, i.e., as the value of a variable or
as part of some other larger, evaluated pattern. When a pattern
descriptor is no longer used and returned to free storage, the use

counts of all of its evaluated elements are decremented. Repeated
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executions of a pattern assignment generate fresh instances of
the pattern.

The pattern match code generated for the assignment state-
ment consists of the‘sttuctural code described previously with
the following additional conventions. The failpoint of the
entire pattern subroutine is the pattern fail library entry, and
a jump to the pattern succeed library entry immediately follows
the pattern match code to provide for a success exit; these two
entries are analogous to FRETURN and RETURN. In addition, immed-
iately preceding the pattern match code is a jump to its restart
point (which may be the patﬁern fail library entry, if the pattern
has no implicit or explicit alternatives). It is this first stor-
age location (jump to restart) that is pointed to by the data
block for the pattern. When a pattern match is executed which
uses an instance of the pat;ern (L.e., if a variable to which it
is éssigned appears as part of some other pattern expression), the
following sequence occursf

1. The other pattern sets RST to O if it wishes to start
the inner patﬁern or 1 if it wishes to restart it. Pattern
routines always have possible restarts, since the outer pattern
has no knowledge of their nature.

2. The pattern execute library routine is called to enter
the pattern subroutine; it is analogous to the function call entry
routine. This routine pushes DT and the return link to the outer
pattern onto AS, sets DT to the new (subroutine) data block, and

jumps to either thé first or second location of the subroutine
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for restart or start, respectively.

3. The pattern routine executes, possibly calling other
pattern routines, until failure or success transfer control back
to the fail/succeed pattern library entries.

4. These entries set FLF to 1l.or O, respectiﬁely, pop DT
and the return link off AS, reset DT to its previous value, and
jump to the first or second location after the pattern execute
call in the outer pattern, signifying, respectively, failure or
success of the pattern subroutine.

The evaluation phase of a pattern match statement is execu-
ted as follows:

1. Evaluate the subject string and push it onto ES.

2. Call the 'GET MATCH BLOCK' library routine which:

(a) Loads DT with a data block pointer which it
acquires for a data block pool for ‘the statement,

or from free storage.

(b) Saves a pointer to the block pool pointer
in an internal location for possible use by the
unevaluated expression routines. The block pool
pointer points at the current block beiﬁg used at
a chain of any other previously used blocks (see

unevaluated expressions).

3. Evaluate each element of the pattern that requires eval-
uation, but do not increment the use count before storing in the

data block.
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After the evaluation phase, execution passes to the match
pattern library routine, which:
1. Pops the subject off ES, makes sure it 1s a string, makes

sure it won't vanish, and pushes it back onto ES.

2. 1Initializes SJ and the cursor (CC, CW, RC).

3. Pushes the return link to the program (following match
execution) and the current vaiue of ES onto SS.

4., Transfers control to fhe first location of the pattern
match execution, which is pointed to by the data block.

" The pattern match code generated for the match statement has
as its failpoint the failed match library entry, and jumps to the
succeeded match library entry on success. Its first location is
its start point, and any restart point is ignored, since the
outermost pattern of a match is never restarted.

The failed match entry jumps to the abort match library entry

(a) &ANCHOR is nonzero, or

(b) There are no more initial positions for the subject
(unanchored mode has run out of characters), or

(c) &FULLSCAN is zero and the CHARFAIL indicator is on (pot
enough subject for pattern).

Otherwise, CHARFAIL is reset, the initial position and the
cursor are incremented, and the pattern match code is started
again (NOT restarted).

The aborted match entry, which is also called if there is an

abort anywhere within a pattern match (including pattern subroutines),
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pops ES and the return link off SS, resets ES to its previous
value (and ignores the link), restores AS and CV from ASP and
CVP, and jumps to the failpoint routine (which will cause thel
statement to fail).

The succeeded match entry computes and stores the final
position does any conditional value assignments using CV and CVP,
restores A8 and CV from ASP and CVP, pops ES and the return link
off SS, resets ES to its preﬁiOus value, and returns to the code
immediately following the match pattern (library) call, which is
the successful exit from the statement.

A replacement statement executes similarly to a match state-
ment, except that the mame descriptor for the variable (subject)
is pushed onto ES first, before the subject itself. Upon return
from the succeeded match routine, SJ is pushed onto ES, the object
field is evaluated, and the replace library entry is called, which

1. Pops SJ and the subject off ES.

2. Creates a string formed from the replacement by the
object, of the substring between initial and final positions of
the match in the subject string.

3. Assigns the replaced string to the variabie (popped off
ES).

Unevaluated expressions are handled using the simple device
of compiling them under the location counter for the pattern match
code rather than the one for the pattern evaluation code, thus
deferring the evaluation until the pattern match execution reaches

that point. If the expression cannot fail, no extra code is
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generated (in fact, no code is needed to load and store values

in the data block). If the expréssioﬁ may fail, the code is pfe—
ceded by a call on the unevaluated expression begin library entry,
giving as parameters the failpoint of the unevaluated expression
and a flag indicating if there are any programmer-defined function
calls within the expression. The code is followed by a call on the
unevaluated expression end library (which gets executed in

the case that the unevaluated expression succeeds),and, at the
location previously designated as the unevaluated expression fail
point, a call on the unevaluated expression fail library entry.
The parameters passed to the latter two entries are the previously
mentioned function call flag, and the pattern failpoint for the
expression.

If the function flag is not on, the unevaluated expression
start entry just pushes ESP and FE onto SS, resets ESP to the
current‘value of ES, and loads FE with the unevaluated expression
failpoint. Upon success or failure of the unevaluated expression,
the process is reversed and control is passed to the next
location in sequence or to the failpoint specified by the pattern
structure. If a programmer-defined function is called within the
unevaluated expression, more parameters must be saved (and restored),
since another pattern match may be initiated within the function.
In particular, ASP, CVP, SJ, and the cursor are pushed onto SS,
and ASP and CVP updated to the current values of AS and CV.
Furthermore, the possibility exists that during the function
execution control may pass through the controlling match for the

unevaluated expression (the unevaluated expression may be



89

in the same statement as the match, or in some pattern subroutine).
If this ﬁappens, a new data block for the controlling match will
be acquired from the pool (or free storage),so that pointer to
the current block pool pointer and its corresponding current data
block pointer must be pushed onto 8S, and the block pool pointer
updated to no longer point to the current data block. Also, the
element values, if any, in the current data block for the con-
trolling match must have vanishment insurance performed on them,
since their use count was not initially incremented. This entire
method of dealing with unevaluated function calls allows all other
pattern matches that do not use this feature to run with a minimum
of stack and use count manipulation, and only penalizing those

which do use the feature.

