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ABSTRACT

The FASBOL compiler system represents a new approach to the

processing and execution of programs written in the SN0B0L4 lan

guage. In contrast to the existing interpretive and semi-inter

pretive systems, the FASBOL compiler produces independent, re

locatable assembly-language programs. These programs, using a

small run-time library, execute much faster than under other

SN0B0L4 systems.

With very little loss of flexibility, FASBOL offers the same

advantages as other compiler systems, such as:

1. Up to two orders of magnitude decrease in execution

times over interpretive processing for most problems.

2. Much smaller storage requirements at execution time

than in-core systems, permitting either small partitions

or larger programs.

3. Capability of independent compilation of different

program segments, simplifying program structure and de

bugging and permitting overlays for very large programs.

4. Capability of interfacing with FORTRAN and machine-

language programs, providing any division of labor required

by the nature of a problem.

The FASBOL compiler is itself written in FASBOL, and implemented

on the UNIVAC 1108 under EXEC II.

iii



ACKNOWLEDGEMENT

The material presented here is the culmination of over two

years of work, during which time I was assisted by several indi

viduals and organizations.

Professor W. D. Maurer suggested the original research topic

and provided guidance during the entire period. He served as an

arbiter (and advocate) of practicality and suggested several ideas

which were later incorporated into the final design. I received

some financial support as bis Research Assistant under NSF Grant

GJ-821.

Information Systems Design, Oakland, provided extensive free

computer time to develop and test FASBOL, and several members of

the staff, mainly Messrs. D. Drake, G. Lutz, and K. Marcellius,

helped with suggestions, criticism, and test applications.

Messrs. R. Karpinsky and R. Robertson, helped in an unsuccess

ful but instructive attempt to bootstrap FASBOL using the 360

interpreter, and Mr. Karpinsky suggested the TIMER measurement

feature.

Mrs. J. DeLaney typed this document, in very good time, from

a barely legible hand draft.

Finally, my wife and family provided the all-around support

without which I could never have accomplished this work.

iv



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION 1

1.1 History and short description of SNOBOL4 1
1.2 Objectives of FASBOL 4
1.3 Brief outline of remaining chapters 12

2 FASBOL PROGRAMMING 15

2.1 General language features 15
2.1.1 SN0B0L4 features not implemented 16
2.1.2 SN0B0L4 features implemented differently - 16
2.1.3 Additions to SN0B0L4 20

2.2 Declarations 20
2.2.1 Required 21

2.2.1.1 INDIRECT declarations 21

2.2.1.2 Other required declarations 24
2.2.2 Optional 25

2.2.2.1 Dedicated declarations 26

2.2.2.2 SN0B0L.SUBPROGRAM declaration 28

2.2.2.3 EXTERNAL declarations 28

2.2.2.4 ENTRY declarations 29
2.2.2.5 FORTRAN interface declarations 30

2.3 Options 31
2.4 Control 32

2.5 Primitives 33

2.5.1 Pattern Primitives 33

2.5.2 Expression Primitives • 34

2.6 FASBOL Programming Techniques 37
2.6.1 Dedicated Expressions 37
2.6.2 FORTRAN Interface 38
2.6.3 Use of 7. and ^ unary operators 39
2.6.4 Pattern Matching 40
2.6.5 Timing and storage management 43
2.6.6 Global and local definitions 45



CHAPTER PAGE

3 THE FASBOL RUNTIME SYSTEM 46

3.1 Introductory Remarks - - - - 46
3.2 Initialization, Termination, and Interstatement

Operation - - - - - - - - 47
3.3 System Conventions, Stacks, and Variables - •? 48
3.4 Statement Types, Statement Execution, and Gotos - 52
3.5 Normal and Dedicated Expressions - - - 55
3.6 Programmer-Defined Functions . 58
3.7 Free Storage Operation and Usage r 62

3.7.1 Modified Buddy System Algorithms 64
3.7.2 Use Count Algorithm 71

3.8 Patterns and Unevaluated Expressions - - 75
3.9 Other Runtime Features 89

3.9.1 FORTRAN Interfaces 89
3.9.2 Symbol Table 90
3.9.3 Input and Output 92
3.9.4 Primitives •? 94

4 THE FASBOL COMPILER 96

4.1 Structure ----- 96

4.2 Symbol Table 97
4.3 Declaration Phase - —• 101.

4.4 Executable Statement Phase 101

4.4.1 Labels and Gotos 101

4.4.2 Statement Bodys 102
4.4.3 Parsing 103
4.4.4 Code Generation 105

4.5 End-Action Phase 106
4.6 Cross-Reference Phase 106

APPENDICES

1. FASBOL Syntax 108
2. Internal and 1/0 Error Messages 117
3. Descriptor Formats 118
4. Sample Programs --*- 123

REFERENCES 140

vi



CHAPTER 1

Introduction

This chapter provides a brief description of the SN0B0L4 lan

guage, the relationship that FASBOL has to it, and an overview of

the remaining chapters. In order to fully understand Chapters 2,

3 and 4, the reader must be thoroughly familiar with SN0B0L4; the

brief description below is only intended to give an idea of the

capabilities of the language and to refresh the memory of someone

who has had some previous experience with it.

1.1 History and short description of SN0B0L4

SN0B0L4 is a high-level programming language incorporating non-

numerical and list processing features not found in other languages.

It permits the user to easily write programs containing string and

symbol manipulation, pattern matching, and arbitrary data structure

processing; it has applications in areas such as compiler writing,

text processing, natural language recognition, and artificial in

telligence. SN0B0L4 evolved from SNOBOL[l,2,3]*, developed at

Bell Telephone Laboratories, Inc., in 1962, and is a widely known

and used language [4]; it has been implemented on several different

computers, including the IBM System/360, UNIVAC 1108, GE 635, CDC

3600, CDC 6000 series, PDP-10, SIGMA 5/6/7, ATLAS 2, and RCA SPECTRA

70 series.

Numbers in brackets refer to references in the back.



One type of datum in SN0B0L4 is the character string, and the

language provides operations for joining and separating strings,

testing their contents, and replacing segments of them with other

strings. For instance:

X » 'THIS COMPILATION WAS DONE ON *

assigns the string value (a literal of 29 characters) to the var

iable "X" . Given this assignment, a subsequent statement might

be:

COMPILATION.MESSAGE - X DATE() ' AT ' TIME.OF.DAYO

where the expression "DATEO" is a function call which returns a

string representing the date (similarly for "TIME.OF.DAYO"), and

the operation performed is a concatenation of four strings to form

a new one, which is assigned to the variable "COMPILATION.MESSAGE".

This new string could be printed out and would appear, as:

THIS COMPILATION WAS DONE ON 06 OCT 71 AT 19:50:30

Space need not be reserved ahead of time for dynamically varying

quantities such as strings, and no type declarations need be given

for variables, which may hold data values of any type (e.g., strings,

integers, reals, etc.).

Another type of datum is the pattern, which is a specification

of an arbitrarily complex structure for a character string; in

order to test if a string fits a given pattern structure, a pattern

match can be executed which either succeeds or fails (each statement

provides for a separate transfer of control for either circumstance)



at the task. For instance:

FORTRAN.LABEL - (SPAN(,Ot) | ft) SPAN('0123456789') . LABEL

assigns to the variable "FORTRAN.LABEL" a pattern which both matches

a string of digits, and assigns to the variable "LABEL" the matched

string minus any leading zeros. This pattern might then be used in

a pattern match statement:

CARD.IMAGE (FORTRAN.LABEL | f ') TAB(5) »

which recognizes a properly formed or missing label field in a

FORTRAN statement, truncates the first five columns off the string

held in "CARD.IMAGE", and assigns the label, if any, to "LABEL".

SNQB0L4 provides for arithmetic on integers and real numbers,

and for conversion between them and their string representation.

Arrays may be created dynamically with any number of dimensions

and any dimension bounds; each element of an array, like any var

iable, may hold a datum of any type, including another array. Func

tions may be dynamically defined and redefined, and function calls

may be made recursively. An execution-time symbol table provides

the capability of referencing a program entity (variable, label,

or function) via the string representation of its name. Additional

data types may be program-defined and used to form linked-list

structures or extended elementary data" such as complex numbers.

Because SN0B0L4 has been implemented on many different computers,

and new language features have been added as the language evolved,

several different versions are currently in use. For the present

purpose, the language is considered to be defined, both syntactically



and(almost completely) semanticaily, by the Prentice-Hall publica

tion [5] which describes SN0B0L4, Version 2, as implemented on the

IBM System/360. A later edition of the book (1971) describes

Version 3; it appeared too late for inclusion in the present work,

and in any case only contains some additional features which do not

change the basic nature of the language.

1.2 Objectives of FASBOL

With one exception, all current implementations of SN0B0L4 are

interpretive. A SNOBOL interpreter is best defined by its charac

teristics and mode of operation. The interpreter is a large program

which processes the SN0B0L4 statements and translates them into

some intermediate notation (e.g., prefix-polish with symbol table

entries). After the entire program has been processed, the inter

preter then enters the execution phase, where it acts as a table-

driven processor to perform the operations specified by the SN0B0L4

program. Interpretive execution (as opposed to compiled execution)

is slow and requires the interpreter program as well as the trans

lated source program to be resident in core at execution time.

Interpretive processing requires a translation for.every execution

(unless the process is "frozen" and saved), and must deal with a

logically complete and self-contained SN0B0L4 program. One advantage

over compilation is the greater flexibility provided at execution

time; for example, a program can extend itself by processing strings

into intermediate notation and then executing the newly created

program.

r.



The one exception (besides FASBOL) is a proprietary package

/• for the IBM S/360 called SPITB0L[6] developed by one of the imple-

mentors of the SN0B0L4 interpreter. Although no information has

been released about its internal workings, it appears to be a semi-

interpretive system with a considerable execution speed advantage

over regular interpreters for certain types of statements. It is

also an "in-core" system and the speed advantage seems to be de

rived from the compilation into absolute machine code of the more

conventional features (i.e., arithmetic) of SN0B0L4, and possibly

from the transfer of control to the absolute program instead of the

table-driven mode of the standard interpreter; however, it appears

that patterns are generally still handled as they are by other im

plementations (i.e., as data structures to be interpreted). SPITBOL

makes maximum use of the S/360 instruction set and its techniques

are generally not machine-independent.

FASBOL* was conceived as a true compiler for SN0B0L4; this was

achieved by discarding a very few, seldom used features (for example, the

CODE datatype and function), and adding declarations. FASBOL has

separate compilation and execution phases, just like FORTRAN; the

compiler produces an independent, relocatable program; when the pro-

* gram is executed, it makes use of a library of run-time routines.

The name "FASBOL", which has no other mnemonic significance besides
the obvious one, is here used interchangeably to mean the dialect
of SN0B0L4 processed by the FASBOL compiler, and the compilation
system itself. A preliminary version, named SUBBOL [7,8], which did
not implement all the current features but did do compilation of
patterns, was started in the fall of 1969 and became operational
June 1970.



The run-time library is small and modular; it provides predefined

functions and entries to do operations not easily realizable by

"in-line" code. One possible criticism of FASBOL as a compiler

is that executing programs do spend a lot of the time in the library

routines, and therefore it could be considered an interpreter with

deferred execution. Although this criticism may be philosophically

valid, in practice many "compiler" systems exhibit similar behavior

(for instance formatted I/O in FORTRAN which could be compiled);

FASBOL depends heavily on the library because most SN0B0L4 opera- .

tions do not have counterparts in the Instruction codes of digital

computers, and "in-line" code would produce excessively large pro

grams in return for a very small Increase in running speed. All

structural aspects of the source program, including patterns, are

compiled into executable code; it is conceivable that on an imag

inary computer whose instruction set included string manipulation

and generalized stack operations, the library would be reduced to

a few primitives and utility routines such as free-storage and I/O.

The primary design objective for FASBOL was to produce fast-

executing programs. The speed advantage over interpreters is due

to several factors. Because control resides in the compiled program,

the "middleman" that does the interpretation is eliminated. This

effect is accentuated in the case of pattern matches, which FASBOL

executes as a series of re-entrant subroutines, but are interpre

tations within-an-interpretation on other systems. Because the

types of some variables- can be declared, some arithmetic can be

executed, in-line, FORTRAN style, rather than as a series of



type-checks required by the typeless nature of variables in SN0B0L4

Because there is no resident processor (the entire FASBOL library,

including all primitives, is less than 5K), the free storage pack

age has more space available for dynamic storage allocation, which

improves the speed of execution. SPITBOL shares some of the above

advantages with FASBOL, but cannot produce FORTRAN-like arithmetic,

does not compile patterns, and uses more storage (but not as much

as the interpreters) for itself at run-time.

The execution speed of FASBOL has been compared with that

of four other SN0B0L4 systems, using the absolute times to execute

statements in three categories: GENERAL, ARITHMETIC, and PATTERN

(the first covering operations other than the latter two). These

four systems are the UNIVAC 1108 interpreter, the CDC 6400 inter

preter, the interpreter for the IBM System/360 (Model 65), and

SPITBOL (also on the 360/65).

The UNIVAC 1108 interpreter, implemented at the University

of Maryland from the macros supplied by the Bell Telephone Labor

atories (used also for the 360 interpreter), runs under the EXEC II

operating system with a 65K of machine memory. It is a full imple

mentation of SN0B0L4, Version 2, and provides a direct basis for

comparison with FASBOL since it runs on the same machine under

the same conditions. The various categories of statements were

timed by measuring the elapsed time for a number of iterations of

the statement, and then dividing by the number of iterations. The

results indicate that FASBOL is roughly 200 times faster on arith

metic, 20 times faster on patterns, and at least 10 times faster

on other types of operations.



The interpreter for the CDC 6400 was implemented at the

University of California at Berkeley and is a carefully hand-coded

version which is not a full implementation of SN0B0L4 but does an

extremely efficient job of processing large numbers of student pro

grams at the University Computer Center. Since actual elapsed

time was not necessarily spent in SN0B0L4 execution, statement

times were measured by running two jobs that were incrementally

different, and then using time difference in chargeable CPU time

(divided by the number of additional iterations). This method

also factored our the "compilation" time, which is not reported

separately. In this comparison, FASBOL was approximately 100, 10,

and 5 times faster on arithmetic, patterns, and other operations,

respectively. An additional problem here (and with the S/360) is

to factor out the effects due to differences in the computers

themselves. Both the 1108 and 6400 are word-addressable with

roughly equivalent instruction execution times, but the 6400 has

larger words (60 bits vs 36 bits), whereas the 1108 has a capabil

ity of referencing a partial word in memory (which helps in deal

ing with packed character strings). Since each machine has its

own advantages, it is unlikely that hardware differences could

affect the SN0B0L4 execution times by more than a factor of 2

in either direction.

The IBM System/360 has a distinct advantage over the other

two computers when processing strings of characters; in addition

to being byte-addressable, it has specific instructions to manip

ulate and compare character strings. Whereas the Model 65 has



instruction execution times comparable to the 1108, certain opera

tions frequently used in string manipulation and pattern matching

can be done considerably faster. As a typical case, consider the

operation of moving a portion of a string from one position in

memory to another, as would occur during a string concatenation.

Assume that there are N characters to be moved from the source

string pointed to by Rl starting at character position PI, to the

object string pointed to by R2 starting at position P2. This can

be accomplished by the single 360 instruction

MVC P2(N,R2) , P1(R1)

Where the total time in microseconds is given by the formula:

2.93 + .38N; N is the number of bytes moved. The 1108 must con

vert the character positions to full words plus remainders, and

use an explicit loop involving execute tables and two register

pointers for each string. Assuming N,P1, and P2 are in registers

A6,A0, and A2, respectively, the following sequence is required:

Instruction Comment Timing (usee)

DSA A0,36 • Form Source .875

DI,L A0,6 • Pointer 10.125

A A0,R1 • .75

DSA A2,36 • Form Object .875

DI,L A2,6 • Pointer 10.125

A A2,R2 • .75

LXI,L AO,l . Set Word Pointer 1.00

LXI,L A2,l • Increments 1.00

LXI,L Al,l • Set Character Pointer 1.00

LXI,L A3,l • Increments 1.00



Instruction

AN,L A6,l

Comment

. TOT Chars - 1

10

Timing (psec)

.75

LOOP EX GTCHR1,*A1 . Get Source Char,Bump (.75+1.17)N
PTR

EX PTCHR2,*A3 . Put Object Char,Bump (.75+1.17)N
PTR

JGD A6,LOOP . LOOP for each Char 1.5(N-l)+.75

The execute tables, indexed by the character pointer, are as

follows:

Get First Char .75 (with prob.1/6)
" Second " .75

" Third " .75

" Fourth " .75 "
11 Fifth " .75

Save Execute Loc .875)

Get Sixth Char .75 ) "
Bump Word PTR.Reset .875)

Char PTR, Return .75 )

Since the probability of any character position is 1/6, the average

time for one execute table reference is 7.00/6 = 1.17 usee (as used

in the sequence above). PTCHR2 is similar except that it stores

characters instead and uses the register set (A2,A3) for word and

character pointers. The total time in microseconds is given by the

formula: 27.5 + 5.34N ; thus even the incremental speed factor

of the 360 over the 1108 in this case is 5.34/.38 » 14. Similar

advantages occur in string comparisons, which are quite frequent

during pattern matching.

The execution times for statements under the interpreter and

SPITBOL on the 360/65 were measured in a similar fashion as on the

1108, and indicated that FASBOL is faster than the interpreter

(which is the definitive full implementation of SN0B0L4) by the

GTCHR1 L,C5 A5,0,AO
L,C4 A5,0,A0
L,C3 A5,0,A0
L,C2 A5,0,A0
L,C1 A5,0,A0
LMJ Bll,$+1
L,C0 A5,0,*A0
LXM,L A1,0
J 0,B11
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same ratios as with the 6400 interpreter (100, 10, and 5). This

is only twice as fast as the 1108 interpreter, and is indicative

of the fact that these interpreters are both implemented from

macros in order to provide machine-independence so that the 360

version may not make full use of the instruction set available

to it. SPITBOL, on the other hand, does make full use of these

instructions and also avoids interpretive mode execution to some

extent. FASBOL is 4-5 times faster than SPITBOL on arithmetic, but

roughly equal in most other operations. Complicated patterns run

faster in FASBOL because SPITBOL cannot optimize them and reverts

back to an interpretive mode. Very simple patterns and string

concatenations run faster in SPITBOL, where the 360 instructions

outperform their 1108 equivalents, as illustrated by the above

example of a string move. The FASBOL compilation techniques could

be applied on the 360 as well, in addition to the optimizations

performed by SPITBOL, resulting in even faster execution.

In addition to meeting the primary objective FASBOL has other

characteristics, common to compiler systems (and absent in the

SN0B0L4 intarpreter and SPITBOL), which may be as important as fast

execution for some problems. FASBOL is capable of compiling sep

arately main programs and independent subroutines, with the option

of making variables, labels, and functions either local or global.

This facility allows for the fragmentation of an otherwise insoluble

problem into manageable pieces which can be checked out before being

joined. It also permits an overlay structure in storage for problems

that would otherwise not fit or leave very little room for free

storage. FASBOL programs may call on, and more important, be called
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by FORTRAN or assembly-language routines; a mixed system of FORTRAN

and FASBOL routines is ideal for dealing with a problem involving

both numerical and non-numerical processing. Once a FASBOL program

is debugged, it need never be recompiled.

The interpreters (and SPITBOL) do have advantages over FASBOL

in some cases. Dynamic compilation is of course not allowed in

FASBOL; neither are other highly permissive features such as the

redefinition of operators. FASBOL has no explicit tracing capability,

sometimes making debugging more difficult. FASBOL has no particu

lar advantage in certain environments where every execution is pre

ceded by a compilation, as frequently happens with runs submitted

by students for a programming class, and for short-run programs.

1.3 Brief Outline of Remaining Chapters

Although currently implemented on a UNIVAC 1108, the run-time

techniques and compilation schemes used by FASBOL are largely machine-

independent. Certain features of the SN0B0L4 language which pro

vided more flexibility than the compiler could efficiently deal with

are not implemented; they are generally not used by most SN0B0L4

programs. FASBOL provides both compile-time and run-time features

absent from other implementations, including additional predefined

functions for programming convenience and efficiency of operation.

Chapter 2 provides a full description of all deletions, changes, and

additions to SN0B0L4 in FASBOL, and (in conjunction with the SN0B0L4

manual)serves as a user's guide to FASBOL programming. Chapter 3

describes the important parts of the run-time system in reasonably

machine-independent fashion, and Chapter 4 gives a general functional
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description of the compiler, which is itself written almost exclu

sively in FASBOL.

