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A NOTE ON THE RECIPROCAL ZEROS OF A REAL POLYNOMIAL

WITH RESPECT TO THE UNIT CIRCLE*

by

E. I. Jury

The purpose of this note is (a) to present a precise formulation
1 2of a theorem proposed by Marden ' which is related to the existence

of reciprocal zeros with respect to the unit circle and (b) to indicate a
3

rule which is simpler than Cohn's for determining the number of the

reciprocal zeros with respect to the unit circle of a real polynomial.

1 2In an earlier work, ' Marden has proposed a theorem relating

to the number of zeros on the unit circle of a complex (or real) polynomial.

This theorem was not precisely formulated as can be readily ascertained
from the following example.

F(z> = - . 5 + 1. 65z - . 8z2 - . 35z3 - 1. 8z4 + z5

=(z -i) (z -^) (z -2) |(z +.6)2 +.82| =0. (1)
If we apply Marden's theorem to Eq. (1) we obtain four roots on

the unit circle which is evidently not the case. Hence, we can improve
on Marden's theorem and obtain the following modification.
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Theorem: "For a given polynomial F(z) = an + a,z + . . . + a z11,
U l n

let the sequence of polynomials F. .(z) =a"0^F.(z) - a^.F.*(z),

j = 0, 1, . . . , n - 1, be constructed. Then, if for some k < n;

Pk = 6l52 ••• 6k ^ °* for k =1, 2, . . . but Fk+1(z) s 0, then F(z)
has either n - k zeros on the unit circle |z | = 1 or n - k reciprocal,
zeros with respect to the unit circle or n - k zeros of both reciprocal
ones and on the unit circle; it has p zeros in this circle, where p is
the number of negative P. for j = 1, 2, . . . , k and it has q = k - p
zeros outside the unit circle. " (Note that "aL is the conjugate of a .)

The above theorem only indicates the necessary condition for
the existence of reciprocal zeros with respect to the unit circle or

zeros on the unit circle, and to determine the exact number of each,

we use the following theorem proposed by Cohn:3 If F, .(z) = 0, then
Fk(z) has in the circle |z|<| as many zeros as the polynomial

yZ)= [Fk'(z)]*=zn-<k+1>F'(l/z) (2)

where

*k (z) is the derivative of Fk(z).

While the above procedure is straightforward, it can be consider

ably simplified for real polynomials. In the following discussion, we
will present a simple rule for obtaining the number of reciprocal zeros
with respect to the unit circle of a real polynomial. This rule will in

directly determine the number of zeros on the unit circle.

We denote the real polynomial Fj_(z) for the sake of general
ization as Pq(z) = F(z), and hence we establish our rule for the poly
nomial F(z) =aQ + ajZ +a2z + . . . +a z11. The coefficients of the
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polynomial satisfy the relation

KJ = laol» K-il = hi* K-2I = la2l• ••• • • (3)

We first form according to Eq. (2) f(z),= [F'(z)] which is of

degree n - 1. It should be noted from Cohn 's theorem that F(z) has

in the circle jz|<| as many zeros as the polynomial f(z). In
determining the zeros of f(z) inside the unit circle we use the

following identity for F(z) established by the author:4

5n =6in"V"V"5 **' 6n-36n-2<An-l "B^ )2F(1)F<-1), for n>2.
(4)

In applying the above identity to f(z) we have

6n-l =^l11"3^"4 ' •• 6n-3(A'n-2 "B'n-2^ f<l> «-»• for n>^'
(5)

If we multiply both sides of the above equation by 6.6., ... 6 -,
; 1 2 n-2

we establish

Sg Pn-1 te SS tPlP2 *' ' Pn-2l • S^f^ £^l^> for n ^ 3 • <6>

The above formula indicates that provided P, $ 0, for

k = 1, . . . , n-2, the sign of P can be readily determined from

the sign of Pk> k = 1, . . . , n-2 and the sign of f(l) f(-l). Hence,
the calculation of 6 . is no longer required. Therefore, we can

utilize either the sign of f(l) f(-l) or the sign of F(i) F(-l) in
determining the number of real zeros of f(z) or F(z) between (-1,1)

and also the sign of P . The second simplification involves the

recognition of the fact that for the real polynomial f(z) or F(z), complex
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zeros appear only in conjugate pairs. Combining the above simpli

fications, we will show the rule first for a sixth-order polynomial

and then state it for the general case.

Consider a sixth-order polynomial as follows:

2 3 4 5 6F(z) = 1 + z + 2z^ + 3zJ + 2z^ + zJ + z . (7)

The above polynomial satisfies Eq. (3) and hence is called a self-
4 5inversive polynomial; ' in which we can apply the procedure dis

cussed above.