3.9 Other Run-Time Features
3.9.1 FORTRAN Interfaces

When calling FORTRAN from FASBOL, each external FORTRAN pro-
gram is typed as integer or real; each argument in the call must be
a ‘dedicated . integer or real expression, a string variabie,or
a string literal. A standard calling sequence is compiled, with
the result expected in the system accumulator register on return.
Strings may be considered by the FORTRAN program as arrays with
characters packed six to a word. If an external FORTRAN function
is declared 'OPEN' (i.e., capable of calling other FASBOL programs),
the calling sequence is preceded by a library function call which
saves the non-volatile registers used by the FASBOL run-time, and,

is followed by a library call to restore them. In this way any
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FASBOL programs called by the FORTRAN program can resume normal
operation and reflect back changes in global parameters.

FASBOL can only be called from FORTRAN after passing through
at least one level of FASBOL programs (MAIN must be FASBOL). The
FORTRAN entry declaration serves to externalize the function entry,
type the function variable as integer or real, type each formal
argument as integer, real, or string (with max string size for the
latter), and provide a starting label and return label for the
function definition. The formal arguments are copied from their
counterparts in the FORTRAN calling sequence (with the max string
size copied for strings) on entry into FASBOL, and then copied back
(possibly modified) on return to FORTRAN, with the function var-
iable value left in the system accumulafor register. In addition,
on entry all the non-volatile registers affected by FASBOL are
saved (this may be in use by FORTRAN), the previous FASBOL value
of these registers are restored, and the parameters associated with
the FASBOL statement which originally called the FORTRAN program

(SINO, PP, LINK, TM+l, RSP, ESP, FE, AP, DT) are saved; the process

is reversed on exit back to FORTRAN.

3.9.2 Symbol Table

The run-time symbol table contains entries for variables,
lal'els, and functions. It is implemented as a chained hash table
[11], with the number of buckets (and hash bit width) capable of
being set by a compiler option ("HASHSIZE = N "); the default is N=6
(64 buckets). The hash scheme multiplies the first word of the

symbol string by the last, and extracts a key of the appropriate

N
.
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bit width from the '"Normalized" (compensating for zero fill of

the last word) middle of the product. The chain from each bucket
is ordered in increasing symbol size; each entry on the chain
consists of a link word, the symbol string descriptor, and a

NAME descriptor for the variable label, or function. The link word
contains a pointer to the next link and a character count and type
field which permits a rapid search down the list, with string
comparisons only necessary when (and if) an entry with the same
character count and type is found. A search stops whenever an
entry with a larger character count is encountered.

The symbol table routine operates in two modes; initaliza-
tion and indirection. The initialization mode is for entering items
deslared to be 'INDIRECT', where both a string descriptor and name
deécriptor are provided and new entries created. The indirect
mode is for all other symbol table references; a string descriptor
and partial name descriptor are provided, the partial name descrip-
tor indicating the type (VAR, LAB, FUN) desired, and possibly, for
variables, and I/0 association flag. A search is made for the
syﬁbol/type combination,and if found, the partial name descriptor
and full name descriptor from the symbol entry are '"OR'"ed together,
stored back in the entry, and provided as the result of the indir-
ection. If the symbol is not found, a new entry is created; and
a new name produced for the created entity. In the case of a
created variable, an addifional storage location is acquired and
initialized'to null; in the case of a function, an additional stor-

age location i1s acquired and initialized to jump to the undefined
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function error exit; and in the case of a label, the name points

to the undefined label error exit.

3.9.3 Input and Output

I/0 is done through I/0 associations of variables (including
created variables that are array elements) in the program. When-
ever evaluating by value (as opposed to by name) an identifier
(flagged by the compiler at having a possible input association),
indirect reference, or array reference, a library routine is
called which searches an input association table for that variable
and performs the input if it finds it there. Whenever a program
assignment is made via =, §, ., @, or formal argument binding,the
name descriptor of the variable is checked for an output associa-
tion possible flag. If it is on, the output association table
is checked, and if the variable has a current association, its
value is output.

1/0 associations are made using the primitives iNPUT and
OUTPUT, which have three arguments: variable name,unit number , and
association length. If the first argument is a literal string,
the compiler generates the corresponding name descriptor for the
variable; otherwise, the argument is evaluated and an indirect
reference to get its name from the symbol table is‘performed. The
unit no. refers to the standard FORTRAN logical unit designations
as defined by the system or user FORTRAN unit table. The asso-
ciation length is the string length that FASBOL uses as its logical
record length for a given association. On input, the association

length must be no greater than the physical record length, and



93

provides a truncated record if it is less; one physical record

is always read, and any excess record size is lost. On output,
the following rules apply, where SL = string length, AL = assoc-
iation length, and RL = record length: AL > RL 1s an error;

AL < RL causes blank fill to the full RL; SI, < AL causes blank
fill to the full AL; SL > AL causes multiple records of length
AL with the last blank filled to AL.

The variables INPUT, OUTPUT, and PUNCH have predefined initial

associations corresponding to INPUT('INPUT', 5, 80), OUTPUT('OUTPUT',
6, 132), and OUTPUT('PUNCH', 7,80) for the card reader, printer,

and punch, respectively. 1I/0 associations can be dynamically
changed by using the input and output primitives, and discontinued
by using the DETACH primitive. Additional I/0 operations are pro-

vided by ENDFILE, REWIND, and BACKSPACE for any unit capable of

such an operation, and EJECT for ejecting to top of page on the
printer. The physical devices provided for in the I/0 library
routine are: CARD READER, PRINTER,PUNCH, CONSOLE KEYBOARD, TAPE,
and DRUM.

Tape and drum operations are buffered to N 1levels on output
and double-buffered (one record look-ahead) on input. The number
of output buffer levels is a function of the record length, since
the total amount of storage used for output buffering by any device
is a program-controlled constant. All buffers come from a common
buffer pool and are originally acquired from free storage as they
are needed. The buffering scheme uses the device end-action

interrupts to permit concurrent execution of the program and 1/0
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operations. Input look-ahead can be disabled with the "NO-LOOK-
AHEAD" compiler option; this is only necessary if a FORTRAN sub-
routine is also performing I/0 concurrently on the same logical

unit.