The chief unimplemented feature of SN0B0L4 is the run-time

compilation capability, involving the EVAL and CODE primitives,

direct GOTOS, and the CODE and EXPRESSION datatypes. The only

other major unimplemented feature is the tracing capability. Features

that are implemented differently are small in number and of minor

importance (for instance, the character set differs in three char

acters, and &MAXLNGTH is initially set to 32767). In addition to

some minor extensions to the SN0B0L4 syntax, extra features of

FASBOL include declarations and compiler options, more control cards,

and more primitives (pre-defined functions). The declarations can

be used to optimize the operation of the compiled program and/or

permit communication with other programs; the options provide user

control over certain run-time parameters or compiler operation. The

additional control cards permit more listing control, cross-refer

encing capability, etc., and the additional primitives include rout

ines for extracting or inserting substrings, performing logical

operations on integers, and controlling run-time parameters.

The FASBOL run-time operation is controlled by the compiled

programs which make use of the system library for repetitive and/or

global functions. Expressions fall into three categories in terms

of the code generated for them. Arithmetic expressions involving

only constants and dedicated variables (see declarations) or

functions are compiled directly into the equivalent machine-language

instructions. Other expressions which nre not explicitly pattern
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structures are compiled as a postfix polish series of evaluations

using a single expression stack for temporary results. Explicit

pattern expressions are compiled as two separately executable phases:

an evaluation phase to evaluate any elements of the pattern, using

either of the above code conventions, and a match phase, coded as

a re-entrant subroutine reflecting the structure of the pattern and

using two stacks operating in orthogonal sequence.

The FASBOL compiler is a one-pass processor which generates a

symbolic assembly language program and then automatically invokes

the assembler. It is structured in space/time as a main program

with five phases which successively overlay each other in main stor

age. The main program provides the control to pass from one phase

to the next, plus any subroutines needed by more than one phase.

The phases perform in succession, source input editing, declaration

processing, executable statement processing, program storage and

data allocation, and (optionally) cross-reference dictionary listing.
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CHAPTER 2

FASBOL Programming

This chapter provides all the additional information required

for writing FASBOL programs, given familiarity with SN0B0L4, but

does not cover the SN0B0L4 language itself. Most SN0B0L4 (Version

2) programs will run "as-is" under FASBOL, or will require only

the addition of some of the declarations described in 2.2.1. It is

anticipated that there will be future versions of FASBOL which will

incorporate additional features, such as some of the features of

SN0B0L4, Version 3.

2.1 General Language Features

FASBOL programs are compiled into symbolic assembly language

programs and assembled to produce relocatable object programs. The

intermediate symbolic program may be saved, optimized, and then

assembled by the experienced user who wishes to do so, and can answer

for his handiwork. The source statement for a given section of

assembly code is inserted as a comment line immediately preceding

that section. A future feature of FASBOL compilation will be direct

generation of relocatable object programs for improved efficiency.

FASBOL programs are executed by calling on the allocator (link

ing loader) to produce an absolute element from the relocatable FASBOL

main program, subroutines, and library, and any other non-FASBOL

routines used. The absolute (non-relocatable) element can then be

immediately executed or saved for future use.
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2.1.1 SN0B0L4 Features foot Implemented

A detailed list of unimplemented features is given in Table 1.

The reason for most of these is the inability of the compiler to

control, or be present, during execution; this is the case with

items 1, 2, and 4. Other items, such as 3, 5, 6, 7, and 10, are

unimplemented because they would require a much larger run-time sym

bol table and/or induce far less efficient code; also, they are

seldom used. The remaining items are due to the nature of the run

time code generated for patterns.

2.1.2 SN0B0L4 Features Implemented Differently

Table 2 is a list of features implemented differently in FASBOL.

Except for item 1, they have no major semantic effect.

Item 1 rectifies a quirk in SN0B0L4 which returned a STRING

datatype as a result of the unary ^ (name) operation on a natural

variable, instead of a NAME datatype. The FASBOL convention is more

consistent and useful; it is noted that the authors of SPITB0L[6]

decided on the same convention. NAME datatypes are useful in re

taining access to a natural or created variable that would otherwise

require a new indirection (symbol-table look-up)or array/field re

ference. To access or store into a variable pointed to by a NAME

datatype, the $ (indirection) operator must be used. For instance,

if

N » .ARRAY<25> "N

,then, to increment the value of the array element,

$N - $N + 1
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TABLE 1

Unimplemented Features of SN0B0L4 *

1. EVALO, CODE() , and direct Gotos.

2. Datatypes CODE and EXPRESSION.

3. Non-literal prototypes for DEFINE() and DATA().

4. All features, functions, and keywords having to do with tracing.

5. Predefined VALUEO field.

6. Redefinition, OPSYN(), or APPLY() of primitives and fields.

7. Indirection or I/O association for keywords.

8. Two features of QUICKSCAN mode:

A. Continual comparison of the number of characters

remaining in the subject string against the number

of characters required.

B.. Assumption that unevaluated expressions must match

at least one character.

9. Explicit pattern structures in parameter lists (except as an

argument to ARBNO)or as an argument to unary J^

A. An explicit pattern structure is an expression

containing at least one of the following:

(1) Binary operator !, $, .
(2) Unary operator *, @
(3) Primitive pattern variable
(4) Primitive pattern function

B. The same effect can be achieved by assigning the struc

ture to a variable and then using the variable in the

parameter list, or as the argument to j^.

*
Version 2



18

10. &ARB, &ABORT, &BAL, &FAIL, &FENCE, &REM, &SUCCEED, and &DUMP

keywords.
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TABLE 2

Differences From SNOBOL4 *

1. Unary j_ always returns a value of type NAME, never a STRING

for natural variables. Indirection(unary $) applied to a

value of the type NAME returns the same as value. NRETURN

is unnecessary and equivalent to RETURN. A NAME cannot be

generated for a label or a function.

2. The third argument to OUTPUT() is an association length (as

in INPTJTO), rather than a FORMAT string.

3. The 1108 character set requires three characters to be dif

ferent :

360 characters 029 code 1108 character 029 code

"1

7-8 // 3-8

11-7-8 \ 11-7-8

12-7-8 i
• 11-0

4. Compiler-generated statement numbers are always listed on the

left.

5. &MAXLNGTH is initially set to 32767.

6. If &ABEND is nonzero at program termination, it causes a

DUMP of free storage only; any post-mortem dump (PMD) is the

responsibility of the user.

7. APPLY() will accept either more or fewer arguments than the user-

defined function being called, and rejects/null fills formal

arguments accordingly.

*

Version 2
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; the proper context for NAME Datatypes is specified by the syntax

in Appendix 1,

2.1.3 Additions to SN0B0L4

The chief additions, besides minor extensions to the syntax,

are the implementation of declarations and compiler options, a full

set of control cards, and more pre-defined (primitive) functions,

all of which are described in the following sections. If declara

tions and/or options are used, they must precede all executable

statements in the program.

There are three additions to the syntax of SN0B0L4:

(a) Quoted strings may be continued onto a new line, but note

that the continuation character (^ or +) is replaced by a single

blank.

(b) Comment and control lines (j^ and - ) may start inside a

line image (after _j), and consume the remainder of the line image.

(c) The syntax of the DEFINE and DATA prototypes has been

loosened to conform with the rest of SN0B0L4 syntax, with blanks

allowed after J^, around j_ , and before^ .

The full Syntax for FASBOL, including the declarations and

options, is given in Appendix 1.

2.2 Declarations

The set of declarations in FASBOL have been divided into

"Required" and "Optional" classes, the difference being that some

SN0B0L4 programs must use some of the "Required" declarations in

order to function properly. The general form of a declaration is
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a call on the pseudofunction DECLARE, with two to four arguments.

The first argument is always a string literal specifying the type

of declaration, and the other arguments specify the parameters

upon which the declaration has effect. The following descriptions

are by declaration type, and contain examples of all possible forms

of the declaration.

2.2.1 Required

2.2.1.1 INDIRECT Declarations

There are six forms of the declaration: INDIRECT.VARIABLE,

INDIRECT.LABEL, INDIRECT.FUNCTION, NOT.INDIRECT.VARIABLE, NOT.INDIRECT

LABEL, and NOT.INDIRECT FUNCTION. One deliberate incompatibility

between the interpreter and FASBOL is that, whereas the interpreter

retains a full symbol table for the program during execution, FASBOL

provides only a run-time symbol table (if the program requires one);

this method is fully compatible with SN0B0L4 programs provided the

only entities accessed via indirection (unarv $) are created variables

However, any natural variable, label, or function that at some time

during execution will be referenced via a string (identical to its

name),must generally (exceptions noted below) be declared INDIRECT,

so that it can be explicitly inserted in the run-time symbol table

by the compiled code. All possible cases where these declarations

must be made are given here.

(a) Natural variables referenced via the £ operator. For

example, if

A - 25 ; X - 'A1

then

EQ($X,25)
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will succeed only if "A" has been declared INDIRECT, as in

DECLARE^INDIRECT.VARIABLE', 'A.B.C.D')

On the other hand, none of the following uses of $ require declara

tions, provided they are intended to refer only to created variables:

$INPUT - 'RANDOM.CREATED.VARIABLE1

PUSH.STACK I » I + 1

$(' STACK1 I) » VAL

POP.STACK VAL - $('STACK* I)

I a I - 1

$'F(X,Y)f «• F(X,Y)

(b) Labels referenced via the J$ operator, except if the operand

is a string literal. The latter case is because it usually repre

sents a simple GOTO to a label that does not satisfy the syntax

rules for identifiers. For example, if

I«J-(J/4)*4 : ($(,CASE.* I))

CASE.O

CASE.l

CASE.2

CASE.3

Then there must be a declaration

DECLARE('INDIRECT.LABEL1,'CASE.O CASE.l CASE.2 CASE.3;')

; on the other hand,

>»1

Requires no declaration.
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(c) Labels referenced via non-literal second arguments to

DEFINE, as in

DEFINE('F(X,Y,Z)\ lCASEf I)

(d) Natural functions referenced via non-literal first argu

ments to APPLY, or non-literal first or second arguments to OPSYN.

For example, if

DEFINE('F(X)f)

Y « 'F'

Then

APPLY(Y,A)

will work (i.e., be equivalent to F(A) only if "F" is declared

INDIRECT, as in

DECLARE^INDIRECT.FUNCTION1, 'F,G,Hf)

; on the other hand,

OPSYNCGVF')

requires no declaration.

(e) Natural variables referenced via non-^literal first argu

ments to INPUT, OUTPUT, and DETACH. For instance,

X - 'INPUT' ; INPUT(X,5,72)

requires "INPUT" to be declared INDIRECT, whereas

DETACHC INPUT1)

does not.

If it is more convenient to declare all variables (or labels,

or functions) INDIRECT, the second argument to the declaration is

the dummy variable "ALL" :
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DECLARE(* INDIRECT.LABEL', ALL)

; exceptions can then be made using the NOT.INDIRECT declarations,

such as

DECLARE('NOT.INDIRECT.LABEL','LABI LAB2 LAB3;')

It should be noted that the quoted parameter list for label

declarations uses blanks for separators and a semicolon preceding

the closing quote, the latter also used in other declarations where

labels appear.

2.2.1.2 Other Required Declarations

These are the INPUT.ASSOCIATIONS, OUTPUT.ASSOCIATIONS, and

FIELD declarations, and may be required for reasons given above

and/or because of the one-pass nature of the compiler. The cases

in which these three declarations must be made are, respectively:

(a) Natural variables which either occur as non-literal first

arguments to INPUT or are referenced in the compilation sequence

before their appearance in an INPUT call. For example, if

X « 'INPUT11 ; INPUT(X,5,73)

and

READ.IN - INPUT2

INPUT(,INPUT2», 5, 60')

then the variables must be declared by

DECLARE('INPUT.ASSOCIATIONS•,'INPUT1,INPUT2')

In the above example, "INPUT2" need only be declared if the

execution sequence will pass through the INPUT call before using
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"INPUT2" as an input-associated variable in a statement preceding

the INPUT call. The compiler must know, when it encounters a var

iable, if there is a possible input association for it, and this

information can only come from instances of literal first arguments

to INPUT, or from the declaration.

(b) Natural variables which occur as non-literal first argu

ments to OUTPUT. Similar to (a), but not constrained by the one-

pass problem.

(c) Field names (of programmer-defined datatypes) which are

referenced in the compilation sequence before they appear in the

argument to some DATA call. For example

NEXT(A) = TOP(B)

*

DATA(f BLOCK(NEXT,TOP,MIDDLE,BOTTOM)')

requires

DECLARECFIELD' ,'NEXT,TOP1)

Since the usual programming practice is to place the I/O

association and datatype definition statements at the beginning of

a program (they must be executed before their respective effects

are usable), these declarations are seldom actually needed.

2.2.2 Optional

The remaining declarations provide more flexibility for the

programmer in specifying inter-program communication or direct

the compiler to perform optimization of some of the generated code.
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2.2.2.1 Dedicated Declarations

Variables can be dedicated to certain data values by declaring

them as STRING. INTEGER. REAL, or PATTERN. Normally, values in

FASBOL are represented by descriptors for one of the seven basic

types of data (STRING, INTEGER, REAL, NAME, ARRAY, PATTERN, and

DATA), and variables correspond to single storage locations contain

ing such descriptors. Whenever a value is used in an operation,

it generally must be checked for correct type (and possibly con

verted) before being used. Frequently, however, certain variables

have a "dedicated" use, i.e., they are always assigned only one

type of value, such as INTEGER; this is always the case in FORTRAN.

By passing this information to the compiler, expressions in which

these variables appear can be optimized.

INTEGER and REAL dedicated variables correspond to single stor

age locations which are used to hold an actual integer or floating

point number. The compiler generates FORTRAN-like code for express

ions involving these variables; either as a subexpression for a

larger descriptor-mode expression, or as an entire statement. In

addition to simple arithmetic involving dedicated variables and

constants, FORTRAN function calls also return dedicated values, as

do the predicates LT, LE, E£, NE, GE, GT and the primitives NOT,

AND, OR, XOR, LSHIFT, and RSHIFT with dedicated integer arguments.

For example, the statement

I - LE(I,100) I + AND(RAND0M,1)

will be executed as a completely dedicated statement and about ten

to one hundred times faster by the additional declaration
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DECLARECINTEGER*, 'I,RANDOM')

PATTERN dedicated variables are similar to undedicated var

iables, except that they may only be assigned pattern descriptors

or the null string descriptor. This dedication is natural for a

variable that is used as a shorthand notation for some pattern

structure, and serves to optimize the code generated when that

variable appears as part of another pattern, as in

ABC = A | B | C
STRING Z ABC X | X ABC Y | Y ABC Z

with declaration

DECLARECPATTERN', 'ABC')

STRING dedicated vatiables are useful only in passing string

arguments to or from FORTRAN programs, and are less efficient than

undedicated variables otherwise. A string variable is declared

with a maximum character count, and corresponds to a series of

storage locations containing, respectively, the maximum character

count, the current character count, and the string itself. The

FORTRAN interface provides a pointer to the first word of the string,

which can be considered an array in "A6" format. An example of a

STRING declaration is

DECLARE('STRING*, 'CARDIMAGE(80),NAME(6),LETTER(1)')

Type-checking and/or conversion is automatically performed when

values of descriptor mode must be loaded from or stored into dedi

cated variables, or when a dedicated expression appears inside a

descriptor-mode expression. Dedicated variables cannot have I/O

associations.
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2.2.2 SNOBOL.SUBPROGRAM Declaration

This declaration indicates that the program being compiled is

an independent subprogram, not the main program. The second argu

ment is a quoted identifier conforming to the syntax for external

symbols which is used to name the subprogram; it is an entry point

with no arguments which performs any initialization required by

INDIRECT declarations or the TIMER option (see 2.3) for the whole

subprogram, then returns. If a subprogram uses neither of the above,

any other entry point in it may be called without ever calling the

subprogram entry; otherwise, the subroutines will execute without

benefit of the INDIRECT and/or TIMER declarations until the sub

program entry is called. For example, if a subprogram contained a

set of entries (see 2.2.2.4) to do complex arithmetic (i.e.,CMPADD,

CMPSUB, etc), it might be declared

DECLARE('SNOBOL.SUBPROGRAM','COMPLX1)

where the entry COMPLX need never be called, provided there are no

INDIRECT/TIMER declarations. On the other hand, if the subprogram

does use either of these, the call

COMPLXO

should be executed first, by some program before any other entries

in the subprogram are called.

2.2.2.3 EXTERNAL Declarations

Items that exist in some external program can be declared using

EXTERNAL.VARIABLE, EXTERNAL.LABEL, and EXTERNAL.FUNCTION declarations;

their names must conform to the syntax for external symbols. The

purpose of these declarations (and those of 2.2.2.4) is to allow
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communication between separately compiled FASBOL programs by de

fining certain variables, labels, and functions on a global level,

rather than on a local level for each subprogram. For example

DECLAREC EXTERNAL.VARIABLE', 'ALPHA,ALPHA1')

DECLARE('EXTERNAL.LABEL' , 'XTL1 XTL2 XTL3;')

DECLARE('EXTERNAL. FUNCTION', 'CMPADD, CMPSUB, CMPMUL, CMPDIV')

implies that all the items declared exist in some other program, and

they are referenced by their external names when they appear in the

code. (Rather than by their compiler-generated internal name if

they were local to the subprogram.)

2.2.2.4 ENTRY Declarations

These are the logical counterparts to the EXTERNAL declarations.

For example,

DECLARE('ENTRY.VARIABLE', »ALPHA,ALPHA1')

DECLARE('ENTRY.LABEL', 'XTL1 XTL2 XTL3;')

DECLARE('ENTRY.FUNCTION*, *CMPADD(ARG1,ARG2)*)

DECLARE('ENTRY.FUNCTION*,'CMPSUB(ARG1,ARG2)*)

DECLARE('ENTRY.FUNCTION*,'CMPMUL(ARG1,ARG2)')

DECLARE(*ENTRY.FUNCTION',*CMPDIV(ARG1,ARG2)*)

complement the declarations of 2.2.2.3. The variables and labels

declared here are local to this subprogram, but can also be refer

enced globally via their external names. The same is true of the

functions, but in addition the declaration has the effect of pre

defining the function, so that no DEFINE call is needed for that

function. It should be noted that only one function can be defined

by each declaration, and that there is an optional third argument
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(like the optional second argument to DEFINE) which specifies a

starting label, as in

DECLARE('ENTRY.FUNCTION','F()LOCI,L0C2', 'START;*)

2.2.2.5 FORTRAN Interface Declarations

FORTRAN functions (or subroutines) that are to be called by

a FASBOL program are specified using the EXTERNAL.FORTRAN.FUNCTION

declaration, which in addition gives the type (integer or real) of

each function either implicitly (by FORTRAN conventions, if the first

letter of the name is I through N, it is an integer, and real other

wise), or explicitly. For example,

DECLARE('EXTERNAL.FORTRAN,FUNCTION','IFUNC,RFUNC,0FUNC«

INTEGER,KFUNC«REAL')

declares IFUNC and QFUNC to be integer-valued FORTRAN functions and

RFUNC and KFUNC to be real-valued FORTRAN functions. In addition,

if there is any possibility that a FORTRAN program, after being

called from FASBOL, will in turn call a FASBOL program, it must be

declared 'OPEN'. For example,

DECLARE('EXTERNAL.FORTRAN.FUNCTION','F,G','OPEN»)

implies that within the FORTRAN functions F and G there are calls

on FASBOL programs.

An entry into FASBOL that is to be called from FORTRAN is speci

fied using the ENTRY.FORTRAN.FUNCTION declaration. This declaration

also serves to declare the type(implicitly or explicitly) of the

function value, and the types and number of formal arguments to the

function. In addition, a third argument specifies a unique label,
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associated with the declaration, to which control is transferred

in order to return to the FORTRAN program. An optional fourth

argument specifies a starting label,if different from the function

name. For example, the declaration

DECLARE(* ENTRY.FORTRAN.FUNCTION','F»INTEGER(I,J»REAL,K(6))',

.'FRET{ VFSTART;')

specifies an integer-valued function F callable from FORTRAN, which

starts at label FSTART, and which returns when a transfer to FRET

occurs. It has three formal arguments: an integer, a real, and a

string with a maximum length of six characters. A side-effect is

that F and I are dedicated integer variables, J is a dedicated

real variable, and K is a dedicated string variable. The maximum

character count for K may be set higher by a separate STRING

declaration. The function variable (in the above example, F) can

only be of type INTEGER or REAL.

2.3 Options

Options are conditions which affect the operation of the run-

ing program in a global or subroutine-by-subroutine way. Except

for NO.STNO and TIMER, they may only be stated in the main program.

The general form of an option is a call on the pseudofunction

OPTION with one of the following arguments:

'QUICKSTORE' speeds up the free storage mechanism by making each

acquired block non-returnable. This is usable only if the program

does not acquire more than the available storage before terminating.

'NO.LOOK-AHEAD' disables double-buffering on drum and tape input;

necessary only if some non-SNOBOL I/O operation is concurrent on the
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I/O unit.