F»(z), =1+ 4z.+ 9z2 +8z3 -+ 5z4 + 6z5 (8)

4,8
From Eq. (2) we obtain f(z) and use the following table:

f(z)

f*(z)

fL(*) 6L = 35

*

fL (z) 19

f2(z) 62 = 864

63 =8642 - 11362 <0

26

46

39

39

8

46 19

;26; 35

1136

(Note that dotted entries are not needed for determining 6- and

thus its determination can be avoided. )

The above shortened table indicates that P. > 0, P > 0, P. < 0;

at least
henceAOne zero exists inside the unit circle. Since F(l) > 0, F(-l) > 05

we can have only two zeros inside the unit circle. These two zeros if
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real or complex satisfy the condition on F(l) > 0 and F(-l) > 0. Another

two reciprocal zeros are outside the unit circle and the remaining two

zeros are on the unit circle. This is the only combination that can

exist. Therefore the table form can be considerably simplified. It

should be noted that the table test could be termininated, if we merely

find that 6, < 0. Hence, the proposed rule establishes a minimum

and maximum number of the 6k's or Pk's to be calculated from the
table. For the general sixth-order self-inversive polynomial with

F(l) and F(-l) having the same sign, the minimum number is 6, or

PL and maximum is 64 or P.. If F(l) and F(-l) have opposite
sign, the minimum is two, i. e. , P and P2 and the maximum is
four, i. e. , up to P ..

Based on the above example we can readily formulate the

following

Rule:

If n = 4k and F(l) and F(-l) have the same sign, then

4k
P . =~-land P = n - 2.

min 2 max

If n = 4k - 2, then

P . =-2*—£. - 1 and P = n - 2.
mm 2 max

If n = 4k and F(l) and F(-l) have opposite signs, then
4k - ?

P . = , - 1 and P = n - 2.
min 2 max

Finally, if n = 4k - 2, and F(l), F(-l) have opposite signs, then
4k - 7

P . = , - 1 and P = n - 2.
min <£ max

In the above rule we excluded the cases of F(z) being odd and some

of the 6's or F(-l) J?(l) vanish. These will be discussed below:

If F(z) is odd then we know that at least a zero exists at z + 1,

which can be factored to yield an even polynomial. The case of

F(l) F(-l) = 0 indicates real zeros on the unit circle which can also be
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factored. If a certain 6, = 0 and i = 0, then the same process applied

to F(z) can be applied to fk(z) to yield the needed information. It
should be noted that in some of these cases we can also obtain information

on the number of zeros on the unit circle or the number of reciprocal

zeros with certain multiplicity. For instance, if f.(z) has a zero on the

unit circle, then F(z) has the same zero with multiplicity two. Finally,
from the above rule we readily establish that if n = 4k - 2 and F(l) F(-l) > 0,

then F(z) has either two.zeros on the unit circle or two plus 4m. The

same is true if n = 4k and F(l) F(-l) < 0.

Furthermore from the preceding discussion we can deduce the

following statements:

The necessary and sufficient condition for the zeros of F(z) to lie
3

on the unit circle are: (a) Eq. (3) should be satisfied and (b) all the zeros

of F'(z) should lie in, on, or in and on the unit circle. Similarly we can

formulate the necessary and sufficient condition for.all thezeros of an even

F(z) to be reciprocal with respect to the unit circle, by requiring that Eq. 3

be satisfied and that n/2 zeros of f(z) =[F'(z)] to lie inside the unit circle.

In conclusion, it is hoped that the contents of this note will aid to

clarify some of the previous work and to establish a simplified rule for the

exact calculation of number reciprocal zeros with respect to the unit circle

or zeros on the unit circle of a real polynomial. Although other methods
7

using certain transformations could be used for determining the number of

zeros on the unit circle, it is believed that the rule proposed in this note

yields simpler and quicker results. The use of the above discussions lies

in obtaining the root distribution of any real polynomial in the unit circle and

in simplifying the procedures for obtaining the roots of any form of F(z).

Such a general form of F(z) could represent the characteristic equation

of a linear discrete feedback system or a pulsed network.

-6-



REFERENCES

1. M. Marden, "The geometry of the zeros of a polynomial in a

complex variable, " Amer. Math. Sbc. , Ch. X. , pp. 155-157;

1949. ~ ""'^

2. M. Marden, "The number of zeros of a polynomial in a circle, "

Proc. Nat. Acad. Sci. , U.S.A., Vol. 39, pp. 15-17; 1948.

3. A. Cohn, "Uber die anzhal der wurzeln einer algebraischen

gleichung in einem kreise, " Math. Zeit. , Vol. 14, pp. 110-148; 1922.

4. E. I. Jury, "On the roots of a real polynomial inside the unit-circle

and a stability criterion for linear discrete.system, " Paper No. 413/7,

presented at the Second IFAC Congress, Basle, Switzerland,

Sept. 4, 1963.

5. F. F. Bonsall and M. Marden, "Zeros of self-inversive polynomials, "

Proc. Amer. Math. Soc. , Vol. 3, pp. 471-475; 1952.

6. German Ancochea, "Zeros of self-inversive polynomials, " Ibid. , Vol. 4,

pp. 900-902; 1953.

7. A. T. Kempner, "On the complex roots of algebraic equations, "

Bull. Amer. Math. Soc. , Vol. 41, pp. 809-843; 1935.

8. E. I. Jury and J. Blanchard, "A stability test for linear discrete

systems in table form. " Proc. Inst. Radio.Engr. , Vol. 44, pp. 1947-1948;

1961.

ACKNOWLEDGMENT

The author gratefully acknowledges the very helpful discussion and aid

of Mr. A. Chang in the writing of this note and the very helpful private

correspondence with Prof. B. M. Brown of the Royal Naval College,

Greenwich, England.

-7-


	Copyright notice 1963
	ERL-31

