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ABSTRACT

A unified black box approach is presented for synthesizing nonlinear

dc circuit models of 3-terminal devices characterized by two families of

characteristic curves in piecewise-linear form. The model building blocks

consist of linear and nonlinear 2-terminal resistors, independent and

linear controlled sources, as well as five generic forms of nonlinear

controlled sources; namely, nonlinear controlled-linear resistors,-concave

resistors, - convex resistors, -bi-concave resistors, and -bi-convex

resistors. The circuit parameters and functions characterizing each of

these elements in the models can be determined easily from the slopes

and breakpoints associated with the segments of the prescribed charac

teristic curves. The paper concludes with the presentation of several

nonlinear dc circuit models for 4 widely used devices; namely, bipolar

transistors. field effect transistors, unijunction transistors, and

triacs.
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1. INTRODUCTION

Device modeling is probably the weakest link in the area of computer-

aided circuit design. Indeed, unless one has realistic circuit models for

the devices used in a given circuit, no amount of computer analysis, let

alone design, would be meaningful. In view of its crucial importance to

computer-aided circuit design, much research is currently being conducted

in the area of device modeling. There are basically two distinct approaches

to device modeling: the physics-oriented approach [1-4] and the black box

approach [5-9]. The first approach is based on the physical mechanisms

which led to the device's operating characteristics. The second approach

is based on the data measured from the device's terminals. In contrast

to the heavy reliance on physical principles in the first approach, only

system and circuit-theoretic principles are invoked in the black box

approach.

The physics-oriented approach would appear to be more logical and

reliable if indeed the physical operating mechanisms of the device are

well-understood, and if the subsequent evolution from physical concepts

to circuit model is carried out accurately. Unfortunately, this last

step is usually achieved through various simplifying assumptions and

approximations. The end result of which could lead to a highly idealized

model. Another objection to the physics-oriented approach is that it is

difficult to formulate a systematic modeling procedure that would apply

to a large variety of devices. For example, the physical principles used

to derive the pentode model are quite different from those used to derive

the transistor model.
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The black box approach would overcome some of the objections inherent

in the physics-oriented approach. However, the absence of an identification

theorem for general nonlinear systems precludes the possibility of verifying

the validity of a black box model under arbitrary excitations. In view

of this basic problem, the black box approach has so far been used success

fully only in the synthesis of linear incremental circuit models. Our

objective in this paper is to extend the scope of application of the black

box approach to the synthesis of nonlinear dc circuit models of 3-terminal

devices. This class of circuit models is essential to the analysis of

equilibrium states of dynamic nonlinear networks [10], as well as in the

design of biasing circuits [11-12]. Fortunately, the validity of a non

linear dc black box circuit model can be easily verified by comparing the

family of simulated input and output characteristic curves with those

2
actually measured from the device. For convenience, we will assume

throughout this paper that the two families of input and output characteristic

3
curves are represented in piecewise-linear form.

Unlike linear systems [6], a nonlinear circuit model which correctly
simulates a nonlinear system under some prescribed excitation may not
respond correctly when the system is driven by other excitations.

2
Referring to the symbols and notations defined in Figs. 1(a), (b), and
(c), the dc characteristics of a 3 terminal device is completely specified
by two families of characteristic curves [8]; namely, a family of input
characteristic curves ii=gi (v-px-,), where the controlling parameter x^
may be either £2 on v2» an<* a fam*ly of output characteristic curves
^2=S2^V2»X2^» w^ere tne controlling parameter X2 may be either i^ or vj_.
We will assume throughout this paper that each family of characteristic
curves is either voltage-controlled or current-controlled. In the latter
case, we will use the same notations even though g-, (v-pX-^) and g2(v2fX2)
are no longer single-valued functions of v- and v«.

o

With some increased computational efforts, the modeling procedure to be
presented in this paper could be generalized to handle smooth characteristic
curves. However, this generalization is seldom necessary since more
piecewise-linear segments could always be added to improve the model's
accuracy.
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Using the model decomposition technique to be presented in Sec. 2

and the model building blocks to be presented in Sec. 3, a unified black

box approach to dc nonlinear circuit modeling of 3-terminal devices will

be presented in Sec. 4. This approach is quite simple and is rather

precise in the sense that a circuit model can always be synthesized to

simulate exactly the prescribed families of piecewise-linear character

istic curves. The parameters associated with the model can be determined

directly from the prescribed characteristic curves. Moreover, the same

procedure applies to any 3-terminal device, be it a vacuum tube or a

transistor.