'HASHSIZE^N* overrides the standard bucket table size (64, for

N=6). N must be between 1 and 13 and is the bit width of the hash

ed index for the symbol table. Useful for reducing bucket table

size in programs that barely do (but do) use it, or for enlarging

it in programs that make extensive use of it.

*NO.STNO' sets a mode in the compiler that cuts out the book

keeping on &STNO, &LASTNO, and &STCOUNT; it makes an appreciable

difference in dedicated arithmetic statments.

'TIMER' sets a mode in the compiler that causes timing statis

tics to be kept for each statement and printed out when the execu

tion terminates. This mode can be set selectively in the main pro

gram and subroutines. The time expended by a function call is

included in the statement in which it occurs. TIMER and NO.STNO

are imcompatible. Intermediate timing statistics can be produced

for any program by calling the primitive EXTIME.

2.4 Control (in addition to -LIST and -UNLIST from SN0B0L4)

-NOCODE, -CODE turn off and on, respectively, the listing of

object code between statements. The normal mode is off (NOCODE).

-EJECT causes a page eject in the source listing, and Inserts

an eject control in the object code.

-FAIL, -NOFAIL* turn off and on, respectively, a feature which

Full credit for this idea goes to the authors of SPITBOL who also
inspired the inclusion of the primitives DUPL,LPAD,RPAD, and REVERS
(next section).
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traps unexpected statement failures. When the feature is on (NOFAIL),

any statement within its scope that does not have a conditional GOTO

and which fails, will cause an error exit. Note that an unconditional

GOTO is equivalent to none at all, and will be trapped if the state

ment fails. Normal mode is off (FAIL).

-NOCROSS,-CROSSREF turn off and on, respectively, the cross-

referencing capability of the compiler. The normal mode is off

(NOCROSS), and no cross-reference listing is produced unless it is

turned on at least once. Either the entire program or selected parts

can be cross-referenced.

-NOASM, -LISTASM control the post-compilation assembly, which

is normally done with listing turned off. NOASM prevents assembly,

and LISTASM causes it to be done with listing turned on.

-SPACE [N] spaces N (or 1, if missing) lines in the source

listing.

-NEWSTNO N resets the statement number to any value (N) greater

than 0.

2.5 Primitives (* indicates new primitives)

2.5.1 Pattern Primitives

(a) *BREAKX(String)

Equivalent to: BREAK(String) ARBN0(LEN(1) BREAK(String));

but faster and less space-consuming.

(b) *NSPAN(String)

Like SPAN but succeeds even if no characters are spanned.

(c) *STRVAL(String)

Used to (1) induce string concatenation within a pattern
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expression, and/or (2) optimizes a pattern expression by

specifying a given element to have a string value.

2.5.2 Expression Primitives

(a) CONVERT(any, string)

Now will also convert reals to integer by truncation.

(b) *EJECT()

Causes page eject on printer, returns null.

(c) CCLLECT(integer)

Sets the blocksize (Default*128) at which the free

storage mechanism releases accumulated unused blocks

and merges them back together if possible. The trigger

is set whenever a block is requested that causes free

storage to use or split a block equal to or greater

than the collect size. The qualitative effect of

setting the collect size to a small value is to minimize

free storage fragmentation but causes frequent collections,

whereas the effect of setting it to a large number mini

mizes the collection overhead but leads to more storage

fragmentation (which may be desirable), and possibly

premature storage overflow (which is not). Returns null.

(d) *BUFSIZ(integer)

Sets the maximum number of words+l(Default=136) allowed

to be used for output buffering of tape and drum records.

For instance, the Default allows for 9 ((14+1)*9=135)

14-word records (card image size) and 5 ((22+1*5=115)

22-word records (print image size) on each active tape

or drum unit. Returns null.
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(e) *SUBSTR(string,integer,integer)

Returns a substring of the first argument starting at

the position specified by the third argument (same con

ventions as POS primitive), of length specified by the

second arg, and fails if it is not a proper substring.

For example: SUBSTR('ABCDEFG',3,1) "* 'BCD*, and

SUBSTR(*ABCDEFG',4,4) fails. This is equivalent to,

but much faster and less space consuming than the

pattern TAB(INTEGER) LEN(INTEGER).VAL

(f) *INSERT(string,string,integer,integer)

Returns the string formed by replacing the substring

specified by the last three args by the first in the

second arg, or fails if not a proper substring. Example:

INSERT('A','SYNONYMOUS',2,0) =* 'ANONYMOUS';equivalent

pattern: STRING2 TAB(INTEGER) . PARTI LEN(INTEGER)

REM . PART2 ; VAL » PARTI STRING1 PART2

(g) *DUPL(string,integer)

Returns the string formed by duplicating the first

arg the number of times specified by the second arg

(h) *LPAD(string,integer,string)

Returns the string formed by padding the first arg on

the left with the character specified by the third

arg to a length specified by the second arg. If the

first arg is already too long, it is returned unchanged.

If the third arg has more than one character, the rest
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are ignored. If the third arg is null, blanks are used.

(i) *RPAD(string,integer,string)

Same as LPAD but pads to the right.

(j) *REVERS(string)

Returns the string formed by reversing the order of the

characters of its argument, e.g., REVERSE(*ABC') =* 'CBA'

(k) *AND(integer,integer)

Returns the integer formed by the 36-bit logical AND

of the two arguments.

(A) *0R(integer,integer)

36-bit logical OR.

W *XOR(integer,integer)

36-bit exclusive OR.

(n) *NOT(integer)

36-bit one's complement

(o) *RSHIFT(integer,integer)

36-bit logical right shift of first arg by second.

(p) *LSHIFT(Integer,integer)

36-bit logical left shift of first arg by second.

(q) *EXTIME(string)

Prints out timing statistics for program whose name is

given by the argument, and returns null, or fails if

program is not being timed.



37

(r) *REMCOR()

Returns an integer which is the total amount of free

storage remaining unused.

2.6 FASBOL Programming Techniques

Most of the programming techniques described in the SN0B0L4

manual [5] apply to FASBOL programs as well, with a few exceptions

described below. In addition, several new techniques should be

noted when writing FASBOL programs, due to the greater opportunity

to optimize code.

2.6.1 Dedicated Expressions

Arithmetic in FASBOL is most efficient when as much of it as

possible is performed in dedicated (non-descriptor) mode. The rules

for forming dedicated real expressions are:

(a) A dedicated real variable, a real constant, or a real FORTRAN

function call is a real expression.

(b) An arithmetic expression consisting of real expressions,

unary + and ^_, binary +, -_, j*, and _/, and parentheses is a real

expression.

(c) An arithmetic expression consisting of at least one real

expression, undedicated variables with no input associations, the

above operators, and parentheses is a real expression.

The rules for forming dedicated integer expressions are analogous

to the above, plus:
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(d) An arithmetic expression consisting of integer expressions

and binary jj[*_ is an integer expression.

(e) A function call on one of the integer predicates LT,LE,

EQ,NE;GE,GT or one of the integer logic functions NOT, OR, AND, XOR,

LSHIFT, RSHIFT with integer expression arguments is an integer ex

pression.

In addition, the concatenation of any number of dedicated integer

predicates with an integer (or real) expression is an integer (or

real) expression.

2.6.2 FORTRAN Interface

The arguments to a FORTRAN function call in FASBOL must be

either dedicated integer or real expressions, in which case a pointer

to the storage location holding the value is passed to FORTRAN

(normal convention), or dedicated string variables or string literals,

in which case a pointer to the first storage location of the string

is passed, which can be treated by the FORTRAN program as an array

holding the characters in "A6" format.

When a FASBOL entry is called from FORTRAN, the arguments speci

fied in the calling sequence are copied into the formal argument

variables; this process is reversed upon exit, achieving the effect

of call by name. In the case of a string argument, the amount of

the array copied into the string variable is determined by the maximum

character count in the ENTRY declaration, which may be smaller than

the maximum count for the variable.

Care must be taken not to form a recursive loop involving the

same FORTRAN program at more than one level, since FORTRAN does not



39

have re-entrant capabilities.

2.6.3 Use of _?. and _«. Unary Operators

A frequent occurrence in some applications is the successive

access and assignment of an indirect variable or array element, as

in

$X » $X + 1 ; A<25> « F(A<25>)

A more efficient practice is to first generate the name of the var

iable, using only one symbol table lookup or array mapping, and then

use an indirect reference on the name for all future access or assign

ments on the variable. In the above cases, a more efficient way

would be

Z « .$X ; $Z - $Z + 1

Z - .A<25> ; $Z « F($Z)

Field references are sufficiently efficient that the above technique

does not pay in their case.

The name of an array element or field is only useful as long

as the array or instance of a programmer-defined datatype exists;

attempts to access or assign using the name afterwards will have

unpredictable results.

Another frequent occurrence is the concatenation of null-valued

functions for their sequential effects and/or succeed/fail potential.

"The compiler never generates code for concatenating elements that

i!t knows will have null values, such as predicates and other null-

valued primitives, as well as expressions preceded by _? and \_.

Therefore, preceding a non-primitive function call with the J?

operator has the effect of suppressing code to concatenate it.
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2.6.4 Pattern Matching

Frequently a programmer wishes to write a degenerate-type

statement consisting of a concatenation of elements executed for

their effect, as in

F(A) F(B) F(C) F(D)

This syntax, however, is parsed as a pattern match, and, though

having the same effect as intended (providing the match is success

ful), is less efficient in both space and time. The original intent

can be achieved by enclosing the series in parentheses

(F(A) F(B) F(C) F(D))

although the compiler will induce that effect if it knows all the

elements will have null values (such as a series of predicates).

One SN0B0L4 programming technique that is not generally good

in FASBOL is the assignment of patterns to variables in order to

eliminate repetition of evaluation and construction of the same

pattern. Since patterns are compiled as re-entrant subroutines, no

"construction" ever takes place during execution, and only non-con

stant elements are evaluated. Furthermore, every variable substi-

stituted for an explicit pattern structure costs some overhead

during a pattern match due to the extra stacking and pattern-recursion

involved. There are cases, however, when pattern assignment is more

desirable. One case is if the pattern is large and appears in several

places, it can be assigned to a variable and the variable used in its

place; this saves writing and produces less object code. Another

case is when the pattern contains an element which requires costly
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evaluation, such as a programmer-defined function call, or character

class pattern primitive (SPAN, NSPAN, BREAK, BREAKX, ANY, NOTANY)

with a non-literal argument.

A generally applicable rule for all of FASBOL programming is

that it is more efficient to use, wherever possible, literals instead

of variables with constant value. This is especially true in pattern

expressions, both for literals appearing as pattern elements and as

arguments to pattern primitives. For example,

ALPHAB » 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ; COL - 74

KEY - 'IF*

LOOP INPUT BREAK(ALPHAB) RPOS(COL) KEY :S(LOOP)

is in every way less efficient than

LOOP INPUT BREAKCABCDEFGHIJKLMNOPQRSTUVWXYZ') RPOS(74)

'IF' :S(LOOP)

In cases where integer constants cannot be used, it is still

helpful to use dedicated integer variables, which are also ideally

suited to be the objects of unary i@ (cursor position assignment).

The primitive STRVAL is specifically designed to optimize the

appearance of non-literal strings in patterns. One of its uses is

to declare to the compiler that its argument is a string and need

not generate code to cover the possibility of its being a pattern.

Another use is to induce string concatenation within a pattern

expression, where otherwise pattern concatenation would be compiled.

For instance, if B, C, and D hold strings

PAT » A I B C D
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causes three consecutive pattern/string matches to be executed for

the second alternative of PAT whenever it is executed (as part of

some other pattern). On the other hand,

PAT = A | STRVAL(B C D)

compiles into only one simple string match for the second alternative:

the string concatenation of the values of B, C, and D is formed when

PAT is assigned, and it is this value which is matched during execu

tion of a pattern involving PAT.

Since FASBOL does not employ the QUICKSCAN heuristic of assuming

at least one character for unevaluated expressions, left-recursive

patterns will produce infinite loops at execution time, as they would

in SN0B0L4 under FULLSCAN. Usually a set of patterns involving left

recursion can be re-written to eliminate it; for instance, the simple

case involving a pattern like

P = *p 'z' 'Y'

that matches strings of the form 'Y', *YZ', 'YZZ'. 'YZZZ', etc.

could be re-written as the pair of patterns

PI = 'Z1 *P1 | "

P = *Y' PI

Finally, it should be noted that, as in SN0B0L4, changing the

value of &FULLSCAN during a match may lead to unpredictable results.

A similar caution applies to re-assignment of PATTERN variables

during a match in which they themselves are used as unevaluated

expressions.
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2.6.5 Timing and Storage Management

The TIMER option permits the programmer to monitor the opera

tion of any (or all) separately-compiled program(s), and provides

feedback on where the time is being spent. It is usually the case

that some small sections of code account for a large percentage of

the execution time; the programmer's time is spent most efficiently

optimizing those areas and ignoring the rest. Of course, after a

series of optimizations, a new "bottleneck" will develop, which in

turn can be measured add optimized, and the process can be Iterated

until the law of diminishing returns takes hold.

The QUICKSTORE option should be used by all programs that have

a reasonable expectation of terminating before using up all available

free storage. This case is roughly equivalent to an interpretive

execution which never performs a garbage collection, except that

much more storage is available to the FASBOL program because of the

small run-time library.

When using the normal free storage mechanism, it is helpful to

structure arrays and programmer-defined datatypes taking into account

the fact that free storage blocks are dispensed only in sizes of

powers of two. Of that amount, two storage locations are consumed

in overhead, making 2, 6, 14 ... (2m - 2) the ideal number of array

elements or fields for a datatype, and a number one greater than

these results in the greatest waste of space. The primitives COLLECT

and REMCOR provide the user with powerful tools to guide and monitor

the free storage mechanism. Consider, for instance, a situation

where many lists of items are being built over a period of time
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directly related to the amount of data input; such would be the

case for a program producing a cross-reference listing of some text.

An efficient storage management technique which minimizes overhead

in this case would be to first call COLLECT with a large block size

and construct the lists as chains of datatypes. Storage fragmenta

tion will be high and the overhead for adding an item to a list will

be low. Periodic calls to REMCOR would monitor the amount of space

left, and when it falls below a fixed amount, a consolidation strategy

is employed, as follows. COLLECT is called with a small block size

to ensure maximum recovery of storage in contiguous blocks. The

larger (or all) data chains are turned into strings (which occupy

less space), in a single concatenation for each chain. The process

is then ready to start over; if it never reaches the consolidation

stage, it is simply making maximum use of the available storage.

A certain amount of storage may be wasted by circular data .

structures unless the programmer explicitly breaks the ring when

the structure is no longer needed. For example, the sequence

DATA('NODE(FATHER,MOTHER,BROTHER,SISTER)*)

OEDIPUS « NODE( fJOE1 /JANE' /DICK1 /SIS')

FATHER(OEDIPUS) » OEDIPUS

•

OEDIPUS - 'DEAD'

will result in the datatype (presumably) no longer being used, but

not released to free storage either (since it still has a use count

of 1 due to its circularity in the "FATHER" field). This problem

is easily solved by the statement

FATHER(OEDIPUS) =
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immediately preceding the last statement above.

2.6.6 Global and Local Definitions

Generally all names used within a given FASBOL compilation are

local to that program. A name becomes global (at execution time)

when it is declared EXTERNAL or ENTRY, or when it is entered in the

run-time symbol table. For example, if program "A" wishes to access

a natural variable in program "B", the former should contain an

EXTERNAL and the latter an ENTRY declaration for the variable; either

program can then reference it by its identifier.name. Another, less

efficient, way would be for program "B" to declare the variable

INDIRECT and program "A" to reference it via indirection (_$); the

only advantage in this case would be to prevent the name from being

externalized, should there be a naming conflict with some other exter

nal entity*

Datatype names are also global, although not via the run-time

symbol table. The reason for this is to allow a program to operate

upon a programmer-defined datatype generated by a separately-compiled

program. Each program must still execute its own DATA primitive call

for the datatype definition before generating or accessing one. The

names of the fields need not be the same for both programs, but their

number must be the same, and they will be equivalent by their respec

tive ordering.
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CHAPTER 3

The FASBOL Runtime System

3.1 Introductory Remarks

FASBOL run-time operation is a blend of compiled code and library

routines. The compiled code provides the structure of the program

and builds elementary components such as elements of concatenations

and patterns, out of specific instances of symbols in the program.

The library routines handle the general operations which are applied

repetitively to each particular set of elements in the structure.

To give an example, the (string) concatenation of N elements is

compiled as a structure consisting of the consecutive evaluation of

the N elements, interspersed with N-l calls on the expression-

stack pushing library routine, and followed by a call on the conca

tenating library routine (with N as a parameter).

The execution of expressions and statements also include commu

nication with a set of system variables and stacks (one of which is

the expression-stack), in order to control inter-statement execution,

depth of recursion in functions and pattern matches, and other global

bookkeeping such as dynamic storage allocation (free storage), run

time symbol table, or optional timing.

It is difficult, because of their interdependence, to introduce

all the concepts in a bottom-up fashion without some circularity of

explanations; however, the most interesting (and involved) items,

mainly how patterns and free storage work, should come after most of

the operating details are clear.
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3.2 Initialization, Termination, and Interstatement Operation

The system initialization routine is called immediately upon

beginning execution of the main program, and takes care of the

initial setting of the system registers and variables, as well as

the initialization of free storage. The operating system parameter

tables are accessed to determine the amount and location of core

storage not used by the program, and this storage is given over for

use to the free storage routines.

When an END statement in the main program or any subroutine is

executed, control passes to the system exit routine which prints

out the execution statistics and returns to the operating system.

If an execution error occurs ("illegal data type", "call of undefined

function," etc.), control passes to the system error routine which

prints out information about the error and where it occurred, and

makes an error return to the operating system. To aid in debugging,

if the &ABEND keyword is on during a normal or error exit, a core

dump of the free storage areas is done. This can be supplemented

by the user by including a PMD (post-mortem dump) card to call for

the post-execution dump of the program area.

Each statement is a self-contained unit of operation from which

control passes internally to and from the library routines; the only

time when control passes, during execution of the statement,to any

other non-library code is for function calls, and pattern structures

not contained in the statement. A statement is executed either by

control passing to it in sequence or by some other statement executing

a goto to the label attached to the statement (or if it is the first
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statement of a programmer-defined subroutine, when that subroutine

is called). After execution of a statement, control may pass sequen

tially to the next, transfer unconditionally or conditionally to

some other statement via its label, or exit from a programmer defined

subroutine via RETURN or FRETURN (NRETURN is equivalent to RETURN).

3.3 System conventions, Stacks, and Variables

The run-time system maintains some global variables and stacks

to coordinate the various steps of executing statements and levels

of recursion, both in functions and patterns.

PP, the parameter block pointer, indicates the location of a

block which contains the program name for identification purposes,

and also (if timing has been specified) a timing block pointer.

FE, the failpoint exit pointer,is used to hold the address

of the current expression failpoint. For example,when entering a

statement which contains some general expression (but not dedicated,

see below) which may fail, FE is loaded with a pointer to the address to

which control should be transferred in case the statement fails

(which depends on the goto field). FE also contains an indication

of the type of failpoint it is; when entering a negation (unary

~2 .t\_ on the 1108]),the current value of FE is saved on a stack and

FE is reloaded to point to the local failpoint for the negation.

When the negation terminates,FE is unstacked and the reverse logical

result of the negation is done (i.e., fail if it succeeded, continue

if it failed).

EA, the expression accumulator, is sometimes used to hold the

current expression value, when the fast register which normally is
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assigned this task is overwritten.

AP, the assignment pointer, is used to hold the NAME datatype,

of the variable in any nondedicated assignment (including immediate

and conditional value assignments and cursor position assignments).

For example, in a simple assignment statement, AP is loaded with the

evaluated name of the variable at the beginning of the statement.

FLF is the fail flag and is used by the RETURN and FRETURN

library entries to determine the course of action after achieving

the previous level of recursion.

RST is the RESTART indicator which serves to indicate to a

nested (i.e., independent) pattern that it is being either started

or restarted during a pattern match (more details later).

SJ, CC (index register), CW(index register), RC, CF (register),

serve to hold parameters for an active pattern match. jSJ contains

the string descriptor for the subject of the match (the string that

the pattern is being matched against), as well as both the final

position in the subject at successful match completion and the initial

position in the subject (which may be other than before the first

character if in unanchored mode). CC (current character) and CW

(current word) serve to point to the current position in the subject

being matched (the 1108 is not a byte-oriented machine and two index

registers plus several execute tables must be employed to provide

efficient character -by-character access to strings). Together with

RC (remaining characters in subject), CC and CW specify cursor position

and are the parameters which are saved and restored to reflect differ

ent restart positions during the match. CF is the character foil
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indicator which is set when the match runs out of characters in the

subject.