3.9.4 Primitives

Primitives are recognized by the compiler and not treated like
programmer-defined functions. This has only one disadvantage (no
re-definition of primitiveé), and many advantages. Since the com-
piler knows how many arguments each pfimitive should have, it can
compile extra null arguments; the number of actual arguments is not
passed to the primitive, and it does not have to'check the actual
number against the expected number. The compiler knows that no
primitives cause recursion, which primitives have null values, and
which primitives may fail, permitting a certain amount of optimiza-
tiomn of the generated code. Certain primitives are treated in a
special way; and in some cases are compiled as in-line code. Pat-
tern primitives are incorporated into pattern structures, only some-
times calling library routines. Integer-argument integer predicates,
integer-argument integer functions, and IDENT and DIFFER with only

one argument aze compiled as in-line code. DEFINE, DATA, ITEM, and

APPLY have their arguments treated in special ways, as do OPSYN,

DETACH, INPUT, and OUTPUT, in the latter four cases because a name
descriptor is what is really needed for some arguments, even though
the actual argument is usually a string. Finally, REPLACE and the

character-class pattern primitives(SPAN, NSPAN, BREAK, BREAKX, ANY,

NOTANY) make use of a special run-time optimization technique: some
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times a special table must be built, using one or more arguments,
before performing the actual operation specified by the primitive;
instead of building the table each time the primitive is called,
it checks to see if the arguments provided are the same as in the
last instance of the call, and if so,it uses the old table. The
old arguments and table require program storage in each place the

primitive is called, and this must be generated by the compiler.
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CHAPTER 4

The FASBOL Compiler

4.1 Structure
The FASBOL compiller is a one-pass translator which accepts

statements in FASBOL and produces symbolic assembly-language out-
put. The assembler is automatically invoked upon completion of
compilation. The compiler operates as a system processor like

the FORTRAN compiler and the assembler, with the same capability
for file manipulation and updating. The compiler is written in
FASBOL, with a few assembly-language subroutines. There are
several reasons for writing it in FASBOL rather than, say, assembly
language. One is'speed of implementation; the chief contribution
of FASBOL is in the speed of execution of the compiler programs, and

the time required to write and get the compiler running was mini-
mal (about 1 month to write, 1 1/2 months to hand-compile the first
version, and 1 week to debug, mostly hand-compilation errors).
Another reason is the general ease with which compiler errors can
be fixed, and new versions and/or extensions implemented (for
example, making FASBOL compatible with version 3 of SNOBOL4, a de-
velopment that occurred too late to be included in the first version
of FASBOL). A third reason was to illustrate the power of FASBOL
for compiler-writing and other similar applications, and its ability
to compile large programs (one phase contains over 1600 lines and
over 1,000 statements, takes 45 seconds to compile, and generates

over 13,000 machine instructions and data words).

ot

wt



\»

97

The compiler is structured in storage as illustrated in
Figure 7, where the main program, FASBOL, remains loaded through-'
out the compilation and the five phases are successfully (and
automatically) loaded on top of each other as the compilation
proceeds.; starting with OPENSR. The main program initializes
global parameters, controls the sequence of the phases, and
contains the functions used by more than one phase, such as the '"Get
Next Sfatement" function. OPENSR provides the standard processor
input editing capability of inserting, deleting, or replacing
lines in the source code, and of creating an updated source ele-
meat with the same or different name. DECLPH processes the de-
clarations, which are required to preceed all executable state-
ments. PROCPH processes the executable statements up to the
"End" statement. EACTPH generates program storage and constants
and CROSPH, which is optional,is called if the program specified
a cross-reference dictionary listing. The main program invokes
the assembler upon the symbolic output element (unless -NOASM has
beén specified).

The remaining sections discuss the compiler symbol table
arrangement, and each of the phases(except OPENSR, which is a

standard system program).

4.2 Symbol Table

The FASBOL compiler makes full use of the run-time symbol table
to hold an entry for each symbol encountered in the course of com-
pilation. This would be more difficult to do with the interpreter

because of possible conflicts between program symbols and compilation
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FASBOL
CROSPH
DECLPH EACTPH
OPENSR
ABOUT 30,000
PROCPH WORDS (DECIMAL)
SPACE
TIME

Figure 7

Space-Time Map of FASBOL Compiler
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symbols, but the FASBOL compiler does not use any indirected
natural variables and so the problem does not arise; indirected
labels, which are used inside the compiler, are treated as sep-
arate entities by the symbol table library routine.
When a new symbol is encountered by the compiler, a '"SYM"
datatype (described below) is assigned to the created variable
in the run-time symbol table. Symbols already entered are detected by
a non-null value for their corresponding created variable. All
the entries are chained together to provide access to all defined
symbols at the end of compilation; in addition, symbols referenced
while cross-referencing is in effect (~CROSSREF) have a cross-
reference chain head ('"CRS" datatype) inserted between them and
the next symbol on the symbol chain. The cross reference chain
consists of a series of "CRS" datatypes which contain the state-
ment number and reference type for each reference.
The SYM datatype consists of six fields:
1. NEXT is the next SYM or CRS datatype on the chain.
2. NAME is the string corresponding to the symbol.
3. ATRB is an integer containing the attributes of the
symbol usage, compressed into 36 bits.
4, INAM 1s a string representation of a unique number
corresponding to the symbol.
5. XNAM (optional) is a string corresponding to the external
name of a label variablg or function for the symbol, if
it has been so declared. Only one of the three can be

external.
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6. CHNS (optional) chain head for field orrdatatype chain, s
or TYPE*8 + number of args for primitive functioms. “a

Any symbol may represent several different types of uses.

For instance, the symbol "ABC" could be used as a variable and a

literal st\ring. Some uses are mutually exclusive; for instance

no symbol can be both an integer constant and a variable (but it

can be a label). With the exception of variables, labels, or

functions with external names ("ENTRY" or "EXTERNAL' declarations),

the (internal) name associated with a particular type of reference

is generated by preceding the internal name number (INAM field)

with the appropriate letter for that type. Table 3 gives the

various types and the prefix and cross-reference code associated:

with each.