2. THE MODEL DECOMPOSITION PREAMBLE

The problem of synthesizing a nonlinear dc circuit model for a 3-

terminal device is equivalent to that of synthesizing a controlled

resistor R. characterized by i-j^g-, (v- ,x-) and a controlled resistor R2
4

characterized by i =g9(v„,x~). The complete model is realized by

interconnecting these two controlled resistors as shown in Fig. 1(d) [8].

Since the characteristic curves of most existing 3-terminal devices are

located only in the first and the third quadrants, we will simplify

matters by assuming both families of input and output characteristic

curves to lie only within the shaded regions shown in Figs. 1(b) and

(c), respectively. Under this assumption, each controlled resistor R.

4
A controlled resistor is a 2-terminal black box whos€i v-i curve is

controlled by a third parameter x [8]. For example, a photo-diode is
a controlled resistor with light intensity as the controlling parameter,
In this paper, the controlling parameter will always be a voltage or a
current.
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may be synthesized by interconnecting two appropriate controlled resistors

R' and R" (j=l,2), with two ideal diodes either in the parallel mode shown

in Fig. 1(e), or in the series mode shown in Fig. 1(h). In both cases,

R' is designed to simulate the characteristic curves in the first quadrant

only, while RV is designed to simulate the characteristic curves in the

third quadrant only. The characteristic curves of Rl and R'1 in the re-
3 J

maining regions are irrelevant since they are effectively "clipped" by

the ideal diodes.

For the parallel mode in Fig. 1(e), the two diodes are used to in

troduce the constraint i' = 0 for v! < 0 in Fig. 1(f), and the constraint

i" = 0 for v" > 0 in Fig. 1(g). The resulting characteristic curves of

the composite 1-port shown in Fig. 1(e) would then be characterized by a

family of curves whose first quadrant characteristics are identical to

those of Fig. 1(f), and whose third quadrant characteristics are identical

to those of Fig. 1(g). For the series mode in Fig. 1(h), the two diodes

are used to introduce the constraint v! = 0 for i! < 0 in Fig. l(i), and
J 3 —

the constraint vV = 0 for i" > 0 in Fig. l(j). Again, the composite

1-port shown in Fig. 1(h) would correctly simulate the prescribed char

acteristic curves in both the first and the third quadrants.

In view of this decomposition technique and the observation that the

characteristic curves of controlled resistors are rotated by 180° upon

interchanging the two terminals of the resistor, it follows that hence

forth, we may restrict our attention to the synthesis of models for

simulating characteristic curves in the first quadrant only.

It will be clear in the sequel that for certain devices exhibiting

odd symmetry or other special properties, it may be superflous to apply
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the decomposition technique. Indeed, since the dynamic range of operation

of most practical devices invariably covers only portions of the first or

the third quadrant, no decomposition would be needed in such cases. How

ever, for the sake of generality, the decomposition preamble must be

considered as an integral part of the unified approach to be presented

in Sec. 4.

3. MODEL BUILDING BLOCKS

We will now introduce the building blocks to be used in our models.

These building blocks constitute a "complete set" in the sense that no

other elements will be needed. This set is listed in Table 1 under 4

separate categories. Category I consists of linear resistors and four

types of linear controlled sources. For convenience in the determination

of circuit parameters, the linear resistors will be represented either

by its resistance R, or by its conductance G. Category II consists of

independent sources and 2-terminal nonlinear resistors. The ideal diode,

the concave resistor, and the convex resistor are three specific nonlinear

resistors frequently used in our models. The concave resistor is char

acterized by [8]:

i = G(v-E) , v >^ E qn

= 0 , v < E

It is completely specified by two parameters, the conductance (slope) G

and the voltage intercept E. The convex resistor is characterized by:

v = R(i-I) , i > I
(2)

= 0 , i < I
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It is completely specified by two parameters, the resistance (reciprocal

slope) R and the current intercept I.

Category III consists of nonlinear controlled sources and nonlinear

controlled linear resistors. There are 4 types of nonlinear controlled

sources; namely, a voltage-controlled voltage source characterized by

v. = E (v.), a current-controlled voltage source characterized by v. =
J J K j

E. (i, ), a voltage-controlled current source characterized by i. = I (v, ),

and a current-controlled current source characterized by i. = I.(i. ),
j J k

where E (•) and 1.(0 are arbitrary nonlinear functions and where j ^ k.

The nonlinear controlled linear resistor may be represented either as a

controlled resistance v. = R. (x,)i., or a controlled conductance i,, =
J jvj 3 j

G (x )v , where the controlling parameter x. may be either v, or i, ,
J J J j K K

k £ j, and where R.(0 and G.(0 are arbitrary nonlinear functions [10].

From the theoretical point of view, the elements listed in Category III

are redundant in the sense that they all could be synthesized by using

only elements belonging to Categories I and II. Indeed, Table 2 shows

two distinct realizations for each of the four elements in Category III

using only linear controlled sources and nonlinear resistors. These

equivalent circuits will be useful for those computer programs which do

not accept elements from Category III.