DT (index register) is active during either a pattern evalua

tion or a pattern match, and holds a pointer to a data block corresp

onding to an instance of the pattern structure currently being executed

(the data segment of the re-entrant pattern).

TM is used to hold various parameters for the timing option

when active.

SL (index register) is the (system) return link generally

used for library calls and function calls. In order to minimize the

saving and restoring of return links and other volatile registers,

the run-time system is organized into a heirarchy of volatile regis

ter levels, with the lowest level having the smallest complement

of registers, and each higher level including all the registers from

the previous level plus three more (one index, one arithmetic, and

one r-register). The highest level is the one governed by SL as a

return link, and is the one that the compiled FASBOL program operates

on. There are five stacks used by the run-time system, and although

different in purpose, they all share the same design. A stack is

represented by a series of blocks of storage chained together with

forward and backward pointers. The block size for each stack is

individually parametrized, and the current position of the stack is

held in a variable; the stack position is specified by a pointer

to the base of the current stack block plus an index within the block

(which is held in an index register when the stack is active). When

a given stack block overflows, the stack position is moved on to the
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next block in the chain, or a new block is acquired from free

storage for this purpose. Once the stack is popped (unstacked)

beyond any block, the chain is left untouched on the (purely heuristic)

assumption that once a stack achieves a certain general depth, it is

likely to come at least close to that depth again. Thus the only

physical limit on any stack depth is available free storage.

The five stacks are S>S, ES, AS, CV, and RS, representing respect

ively, the system, expression, assignment, conditional value, and

release stacks. SS uses SX as an index register (always active),

ES, AS, and CV share EX as an index register (although usually con

trolled by and active for ES), and RS uses a volatile index. It is

also efficient to maintain backup (or base position) values for the

last four stacks (in ESP, ASP, CVP, and RSP, respectively). The

reason for these backup values is to be able to easily reset the

position of a stack (without methodically unstacking) under conditions

which have not returned it to its initial state. Such is the case,

for instance, when failure inside an arbitrary expression, which may

have pushed ES to any depth,causes a jump to the failure routine;

all this routine does (after determining that it is a global fail by

checking FE) is reset ES from ESP and jump to the location pointed

to by FE. S£ has no base since it is used to hold levels of recursion

and/or stacking and is always in control of everything else. When

a function call (programmer-defined) occurs in an expression, for

instance, a new base must be established for ES at the deeper function

level so that the intermediate results on ?S from the expression will

not be disturbed by anything that occurs in any statements executed
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at any further level of recursion. Therefore, one of the actions

taken when entering the new function (and reversed on exit) is to

save ESP on SS, and update ESP to conform to the current value of

ES, thus providing a new base value for the new function level. These

base values have no connection whatsoever with the stack block bases,

which use a completely independent mechanism which is invisible to

the routines which use the stacks. Thus j>S can be thought of as a

stack-of stacks, although it is used to hold other things, too.

ES is used within expressions and patterns, AS and CV are used

only by pattern matches, and RS is used by the free storage mechanism.

3.4 Statement Types, Statement Execution, and Gotos

Statements can be either dedicated or not. A dedicated state

ment can be either degenerate (see syntax, Appendix 1), consisting

of a dedicated real or integer expression, or an assignment of a

dedicated expression to a dedicated variable of the same type (includ

ing one dedicated string assigned to another). When a dedicated

expression fails, it jumps directly to the statement failpoint instead

of to the failpoint routine. This is also true of dedicated ex

pressions, inside a non-dedicated statement, that are on the top level

of evaluation, i.e., are not nested inside non-dedicated expressions.

A dedicated statement normally begins with execution of the library

statement accounting routine, which updates 6LASTN0 with &STNO, update

&STNO with the statement number, increments &STCOUNT (checking it

against &STLIMIT and causing error termination if it exceeds the

limit), and does timing accounting on the previous statement if timing

is in effect for the routine. If the "NO.STNO" option is used in
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compilation, the routine is not called and no accounting is done.

Every non-dedicated statement begins with execution of a library

routine that does the above statement-accounting (but bypasses it

in "NO.STNO" mode), sets the failpoint, if any, into FE, does the

(optional) timing accounting, and checks the free storage release

flag. This flag is set by the free storage package (and sometimes

by a returning function call, see below) when a free storage request

causes the acquisition or splitting of a block greater than some

specified size (parametrized and modifiable at execution time by the

COLLECTO primitive). If the flag Is on, it is reset and a routine

is called to release the blocks currently on RS for the given function

level delimited by RSP, (see free storage). Within the statement,

a failure will jump to the failpoint routine which (if it is a global

failure) will increment &STFCOUNT and transfer control to the state

ment failpoint. If the entire statement succeeds, control passes

sequentially into an unconditional or success goto, or into the next

statement.

ES and ESP start out equal at the beginning of each statement,

with EX containing the index for ES. This is the consequence of the

previously executed statement terminating successfully or the fail-

point routine resetting ES from ESP due to failure of the previously

executed statement. Since a goto expression cannot fail, this will

also be the case following execution of any type of goto which is not

just a simple label.

RS and RSP are regularly made equal by the free storage release

which occurs whenever the flag is set. When a function is called,

RSP is saved and RSP_ is set equal to RS; upon return, RSP is restored



54

to its previous value.

A goto can be a simple label or an expression to calculate a

label's location via indirection. A simple label is a jump (if it

is a success or unconditional goto) in sequence following the code

for the body of the statement, or simply becomes the statement fail-

point (if it is a failure goto). If the goto is an expression, the

compiled code is located sequentially following the statement body,

except if it is a failure goto, in which case the code ia allocated

under an independent location counter and the statement failpoint

is a jump to the beginning of the goto code. The latter is necessary

to keep the failure code out of the way of the success exit sequence

(i.e., avoid jumping around it).

A non-dedicated assignment can be of various types. It can be

degenerate, in which case the non-dedicated expression is simply

evaluated. It can be an assignment where a non-dedicated expression

is evaluated, and then value stored in a dedicated variable (after

checking/conversion). The four other remaining types are general

assignment, pattern assignment, match and replacement.

The first two are differentiated by the fact that an explicit

pattern expression appears on the right side of the equals sign in

the second. In a general assignment statement, the variable is

evaluated and stored in AP, then the right side (object) is evaluated

and the assignment library routine is called, which also checks

possible output associations and performs the output if an associa

tion is in effect. In a pattern assignment, again the variable is

evaluated and stored in AP, but the object, which is a pattern
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consists of 0 to N independent evaluations of pattern elements

that need evaluation, with each resulting value being saved in the

data block for that pattern. The compiler generates the pattern

match phase of the code side-by-side with the evaluation, but under

an independent location counter. Eventually it is the pattern data

block (which represents one instance of the pattern and points to

it) which is assigned (if all element evaluations succeed) by the

assignment routine. Patterns will be treated in more detail later.

Match and replacement statements differ only in the fact that

in the former case, the subject is only a value used by the match,

while in the latter case the subject must be a variable whose value

is used for the match and which will be assigned the value generated

by the replacement after a successful match. Both cases have a

structure similar to the pattern assignment for the pattern section.

3.5 Normal and Dedicated Expressions

Whenever an expression contains integer or real constants,

dedicated variables, or FORTRAN function calls, the compiler attempts

to generate in-line, machine instruction code for as much of the

expression as possible. With real expressions, this will be the

case for arithmetic operations (except j^, not defined for reals

[use FORTRAN library])on the above-mentioned primaries. In addition,

any undedicated variable without possible input associations which

is arithmetically involved with any expression that is explicitly of

type real must contain a real (descriptor) value at run-time, (or a

type error will occur) so the compiled code generated forces a conver

sion to dedicated real value and includes it in the dedicated
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expression. All of the above holds true for integer expressions,

except that exponentiation (**) is added to the arithmetic, and

the scope of the expression is extended to cover integer predicates

(LT, LE, EQ, NE, GE, GT) and integer functions (NOT, AND, OR, XOR,

LSHIFT, RSHIFT) with dedicated integer arguments. So that we may

consider certain frequently appearing assignment statements as being

entirely dedicated, a concatenation of a series of dedicated integer

predicates followed by a dedicated expression is also a dedicated

expression of the type given by the non-predicate element. For

instance, t:he statement

REAL1 - EQ(INTG1, INTG2) REAL2 * REAL3

is a dedicated real assignment.

An arithmetic operation at a given level of expression evalua

tion cannot be compiled as a dedicated operation if at some nested

level (below it) there is a library call, which over-writes the

registers used by the dedicated expressions. In such a case, the

equivalent arithmetic library call is compiled instead, in consonance

with the general descriptor-mode scheme described below. A failing

predicate within a dedicated expression at the very top level of an

expression evaluation will jump directly to the statement failpoint,

whereas if it occurs at some lower level (i.e., after ES has been

pushed), the failure jump will be to the failpoint routine instead

(to restore ES). Dedicated expressions within descriptor-mode ex

pressions (or assigned to non-dedicato.d variables) have their results

transformed to descriptor mode.

Normal (also referred to as non-dedicated or descriptor-mode)

expressions are those which are neither dedicated (except a converted
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dedicated expression) or part of the pattern match execution section

of an explicit pattern expression. Normal expressions are compiled

following a uniform convention for descriptor values, stacking opera

tions on ES, and appropriate library calls. The descriptors and

associated formats are briefly described in Appendix 3. During an

expressions evaluation, the most recent result of some element or

operation is expected to be a descriptor, held in a known register.

This descriptor can then be assigned to a variable,used by some op

eration, or pushed onto ES for use by some binary or N-ary operation.

This technique uses ES to hold temporary results and parameters to

function calls. The compiled code gives a suitable indication, when

ever the expected number of parameters is variable, of the actual

number supplied. Each operation or function call unstacks ES and

returns ES to the state it was in prior to evaluating the first

parameter; in addition, the result of the operation/function is left,

available to the next level in the expression evaluation. For

example, the expression:

IDENT<A,B) C F(D + E,F,G)

(with D and E unpredicted) is compiled as the following sequence:

evaluate C ; push ES ; evaluate D ; push ES ; evaluate E ; call

undedicated add library function ; push ES^ ; evaluate F ; push ES ;

evaluate G ; call F (three args) ; call concatenation library function

(2 args). The compiled code for evaluating a variable is usually

just a load of the descriptor into the accumulator, but can also

involve conversion to descriptor mode if it is dedicated, or possibly

input processing if it has such an association. Note also that the
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compiler realizes IDENT will have a null value and does not include

it in the concatenation. If IDENT fails, it will jump to the fail-

point routine. The result in the accumulator after the above evalu

ation will be the concatenation of the value of C with the result

of the function call.

3.6 Programmer-Defined Functions

A programmer-defined function name corresponds to a storage

location which contains a jump to the current definition for the

function; until some DEFINE() or OPSYNQ primitive is executed

to define the function, a call to the function will cause a jump to

an error exit (initial value of function location), except in the

case of functions predefined by the "entry function" declaration.

A function can be redefined by executing the original DEFINE with

a new starting label, by a different DEFINE, or by OPSYN.

Associated with each DEFINE() primitive function call is a stor

age block called the function block, which contains a parametrized

description of the function prototype. These parameters are used

by the generalized function call/return library routines to perform

a reference to the defined function. The execution of a DEFINE call

causes the starting label to be evaluated and stored in the function

block, and a jump to the function block to be stored in the function

location. The execution of an OPSYN call results in the contents of

one function location being stored in another. The actual parameters

held in a function block are: A pointer to the program parameter

block of the main program/subroutine in which the function definition

is compiled; a pointer to the storage block pool for the function
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(explained below); the number of formal arguments, local variables,

and total variable value storage required for re-entrance; a starting

label (pointer); a name descriptor for each formal argument, each

local variable, and for the variable corresponding to the function

name (function variable). A function storage block is a dynamically-

acquired block of storage used to hold values and system parameters

saved when the function is called (in order to provide re-entrance).

When a function returns, the block is chained into its function stor

age block pool and not released to free storage; the same heuristic

applies here/In stack blocks. The storage block is a more effi

cient way of saving re-entrant information than pushing the items

individually onto a stack; only one item (the storage block pointer)

need be pushed onto the stack

When a programmer-defined function call is executed, the follow

ing sequence occurs:

1. Null values are pushed onto ES for missing arguments, or

extra values (beyond the required arguments) are unstacked from ES

and ignored.

2. A function storage block is acquired from the pool (or from

free storage).

3. The function block pointer is saved in the storage block

and the storage block pointer is pushed onto SS.

4. SL (the function return link), JDT, FE, AP, ESP, RSP, TM+1,

&STNO, and PP are saved in the storage block.

5. For the function variable, and for each local variable:
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(a) The current value is saved in the storage block; for

undedicated, integer, real, and pattern variables, one storage

location is required; for dedicated string variables, the maximum

size attainable by that string is required.

(b) A null value is assigned.

(c) Possible output associations are performed.

6. For each formal argument:

(a) The current value is saved(as in 5a)

(b) The new value is popped off ES.

(c) For undedicated variables, the use count (see free

storage) of the new value is incremented and the value is

stored in the variable (checking possible output associations).

For dedicated pattern variables, the value is first converted

to a pattern, if necessary, before doing the above. For other

dedicated variables, the value is converted to the appropriate

dedicated form and stored in the variable location.

7. Vanishment insurance (see free storage) is performed on

all the values on ES for the current level (from ES current to ESP)

and ESP is set to the current value of ES.

8. RSP is set to the current value of RS, &FNCLEVEL is incre

mented, PP is set to point to the new program parameter block (will

be the same as the old one unless control has passed to a separately-

compiled program), &STN0 Is set to zero, and control is transferred

to the starting label.
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When a jump to RETURN, NRETURN, or FRETURN is executed, the

following sequence occurs:

1. A flag (FLF) is set to note success or failure.

2. PP is used to check if timing was active in the program

in which the return occurred. If it was, timing is completed on

the last statement executed.

3. The storage block pointer is popped off SS.

4. The function block pointer is restored from the storage

block and the storage block is chained back into the storage block

pool.

5. The value of the function variable is saved in EA; it is

first converted to descriptor mode if it is dedicated.

6. For each formal argument, for each local variable, and

for the function variable:

(a) If the variable is undedicated, or dedicated pattern,

the current value has its use count decremented and the

old value is restored from the storage block.

(b) If the variable is dedicated integer, real, or string,

the old value is restored from the storage block.

7. &STNO, PP, TM+1, RSP, ESP, AP, FE, SL, and DT are restored

from the storage block. If there is excessive released block accu

mulation (RS current is more than two stack blocks away from RSP) ,

the release flag is set.

8. The proper string is stored in &RTNTYPE, &FNCLEVEL is de

cremented, and, if FLF indicates success, the accumulator is loaded
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with the function value from EA and control is returned to the orig

inal calling sequence. Otherwise (failure) control goes, to the

failpoint routine.

A function call used as a variable (appearing on the left of

an assignment) must return a value of type NAME (i.e., using the

^_ operator), and will be checked for such before being used in an

assignment; NRETURN, required by the interpreter for such a case,

is unnecessary in FASBOL.

A DATAQ primitive function call also gives rise to a function

definition for the datatype name, fully compatible with redefinition

by other function-defining primitives. When a function has been

most recently defined by DATAQ, however, a function call of it

during execution transfers to a library routine which builds the

appropriate datatype out of any arguments supplied (null if not

supplied) and returns it as the function result. Field references,

although identical in appearance to function calls, are compiled in

a special way which causes the execution of a library routine to

provide a pointer to the field within the datatype (provided as an

argument to the field reference)• This routine must also assure

that the field is appropriate to the datatype provided and/or

provide one of a set of field positions in the case of a field name

used in more than one datatype. The compiled code converts the

field pointer to a NAME descriptor, if a variable is required (i.e.,

field on left side of assignment), or fetches the value pointed to.

3.7 Free Storage Operation and Usage

The run-time system employs a set of conventions which enable
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the executing program to acquire storage for a value dynamically,

retain the storage block as long as it is needed, and have it

released for re-use or merged with a contiguous block when no

longer needed. Traditionally, there have been two basic approaches

to this dynamic storage allocation problem (see Knuth[9]), the

first referred to here as "Garbage Collection" and the second as

"Use Count". In the garbage collection scheme, the available

storage is continuously depleted, irrespective of the fact that

previously acquired blocks become available for a re-use, until

only a small amount remains; at this point a "Garbage Collection"

takes place wherein all the active blocks in storage are marked,

and then all remaining storage is made available for re-use.

Besides some inherent problems involving storage fragmentation and

garbage collection stack depth, which will not be discussed here,

the reason this scheme is not used by FASBOL is that it requires

global knowledge, at execution time, of the location of every

variable that might contain a value residing in free storage. One

advantage of the garbage collection scheme is that, until a col

lection is required, the overhead for using the scheme is low.

The "Use Count" method, in contrast, constantly monitors the

availability of storage blocks by maintaining a use count for each

block, which depends on the number of places it is currently being

used in the program. When the use count goes to zero, it is again

made available to hold new values, or merged with a contiguous

block to form a larger available block. This general method is

used by FASBOL, but there are some significant differences in de

tail, of an original nature, which make a considerable difference
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in the efficiency of operation and overhead consumed by the free

storage mechanism.

To begin with, the compiler permits a QUICKSTORE option for

eliminating virtually all free storage overhead in programs that

do not expect to consume all available storage (equivalent to the

case, using the garbage collection scheme, where no collection ever

takes place). Of course, no recovering is possible should there

be an overflow, but the point is that if there is an overflow,

there would also have been a garbage collection,putting the over

head again on a par with the modified "Use Count" system described

next.

At least two key factors enter into the amount of overhead

required by a use count system; the first is the method by which

available storage is monitored and recombined, and the second is

the method by which the actual "Use Count" mechanism of determing

the availability of a block is implemented. These factors are

covered in the following two sections.

3.7.1 Modified Buddy System Algorithms

The method for dispensing storage used by FASBOL involves

two separate mechanisms, suggested in part by the separation of

unused storage into two noncontiguous areas by the 1108 EXEC II

operating system, and illustrated in Figure 1. The area in

Bank 1 is allocated as "non-returnable" storage, which means that

when a block is requested from this area, there is no expectation

of it being returned. A pointer is maintained to the next avail

able location; after a request for a block of size N, the pointer
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is incremented by N. This is a suitable way of acquiring blocks

for stacks, function storage, etc., which in fact are never re

turned. The area in Bank 2 is allocated as "Returnable", using

a modified version of the "Buddy System"[10]; this system, orig

inally used by the L (L-six) language, has a distinct advantage

in speed of operation over other system, with a small disadvan

tage in space utilization. It eliminates any possibility of long

searches down a list of available blocks for one of the right size,

and it assures quick and optimal coalescing of contiguous blocks.

However, blocks are required to be of size 2 , so that some space

K—1 K
is wasted whenever a block of size between 2 and 2 is requested.

The method described by Knuth is to maintain a separate list of

available blocks of each size 2 , 0 < K < M. The available memory

M
for allocation consists of 2 words; starting at a location which

M K
is a multiple of 2 .When a block of 2 words is desired, and none

of this size are available, a larger available block(initially

M
2 ) is split into two equal parts; ultimately, a block of the right

size 2 will appear. When one block splits into two, these two

blocks are called buddies. If at some later time both buddies

are available, they merge back into a single block of twice their

size, and the process can then repeat itself. The important thing

to note is that given the address of a block and its size, the

address of its buddy can be easily computed as the exclusive-or

K
of the two, since the address of a block size 2 is a multiple of

2 • A tag field is employed to indicate when a block is in use

and when it is available, and available blocks are linked together,
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by forward and backward links of a doubly linked list, to the

appropriate list head for the given size. In FASBOL, the initially

available storage is not a power of two, nor does it start on such

a convenient boundary; furthermore, the free storage system, which

uses the Bank 2 area for returnable storage initially, will convert

the remainder of the Bank 1 area to the buddy system if the for

mer overflows. Therefore, the FASBOL free storage system uses an

additional algorithm to prepare any arbitrary area for use by the

buddy system, which is modified to cope with the possibility that

not all buddies of blocks within the area are also within the area.

Furthermore, the buddy system liberation algorithm (for returning

a block), as described by Knuth, has a serious deficiency in that

it will only work if blocks are released in the reverse order from

that in which they were acquired. It turns out that available

blocks must also carry information as to their size, since a Start-

ing location for a block of size 2 can also be the start of any

smaller block, and when a block is released and its buddy computed,

it is not sufficient to know only if it is available but whether,

if available, the "Buddy" is also of the same size. The L paper[10]

does mention this parameter.