Type Prefix X-Ref Code
LABEL L 0
VARIABLE \' 1
FUNCTION/FIELD F 2
DATATYPE D 2

STRING LITERAL S 4
INTEGER LITERAL I 5

REAL LITERAL R 5

BREAK TABLE B 7
VARIABLE NAME N 3 %
NUMERICAL DESCRIPTOR K 6

Table 3
Symbol Types

When the symbol chain is traversed in EACTPH, the attributes

of each symbol determine the data code that is generated for it.
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4.3 Declaration Phase
The declaration phase reads in statements until it reaches

one that is not a DECLARE or OPTION pseudofunction call. For each

declaration, it recognizes the type and branches to the section

which handles that type. Symbols are entered, attributes set, and
control passed back to the main loop. In the case of "ENTRY.FUNCTION"
and "ENTRY.FORTRAN.FUNCTION", the entry code is generated. Options
ar2 treated similarly, and set flags within the compiler. Before
returning to the main program, the initialization code for the

compiled program is generated.

4.4 Executable Statement Phase

The executable statement phase reads in statements until it
reaches an END label. Each statement is separated into a label
field, a body, and a goto field. First the label, then the goto,

and finally the body is processed.

4.4.1 Labels and Gotos

Labels, if any, generate a corresponding label in the output
code. Goto fields are parsed and generate a poto code tree which
is saved. A code tree is a simple binary tree whose end branches
contain one or more lines of code. This is a more convenient and
efficient way of producing code for a complex expression than either
emitting the code as it is produced, or somehow concatenating it all
into one string. How these code trees are built and output is ex-
plained in the next section,as well as the process by which gotos

which are not simple identifiers or indirect literals are handled.
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When a goto has been processed, the global fail point for the 2

statement is known, and it is empty if there is no goto.

N !

4.4.2 Statement Bodys

A non-empty statement body is separated into its major compo-
nents in order to determine whether it is a degenmerate, assign-
ment, match, or replacement statement; assignment and replacement
statements are detected by the appearance of an ""Equals' sign, with
the replacement having a top-level concatenation before the equals
sign; Degenerate and match statements are similarly differentiated,
but without an equals sign. Code trees are generated for each of
the major components (VARIABLE, OBJECT, SUBJECT,.PATTERN), and
joined as a new tree. After the entire body has been processed,
and a global fail created for statements that could fail but had
no goto field, the body code tree and the goto code tree are out-
put by calling a routine that does a bottom-up, left-right walk
of -each tree, emitting lines of code as they are encountered. The
code trees are generated by creating "NOD" datatypes with the FRNT
field and BACK field containlng code or code trees which should be
A output in that order. For example, a code tree for A * 2 + B might
.oe - NOD(NOD("LOAD A" "MULT 2") "ADD B") , where the 'NOD"
functlon produces an 1nstance of the "NOD" datatype with the two

arguments supplied for the FRNT and BACK f1elds.

Each major component of the expression (and complex gotos)
is f1rst parsed to produce a text tree [12] which contains a

complete description of the operator structure, expression types
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(see below), and symbol table entries. Based upon the resultant
expression type, global optimization (i.e., deciding a statement
is dedicated) can be done, and appropriate code~generation functions
called:to walk the text tree and produce the output tree.
4.4.3 Parsing
An expression is considered to have five ﬁossible types:
(a) Type O indicates arithmetic involving only
undedicated variables with no possible input
assoclations.

(b) Type 1 indicates integer arithmetic.

(c) Type 2 indicates real arithmetic.

(d) Type 3 indicates an expression that cannot

be dedicated.

(e) Type 4 indicates an explicit pattern expr.

There are three parsing routines: One parses expressions with
binary operators (including blanks for concatenation), and uses a
straightforward table-driven operator precedence scheme [13]; another,
called by the first, parses "Elements" (unary operations, variables,
literals, parenthesized expressions, function calls, array referen-
ces); and a third parses parameter lists (which involves calling the
first again). The text tree is built from the bottom up, with each
combination of types yielding a result type. The text tree is
built with three types of nodes (datatypes) which are returned as
value by the parse routines; ELN(OPTY,SBJT,PVAL) for element nodes,
BON(OPTY, LFTS, RGTS) for binary operator nodes, and PLN(NXTL,
PARP,PVAL) for parameter list nodes. The ELN datatype for an element

holds the type (0-4) and an indicator of the nature of the element
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in the OPTY field; the SBJT (subject) field holds a datatype appro- <
priate to the nature of the element, and the PVAL field the position
of the element in the statement (for any subsequent error messagés).
For example, a dedicated integer identifier would be of type 1 and
have its SYM (symbol table entry) datatype in the SBJT field; a
parenthesized expreésion would have the BON or ELN for:the expression
in the‘SBJT field and a type equal to that of the BON or ELN, and

a programmer—defined function call would be of type 3 and have the
PLN for its name and parameter list in the SBJT field.

The BON datatype for a binary operation holds the resultant
type and operation in OPTY, the left side text tree in LFTS, and
the right side text tree in RGTS. The binary operation parsing
program builds the tree differently for operators that are left-
associative (+, -, *, /, ., §) and right associative (**, SPACE, !)
when it encounters more than one operator of the same precedence on
the same level; the chief use being to make it easier to generate
code for truly right-associative operations (like **) and for N-ary
operations such as concatenation and !. The resultant type for a
binary operation is extracted from a table, given its left and
right types (as it is for unary operations, given the right side
type).

A parameter list text tree consists of a chain of PLN data-
types, the first for the function or array variable, and then one
for each parameter expression. PARP for the first holds the SYM
for the function/array variable, and PVAL holds the resultant type

(MAX) of the parameter types and the number of parameters; PARP
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for each parameter holds the BON/ELN for that expression.

Each parse routine generates a node composed of elementary
material or nodes passed to it by deeper parse routines. It
advances the parse pointer past the terminal(s) that it has re-

cognized and passes the node back as value to whoever called it.

4.4.4 Code Generation

The code generation routines operate on the same principles
as suggested by Elson and Rake [12], but are not as general (or
as regular). They perform a top-down context-sensitive walk over
the text tree, and there are a large number (accounting for the
size of PROCPH) of routines, to suit different types of express-
iogs and/or optimizable cases. The code generated is highly machine-
dependent and will not be discussed here, but some aspects emerge
that are of general interest.