Category IV consists of four generic families of x-controlled 2-

terminal nonlinear resistors; namely, an x-controlled concave resistor,

an x-controlled convex resistor, an x-controlled bi-concave resistor,

and an x-controlled bi-convex resistor. An x-controlled concave resistor

is characterized by
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*3 =VV^VW* (3)

where "o" denotes the usual composition operation, and where

u(z) = z , z _> 0

= 0 , > 0
(4)

and where G.(•) and E.(0 are arbitrary nonlinear functions of the

parameter x., which may be either v. or i. , j ^ k. For a given value of

x , an x-controlled concave resistor reduces to a concave resistor as

defined in (1). Hence, an x-controlled concave resistor is completely

specified by two functions, the conductance function G.(•) and the

voltage-intercept function E (•).

An x-controlled convex resistor is characterized by

v -RO. )».(!-! (x3)) (5)

where u(0 is as defined in (4), R. (O and 1^(0 are arbitrary nonlinear

functions of the parameter x., which may be either v, or i, , j f k. For

a given value of x, , an x-controlled convex resistor reduces to a convex

resistor as defined in (2). Hence, an x-controlled convex resistor is

completely specified by two functions, the resistance function R.(O and

the current-intercept function I,(0•

An x-controlled bi-concave resistor is characterized by

ij -Gj(xj)uo(Vj-Ej(xj)) +G^x^uVv^E*^)) (6)
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where u(0 is as defined in (4), and

u*(z) = - u(-z) (7)

ft ft

and where G (•), E (0» G. (•), and E. (0 are arbitrary nonlinear functions

of the parameter x , which may be either v, or i , j ^ k. An x-controlled

bi-concave resistor is completely specified by 4 functions; namely, the

*

two conductance functions G. (O and G.(0 and the two voltage-intercept

*

functions E.(0 and E.(0.
3 3

An x-controlled bi-convex resistor is characterized by

v, =R.(x )uo(i -I (x )) +R*(x )u*o(i,+I*(x,)) (8)
J J J JJJ J J JJJ

ft
where u(0 and u (•) are defined in (4) and (7), and where R. (0» I.(')>

ft ft

R (0> and 1.(0 are arbitrary nonlinear functions of the parameter x.,

which may be either v, or i. , j / k. An x-controlled bi-convex resistor

is completely characterized by 4 functions; namely, the two resistance

ft

functions R. (•) and R.(•) and the two current-intercept functions 1.(0

and I*(0-

The v-i curve associated with each element in Category IV for a

given value of the parameter x is given in Table 3 along with an equiva

lent circuit model made up of only elements from categories I, II, and

III. Since the elements from Category III were shown earlier to be made

up of only elements in Categories I and II, it follows that the elements

in Categories III and IV are introduced only for the purpose of obtaining

simpler models. With the help of the equivalent models given in Tables

2 and 3, only the elements listed in Categories I and II are absolutely
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necessary. In spite of this redundancy, however, it would still be

advantageous for us to include the elements in Categories III and IV in

our repertoire of model building blocks because these elements will

generally be needed in the models of many practical devices. Replacing

these elements by their equivalent circuits from Tables 2 and 3 would

greatly increase the complexity of the resulting circuit model.

4. A UNIFIED BLACK BOX MODELING APPROACH

Our unified approach is a generalization of the segment-by-segment

method presented in Chapter 8 of [8] for synthesizing a 2-terminal black

box with a prescribed v-i curve. Using only concave and convex resistors

as building blocks, the v-i curve is realized one segment at a time. The

crux of the segment-by-segment method is based on the observation that a

concave (convex) resistor, when connected in parallel (series) with

another 2-terminal black box N, changes the v-i curve of N only in the

region v > E (i > I). This property is a direct consequence of the

characteristic constraint i = 0 for v <_ E (v = 0 for i < I) of a concave

(convex) resistor. Since the v-i curve of N remains unchanged in the

region v < E (i <_ I) upon connecting a concave (convex) resistor in

parallel (series) with it, it is possible to add a new segment with any

prescribed slope and breakpoint to the v-i curve without affecting the

remaining segments. In other words, the addition of an appropriate

concave or convex resistor will not introduce any "loading effect" on

that part of the v-i curve previously synthesized. Consequently, a v-i

curve with n breakpoints can be realized by using a total combination of

n concave and convex resistors. In general, a linear resistor and an
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independent voltage or current source is used to realize the first (left

most) segment. The next segment is realized by connecting either a

concave resistor in parallel, or a convex resistor in series, depending

on the relative slope and break point between the first two segments.