Three algorithms used by the FASBOL free storage system are

given below, corresponding to initializing an area of storage for

use, acquiring a block, and returning a block. The free storage

system maintains an array of entries AVAIL(1) through AVAIL(M) which

serve as heads of the list of available blocks for the correspond

ing power of two. The fields LINKF and LINKB of these entries, and
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of the first word of an unused block, are the forward and back

ward chain pointers for the lists. Defining LOC(A) to be the

address of item A, an empty list for size K is indicated by

LINKF(AVAIL(K)) - LINKB (AVAIL (K)) - LOC(AVAIL(K)). The field

TAG of a block is 1 if the block is in use and 0 otherwise; the

field SIZE of a block is the size (1 to M) of the block. KMAX is

the largest block size in use by the system (largest found during

any initialization). In the acquisition algorithm given below,

when TK exceeds the release block size, the release flag is set.

Initialization Algorithm

Let UB,LB be the upper and lower bounds of the storage area

to be initialized.

Let SADR - BLKS » 2M , K* M

LI (Find window in storage)

If K • 0 , OVERFLOW (no space available)

If SADR > LB, go to L2

BLKS «- BLKS/2 ; K •*• K - 1 ; SADR «- SADR + BLKS

Go to LI

L2 If SADR < UB , go to L3

BLKS «- BLKS/2 ; K «- K - 1 ; SADR +• SADR - BLKS

Go to LI

L3 KMAX + MAX(KMAX,K)

SAVE SADR,BLKS,K

L4 (Staircase UP)

If K - 0, go to L5

If SADR + BLKS < UB, BEGIN



Call ADD(SADR,K) ; SADR -*• SADR + BLKS END

BLKS •*• BLKS/2 ; K «- K - 1

Go to L4

L5 RESTORE SADR,BLKS,K

L6 (Staircase DOWN)

If K » 0, FINISHED

If SADR - BLKS > LB , BEGIN SADR «- SADR - BLKS

Call ADD(SADR,K) END

BLKS «- BLKS/2 ; K <• K - 1

Go to L6

ADD Subroutine

ADD(SADR,K) ADD BLOCK to AVAIL list

LINKF(SADR) «• LINKF(AVAIL(K))

LINKB(SADR) «- L0C(AVAIL(K))

TAG(SADR) + 0

SIZE(SADR) + K

LINKB(LINKF(SADR)) «- LOC(SADR)

LINKF(AVAIL(K)) «- LOC(SADR)

RETURN

Acquisition Algorithm
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k-1
Let K « power of 2 such that 2 < required block size

< 2K

TK <• K

LI (Search for available block)

If TK > KMAX , OVERFLOW

SADR * LINKF(AVAIL(TK))



If SADR + LOC(AVAIL(TK)) , go to L2

TK •*- TK + 1

Go to LI

L2 LINKF(AVAIL(TK)) «- LINKF(SADR)

LINKB(LINKF(SADR)) «- L0C(AVAIL(TK))

L3 (Look for right size)

If TK ^ K , BEGIN TK «- TK• - 1 ; go to L4 END

TAG(SADR) «- 1

SIZE (SADR) «- TK

FINISHED (with address of acquired block in SADR)

L4 (Split Block)

TK
TADR «- LOC(SADR) - 2

CALL ADD(TADR,TK)

Go to L3

Return Algorithm

Let SADR • LOC of block being returned

Let BOUNDS - {(LB1,UB1) , (LB2,UB2), ..., (LBN,UBN)}

i.p..,the set of N areas allocated to the Buddy System.
(merge loop)

LI K + SIZE(SADR)

If K - KMAX , go to L5

TADR «- X0R(SADR,2K)

I * 1

L2 (Bounds Loop)

(LB,UB) «- BOUNDS(I)

If LB < TADR < UB , go to L4

70
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L3 If I - N , go to L5

I + I + l

Go to L2

L4 If TAG(TADR) « 1 , go to L5

If SIZE(TADR) j K , go to L5

If TADR < SADR , SADR «- TADR

LINKB(LINKF(TADR)) «- LINKB(TADR)

LINKF(LINKB(TADR) «- LINKF(TADR)

K «- K + 1

Go to LI

L5 CALL ADD(SADR,K)

FINISHED

3.7.2 Use Count Algorithm

The algorithms given in the previous section are part of a

larger mechanism which provides for the creation, maintenance, and

release of values requiring dynamic storage. Each free storage

block that is in use has a use count field and an RS flag field,

the former being an indicator of its required existence and the

latter an indicator of whether the block (descriptor) is on RS

(0 if not on, 1 if on the release stack). The general philosophy

is to increase the use count of a block when the value it repre

sents is used in a new place in the program, such as being assigned

to a variable. When a value is replaced by another or discarded,

the use count is decremented; what actually happens is that if it

is not on RS already, it is put on RS, and otherwise the use count
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is decremented, since being on RS is equivalent to one less use.

A series of policies is now described which together form an algor

ithm for both minimizing the manipulation of use counts and effect

ing an automatic and efficient return of unused blocks (to the

third algorithm of the previous section). Since a block is not

actually merged back into free storage until the release stack is

purged, this algorithm has the effect of concentrating most of the

overhead into a series of pseudo-garbage collections; by delaying

the re-merging of buddys, the situations where the same block(s)

are repeatedly broken apart and then merged back together are

minimized.

(a) Any storage value that results from the evaluation of

any part of an expression does not have its use count incremented.

For example, when the value of a variable is used, it is simply

loaded into the accumulator. Even though it represents a fresh

use of the value, the use is considered an intermediate result.

(b) When a library routine is forced to acquire a free stor

age block to hold some newly created value, such as the result of

a concatenation, the block is given a use count of 1 but is also

put on RS, thus having an effective use count of 0.

(c; When a new value is assigned to a variable,the use count

of the old value is decremented and the use count of the net* var

iable is incremented. This applies not only to explicit assign

ments, but to any situation where a new value replaces an old one,

such as in elements of arrays or fields of datatypes, active input

associations, etc. In some cases, there are no old values to be
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replaced, such as in the creation of a new instance of a pro

grammer-defined datatype.

Cd; At each function level, there is a segment of RS which

contains the accumulation of blocks that were either created or

had their use count decremented at that level (and were not already

on RS for some previous higher level). If, upon entering a new

statement, the release flag is found set, the free storage pack

age is called to release all the blocks on RS for the current

level. This goes as follows:

1. If RS current = RSP , FINISHED.

2. POP a block off RS and decrement the use count

field. If not 0, go to 1.

3. If the block corresponds to an array, data or

pattern value, put each element value on RS (or decrement its

use count if already there). What this means is that when a

complete item such as an array ceases to be used, there is one

less use for each of its elements.

4. Exercise the return algorithm on the block and go

to 1.

(e) The above policies prevent the extra incrementation and

subsequent decrementation of intermediate values and provide for

the automatic release of unused created values. Because of the

tenuous existence of intermediate values, however, an additional

policy is required for the execution of programmer-defined function

calls, called "vanishment insurance". For example, suppose variable

"X" has a string value, and X is the only place where this string



74

is currently used, giving it an effective use count of 1. Further

more, the string value has not been put on RS for any reason, and

X is used in an expression where it is an element of a concatena

tion. Another, subsequent element of the concatenation is a

function call, and within that function X is assigned a new

value. This will cause its previous string value to have an

effective use count of 0, so that if a release is also triggered

inside the function, the storage used by the string will be re

claimed by the free storage package and re-used, despite the fact

that it is still needed by the expression where the function is

called. Indeed, the descriptor for the string is on ES, but the

descriptor points to an area that may contain something completely

different. To prevent, in general, the release of values still

in use at a higher function level, the library function which

performs programmer-defined function call entries, after unstack-

ing the function's actual arguments, does a vanishment insurance

on every value which is on ES between the current value and ESP.

This insurance consists of putting all values which are not on

RS onto RS and also incrementing their use count, values already

on RS are unaffected. Although not changing the effective use count

of any value, this policy insures that the values cannot go onto

RS (and be returned to free storage) at some deeper function level.

Eventually, a release triggered at the level of the function call

will take the value off RS. This always occurs between statements,

and in particular after the value has been used in the concatena

tion, etc., so that if its use count goes to zero, it can be returned

without any problem.
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3.8 Patterns and Unevaluated Expressions

Perhaps the most novel idea in FASBOL is the way in which

patterns are treated. Interpreters and semi-interpreters evaluate

patterns as intermediate-language data structures, and perform

pattern matches by executing a generalized routing which uses the

intermediate data structure as a template to compare against the

subject string. FASBOL compiles each explicit pattern into two

logically separate sections of code, which are generated side-by-

side under separate location counters. The first section corresp

onds to the evaluation of the pattern, and the second is a re-entrant

subroutine corresponding to the execution, during a pattern match,

of an instance of the pattern. Associated with each instance of

a pattern is a data block, consisting of a pointer to the pattern

subroutine and the values, if any, of its elements. During pattern

evaluation, any element of the pattern that has a non-literal value

(such as a variable) is evaluated and its value saved in the data

block. No evaluation is required for the actual structure of the

pattern, which consists of the arrangement and use of concatenations,

alternations, immediate and conditional value assignments, cursor

position assignments, unevaluated expressions, primitive pattern

variables and primitive pattern functions. When the pattern routine

is executed during a pattern match, it uses any values that are

in the data block as parameters for the match. For example, the

pattern element ANY('0123456789') requires no code for the evalua

tion phase (since it has a literal argument), and generates the

following code for pattern matching: Load break table; call 'ANY'

library routine; jump to failpoint. A break table is a bit table
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specifying a set of characters (in this case the digits 0-9) which

is used by ANY to see if the next character in the subject is a

member of the class, and it will skip over the failpoint jump in

the code if it is successful.On the other hand, the pattern ele

ment STRVAL(X) generates code for the evaluation phase that loads

the value of X and stores it in the data block; the match phase

code loads the value from the data block and calls the string match

routine to compare the value with the subject.

The illustration in Figure 2a. is an abstract symbol for re

presenting the external characteristic of any pattern, either simple

or complex. "START" is the entry into the pattern, "SUCCEED" is

the exit after a successful match, "FAIL" is the exit after an

unsuccessful match, and "RESTART" is the entry at which the pattern

can be restarted after an initially successful match. The actual

code generated for the pattern match execution follows the conven

tions of Figure 2b. "START" and "SUCCEED" are accomplished by enter

ing and leaving the code sequentially, while "FAIL" is a jump out

of the immediate pattern code to the fail point (dictated by the

structure surrounding the pattern) of the immediate pattern. "RESTART",

for patterns with alternatives (implicit or explicit), is a label

on a line of code inside the pattern which, when executed, will

restart the pattern match on a new alternative of the immediate

pattern. If a pattern has no alternatives, "RESTART" is equated

to "FAIL"; thus any number of patterns can be made transparent to

backup, a restart going directly to the last pattern with alterna

tives. Figures 3 and 4 should help clarify some of the above ideas;
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Abstract Symbol for a Pattern
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Fail
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Fail
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Physical Appearance of a Pattern
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Figure 3 is a symbolic representation of the pattern structure

corresponding to the concatenation of three other patterns, and
i

Figure 4 gives both a symbolic and a functional description of the

alternation of three patterns. A pattern structure can be thus

recursively described, from the outermost structure of a pattern

assignment or match, down to the individual elements which are

not structurally composed of others.

Pattern match execution involves two stacks, ES and AS, which

operate in orthogonal fashion to each other. ES gets deeper (more

items on the stack) as the match progresses successfully along

the subject string, and is deepest upon successful completion of

the match. It is used to save items which are required if and when

the match backs up upon failure and must restart its last alterna

tive. Such items are, for instance, the position of the cursor

at each point in the subject where several alternatives could be

matched, and the next restart point of a group of alternatives

(see Figure 4). AS get deeper with nesting of patterns within con

ditional or immediate value assignments and/or re-entrant calls

to other patterns compiled elsewhere; AS will be at its initial

position upon successful match completion, and is used to hold

return links and data block pointers when pattern subroutines are

called, as well as initial cursor positions for immediate and con

ditional value assignments,ARBNO() parameters, etc. A third stack,

stack, CV, is used to hold parameters for conditional value assign

ments; although it operates in general synchronism with ES, it

provides a more convenient way to access any conditional value
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parameters upon successful match completion, instead of having

to unstack ES looking for them. Figures 5 and 6 provide additional

illustrations of how the stacks are used, in this case by primi

tives. Note the evaluation phase in Figure 6, due to a non-literal

argument in SPAN.

The evaluation phase of a pattern assignment statement is

executed as follows:

1. Evaluate the variable and save it in AP.

2. Call the fGET PATTERN BLOCK* library routine which:

(a) acquires and zeros a data block from free storage

(b) Stores in it a pointer to the pattern match routine

(c) Pushes the data block (pattern descriptor) onto ES

and stores it in DT.

3. Evaluate each element of the pattern that requires evalua

tion, increment the use count of the resulting value, and store it

in the data block.

4. Pop the pattern descriptor off ES and perform the assign

ment (just like other types of assignments).

The execution of a pattern assignment generates an instance

of the pattern, represented by the data block, for specific values

of the elements at the time of assignment. Like any other storage

value, that particular instance of the pattern lasts as long as it

is used in at least one place, i.e., as the value of a variable or

as part of some other larger, evaluated pattern. When a pattern

descriptor is no longer used and returned to free storage, the use

counts of all of its evaluated elements are decremented. Repeated
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Figure 5 ARB Pattern
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executions of a pattern assignment generate fresh instances of

the pattern.

The pattern match code generated for the assignment state

ment consists of the structural code described previously with

the following additional conventions. The failpoint of the

entire pattern subroutine is the pattern fail library entry, and

a jump to the pattern succeed library entry immediately follows

the pattern match code to provide for a success exit; these two

entries are analogous to FRETURN and RETURN. In addition, immed

iately preceding the pattern match code is a jump to its restart

point (which may be the pattern fail library entry, if the pattern

has no implicit or explicit alternatives). It is this first stor

age location (jump to restart) that is pointed to by the data

block for the pattern. When a pattern match is executed which

uses an instance Of the pattern (i.e., if a variable to which it

is assigned appears as part of some other pattern expression), the

following sequence occurs:

1. The other pattern sets RST to 0 if it wishes to start

the inner pattern or 1 if it wishes to restart it. Pattern

routines always have possible restarts, since the outer pattern

has no knowledge of their nature.

2. The pattern execute library routine is called to enter

the pattern subroutine; it is analogous to the function call entry

routine. This routine pushes DT and the return link to the outer

pattern onto AS, sets DT to the new (subroutine) data block, and

jumps to either the first or second location of the subroutine
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for restart or start, respectively.

3. The pattern routine executes, possibly calling other

pattern routines, until failure or success transfer control back

to the fail/succeed pattern library entries.

4. These entries set FLF to 1 or 0, respectively, pop DT

and the return link off AS, reset DT to its previous value, and

jump to the first or second location after the pattern execute

call in the outer pattern, signifying, respectively, failure or

success of the pattern subroutine.

The evaluation phase of a pattern match statement is execu

ted as follows:

1. Evaluate the subject string and push it onto ES.

2. Call the 'GET MATCH BLOCK1 library routine which:

(a) Loads DT with a data block pointer which it

acquires for a data block pool for the statement,

or from free storage.

(b) Saves a pointer to the block pool pointer

in an internal location for possible use by the

unevaluated expression routines. The block pool

pointer points at the current block being used at

a chain of any other previously used blocks (see

unevaluated expressions).

3. Evaluate each element of the pattern that requires eval

uation, but do not increment the use count before storing in the

data block.
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After the evaluation phase, execution passes to the match

pattern library routine, which:

1. Pops the subject off ES, makes sure it is a string, makes

sure it won't vanish, and pushes it back onto ES.

2. Initializes SJ and the cursor (CC, CW, RC).

3. Pushes the return link to the program (following match

execution) and the current value of ES onto SS.

4. Transfers control to the first location of the pattern

match execution, which is pointed to by the data block.

The pattern match code generated for the match statement has

as its failpoint the failed match library entry, and jumps to the

succeeded match library entry on success. Its first location is

its start point, and any restart point is ignored, since the

outermost pattern of a match is never restarted.

The failed match entry jumps to the abort match library entry

if:

(a) &ANCHOR is nonzero, or

(b) There are no more initial positions for the subject

(unanchored mode has run out of characters), or

(c) &FULLSCAN is zero and the CHARFAIL indicator is on (not

enough subject for pattern).

Otherwise, CHARFAIL is reset, the initial position and the

cursor are incremented, and the pattern match code is started

again (NOT restarted).

The aborted match entry, which is also called if there is an

abort anywhere within a pattern match (including pattern subroutines),
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pops ES and the return link off SS, resets ES to its previous

value (and Ignores the link), restores AS and CV from ASP and

CVP, and jumps to the failpoint routine (which will cause the

statement to fail).

The succeeded match entry computes and stores the final

position does any conditional value assignments using CV and CVP_,

restores AS and CV from ASP and CVP, pops ES and the return link

off SS, resets ES to its previous value, and returns to the code

immediately following the match pattern (library) call, which is

the successful exit from the statement.

A replacement statement executes similarly to a match state

ment, except that the name descriptor for the variable (subject)

is pushed onto ES first, before the subject itself. Upon return

from the succeeded match routine, SJ is pushed onto ES, the object

field is evaluated, and the replace library entry is called, which

1. Pops SJ and the subject off ES.

2. Creates a string formed from the replacement by the

object, of the substring between initial and final positions of

the match in the subject string.

3. Assigns the replaced string to the variable (popped off

ES).

Unevaluated expressions are handled using the simple device

of compiling them under the location counter for the pattern match

code rather than the one for the pattern evaluation code, thus

deferring the evaluation until the pattern match execution reaches

that point. If the expression cannot fail, no extra code is
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generated (in fact, no code is needed to load and store values

in the data block). If the expression may fail, the code is pre

ceded by a call on the unevaluated expression begin library entry,

giving as parameters the failpoint of the unevaluated expression

and a flag indicating if there are any programmer-defined function

calls within the expression. The code is followed by a call on the

unevaluated expression end library (which gets executed in

the case that the unevaluated expression succeeds),and, at the

location previously designated as the unevaluated expression fail

point, a call on the unevaluated expression fail library entry.

The parameters passed to the latter two entries are the previously

mentioned function call flag, and the pattern failpoint for the

expression.

If the function flag is not on, the unevaluated expression

start entry just pushes ESP and FE onto SS, resets ESP to the

current value of ES, and loads FE with the unevaluated expression

failpoint. Upon success or failure of the unevaluated expression,

the process is reversed and control is passed to the next

location in sequence or to the failpoint specified by the pattern

structure. If a programmer-defined function is called within the

unevaluated expression, more parameters must be saved (and restored),

since another pattern match may be initiated within the function.

In particular, ASP, CVP, SJ, and the cursor are pushed onto SS,

and ASP and CVP updated to the current values of AS and CV.

Furthermore, the possibility exists that during the function

execution control may pass through the controlling match for the

unevaluated expression (the unevaluated expression may be

•£,.
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in the same statement as the match, or in some pattern subroutine).

If this happens, a new data block for the controlling match will

be acquired from the pool (or free storage),so that pointer to

the current block pool pointer and its corresponding current data

block pointer must be pushed onto SS, and the block pool pointer

updated to no longer point to the current data block. Also, the

element values, if any, in the current data block for the con

trolling match must have vanishment insurance performed on them,

since their use count was not initially incremented. This entire

method of dealing with unevaluated function calls allows all other

pattern matches that do not use this feature to run with a minimum

of stack and use count manipulation, and only penalizing those

which do use the feature.

3.9 Other Run-Time Features

3.9.1 FORTRAN Interfaces

When calling FORTRAN from FASBOL, each external FORTRAN pro

gram is typed as integer or real; each argument in the call must be

a dedicated .integer or real expression, a string variable,or

a string literal. A standard calling sequence is compiled, with

the result expected in the system accumulator register on return.

Strings may be considered by the FORTRAN program as arrays with

characters packed six to a word. If an external FORTRAN function

is declared 'OPEN' (i.e., capable of calling other FASBOL programs),

the calling sequence is preceded by a library function call which

saves the non-volatile registers used by the FASBOL run-time, and,

is followed by a library call to restore them. In this way any
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FASBOL programs called by the FORTRAN program can resume normal

operation and reflect back changes in global parameters.

FASBOL can only be called from FORTRAN after passing through

at least one level of FASBOL programs (MAIN must be FASBOL). The

FORTRAN entry declaration serves to externalize the function entry,

type the function variable as integer or real, type each formal

argument as integer, real, or string (with max string size for the

latter), and provide a starting label and return label for the

function definition. The formal arguments are copied from their

counterparts in the FORTRAN calling sequence (with the max string

size copied for strings) on entry into FASBOL, and then copied back

(possibly modified) on return to FORTRAN, with the function var

iable value left in the system accumulator register. In addition,

on entry all the non-volatile registers affected by FASBOL are

saved (this may be in use by FORTRAN), the previous FASBOL value

of these registers are restored, and the parameters associated with

the FASBOL statement which originally called the FORTRAN program

(STNO, PP, LINK, TMH, RSP, ESP, FE, AP, DT) are saved; the process

is reversed on exit back to FORTRAN.