The simplest code-generation routine is called, given as argu-
ment a node in the text tree, and expected to return a code tree
corresponding to that text. A further step is to pass information
down to it, either as an argument or a global variable, which
enables it to generate code based on some circumstance above it
in the text tree. For example, a global variable is initially set
to the statement failpoint, but set to the fail routine after ES-
pushing code has been generated, and reset back to the statement
failpoint after ES is considered unstacked. This global variable
is used by the routine which generates code for dedicated predicates
to produce a jump to either the statement fallpoint or the fail

routine depending upon the state of ES due to expressions above the
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the predicate in the text tree. Another step still is to have
code-generating functions pass back not 6nly the code tree, but
informatien about it. For instance, dedicated arithmetic routines
pass back information concerning the arithmetic result of the code
tree: location in storage or in a particular register, and whether
in true or complement form. Even information not immediately usable
can be passed back up the tree, such as the fact that some element

might fail, or recursion could take place.

4,5 End-Action Phase

The end-action phase generates the exit code for the compiled
program, and traverses the symbol list, generating any variable
storage or literals that are required. A variable, for instance,
generates one word labeled with the variable name (Vxxxxx), and
initialized to zero (null). If the name datatype of the variable
was also used in the program, a name datatype, labeled with the
name name (Nxxxxx) is also generated. All items that are "INDIRECT"
also generate a parameter word (under a separate location counter)
used by the run-time symbol table initialization routine to enter

the item (LAB,VAR,FUN) in the symbol table.

4.6 Cress-Reference Phase

This phase also traverses the symbol chain and orders the
symbols lexically into a binary tree. Then a routine walks the tree
in order and for each symbol, prints out the attributes of the

symbol and references to each type; the statement number where a
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.label is defined, and where an undedicated variable is stored

into, for instance, is also given.

107



108

APPENDIX I

FASBOL SYNTAX

Explanation of Syntax Notation
One problem with the usual syntax specification for SNOBOL4

(i.e., in the Bell Labs Manual, pp. 181-184), is that it is too
general and permits statements which are, semantically speaking,
patently illegal. The interpreter resolves these problems at
execution time, but the compiler must do so at compile time. The
following additions and modifications to the BNF notation are
intended to assist in more closely specifying the syntax that the
compiler will accept. Unfortunately, this will still be a super-
set of the actual set, given a specific set of declarations.

I. Only underlined symbols represent terminal elements. If the
underlined symbol is nonalphabetical or uppercase, it stands for
itself. Underlined lower-case alphabetic strings stand for non-

printable terminals.

II. Braces, {}, denote a grouping of syntatic units and are used

instead of parentheses for the sake of clarity.

III. Square brackets, [], denote an optional appearance of the

enclosed syntatic unit.

IV. Three periods, ..., denote optional repetition of the im-
mediately preceding syntatic element (i.e., it can be repeated

0,1, «.., N times).

A

o

o

o
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V. The not sign, |, denotes the specific ruling out* of the

immediately following syntactic element.

VI. Non-terminal elements are represented by symbols consisting

of lower-case alphanumerics and periods.

VII. Syntactic units and elements are best described by the follow-~

ing:

syntactic.element ::= TERMINAL ELEMENT |

[ syntactic.element ] | 71 syntactic.element |

syntactic.element ...

syntactic.unit ::= syntactic.element | syntactic.element

spaces syntactic.unit | syntactic.element l_syntactic.unit

With the following precedence (highest to lowest)

4. 1 (unary) negation

30 ... (unary) repetition

2. space (binary) concatenation
1. | (binary) alternation

f] is used for notational convenience, as in excluding string

quotes from within their scope, or to eliminate structure leading

to ambiguous parses. An example of the latter occurs with the non-
terminal field, which, though in appearance identical to a function-
call, is treated by the compiler in a completely different fashion.
Without the :L there would always be at least two possible parses
for an expression containing the form A(B).
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Syntax for FASBOL

program ::= [option | declaration | comment]...[execute.body]
end.statement
option ::= bl ggz;gg(jblj option.type [bl]) eos
declaration ::= bl DECLARE([bl] declaration.type [bl]) eos
comment ::= * [char]... eol | = [bl] control.type [bl] eol
execute.body ::= statement [statement]...
end.statement ::= END [bl label] eés
bl ::= blank [bl] | eol {+ | .} [bl]
eos ::= [bl] {; | eol}
statement ::= comment | [label.field] [statement.body] [goto.field]
eos
label.field ::= 1 {END bl} label
goto.field ::= bl : [bl] {goto | S goto [bl]) [F goto] |
F goto [bl] [S goto]}
goto ::= ([bl] {identifier | § string.primary} [bl])
statement.body ::= degenerate | assignment | match | replacement
degenerate ::= bl string.primary
assignment ::= bl variable equals bl {string.expression |
71 {string.primary [bl string.primary]...}
pattern.expression}
match ::= bl string.primary bl pattern.expression
replacement ::= bl variable bl pattern.expression equals
[bl string.expression]
equals ::= bl =

variable ::= identifier | string.variable | procedure.call.form

v
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pattern.expression ::= conjunction [bl ! bl conjunction]...
conjunction ::= pattern.term [bl pattern.term]...
pattern.term ::= pattern.primary [{bl . bl | b1 $ b1}
pattern.variable]...
p&ttern.primary ::= pattern.primitive |_g pattern.variable l
[*] string.primary | ( [bl] pattern.expression
(b1])
pattern.variable ::= [*] variable
string.expression ::= sum [bl sum] ...
sum ::= term [{bl + bl | bl -~ bl} term] ...
term ::= factor [{bl * bl | bl / bl} factor]...
factor ::= string.primary [bl ** bl string.primary]...
string.primary ::= 71 pattern.primitive {literal | identifier |
string.variable | procedure.call | {2 | E_l
- | 4} string.primary | . variable | ¢
bl) string.expression[bl])}
literal ::= integer.literal | real.literal | string.literal
string.variable ::= § string.primary I & keyword | array.element |
field
procedure.call ::= expression.primitive | 71 {expression.primitive |
field | ITEM ([bl] parameter.list [bl])}
procedure.call.form
procedure.call.form ::= {1 APPLY identifier | APPLY}
([bl)[parameter.list] [bl])
parameter.list ::= string.expression [pc string.expression]...