3.9.2 Symbol Table

The run-time symbol table contains entries for variables,

labels, and functions. It is implemented as a chained hash table

[11], with the number of buckets (and hash bit width) capable of

being set by a compiler option ("HASHSIZE « N "); the default is N=6

(64 buckets). The hash scheme multiplies the first word of the

symbol string by the last, and extracts a key of the appropriate
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bit width from the "Normalized" (compensating for zero fill of

the last word) middle of the product. The chain from each bucket

is ordered in increasing symbol size; each entry on the chain

consists of a link word, the symbol string descriptor, and a

NAME descriptor for the variable label, or function. The link word

contains a pointer to the next link and a character count and type

field which permits a rapid search down the list, with string

comparisons only necessary when (and if) an entry with the same

character count and type is found. A search stops whenever an

entry with a larger character count is encountered.

The symbol table routine operates In two modes; initaliza-

tion and indirection. The initialization mode is for entering items

declared to be 'INDIRECT1, where both a string descriptor and name

descriptor are provided and new entries created. The indirect

mode is for all other symbol table references; a string descriptor

and partial name descriptor are provided, the partial name descrip

tor indicating the type (VAR, LAB, FUN) desired, and possibly,for

variables, and I/O association flag. A search is made for the

symbol/type combination,and if found, the partial name descriptor

and full name descriptor from the symbol entry are "OR"ed together,

stored back in the entry, and provided as the result of the indir

ection. If the symbol is not found, a new entry is created; and

a new name produced for the created entity. In the case of a

created variable, an additional storage location is acquired and

initialized to null; in the case of a function, an additional stor

age location is acquired and initialized to jump to the undefined
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function error exit; and in the case of a label, the name points

to the undefined label error exit.

3.9.3 Input and Output

I/O is done through I/O associations of variables (including

created variables that are array elements) in the program. When

ever evaluating by value (as opposed to by name) an identifier

(flagged by the compiler at having a possible input association) ,

indirect reference, or array reference, a library routine is

called which searches an input association table for that variable

and performs the input if it finds it there. Whenever a program

assignment is made via ^, j$, j_f J|, or formal argument binding,the

name descriptor of the variable is checked for an output associa

tion possible flag. If it is on, the output association table

is checked, and if the variable has a current association, its

value is output.

I/O associations are made using the primitives INPUT and

OUTPUT, which have three arguments: variable name,unit number , and

association length. If the first argument is a literal string,

the compiler generates the corresponding name descriptor for the

variable; otherwise, the argument is evaluated and an indirect

reference to get its name from the symbol table is performed. The

unit no. refers to the standard FORTRAN logical unit designations

as defined by the system or user FORTRAN unit table. The asso

ciation length is the string length that FASBOL uses as its logical

record length for a given association. On input, the association

length must be no greater than the physical record length, and
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provides a truncated record if it is less; one physical record

is always read, and any excess record size is lost. On output,

the following rules apply, where SL « string length, AL « assoc

iation length, and RL - record length: AL > RL is an error;

AL < RL causes blank fill to the full RL; SL < AL causes blank

fill to the full AL; SL > AL causes multiple records of length

AL with the last blank filled to AL.

The variables INPUT, OUTPUT, and PUNCH have predefined initial

associations corresponding to INPUT('INPUT', 5, 80), OUTPUT('OUTPUT',

6, 132), and 0UTPUT('PUNCH', 7,80) for the card reader, printer,

and punch, respectively. I/O associations can be dynamically

changed by using the input and output primitives, and discontinued

by using the DETACH primitive. Additional I/O operations are pro

vided by ENDFILE, REWIND, and BACKSPACE for any unit capable of

such an operation, and EJECT for ejecting to top of page on the

printer. The physical devices provided for in the I/O library

routine are: CARD READER, PRINTER,PUNCH, CONSOLE KEYBOARD, TAPE,

and DRUM.

Tape and drum operations are buffered to N levels on output

and double-buffered (one record look-ahead) on input. The number

of output buffer levels is a function of the record length, since

the total amount of storage used for output buffering by any device

is a program-controlled constant. All buffers come from a common

buffer pool and are originally acquired from free storage as they

are needed. The buffering scheme uses the device end-action

interrupts to permit concurrent execution of the program and I/O
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operations. Input look-ahead can be disabled with the "NO-LOOK-

AHEAD" compiler option; this is only necessary if a FORTRAN sub

routine is also performing I/O concurrently on the same logical

unit.

3.9.4 Primitives

Primitives are recognized by the compiler and not treated like

programmer-defined functions. This has only one disadvantage (no

re-definition of primitives), and many advantages. Since the com

piler knows how many arguments each primitive should have, it can

compile extra null arguments; the number of actual arguments is not

passed to the primitive, and it does not have to check the actual

number against the expected number. The compiler knows that no

primitives cause recursion, which primitives have null values, and

which primitives may fail, permitting a certain amount of optimiza

tion of the generated code. Certain primitives are treated in a

special way, and in some cases are compiled as in-line code. Pat

tern primitives are incorporated into pattern structures, only some

times calling library routines. Integer-argument integer predicates,

integer-argument integer functions, and IDENT and DIFFER with only

one argument a*e compiled as in-line code. DEFINE, DATA, ITEM, and

APPLY have their arguments treated in special ways, as do OPSYN,

DETACH, INPUT, and OUTPUT, in the latter four cases^because a name

descriptor is what is really needed for some arguments, even though

the actual argument is usually a string. Finally, REPLACE and the

character-class pattern primitives(SPAN, NSPAN, BREAK, BREAKX, ANY,

NOTANY) make use of a special run-time optimization technique: some
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times a special table must be built, using one or more arguments,

before performing the actual operation specified by the primitive;

instead of building the table each time the primitive is called,

it checks to see if the arguments provided are the same as in the

last instance of the call, and if so,it uses the old table. The

old arguments and table require program storage in each place the

primitive is called, and this must be generated by the compiler.
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CHAPTER 4

The FASBOL Compiler

4.1 Structure

The FASBOL compiler is a one-pass translator which accepts

statements in FASBOL and produces symbolic assembly-language out

put. The assembler is automatically invoked upon completion of

compilation. The compiler operates as a system processor like

the FORTRAN compiler and the assembler, with the same capability

for file manipulation and updating. The compiler is written in

FASBOL, with a few assembly-language subroutines. There are

several reasons for writing it in FASBOL rather than, say, assembly

language. One is speed of implementation; the chief contribution

of FASBOL is in the speed of execution of the compiler programs, and

the time required to write and get the compiler running was mini

mal (about 1 month to write, 1 1/2 months to hand-compile the first

version, and 1 week to debug, mostly hand-compilation errors).

Another reason is the general ease with which compiler errors can

be fixed, and new versions and/or extensions implemented (for

example, making FASBOL compatible with version 3 of SN0B0L4, a de

velopment that occurred too late to be included in the first version

of FASBOL). A third reason was to illustrate the power of FASBOL

for compiler-writing and other similar applications, and its ability

to compile large programs (one phase contains over 1600 lines and

over 1,000 statements, takes 45 seconds to compile, and generates

over 13,000 machine instructions and data words).
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The compiler is structured in storage as illustrated in

Figure 7, where the main program, FASBOL, remains loaded through

out the compilation and the five phases are successfully (and

automatically) loaded on top of each other as the compilation

proceeds , starting with OPENSR. The main program initializes

global parameters, controls the sequence of the phases, and

contains the functions used by more than one phase, such as the "Get

Next Statement" function. OPENSR provides the standard processor

input editing capability of inserting, deleting, or replacing

lines in the source code, and of creating an updated source ele

ment with the same or different name. DECLPH processes the de

clarations, which are required to preceed all executable state

ments. PROCPH processes the executable statements up to the

"End" statement. EACTPH generates program storage and constants

and CROSPH, which is optional,is called if the program specified

a cross-reference dictionary listing. The main program invokes

the assembler upon the symbolic output element (unless -NOASM has

been specified).

The remaining sections discuss the compiler symbol table

arrangement, and each of the phases(except OPENSR, which is a

standard system program).

4.2 Symbol Table

The FASBOL compiler makes full use of the run-time symbol table

to hold an entry for each symbol encountered in the course of com

pilation. This would be more difficult to do with the interpreter

because of possible conflicts between program symbols and compilation



98

FASBOL

EACTPH
CROSPH

DECLPH

OPENSR

PROCPH

SPACE

TIME

Figure 7

Space-Time Map of FASBOL Compiler
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symbols, but the FASBOL compiler does not use any indirected

natural variables and so the problem does not arise; indirected

labels, which are used inside the compiler, are treated as sep

arate entities by the symbol table library routine.

When a new symbol is encountered by the compiler, a "SYM"

datatype (described below) is assigned to the created variable

in the run-time symbol table. Symbols already entered are detected by

a non-null value for their corresponding created variable. All

the entries are chained together to provide access to ail defined

symbols at the end of compilation; in addition, symbols referenced

while cross-referencing is in effect (-CROSSREF) have a cross-

reference chain head ("CRS" datatype) inserted between them and

the next symbol on the symbol chain. The cross reference chain

consists of a series of "CRS" datatypes which contain the state

ment number and reference type for each reference.

The SYM datatype consists of six fields:

1. NEXT is the next SYM or CRS datatype on the chain.

2. NAME is the string corresponding to the symbol.

3. ATRB is an integer containing the attributes of the

symbol usage, compressed into 36 bits.

4. INAM is a string representation of a unique number

corresponding to the symbol.

5. XNAM (optional) is a string corresponding to the external

name of a label variable or function for the symbol, if

it has been so declared. Only one of the three can be

external.



100

6. CHNS (optional) chain head for field or datatype chain,

or TYPE*8 + number of args for primitive functions.

Any symbol may represent several different types of uses.

For instance, the symbol "ABC" could be used as a variable and a

literal string. Some uses are mutually exclusive; for instance

no symbol can be both an integer constant and a variable (but it

can be a label). With the exception of variables, labels, or

functions with external names ("ENTRY" or "EXTERNAL" declarations),

the (internal) name associated with a particular type of reference

is generated by preceding the internal name number (INAM field)

with the appropriate letter for that type. Table 3 gives the

various types and the prefix and cross-reference code associated

with each.

Typ* Prefix X-Ref Code

LABEL L 0

VARIABLE V 1

FUNCTION/FIELD F 2

DATATYPE D 2

STRING LITERAL S 4

INTEGER LITERAL I 5

REAL LITERAL R 5

BREAK TABLE B 7

VARIABLE NAME N 3

NUMERICAL DESCRIPTOR K 6

Table 3

Symbol Types

the symbol chain is traversed in EACTPH, the

of each symbol determine the data code that is generated for it.
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4.3 Declaration Phase

The declaration phase reads in statements until it reaches

one that is not a DECLARE or OPTION pseudofunction call. For each

declaration, it recognizes the type and branches to the section

which handles that type. Symbols are entered, attributes set, and

control passed back to the main loop. In the case of "ENTRY.FUNCTION"

and "ENTRY.FORTRAN.FUNCTION", the entry code is generated. Options

ar.a treated similarly, and set flags within the compiler. Before

returning to the main program, the initialization code for the

compiled program is generated.

4.4 Executable Statement Phase

The executable statement phase reads in statements until it

reaches an END label. Each statement is separated into a label

field, a body, and a goto field. First the label, then the goto,

and finally the body is processed.

4.4.1 Labels and Gotos

Labels, if any, generate a corresponding label in the output

code. Goto fields are parsed and generate a goto code tree which

is saved. A code tree is a simple binary tree whose end branches

contain one or more lines of code. This is a more convenient and

efficient way of producing code for a complex expression than either

emitting the code as it is produced, or somehow concatenating it all

into one string. How these code trees are built and output is ex

plained in the next section,as well as the process by which gotos

which are not simple identifiers or indirect literals are handled.
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When a goto has been processed, the global fail point for the

statement is known, and it is empty if there is no goto.

4.4.2 Statement Bodys

A non-empty statement body is separated into its major compo

nents in order to determine whether it is a degenerate, assign

ment, match, or replacement statement; assignment and replacement

statements are detected by the appearance of an "Equals" sign, with

the replacement having a top-level concatenation before the equals

sign; Degenerate and match statements are similarly differentiated,

but without an equals sign. Code trees are generated for each of

the major components (VARIABLE, OBJECT, SUBJECT, PATTERN), and

joined as a new tree. After the entire body has been processed,

and a global fail created for statements that could fail but had

no goto field, the body code tree and the goto code tree are out

put by calling a routine that does a bottom-up, left-right walk

of each tree, emitting lines of code as they are encountered. The

code trees are generated by creating "NOD" datatypes with the FRNT

field and BACK field containing code or code trees which should be

output in that order. For example, a code tree for A * 2 + B might

be N0D(N0D("L0AD A", "MULT 2"), "ADD B") , where the "NOD"

function produces an instance of the "NOD" datatype with the two

arguments supplied for the FRNT and BACK fields.

Each major component of the expression (and complex gotos)

is first parsed to produce a text tree [12] which contains a

complete description of the operator structure, expression types
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(see below), and symbol table entries. Based upon the resultant

expression type, global optimization (i.e., deciding a statement

is dedicated) can be done, and appropriate code-generation functions

called to walk the text tree and produce the output tree.

4.4.3 Parsing

An expression is considered to have five possible types:

(a) Type 0 indicates arithmetic involving only

undedicated variables with no possible input

associations.

(b) Type 1 indicates integer arithmetic.

(c) Type 2 indicates real arithmetic.

(d) Type 3 indicates an expression that cannot

be dedicated.

(e) Type 4 indicates an explicit pattern expr.

There are three parsing routines: One parses expressions with

binary operators (including blanks for concatenation), and uses a

straightforward table-driven operator precedence scheme [13]; another,

called by the first, parses "Elements" (unary operations, variables,

literals, parenthesized expressions, function calls, array referen

ces); and a third parses parameter lists (which involves calling the

first again). The text tree is built from the bottom up, with each

combination of types yielding a result type. The text tree is

built with three types of nodes (datatypes) which are returned as

value by the parse routines; ELN(OPTY,SBJT,PVAL) for element nodes,

B0N(0PTY, LFTS, RGTS) for binary operator nodes, and PLN(NXTL,

PARP.PVAL) for parameter list nodes. The ELN datatype for an element

holds the type (0-4) and an indicator of the nature of the element
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in the OPTY field; the SBJT (subject) field holds a datatype appro

priate to the nature of the element, and the PVAL field the position

of the element in the statement (for any subsequent error messages).

For example, a dedicated integer identifier would be of type 1 and

have its SYM (symbol table entry) datatype in the SBJT field; a

parenthesized expression would have the BON or ELN for the expression

in the SBJT field and a type equal to that of the BON or ELN, and

a programmer-defined function call would be of type 3 arid have the

PLN for its name and parameter list in the SBJT field.

The BON datatype for a binary operation holds the resultant

type and operation in OPTY, the left side text tree in LFTS, and

the right side text tree in RGTS. The binary operation parsing

program builds the tree differently for operators that are left-

associative (+, -, *, /, ., $) and right associative (**, SPACE, !)

when it encounters more than one operator of the same precedence on

the same level; the chief use being to make it easier to generate

code for truly right-associative operations (like **) and for N-ary

operations such as concatenation and !. The resultant type for a

binary operation is extracted from a table, given its left and

right types (as it is for unary operations, given the right side

type).

A parameter list text tree consists of a chain of PLN data

types, the first for the function or array variable, and then one

for each parameter expression. PARP for the first holds the SYM

for the function/array variable, and PVAL holds the resultant type

(MAX) of the parameter types and the number of parameters; PARP
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for each parameter holds the BON/ELN for that expression.

Each parse routine generates a node composed of elementary

material or nodes passed to it by deeper parse routines. It

advances the parse pointer past the terminal(s) that it has re

cognized and passes the node back as value to whoever called it.

4.4.4 Code Generation

The code generation routines operate on the same principles

as suggested by Elson and Rake [12], but are not as general (or

as regular). They perform a top-down context-sensitive walk over

the text tree, and there are a large number (accounting for the

size of PROCPH) of routines, to suit different types of express

ions and/or optimizable cases. The code generated is highly machine-

dependent and will not be discussed here, but some aspects emerge

that are of general interest.

The simplest code-generation routine is called, given as argu

ment a node in the text tree, and expected to return a code tree

corresponding to that text. A further step is to pass information

down to it, either as an argument or a global variable, which

enables it to generate code based on some circumstance above it

in the text tree. For example, a global variable is initially set

to the statement failpoint, but set to the fail routine after ES-

pushing code has been generated, and reset back to the statement

failpoint after ES is considered unstacked. This global variable

is used by the routine which generates code for dedicated predicates

to produce a jump to either the statement failpoint or the fail

routine depending upon the state of ES due to expressions above the
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the predicate in the text tree. Another step still is to have

code-generating functions pass back not only the code tree, but

information about it. For instance, dedicated arithmetic routines

pass back information concerning the arithmetic result of the code

tree: location in storage or in a particular register, and whether

in true or complement form. Even information not immediately usable

can be passed back up the tree, such as the fact that some element

might fail, or recursion could take place.

4.5 End-Action Phase

The end-action phase generates the exit code for the compiled

program, and traverses the symbol list, generating any variable

storage or literals that are required. A variable, for instance,

generates one word labeled with the variable name (Vxxxxx), and

initialized to zero (null). If the name datatype of the variable

was also used in the program, a name datatype, labeled with the

name name (Nxxxxx) is also generated. All items that are "INDIRECT"

also generate a parameter word (under a separate location counter)

used by the run-time symbol table initialization routine to enter

th€ item (LAB,VAR,FUN) in the symbol table.

4.6 Crass-Reference Phase

This phase also traverses the symbol chain and orders the

symbols lexically into a binary tree. Then a routine walks the tree

in order and for each symbol, prints out the attributes of the

symbol and references to each type; the statement number where a
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label is defined, and where an undedicated variable is stored

into, for instance, is also given.
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APPENDIX I

FASBOL SYNTAX

Explanation of Syntax Notation

One problem with the usual syntax specification for SN0B0L4

(i.e., in the Bell Labs Manual, pp. 181-184), is that it is too

general and permits statements which are, semantically speaking,

patently illegal. The interpreter resolves these problems at

execution time, but the compiler must do so at compile time. The

following additions and modifications to the BNF notation are

intended to assist in more closely specifying the syntax that the

compiler will accept. Unfortunately, this will still be a super

set of the actual set, given a specific set of declarations.

I. Only underlined symbols represent terminal elements. If the

underlined symbol is nonalphabetical or uppercase, it stands for

itself. Underlined lower-case alphabetic strings stand for non-

printable terminals.

II. Braces, {}, denote a grouping of syntatic units and are used

instead of parentheses for the sake of clarity.

III. Square brackets, [], denote an optional appearance of the

enclosed syntatic unit.

IV. Three periods, ..., denote optional repetition of the im

mediately preceding syntatic element (i.e., it can be repeated

0,1, ..., N times).



109

V. The not sign, ~1, denotes the specific ruling out* of the

immediately following syntactic element.

VI. Non-terminal elements are represented by symbols consisting

of lower-case alphanumerics and periods.

VII. Syntactic units and elements are best described by the follow

ing:

syntactic.element ::= TERMINAL ELEMENT |

X syntactic.element _]_ |H syntactic.element |

syntactic.element JL!_^

syntactic.unit ::» syntactic.element | syntactic.element

spaces syntactic .unit | syntactic.element _L syntactic.unit

With the following precedence (highest to lowest)

4. H (unary) negation

3. JL1_L (unary) repetition

2. space (binary) concatenation

1. J. (binary) alternation

_} is used for notational convenience, as in excluding string
quotes from within their scope, or to eliminate structure leading
to ambiguous parses. An example of the latter occurs with the non
terminal field, which, though in appearance identical to a function-
call, Is treated by the compiler in a completely different fashion.
Without the H, there would always be at least two possible parses
for an expression containing the form A(B).
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Syntax for FASBOL

program ::= [option | declaration | comment]...[execute.body]

end.statement

option ::=* bl OPTION([bl] option.type [blD. eos

declaration ::» bl DECLARE([bl] declaration.type [bl]^ eos

comment ::= ^ [char]... eol |^_ [bl] control.type [bl] eol

execute.body ::= statement [statement]...

end.statement ::° END [bl label] eos

bl ::= blank [bl] | eol {+ | J [bl]

eos ::= [bl] {j_ | eol}

statement ::«= comment | [label.field] [statement.body] [goto.field]

eos

label.field ::- ~1 {END bl} label

goto.field ::« bl £ [bl] {goto |£ goto [bl] [F goto] |

F goto [bl] [S goto]}

goto ::* j(.[bl] {identifier |£ string.primary} [bl]^

statement.body ::» degenerate | assignment | match | replacement

degenerate ::= bl string.primary

assignment ::• bl variable equals bl {string.expression |

~I {string.primary [bl string.primary]...}

pattern.expression}

match ::« bl string.primary bl pattern.expression

replacement ::« bl variable bl pattern.expression equals

[bl string.expression]

equals ::•» bl •

variable ::» identifier | string.variable | procedure.call.form
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pattern,expression ::«= conjunction [bl J_ bl conjunction]...

conjunction ::« pattern.term [bl pattern.term]...

pattern, term ::» pattern,primary [{bl j_ bl |bl j$ bl}

pattern.variable]...

pattern.primary ::= pattern.primitive |j? pattern.variable |

[*_] string.primary |_( [bl] pattern.expression

[bill

pattern.variable ::=» [jy variable

string.expression ::» sum [bl sum] ...

sum ::« term [{bl + bl | bl ^ bl} term] ...

term ::« factor [{bl * bl | bl _/ bl} factor]...

factor ::= string.primary [bl J^*_ bl string.primary]...

string? primary ::« "1 pattern.primitive {literal |identifier |

string.variable | procedure.call | {? |\_ |

^ |+} string.primary |^ variable | (_

Tbl] string.expressionfbl]^.}

literal ::= integer.literal | real.literal | string.literal

string.variable ::= £ string.primary |£ keyword |array.element |

field

procedure.call ::° expression.primitive |~1 {expression.primitive

field | ITEM ([bl] parameter, list [bl])_}

procedure.call.form

procedure.call.form ::» {~i APPLY identifier | APPLY}

Qbl][parameter.list] [blp

parameter.list ::• string.expression [pc string.expression]...

pc ::« [bl] ^ [bl]
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array.element ::« identifier £ [bl] [parameter.list] [bl] >_ |

ITEM ([bl] parameter.list [bl])_

field ::= "1 {procedure.call | ITEM ([bl] parameter.list [bl])J

identifier known field gbl]

string.expression [bl]J[_

identifier ::* letter [letter | digit | ^ | - ]...

label : := "1 {blank | \_ | ^ | + | ^ | *} char P {blank | j_}

char]...

integer.literal ::« digit [digit]...

real.literal ::= digit [digit]... j_ [digit]...

string.literal ::« _!_ P J_ cont.char]... ^ j[ P i cont.char]... #.

cor.t.char ::= char | eol {+ | jj-

letter ::» A|B|jC]d|E|F^|G|H|jC| J|k|L|M|n|o^|jP|^|r|S^|t|u|v|w|x|y|z

digit ::» olilllllilllilllili

eol ::™ end-of-line

char ::« any character

option.type1 ::» 'QUICKSTORE' |'NO.LOOK-AHEAD' | 'NO.STNO' |

'TIMER* | 'HASHSIZE** integer.literal '__

declaration.type ::=

1INDIRECT.VARIABLE' pc {ALL | %__ identifier.list x_)

'NOT. INDIRECT.VARIABLE' pc ]_ identifier,list J_

'INDIRECT.FUNCTION' pc {ALL | %__ identifier.list ]}

1NOT.INDIRECT.FUNCTION' pc ^ identifier, list '_

'INDIRECT.LABEL1 pc {ALL |^ label.list '_)

'NOT.INDIRECT.LABEL' pc ' label.list '
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'INPUT.ASSOCIATIONS' pc ^ identifier.list _|_

'OUTPUT.ASSOCIATIONS' pc J_ identifier,list _|_

'FIELD' pc J_ identifier.list ^

'STRING' pc J_ string.specifier.list J_

'INTEGER1 pc _|_ identifier.list ^

'REAL' pc J_ identifier.list _^

'PATTERN' pc ^_ identifier.list _|_

'SNOBOL.SUBPROGRAM' pc _[_ restricted.identifier j_

'EXTERNAL.VARIABLE' pc ^ restricted.identifier.list J_

'EXTERNAL.FUNCTION' pc _^ restricted.identifier.listj.

'EXTERNAL.LABEL' pc 2. restricted.label.list J_

'ENTRY.VARIABLE' pc ^ restricted.identifier.list J_

'ENTRY.FUNCTION' pc J^ entry.define.prototype j_ [pc ^ labelV

'ENTRY.LABEL' pc _^ restricted.label.list ^

'EXTERNAL.FORTRAN.FUNCTION' pc J_ FORTRAN.identifier.list J_

[pc 'OPEN']

2
'ENTRY.FORTRAN.FUNCTION' pc J_ FORTRAN.prototype j_ pc J_ label ;'

[pc j_ label2^ ]

control.type ::»

LIST | UNLIST | NOCODE | CODE | EJECT | FAIL | NOFAIL

| NOCROSS | CROSSREF | NOASM | LISTASM | SPACE [bl integer.literal]

| NEWSTNO bl 1 {0[0]...} integer.literal
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identifier.list ::= identifier [pc identifier]...

2 2
label.list ::= label [bl label J... j_

string.specifier.list ::= string.specifier [pc string.specifier]...

string.specifier ::* identifier jjbl] integer.literal [blD.

restricted.identifier.list ::= restricted.identifier

[ pc restricted.identifier]•••

restricted.label.list ::= restricted.label [pc restricted.label]...

entry.define.prototype ::= restricted.identifier ^[bl]

[identifier.list] [bl]),

[[bl] identifier.list]

FORTRAN.identifier.list ::= FORTRAN.identifier [pc FORTRAN.identifier]...

FORTRAN.prototype ::» FORTRAN.identifier Qbl]

[dedicated.identifier.list] [blD

dedicated.identifier, list ::«= dedicated.identifier

[pc dedicated.identifier]...

FORTRAN.identifier ::= restricted.identifier[= {INTEGER | REAL}]

dedicated.identifier ::= identifier [= {INTEGER | REAL)] |

string.specifier

restricted.identifier ::= letter [In [In [In [In [In]]]]]

restricted.label ::= letter [lnd [lnd [lnd [lnd [lnd]]]]]

In ::= letter | digit
i

lnd ::» letter | digit |j?

s
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pattern.primitive ::«= FAIL | FENCE | ABORT | ARB | BAL | SUCCEED

REM | {LEN ITAB | RTAB | POS | RPOS

SPAN | NSPAN | BREAK | BREAKX | ANY

NOTANY } Xtbl]{string.expression

^ string.primary} [bl]J^

STRVAL ([bl] {string.expression

^ string.primary} [bl]J^

ARBNO J[[bl] pattern.expression [bl])_

keyword ::= STFCOUNT | LASTNO | STNO | FNCLEVEL | STCOUNT |

RTNTYPE | ALPHABET |ABEND |ANCHOR | FULLSCAN |

MAXLNGTH | STLIMIT

expression.primitive ::* {OPSYN | DETACH | INPUT | OUTPUT |

REPLACE} ([bl] [parameter.list][blD |

DEFINE ([bl] l_ define,prototype %__

[pc string.expression] [hl))_ | DATA

£[bl] ^ data.prototype J_ [blD

{DATE ITIME | EJECT | INTEGER | SIZE

TRIM | DATATYPE | COPY | ENDFILE

REWIND | BACKSPACE | PROTOTYPE

COLLECT | EXTIME | BUFSIZ | REVERS

REMCOR | DIFFER | IDENT | LGT

CONVERT | ARRAY | DUPL | LPAD | RPAD

SUBSTR | INSERT} { [bl][parameter.list]

[blD

{not |lt|le|eq|ne|ge|gt| AND

OR | XOR | RSHIFT | LSHIFT} Hbl]

[parameter.list] [bl])
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define.prototype ::= identifier Qbl] [identifier.list] [bl])^

[bl] [identifier.list]

data.prototype ::» identifier Qbl] identifier.list [bl]^

NOTES: 1. Any pair of single quote O brackets can be

replaced by a pair of double quote (£) brackets.

2. label is additionally restricted to not contain a

quote of the type that form the string brackets.

Run-Time Syntax

array.prototype ::» dimension [x dimension]...

dimension ::= signed.integer [i_ signed.integer]

signed.integer ::« [+ |jj integer.literal



APPENDIX 2

INTERNAL AND I/O ERROR MESSAGES

; Internal

1. Increment use count of unused block.

2. Release of unused block

3. Underflow of RS

4. Underflow of ES

5. Missing field definition for datatype.

6. Underflow of SS

7. Underflow of AS

8. Overflow of CV

9. Underflow of CV

10. Imaginary conditional or immediate assignment

11. Overflow in concatenation, too many elements.

I/O

0. Association length too long or negative.

1. Negative unit No.

2. Unit No. too large.

3. Association table overflow.

4. Illegal unit (device)

5. Unassigned unit.

6. Illegal operation on device.

7. Unrecoverable tape read error.

8. Unrecoverable drum read error.

9. Drum movement exceeded file limits.
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STRING

INTEGER

REAL

IMMEDIATE

INTEGER

APPENDIX 3

DESCRIPTOR FORMATS

3 15 18

000 T

character count

001

18

3

010

18

3

011

18

Valuen
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Ptr to value

[ 6 chars/word, zero
fill of last word]

.*. Ptr to value

Ptr to value



NAME

OBJ:

119

3 3 6 2 4 18

100 0

3 i
DED T_

Ptr

to

Loc

OBJ

0 Variable

1 Label

2 Function

I/O

(DED « 0) (I/O - 0

(DED - 0) (I/O - 0)

DED: 0 Not Dedicated

1 Dedicated String

2 Dedicated Integer

3 Dedicated Real

4 Keyword

5 Dedicated Pattern

(1/0

(I/O

(I/O

(I/O

0)

0)

0)

0)

I/O: 0 No I/O

1 Input

2 Output

3 Both

Association

it

Associations

Possible



ARRAY

array

elements \

120

18

101

number of dimensions

18 18

number of elements

element descr.

element descr

element descr

element descr

array block (in returnable storage)

18 18

prototype string descr

RANGE(N) LDIM(N)

RANGE(N-l) LDIM(N-l)

RANGE(l) LDIM(l)

prototype block (in returnable storage)

RANGE(I) • Size of Dimension I

LDIM(I) «• Lower Bound of
Dimension I

Mapping Function

L0C(ARRAY < II, 12, ..., IN > ) =

LOC CPTR(ARRAY)) + 1 + II - LDIM[1]

+ RANGE(l) * (12 - LDIM(2)

...

+ RANGE(N-1)*(IN-LDIM(N)

) ... )



PATTERN

lua.

18

number of parameters

param

param

param

param

18

18

jteacx.

jIssjcu

descr

descr

121

n

#N-1

#N

data block (in returnable storage)

Ptr to Pattern Subroutine

PATTERN SUBROUTINE: (may be in returnable storage if created dynamically
by a concatenation)

Ptr

(start)

(Restart)
RESTPT:

(Fail)

(Succeed) J

RESTPT

S$$PTF

S$$PTS

Standard pattern generation

/ with parameters: RESTPT, S$$PTF



PROGRAMMER-DEFINED DATATYPE

3 9 6

111

r
Datatype Number

18

number of fields

field element

field element

field element

field element

18

18

descr

descr

descr

descr

Datatype Block (in returnable storage)

Ptr to Datatype String Descriptor Loc

#i

n

#N-1

hi

122



APPENDIX 4

iiJ SNC t * RE-COG
**♦■»*♦ ♦***** +******* + ** * + ****+t + *t + ♦****•**

** F^SI'OL COMPILER VERS 1.0 (JuNEil97l) ♦ *

U;IS COMPILATION WAS DONE ON JO NOV 71 AT 00:53:27

10 NOV 71 00:53:27.141

UO'UuOl

U0'J0"2

UOU.J03

DOU j.)U

GUOtuJb

UOUM06

U0ui.-!;7
JO-JliOM

iJJ Jli'Q

U U U U 1 0

OOOUll

U0U.J12 1

uOuiH?

uouum 2

UUOIjU-)

U0o:i 16 3

0GbiJl7 H

J U 011 if 5

ui.o;H9 6

U'JLM.;.3 0 7

Ou;:ii*>l 6

OUb<>^2 <*

UUUU23 10
U«JUfii.'4 11
UUu.l?b 12
UtlUU^*! 13
uu:;ii.c7 1^
.j:)o../H 15
UuUi'«i(? 16
l)0uu jt'i t7

U0(iu31 Id
UUU0 32 18

THIS PROGRAM IS A SYNTACTIC RECOGM7ER FOR SNOfcOLU STATEMENTS.

FJRST A SERIFS OF PATTERNS IS BUTLT CULMINATING IN A PATTERN
fcHJCH MATCHES ONLY SYNTACTICALLY CORRECT STATEMENTS. CARP IMAGE
S ARE Itifh RFAD U' AND PROCESSED. INCORRECT STATEMENTS ARE

IPFNTIFlFu OY AN ERROR MESSAGE

TMF FUNCTION OPT
S ARGUMENT

FOKMS A PATTFRN THAT MATCHES EITHER NULL OR IT

DFFIfE<»OPT(PATTF"N)•)

LFTTpnS - •A^<CCEFGHIJKLMNOPQRSTuVwX<rZ,

DIGITS = •01?3«J5(.7H<9»

M Pi ANijMErtics = IFTTFRS DIGITS
b\ i'NKS = SPAM • • )
I!TEGER = SPAN<DIGITS)

r^al = sp/.r'cncns) ••• nspan(Digits)
TMEi.T IFifR = /»K r (I F TTFPS) NSPAN( AlPhANUMERICS •-.•)
L:f y\RY = AI.V (•♦-/*.«?*?\*» )

f»IUAFY = *»KY( »-+.^» !/+* ) ! '**'
f'lfAr/YOP = BLANKS OPT {PI K-ARY BLANKS)
Ut.GALPf-'Ai-;..T = tfALPHAPET

Lf-'OALPKVLT »M» z
Ur-CJALPHAf'LT ft :
DLITERAl = »r« SPANU'NOAi.PHABET u»P) ♦»:'

SI HF^AL = «•« SP^Nd-NOALPHARET ' « • ) £» ti
LITERAL = SL1TEKAI. J ULUERAL .' iN'TpGF.R i REAL
ELKMfNT = CPT(UNAPY) (IDENTIFIER » LlttRAL •.*FUNcTloN~CALL
! »(' (*ExPRFSSiri.V .♦ NSPAN(t ♦)) t)i 1 *ARRAY-REF) to
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000077 47 LINE CONTINUE = :F(ANALY2E)
U0U078 48 Oi.TPUT = • • CCLINE
00UU79 49 P-'AGE = I^AGF. LINF MPEADC)
OOUuoO 50 ANALYZE I»AGE STATEMENT = *.F(ERROR)
UUOO/51 51 DIFFER(IvAGE) !S( ANALYZE)
0000^2 52 Oi'TPL'T = •<<< NO SYNTACTIC ERROR>»»
UUUiiriS 53 SKIP OUTPUT = . :<NEXTST)
O0UO64 ♦

OOOU'jb ♦ IF AN ERRONEOUS STATFMFNT IS ENCOUNTERED IN A STRING OF '
u,ju0'jf: * STATEMENTS SEPARATED 3Y SEMICOLONS* SUBSEQUENT STATEMENTS ARE
00on«7 ♦ NOT PROCESSED

00uu-j9 54 ERROR OUTPUT = t<« SYNTACTIC ERROR >>>« :(SKIP)
ouoi.r-0 ♦

UOUO^l 55 PPlNf OUTPUT = ♦ » LINE :(PEAOC)
UOUJiy? 56 ENUCAVE FOF = 1 : (ANALYZE)
OOiii.^3 *

00U094 *

OUuo'JS 57 OPT OPT = NUI.L ! PATTFRN : (RETURN)
000li:'6 53 END

•*TOUL COvPILAT10N TIME: ?,U2 MS., 0 ERROR DIAGNOSTICS*

en
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Si;0»* SORT

*****>4****444+*++ ****** 4. ****** 4 **********

*4* FaSBOL COMPILER VERS 1.0 (JUNE*1971) **
************4*****************************

THIS COMPILATION WAS DONE ON 10 NOV 7] AT 00:53:42

UOuo*»l

O0i/'».»3

O0tJ>j>)4

UOo:.K'5

OOOOOf;

Co u CO 7
liO'.Ml'lP

0Cli:»:.«9

OO Oli 10

OOU'til

uOUMl?

oOulii 3

000.-L4

OOJ!. 1 5

OUijiSlt

O0O-U7
oOu-iiH

O00i;lc

0 0:>i;20

U0l>-fil

usiiio<*2

00uu.^3

uO-.J.«25

UJO >£7

OJu-'^

O0i'.*29

Joul> Jf»

uO^.-il

*

4

*

* maps a partial ordering of objects into a linear ordering
*

♦ A (J ) » A (? ) , . . . , A (N)
*

4 SUCH THAT IF A(S) < A(T) IN THE PARTIAL ORDERING* THEN S < T. (CF.
» O.E. KNUTH* THE ART OF' COMPUTER PROGRAMMING, VOLUME 1* ADDISON-WESLEY*
4 MASS. IPeH, P. 262)

*

1 DATA( *ITu(COtiNT*TOP) • )
2 DATA('NOD(SUC*NEXT)•)
3 DFFIf'FC »DECR(X) » )

4 DFFlf F( MNDEX(TAU) • )
4

♦ READ IN THE NUVDER OF ITEMS* N, ANO GENERATE AN ARRAY OF ITEMS.
*

♦ EACH ITEV HAS Tt.C FIELDS* (COUNT*TOP)* WHERE
4 C^UNT = no. CF ELEMENTS PRECEDING IT.
♦ TOP = TOP OF LIST OF ITEMS SUCCEEDING IT.

5 N = TRIM(INPUT)
6 X = ARRAY('0:• N)

TOPOLOGICAL SORT

INITIALIZE THE ITEMS TO (0»NULL).

7 J\
8

*

X<]>

I

= 1TV(0 , • » )

= 1 + 1

* READ IN KELATlOt;S

'»>.

10 NOV 71 00153:42.164

:F(T1A)
:(Ti)



000033 9 T1A OUTPUT = » THE RELATIONS ARE:'
000034 10 T2A RFL = TR1M( INPUT) •,• *.F(T3A)
000035 11 OUTPUT = REL •
00U036 12 T2 REL . BREAM •<•) $ MU LEN(l) BReAKC*') $ NU LEN(l) =
000037 12 . :F(T2A)
000038 13 J = INCEX(MU)
0OU039 14 K = INDEX(NU)
UOOU40 *
Oou(i4l * SINCE «»i < NU» INCREASE THE COUNT OF THE KTH ITEM AND ADD A NODE TO
0G0042 * THE LIST OF SUCCESSORS OF THE JTH ITEM.
0000*+3

000044

00004 5

000046 *

15. T3 COUNT(X<K>) = COUNT(X<K>) + 1
16 TOP(X<J>) = NOD(K,TOP(X<J>)) :<T2>

\J U V *J *T \l T

00UU47 * A OUEUE IS MAINTAINED OF THOSE ITEMS WITH ZERO COUNT FIELD. THE LINKS
U00048 * FUR THE OUEUE ARE KEPT IN THE COUNT FIELD. THE VARlAbLFS F,R POINT
00004" * TO THE FRONT AND REAR OF THE QUEUE.
00OU50 *

OOOtifil 17 T?A

000052 *
000053 * INITIALIZE THE OUEUE FOR OUTPUT.
000054 +

U0UU55 18 R = 0
000D56 19 COUNT(X<0>) = 0
000(!J7 20 0 = 0
000J5E 21 T4 0 = ?X<Q + 1> 0 + 1 :F(T4A)
U0UU59 22 COUNT(X<R>) = EG(COUNT(X<0>) , 0) 0 :p(T**)
OOOOoO 23 R =0 :(T4)
uOouol 24 T4A F = COUNT(X<0>)
000062 *

00ut«o3 * OUTPUT THE FROrq OF TriF QUFUE.
00Ui)u4 *

00uiH>5 25 OUTPUT = ; OUTPUT = ♦ THE LINEAR ORDERING IS:«
UOOltf 27 T5 OUTPUT = NE(F*n) SF :F(T6)
U00l>u7 28 N = N - 1
OOuuoO 29 P = TOP(X<F>)
UOUOo^ ♦

U00O70 * ERASE RELATIONS
*

30 T6 IPFNT(P) :S(T7)
31 DFCR(.COUNT(X<SUC(P)>)) :S(T6A)

000074 *

uOuu/h ♦ IF CCi.NT IS ZERO ADO ITEM TO QUEUE. M
U0U07O * £J

00

OOGii? 1

O0U07?