pc ::= [bl] , [bl]
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array.element ::= identifier < [bl] [parameter.list] (bl] 2_[
ITEM ([bl] parameter.list [bl])
field ::= "1 {procedure.call | ITEM ([bl] parameter.list [bl])}
identifier known field ([bl]

string.expression [bl])

identifier ::= letter [letter | digit | . | = 1...
label ::= “1{blank | 3 | = | + | . | *} char [ {blank | ;}
char]...

integer.literal ::= digit [digit]...

real.literal ::= digit [digit]... . [digit]...

string.literal ::= ' [1' cont.char]... ' | # [1# cont.char]... #

coi:t.char ::= char | eol {+ | .}

digit ::= 01|23 |als5]6l2]1812
eol ::= end-of-line

char ::= any character

option.type® ::= 'QUICKSTORE' | 'NO.LOOK-AHEAD' | 'NO.STNO' |

'TIMER' | 'HASHSIZE= integer.literal '

declaration. typel $i=

' INDIRECT.VARIABLE' pc {ALL | ' identifier.list '}

| 'NOT.INDIRECT.VARIABLE' pc ' identifier.list '

| 'INDIRECT.FUNCTION' pc {ALL | ' identifier.list '}

I 'NOT.INDIRECT.FUNCTION' pc ' identifier.list M

| 'INDIRECT.LABEL' pc {ALL | ' label.list '}

| 'NOT.INDIRECT.LABEL' pc ' label.list '
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' INPUT.ASSOCIATIONS' pc ' identifier.list '

' OUTPUT.ASSOCIATIONS' pc ' identifier.list '

'FIELD' pc ' identifier.list '
'STRING' pc ' string.specifier.list '
'INTEGER’ pc ' identifier.list '
'REAL' pc ' identifier.list '

'"PATTERN' pc ' identifier.list '

'SNOBOL.SUBPROGRAM' pc ' restricted.identifier '

'EXTERNAL.VARIABLE' pc ' restricted.identifier.list '

'EXTERNAL.FUNCTION' pc ' restricted.identifier.list’

'EXTERNAL.LABEL' pc ' restricted.label.list '

'ENTRY.VARIABLE' pc ' restricted.identifier.list '

'ENTRY .FUNCTION' pc ' entry.define.prototype ' [pc ' labelz_;_'_

'ENTRY.LABEL' pc ' restricted.label.list '

' EXTERNAL . FORTRAN.FUNCTION' pc ' FORTRAN.identifier.list '

[pe 'OPEN']

' ENTRY . FORTRAN.FUNCTION' pc ' FORTRAN.prototype ' pc ' labelz;'

{pc ' labe1?

31

control.type ::=

LIST | UNLIST | NOCODE | CODE | EJECT | FAIL | NOFAIL

NOCROSS. | CROSSREF | NOASM | LISTASM | SPACE [bl integer.literal)

NEWSTNO bl 1 {0[0]...} integer.literal
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identifier.list ::= identifier [pc identifier]...
label.list ::= label2 [bl labelz;l... 3
string.specifier.list ::= string.specifier [pc string.specifier]...
string.specifier ::= identifier ([bl] integer.literal (b1])
restricted.identifier.1list ::= restricted.identifier
[ pc restricted.identifier]...

restricted.label.list ::= restricted.label [pc restricted.labell]...
entry.define.prototype ::= restricted.identifier ([bl]

[identifier.list] [bl])

[[bl] identifier.list]

L0

FORTRAN.identifier.list ::= FORTRAN.identifier [pc FORTRAN.identifier]...

FORTRAN.prototype ::= FORTRAN.identifier ([bl]
[dedicated.identifier.list] [51]1
dedicated.identifier.list ::= dedicated.identifier
[pc dedicated.identifier]...

FORTRAN.identifier ::= restricted.identifier[= {INTEGER | REAL}]

dedicated.identifier ::= identifier [3_{INTEGER | REAL}] |

string.specifier
restricted.identifier ::= letter [1n [1n [1n [1n [1n]]]]]
restricted.label ::= letter [lnd [1nd [1nd [1lnd [1nd]]]]]
ln ::= letter | digit

Ind ::= letter | digit | §
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pattern.primitive ::= FAIL | FENCE | ABORT | ARB | BAL | SUCCEED

| REM | {LEN | TAB | RTAB | POS | RpoS

| SPAN | NSPAN | BREAK | BREAKX | ANY

| NOTANY } ([bl]{string.expression
| * string.primary} [b1])

| STRVAL ([b1] {string.expression
| * string.primary} [b1l])

| ARBNO ([bl] pattern.expression [bl])

keyword ::= STFCOUNT | LASTNO | STNO | FNCLEVEL | STCOUNT |

RINTYPE | ALPHABET | ABEND | ANCHOR | FULLSCAN |

MAXLNGTH | STLIMIT

expression.primitive ::= {OPSYN | DETACH | INPUT | OUTPUT |

REPLACE} ([bl] [parameter.list][bl]) |
DEFINE ([bl] ' define.prototype '

[pc string.expression] [bl]) | DATA
([bl] ' data.prototype ' [bl])

|{DATE | TIME | EJECT | INTEGER | SIZE

| TRIM | DATATYPE | COPY | ENDFILE

| REWIND | BACKSPACE | PROTOTYPE

| COLLECT | EXTIME | BUFSIZ | REVERS

REMCOR | DIFFER | IDENT | LGT

I
| CONVERT | ARRAY | DUPL | LPAD | RPAD
|

SUBSTR | INSERT} ( [bl][parameter.list]

[b1])
|{wor | LT | LE | EQ | NE | GE | 6T | AND

| OR | XOR | RSHIFT | LSHIFT} ([bl]

[parameter.list] [b1])
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define.prototype ::= identifier ([bl] [identifier.list] [bl])
[bl] [identifier.list]

data.prototype ::= identifier ([bl] identifier.list [bl])

NOTES: 1. Any pair of single quote (') brackets can be
replaced by a pair of double quote (#) brackets.
2, label is additionally restricted to not contain a

quote of the type that form the string brackets.

Run-Time Syntax
array.prototype ::= dimension [L dimension]...
dimension ::= signed.integer [: signed.integer]

signed.integer ::= [+ | =] integer.literal

vy
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APPENDIX 2

INTERNAL AND I/O ERROR MESSAGES

: Internal

l. Increment use count of u&used block.

2, Release of unused block

3. Underflow of RS

4. Underflow of ES

5. Missing field definition for datatype.

6. Underflow of SS

7. Underflow of AS

8. Overflow of CV

9. Underflow of CV

10. Imaginary conditional or immediate assignment.
11. Overflow in concatenation, too many elements.
1/0

0. Assoclation length too long or negative.

1. Negative unit No.

2. Unit No. too large.

3. Association table overflow.

4, 1Illegal unit (device)

5. Unassigned unit.

6. Illegal operation on device.

7. Unrecoverable tape read error.

8. Unrecoverable drum read error.

9. Drum merment exceeded file limits.

117



STRING

INTEGER

IMMEDIATE

INTEGER
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APPENDIX 3
DESCRIPTOR FORMATS

3 13 18 Ptr to value
————t— [ 6 chars/word, zero
000 fill of last word]
character count
3 6 18
0 | » Ptr to value
001
3 6 18
0 +— Ptr to value
010
3 6 18
0 Value

011



DED:

I/0:

U & W N = O

w N =

119

3 3 6 2 18
>Ptr
100 0 ;:c
3
OBJ-—--j DED t——'1/0
Variable
Label (DED = Q) (1/0 =0
Function (DED = 0) (1/0 = 0)
Not Dedicated
Dedicated String (I/0 = 0)
Dedicated Integer (1/0 = 0)
Dedicated Real (1/0 = 0)
Keyword (I/0 = 0)
Dedicatad Pattern
No 1/0 Association Possible
Input " "
Output " "
Both Associations "
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ARRAY
3 3 6 6 18
101 0
i-number of dimensions
18 : 18
number of elements
/

element’ descr

array element descr
elements ﬁ /\/\/\/\MM/V\NW

element descr

0 element descr

array block (in returnable storage)

18 ‘ 18
prototype string descr
RANGE(N) LDIM(N)
RANGE(N-1) LDIM(N-1)

S i, e e O e e
B " ST N
RANGE(1) LDIM(1)

prototype block (in returnable storage)

RANGE(I) = Size of Dimension I
LDIM(I) = Lower Bound of
Dimension I
Mapping Function
'LOC(ARRAY < I1, I2, seey IN> ) =

' LOC (PTR(ARRAY)) + 1 + Il - LDIM[1]
+ RANGE(1) * (I2 - LDIM(2)
+ RANGE(N-1)*( IN-LDIM(N)
| ) el )




g

121

PATTERN
3 9 6 18
110 0
18 18
number of parameters
param descr 1
param descr #2
param descr #IN-1
param descr N

data block (in returnable storage)

—® Ptr to Pattern Subroutine

PATTERN SUBROUTINE: (may be in returnable storage if created dynamically
by a concatenation)

Ptx
— J RESTPT

(start) —»

(Restart)
RESTPT:

Standard pattern generation

A, [ with parameters: RESTPT, S$$PTF

(Fail) J S$SPTF

(Succeed) J S$SPTS




PROGRAMMER-DEFINED DATATYPE
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3 9 6 18
111 0
Datatype Number
18 18
number of fields
field element descr 1
field element descr #2
/\/\/\/\/V\/\/\/\_/\/\M/
field element descr #iN-1
field element descr fn

Datatype Block (in returnable storage)

—

Ptr to Datatype String De2scriptor Loc
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»¥ FASEOL COVPILER VERS 1.0 (JUNE.1971) 4%
SR RN 2 AL P SR E T2 SRS T S 22 TS

THIS COVMPILATION WAS DORE ON 30 NCV 71 AT 00:53:27

Y0bu0l *

uoy 2 * THIS PRUGRAY IS A SYNTACTIC RECOGNIER FOR SMOtOLY STATEMENTS,
ATV * .

Gouoak - FIRST A SERIFS OF PATTEKNS IS BUILT CULMINATING IM A PATTERN
quuuud * wHICH MATCHES OriLY SYNTACTICALLY CORRECT STATEMENTS, CARD IMAGE
vounosG * S £RE TnFl, REAC 1t AN{D) PROCESSED. INCORRECT STATEMENTS ARE
vbueu? + ITENTIFLED QY AN ERROR NESSAGE

ygunin » . .

Juutin9 * THE FUNCTLION OFT FORNS A PATTERN THAT MATCHES EITHER NULL OR IT
uiuL1Q * S ARGUMEMT

gouull . *

90uat2 1 CFFIMECYOPT(PATIFRN) )

vouil 2 * )

vouuLy 2 LFTTFRS = *ALCCEFGHTJUKLIVNOPORSTUVWXy2?

uodnld *

[TV Y 3 DIGITS = 012345789

gGuul? 4 Al PP ANUMESICS = LETTERS PIGITS

Juunid S Bl AIVKS = SPAN(Y 1)

yLhudt9 6 1VTEGER = SRAK(OIGITS)
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uduu2l 10 BINARY = aNY('=¢ 380 /74%) ! tax!?

vhunoy 11 B1r AYOP = BLAMKS CPT(RIMARY BLANKS)
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on:www
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uosN78
vuuu7g
0d0uos0
(VIIRTEITED!
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vyuins3
vdunsu
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JouGHeE
young?
QOyuR
yluin9
QUyus0
oyl
ubuss2
vluuy3l
VIRV
vulunYIs
ULULI6G

47
48

50
51
52
53

AMALYZE

SKIP

X P e

54

56

57
58

ERROR

+
PRINT
ehuGAvVE
*

]

OUPT

ErD

LINE CONTIMUE = ' *F(ANALYZE)
QUTRPUT = * CC LINE

IMAGE = IwAGE LINF S {READC)
IMACE STATEMENT = SF(ERROR)
DIFFER(IvaGE) SS(ANALYZE)

OUTPUT = << NO SYNTACTIC ERRORD>D?
CHTIPUT = S{MEXTST)
IF AN ERRONEOUS STATEMFENT 15 ENCOUNTERED 1IN A.STRING OF
STATTMERTS SEPARATED BY SEMICOLONSs SUBSEQUENT STATEMENTS ARE
NOT PROCESSED :

QUTPUT = <K< SYNTACTIC ERROR >>>¢ $(SKIP)
CHLiTPUT = ¢ ' LINE S(PEADC)
FOF = 1 S {ANALYZE)

ORT = NULL ! PATTFRN $(RETURN)