1)00073



000077

u00f'78
0UJ»)79

32
33

3** T6A

COUNT(X<R>) = SUC(P)
R = SUC(P)
p = NEXT(P)

OOou.'O

OOOO'JI

*

* REViOVE FROM OUFUE,

U0u0^2

OOOO >3

*

35 T7 • F = COUNT(X<F>)

0U.H>»j4

uOO'.•'.> 5

*

* FUNCTION DEFINITIONS .

uOU036

OOOO :7

OGu.'J <8

*

36 DECR
37

3.V = GT(%X,1) $X - 1
= 0

OO'uO ^
ooujjoo

GOoi: *1

00 0 0-^2

UOJO'53
O00:i-:-4

000uS»5

*

38 INDEX

39
40-

41
42

43

If-LEX
ir-r.EX

TFr-y-CT

STERMCT
*u-cex

IIJDEX

= .-sTah
= r;IFFE° (SINOEX) SINOEX
= l.T(TF.PMCT*N) TERMCT +
= TAU

= TERM.CT

= TER^CT

uOO.Vr:

UUlii:vi7

*

44 T8 OliTPiJT = M£(N) • THE ORDERING

000 0{>ti ^5 END

♦TOTAL COMPILATION TIME; 1405 MS., o FRROR DIAGNOSTICS*

:<T6)

:(T5)

:S(RETURN)
MFRETURN)

:S(RETURN)
:f(FReturn)

:(RETURN)

A LOOP.»

•»o



T» F RELAUcNS ARE:

LE I TrRb<ALPr-ANLM»NUMbERS<ALPHANUM,
i5LAf-.KS<0Pl:;LANKS»
NU.*iifcRb<REAL*

UU.* ,~EHS< INTEGER r
LE I Tfc RS< V AH 1 ABLE *ALPHANUM,< VARIABLE*

dIi4AXY<HlNrtf YOP,BLANKS<>niNARYOP*
UNJ/.LPh AGE KDLITERALr
JNuALPHAHtI<SLITERAL»
SLiirRAL<LiTERAL»DLITERAL<LlTERAL»INTEGEr«LITERAL»REAL<LlT£RAL,

TT r_ lineak ORCERING IS:

LETIF.RS

•\UV«ERS
dLM-iKS

dls.Ai-lY

UN.iAUPhAL»E|
iNlEGER

KEmu

ALPhANuv

OPULAf.KS

Jliw'.^YCP

SLiTr-KAL

OLITr.RAl.

VAi<lAfLr

LIIF«AL

•MOrcfeAL TEKyiNATlON AT LEVFL 0

LAST STAFEytNT EXECUTED .vAS •**«» - MAIN

SNOtOL SIATlSTiCS SU.4MARY-

75 MS. EXECUTION TIME

456 STATEMENTS EXECUTED, 66 FAILED

©



&

u:j s,\o»* factor
»4**44*44*44**+*****+*4**+****,4***4******

♦ * FASBCL CO.v.PiLtR VERS 1.0 (JUNE»l97l) **
**** 4***4 *** 4**********4.******************

THIS COMPILATION WAS DONE ON 1C NOV 71 AT 00:53:51

10 NOV 71 00:53:50.795

000001

00OII02

O00UO3

000004

00 0005

ocoiiofo

OOuu07

OOOuf'l*

00O0ii9

O0 0010

00 Oil 11

00 0ol2

J0Utll3

u00iil4

00OU15

OOuPIO

0 0 0017

j o 01j 18

J0 0lii9

uonozil

oOOo^l

000u^2

0GOO23
00 Oi.'.? 4

Ou«Jw<25

onijij<-:o
jooh;.:7

0(JOii2<'

O0O.V9

OOOil j:l

u0u.j31

OOoiM2

- CROSSREF

********** 4*************4***********

* *

+ THIS PROGRA.v COMPUTES AND PRINTS A TABLE OF N FACTORIAL *
* FOR VALUES OF ti FROM 1 THROUGH AN UPPER LIMIT »NX«. *
4 *

* IT DEMONSTRATES A METHOD OF MANIPULATING NUMPERS WHICH ARE *
* TOO IAR^E POR THE COMPUTER* AS STRINGS OF CHARACTERS. THE *
4 cn*KAS IN THF PRINTED VALUES ARE OPTIONAL* ADDED FOR READING *

4 EASE. *

+ *

4** 4** 4**4 **************************

4

* If I'TOTALIZATION,
*

OPTIONC'IIVERM
OPT IC ri< «Ol;lC*STOkF« )

DECLARE('INTEGER','NX»N,KSET»I*)
DECLARE ('EXTFPNAL.FORTRAN.FUNCTION' ,'MAKNXT ,NUM.» )

NX = 45

*

N = 1

NSET =1

4

10 LI

OUTPUT = •

OUTPUT =

TARLE OF FACTORIALS FOR 1 THROUGH • MX

COMPUTE T11E 'EX I' VALUE FROM THE PREVIOUS ONE.

M'VHER = .'.AKNXT(\,NSFT)

FORM A STKlilC KEPPESFNTING THE FACTORIAL. W
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u

r*4*****4*********************************
******* CROSS-REFERENCE DICTIONARY *******
4*4*4***4*********************************

CSY:<JOL3 (INTERNAL)
ATTRIBUTES* STATEMENT NL-MfJERS

L TAPLE OF FACTORIAI S FOR ] THROUGH 1 (UP08)
ST*lnO LITERAL REF»8

L 1KCPEASF THE SIZE OF ArfKAY «NUMtt.] (11020)
STRING LITERAL REF,17

CEi-^3 (llul7)

LArtL (OfcFlNED Id) R£F,l5

CEkk: (11018)

lauEl (Defined lb) ref

CGI 3 Cl00a2)
fcNIRY OR EXTERNAL FUNCTION (PRIMITIVE) REF»11»13

CI] (11003)
1NTEGIR VARIABLE PEF,3,11»12»13*13 *13

CLP*»i»D (10033)
tMRr OR EXTERNAL FUNCTION (PRIMITIVE) REF»12

CLTj (100^7)
tNThY OR EXTERNAL FUNCTION (PRIMITIVE) REF»15

LLi: (110j*i)
LAMfcu (DtPINET 10) REF, 15

LLo3 (11012) •
LAH.LL (CtFlNEP 12) R£F,l3

LL11 <110)l ) C
LAtjlL (DEFINE!'. 14) RFF,11 CJ



LMAKI;XT] (11004)
INTEGER FORTRAN FUNCTION REF,4»10

CN3 (11001)

mhGfcR VARIABLE REF , 3*6* 1 0 »14* 15* 15* 15* 16

CNSEF3 (11002)
INTEGER VARIABLE REF,3,7*10»11,11

CNUVj (1101=5)

INTEGER FORTRAN FUNCTION REF»4»12

CNU-^ERl (11010)

VARIaILE REF,10*12*12*14

VARlAlLE NAMt REF,10*12

CNa3 (UiiuC)

I'ilEGFR VARIAPlE PEF,3»5»P»15

COUTPUT3 (10004)
vAHlAf-LF (OUIPUT ASSOC.) REF,R,9,14»16*17
VArtlAlLE NAVE REF»0,9*14»16*17

L! C\N.\C;1 ofc COVPUIED MECAuSF OF TAPLE OVERFLOW. 3 (11019)

STHI.<G LITERAL REF* 16

C!=3 (11016)

STiUi.G LITERAL REF, 14

L * 3 (11 0 1 5 )

STRING LITERAL REF»12

C 0 3 (11015)
STrtlKC- LITERAL REF, I'd

C13 (1100 7)

IMF.virR CONSTANT R£F ,6,7 »1 1 »11»1 5 * 13 »1 5

C33 (1101.,)
i.'-.TEGFft CONSTANT R£F,1?

INTEGER LITERAL REF,12

C4b] (llO.jt)

tX>' <J*



--•
y
-

C

•«
f

~
*

&
,

'<*
. *
^

I
N
T
E
G
E
R

C
O
N
S
T
A
N
T

R
E
F
#
5

*
T
o
T
A
L

C
O
M
P
I
L
A
T
I
O
N

T
I
M
E
:

7
7
8

M
S
.
*

0
E
R
R
O
R

D
I
A
G
N
O
S
T
I
C
S
*

t
o



>*
ii

F
o
r

m
a
k
n
x
t
»
m
a
k
n
x
t

u
M
V
A
C

1
1
0
m
*
F
O
R
T
R
A
N

V
L
E
V
E
L

2
2
0
6

O
O
l
*

F
5
0
1
A
S

T
H
I
S

C
O
'
P
I
L
A
T
I
C
N

U
A
S

D
O
N
E

O
N

1
0

N
O
V

7
1

A
T

0
0
:
5
3
:
5
3

F
U
N
C
T
I
O
N

M
A
K
N
X
T

E
N
T
R
Y

P
O
I
N
T

0
0
0
0
7
4

N
U
M
.

E
M
R
Y

P
O
I
N
T

0
0
0
1
0
7

S
T
O
R
A
G
E

u
S
E
C

(
E
L
O
C
K
,

N
A
M
E
,

L
E
N
G
T
H
)

O
j
u
l

*
C
0
D
E

0
0
0
1
1
4

0
.
J
0
0

*
D
A
T
A

0
0
1
7
6
5

0
0
0
2

*
B
L
A
N
K

0
0
0
0
0
0

E
X
T
E
P
U
A
l

R
E
F
E
R
E
N
C
E
S
.
(
B
L
O
C
K
*

N
A
M
E
)

0
J
0
3

N
E
R
R
3
S

S
T
O
W
A
G
E

A
S
S
I
G
N
M
E
N
T

F
O
R

V
A
P
I
A
P
L
E
S

(
B
L
O
C
K
,

T
Y
P
F
*

R
E
L
A
T
I
V
E

L
O
C
A
T
I
O
N
*

N
A
M
E
)

o
O
o
l

0
0
0
0
0
5

1
0
7
G

0
0
0
1

0
0
0
0
1
3

1
1
4
G

0
0
0
1

0
0
0
0
3
2

2
0
L

C
O
O
P

I
0
0
1
7
5
1

N
U
M
X

O
0

1
i:

l
i*

u
u

i
':

3
2

*

0
0

i
•'

;>
*

J
*

0
0

i
<

.
4

*

o
C

l
l
l

b
»

J
t
'l

1
3

0
*

0
C

L
l-

>
7

*

u
0

i
2

•
:
i*

0
0

1
2

1
'i

*

u
O

i
^
2

1
J
4

j
0

I
>

.3
l
l
*

'J
O

1
2

^
I
d

*

•
jj

.'
s
.i

1
3

*

tje
S

1
0

2
0

c
/>

F
L
N
C
T
1
O
N

M
A
K
N
X
T
(
N
»
N
S
E
T
)

D
I
M
E
N
S
I
O
N

N
u
.
v
D
E
R
(
l
O
n
h
)

D
A
T
A
.
N
U
^
'
R
E
K
d
)
/
l
/

D
C

1
0

I
=
l
»
N
S
t
T

N
U
M
t
'
.
F
R
d
)

=
N
U
M
E
E
R
(
l
)
*
N

D
O

2
C

I
=
l
*
N
S
E
T

I
F

(
l
-
U
M
P
E
R
(
I
)
.
L
T
.
1
0
0
P
)

G
O

n
lv

x
=

n
u

m
u

e
k

(
n

/
i
o

n
n

T
O

2
0

I'
J
L

i'
X

=
N

i
i
M

U
E

K
d

i
/
i
t
i
n

r
.

N
L

V
L

T
P

d
+
l
)

=
N

l'
V

,t
2

E
P

(I
+

l)
+

N
ij

V
X

N
U

M
H

F
K

(I
)

=
N

U
V

IE
R

(I
)-

1
0

0
0

*
N

U
M

X
C

C
H

T
T

N
U

F
.

IF
(r

'U
M

P
E

R
(N

S
F

.T
4

l)
.N

F
.O

)
N

S
F

T
=

N
S

£
T

+
1

.v
.A

K
N

V
T

=
N

U
M

ft
E

R
(N

S
E

T
)

1
0

N
O
V

7
1

0
0
:
5
3
:
5
3
.
8
2
7

0
0
0
0

I
0
0
0
0
0
0

M
A
K
N
X
T

0
0
0
0

I
0
0
0
0
0
1

N
U
M
B
E
R

^



&
~-

\p
"-
^

0
0

1
3

0
1

4
*

R
E

T
U

R
N

0
0

1
3

1
li

i*
E

N
T

R
Y

N
U

M
(I

)
0

0
1

3
3

lb
*

M
A

K
N

X
T

=
N

U
M

E
lE

R
(I

)
0

0
1

3
4

1
7

*
R

E
T

U
R

N

0
0

1
3

5
i»

j*
E

N
D

F
f.

D
O

F
U

N
IV

A
C

1
1

0
M

F
O

R
T

R
A

N
V

C
O

M
P

IL

P
H

A
S

E
1

T
IM

E
=

0
.0

4
8

S
E

C
.

P
H

^
S

fc
2

T
l,v

<
h

=
0

.C
3

3
S

E
C

.
P

H
A

S
E

.
3

T
I,

*
E

=
0

.0
7

5
S

E
C

.
P

H
A

S
E

4
T

I.
V

F
=

0
.0

3
A

S
E

C
.

P
H

A
S

F
5

T
ly

E
=

0
.C

5
8

S
E

C
.

P
H

/j
S

E
b

T
I.

/E
=

0
.G

5
5

S
E

C
.

T
O

T
A

L
C

O
M

P
IL

A
T

IO
N

T
IM

E
=

0
.3

0
7

S
E

C
.

0
^
D
I
A
G
N
O
S
T
I
C
*

M
E
S
S
A
G
E
(
S
)

F
-
*

•
v
j



1

2

3

4

5

b

7

ii

9

10

11

12

13

14

15

16

17

lft
19

20

2\

22

23

2t*

25

26

2,7

26

29

30

Jl

62

33

34

35

o(»

37

3b

39

hO

•.1

4 2

17-HLE OF FACTORIALS FOR 1 THROUGH 45

1

2

t>

24

120

720

5*040

4 0,220

3o2»r*:0

= 3»o2rt»i>fi0

= 3«3,nio,f 00

=m79»001,6"0
=i.»22/»o?0*«(:0

='37,176,291*200
=1*307*674,368,000
=20,922,7i'9,08?,COO
= 35b»ot'/,4 2b* 096, 000
=6 . 4T2 » i7 3 . 705 , 7?« * Ono
= 121 »n4:i, 10 o »4 On , <j32 , u ()ij
= ?»h??» J(.2»000* 176»l»40»00n
= 51 , r.9 0,-.'42,i7l ,7u9,4 40, 000
= 1 »12" *0'J0» 727, 777*607 »t>l40,00n
-A"), >n2 ,..16 , ?3t* , P&4 , «76» 64 0 » 000
=u2u.'+4,i,401»733»239»4 29»3:->0»000
= 1*,511,210,Oh2 *330.°U5,9^4,000,0 00
=-♦03 *2° i , 461»126»60a »025 »r«ff4 * 000 , COO
= I o, PtU'., ,>o9 ,450*416, •«b2 ,16ft, 76H ,000,000
=V>04 *lJ.*:i, 3*4 , 611, 713 *M(: 0 , FO1» 504, C'OO »000
= 5.04 1* /v. 1 ,993,739*701,95" ,543,6lb* 000.000
=26!; . 2*2 , »59 . (312 # 191, O^b »636 »3 flu, 4B0 »000 , 000
= - »2??» >V,6h4, 17/*9?2.tU7,725*562*660*000,000

=.-62,13,j,c26»933*b93*520*H-7*21O,012*160,000.000
=-.» oF*3 »3l7»clU»*ll»«lPtJf4<i?,biHf 1^4 .401 ,2*0 .000 *000
=2°b»23^,799 »039,604,14 U »P«7.610,609.643,520 *00 0,000
=10,333,I47,9b6»3u6,144,929*666*651,337*523*200»000,000
=.Wl,9Qi,326»769,901,217,'.f-.7,999,44B.150,P35.200,Onu»000

= 13,7^^,753,091 ,226, 34 5, Out-, 7 15, 97°, 5M1 .5P0 ,«02 »4 00 ,000 »OnO
=:-23,02«>,ol7»466»601,lll,760*Ofi/,224, 100 ,074 ,291,200 »00 0 »00n
=20 , 3*7 ,<-.\"2, o«l »197 ,442 .35*, 6«*0 »?t«l» 739 »902 .897 »356 ,800 ,OflO, 00n
= M 5»91*.j, 2f 3 »247, U9 7, 724, 7t-b .611, ^^9, 596, ll5,ft°4,272» 000*000* 000
=.M, "M2, V2o. 613. lo3,Pu7,lf.P, 170, 062, 053.44 0,751 »665,152 ,OoO, 000 »000

= 1.4Pb»:H.6»ll7,752*rt7«j»«oqt543r I4 2»606»24'i#51 1» 569* 936* 3*4 »000 »000 ,000

&?
<l

00

^



w3
!=
60
,t
15
,2
62
,0
63
*3
73
,P
35
,6
37
*3
55
.1
32
,0
68
,5
13
,9
97
.5
07
,2
64
,5
12
,0
00
*0
00
,0
00

44
•=
^,
oc
»o
.2
"l
,5
74
,7
Pd
»4
4b
*7
6P
,0
43
.6
25
*«
11
,0
14
,6
15
,8
90
,3
19
,6
38
*5
28
,0
00
*0
00
,0
00

45
!=
11
-,
,6
22
,2
20
,8
65
,4
80
,1
94
,5
61
*9
63
,1
61
,4
95
,6
57
,7
15
,0
64
,3
83
,7
33
*7
60
,0
00
*0
00
,0
00

N
O
r
t
V
A
L

T
E
R
M
I
N
A
T
I
O
N

A
T

L
E
V
E
L

0
L
A
S
T

ST
AT
E.
vF
.r
.T

E
X
E
C
U
T
E
D

W
A
S

1
5

-
M
A
I
N

S
N
G
h
i
L

S
T
A
T
I
S
T
I
C
S

S
U
V
V
i
A
R
Y
-

2
1
2

«
S
.

E
X
E
C
U
T
I
O
N

T
I
M
E

6
6
5

S
T
A
T
E
M
E
N
T
S

E
X
E
C
U
T
E
D
,

0
F
A
I
L
E
D

*
U
-
E
k

S
T
A
T
I
S
T
I
C
S

S
U
M
M
A
R
Y

*

T
I
M
i
:
6

F
i•
)
R

V
A
I
N

S
(
A
1
E
/
f
t
•
T

S
C
F

E
X
E
C
U
T
I
O
N
S

T
I
M
E

I
N

M
I
L
L
I
S
E
C
O
N
D
S

1
0

o
.
n

2
0

o
.
n

3
0

0
.
0

4
0

O
.
n

c
1

0
.
2

c
1

o
.
n

7
1

o
.
n

6
1

1
.
0

9
1

0
.
2

l
u

4
b

1
5
.
4

l
i

4
b

2
.
6

1
2

3
h
0

1
3
2
.
6

1
3

3
^
0

2
0
.
8

1
4

4
5

2
7
.
P

l
b

4
b

4
.
0

1
6

0
0
.
0

1
7

0
o
.
n

1
-
.

0
0
.
0

u
>



140

REFERENCES J
v

1. Farber, D. J., Griswold, R. E., and Polonsky, I. P., "SNOBOL,
A String Manipulation Language," Journal of the ACM, 11, 1 ^
(1964). X

2. ..., ..., and ..., "The SN0B0L3 Programming Language," Bell
System Technical Journal, 45, 6^, (1966).

3. Forte, A., SN0B0L3 Primer, The M.I.T. Press, (1967).

4. Shapiro, M. D., "A Bibliography of SNOBOL Publications,"
SIGPLAN Notices of the ACM, 4, 11, (1969), pp. 41-48.

5. Griswold, R. E., Poage, J. F., and Polonsky, I. P., The
SN0B0L4 Programming Language, Prentice-Hall, (1968), (First
Edition).

6. Dewar, B. K., and Belcher, K., "SPITBOL," SIGPLAN Notices of
the ACM, 4, 11, (1969), pp. 33-35.

7. Maurer, W. D., and Santos, P. J., "A SN0B0L4 Compiler,"
Fourth Annual Princeton Conference on information Sciences
and Systems, March 1970.

8. Santos,P. J., and Maurer, W. D., "Compilation of a Subset
of SN0B0L4," SIGPLAN Notices of the ACM, 5, 12, (1970),
pp. 60-68.

9. Knuth, D. E., The Art of Computer Programming, Vol. I:
Fundamental Algorithms, Addison-Wesley, (1968), pp. 411-420,
and 435-451.

10. Knowlton, K. C, "A Fast Storage Allocator," Communications
of the ACM, 8, 10, (1965).

11. Morris, R., "Scatter Storage Techniques," Communications of
the ACM, 11, 1, (1968).

12. Elson, M., and Rake, S. I., "Code-Generation Technique For
Large-Language Compilers," I.B.M. Systems Journal, 9, _3»
(1970). >

13. Floyd, R., "Syntactic Analysis and Operator Precedence,"
Journal of the ACM, 10, July 1963, p. 316. .4


	Copyright notice 1971
	ERL-314 (1 of 3)
	ERL-314 (2 of 3)
	ERL-314 (3 of 3)