*TOIAL COVPILATION TIME: 2;42 S,y § ERROR NIAGNOSTICS#

1A
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R AL S 2 A RN L L Y S PR R AT S AT ST L X222
¢4 FASHOL COVMPILER VERS 1.0 (JUNE,1971) ax
AL S 2SR 2 A2 2L RS2 22223 222222 E 222 Y

THIS COMPILATIUN wAS OOME ON 10 NOV 731 AT 00:63342

»
L] TOPOLOGICAL SORT
»
+  MAPS A PARTIAL CRDERING OF OBJECTS INTO A LINEAR CORDERING
* .
* A(1)r AL2) e eeer A(N)
. .
+ SUCH THAT IF A(S) < A(T) IN THE PARTIAL ORCERING, THEN S < T« (CF.
* DeE,s KNUTHe» THE ART OF COMPUTER PROGRANMIMG, VOLUNE 1, ADDISON-WESLEY.,
L4 MAQS. 1Qf‘ﬂ' P. 262) :
*
1 DATA(YTITM(COUNT»TOP) *)
2 DATACYROD (SLICNEXT) V)
3 OFFINF(ReCRIX) )
4 CEFLINFOYINDEX(TAUY ')
*
» REAQ IN THE NUMCGER OF ITFMS, N, AND GENERATE AN ARRAY OF ITEMS,
*
&« FEACH LTFY HAS TuC FIELNS: (COUNT,TOP), WHERE
. CoukT = NO. CF EILLFMENTS FRECEDING IT,
+ TP = T0P OF LlS{ OF ITENS SUCCEEDING IT,
* .
5 N = TRIM(INPUT)
& X = ARRAY('0:' N)
L 3
* INITIALIZE THE }TEMS TO (0.NULL).
*
771 X<1> = 1TV(0,' ") SF(T1A)
3 1 =1 + 1 (T

*
» READ [M KRELATILIONS
+

Lt



00U 33 9 TiA ouTPUT ' THE RELATIONS ARE:"

000us4 10 T2A REL = TRIM(INPUTY) 1, LF(T3A)
uYuy3as 11 ~OuUTPUT = KEL .

00L0 36 12 12 REL . BREAK('<*) $ MU LEN(1) BREAK('»') $ NU LEN(1) =
ouun3? 12 ., ) SF(T2A)
[(TVIERY;] 13 J = INCEX(MU) . '

vlu0 39 14 K = JINCEX({NU) M

ubuyue0 * . .

oounyl *+ SIMCE MU < NU, INCREASE THF COUNT OF THE KTH ITEM AND ADD A NODE TO
06UNu2 #  THE LIST OF SUCCESSORS OF THE JTH ITEM, R '
Uuug43 . <

vouu4Y 15.73 COUNT (XKKD>) = COUMT(XKKD>) + 1

VOUBLS 16 TOP(XKJD) = NOC(K,TOP(X<YD>)) ' (r2)
TN *

uduue? *+ A OUEUE 1S MAINTAINED OF THOSE ITEMS wITH 2ERO COUNT FIELD, THE LINKS
JOuyL8 + FUR THE CUEUE ARE KEPT IN THE COUNTY FIELD, THE VARIAGLFS FyR POINT
00uULuY « TO THE FKOMT ANMD RFAR OF THE QUEUE,

00uusH0 *

vUVLHT 17 T3A

unuitH2 * .

QUUNH3 » INITIALTIZE THE GUEUE FOR QUTPUT.

uluubhy * .

uouusS 18 R =0

TS 19 COUNT (X<>) = 0

vouBL7 20 Q =0 )

VULIHE 21 T4 Q = 2X<Q + 1> 0 + 1 SF(TaA)
vouan9 22 COUNT(X<RD>) = EQ(COUNT(X<Q@>),0) @ SF(Tu)
u0uDLo 23 R =0 (TW)
voieul 24 Ty4aA F = COUNT (X<0>)

PUUiG2 *

vouvoL3 ¢« OUTKFLT TEHE FRUMT OF THf QUFUE,

VOuIdLY ¥

o0 LLLY 25 CUTPUT = ; OUTPUT = ¢ THE LINEAR ORCERING IS$*

VUULLE 27 15 oUTPUT = NE(F.0) SF IF(T8)
viuBoe? 28 N =N =1

J0uyoLd 29 P = TOP(X<F)>)

yuunoY *

uuLe?70 + ERASE RFELATIONS

ULOn7l *

voya7?2 30 Té PENTI(P) S(T7)
ulbuGL73 31 DECRELCOUNT (XKSUC(PLD)) TS(TOA)
Voun 7Y * .

uvlbuu’?h + 1F CCuNT 1S ZERO ARG ITEM TO QUEUE,

ujuue *

8¢l
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yOouu77 32
uloir78 33
UguJu79 34 TEA
GLunz *
(FRRT1{R5D | L
Ulung »
(THUIRY 38 77
VUL Y *
uliuns *
yuuIné : *
cOun 7 36 DECR
YGui8 37,
LIRS ¥
[V RERT Y ) 33 INDEX
vhuiz21 39
U2 40 -
GIIN33 4l
byl 42
Juounyd 43
[PHITET ) : »
vuLuLu7? g 18
GOuUusE 45 EMD

2TUTAL COMPILATION TIMES

COUNT (X<R>

R
P

F

¥
X

IMLEX -
IHnEX
TERVCT
STERVCT
SINMCEX
IncEY

OuTPUT

140% ¥Ser

0

) = SUC(P)
= SuUC(P)
= NEXT(P)

REMOVE FROM QUFLE,

= COUNT (X<F>)

FUNCTION DEFINITIONS .

GT(sx,1) $X = 1
0

"o

ETAN

CIFFFR(SINDEX) SINDEX
LT(TERVCTeN) TERMCT + 1
TAG

TERMCT

TERMCT

NE(N) * THE CRDERING COATAINS A LOOP.!

FRFOR NIAGNOSTICS*

e

$(T6)

(TS

SS(RETURN)
S {FRETURN)

$S(RETURN)
tF(FRETURN)

S {RETURN)

6¢T



Tt F RELATI(NS ARE:

LE § TERSCALPY-ANUM e NUMBERS CALPHANUM,

LAty SCOPTLLANKS Y
HUVHERSIREAL Yy
WU SEHSCINTEGER
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