This procedure is repeated until the last (right-most) segment is

realized.

The segment-by-segment method can be generalized to realize an

arbitrary family of prescribed v-i curves provided x-controlled concave

resistors and x-controlled convex resistors are used as building blocks.

The procedure consists of realizing one v-i curve at a time, via the

segment-by-segment method. This generalization is possible because each

v-i curve is controlled by the value of the parameter x. By fixing the

value of x, we automatically fix the v-i curve to be synthesized. In

order to guarantee that each v-i curve in the family is realized by the

same circuit topology, we must assume that each v-i curve in the family

of prescribed characteristic curves has the same number of breakpoints.

There is no loss of generality in this assumption because additional

breakpoints can always be inserted along the v-i curve, if necessary,

without changing the original specification.

Example. To illustrate the above synthesis procedure, let us

consider synthesizing a dc nonlinear circuit model for simulating exactly

the family of prescribed piecewise-linear input characteristic curves

*1 = 81^V1,V2^ in Fig* 2^ and the familv of prescribed piecewise-linear
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output characteristic curves ±2 =g^,^) in Fig. 2(b).5

(a) Modeling the input characteristic curves i, = g„(v ,v ).
i —]_ aq. l-2—2—

Since each v^^ curve has 4 breakpoints, it would be necessary to use

a combination of "4" v2-controlled concave and convex resistors. The re

sulting model is shown in the left-half portion of Fig. 2(c). The v«-

controlled linear resistor is used to realize the 4 leftmost segments

(through the origin) in Fig. 2(a). Its conductance function G (O is

shown in Fig. 3(a). An inspection of this function shows that G (0) =

2.0 mi5, G]L(2) = 0.5 my, ^(4) = 0.3 mW, and G (6) = 0.2 mU. These values

are taken directly from the slopes of the 4 leftmost segments in Fig. 2(a)

The function G^CO in Fig. 3(a) is obtained by connecting these 4 data

points by straight lines. This is equivalent to assumming the slope

varies uniformly between each pair of segments in Fig. 2(a). Clearly,

a non-uniform variation could also be simulated by drawing an appropriate

smooth curve through the 4 data points.

The second segment associated with each of the 4 v--i- curves in

Fig. 2(a) is realized next by connecting a v«-controlled concave resistor

in parallel with the v2-controlled linear resistor G (v ). The conduc

tance function G«(0 and the voltage intercept function E„(0 for this

We pick a hypothetical device here in order to illustrate the generality
of our present approach. Unlike the modeling procedure presented in Chapter
11 of [8], the family of v-i curves to be modeled may now be prescribed
arbitrarily. Indeed, corresponding breakpoints are no longer required to
lie along a straight line, and segments with both positive and negative
slopes are now allowed. Moreover, two or more v-i curves in the family
may even intersect one another, as is the case in Fig. 2(a).
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a combination of "5" i -controlled concave and convex resistors. The

resulting model is shown in the right-half portion of Fig. 2(c). Again,

the 4 leftmost segments through the origin in Fig. 2(b) are realized

by the i--controlled linear resistor with a resistance function R,(•) as
J- 6

shown in Fig. 3(j). The next two segments can be realized by connecting

two i..-controlled convex resistors in series with this resistor as shown

in Fig. 2(c). The resistance function R_(0 and current-intercept function

1,(0 are obtained from the slope and intercept of the second segment

relative to the first segment, and are shown in Figs. 3(k) and (A), simi

larly, the resistance function Rg(0 and current-intercept function Ig(0

are obtained from the slope and intercept of the third segment relative

to the second segment, and are shown in Figs. 3(m) and (n).

The remaining 3 segments in each of the 4 v„-i9 curves in Fig. 2(b)

can be realized by connecting three appropriate i -controlled concave

resistors in parallel with the 3-element network realized so far, as shown

in Fig. 2(c). The characterizing conductance and voltage-intercept func

tions G9(0, E9(0; G1Q(0, E10(O; and Gn(0, En(0 are easily computed

from the prescribed curves in Fig. 2(b) and are shown in Figs. 3(o) to

(t), respectively.

The complete model shown in Fig. 2(c) clearly simulates the pre

scribed characteristic curves in Figs. 2(a) and (b) exactly. Since no

restriction has so far been imposed, it follows that our synthesis pro

cedure is indeed a unified approach for modeling 3-terminal devices. In

general, a total combination of "n" x-controlled concave and convex resis

tors will be required to realize each family of characteristic curves,
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element are shown in Figs. 3(b) and (c). The value of G2(v«) for v9 =

0,2,4, and 6 is obtained by subtracting the corresponding slope of the

second segment from the slope of the first segment. The value of E9(v9)

for v = 0,2,4, and 6 is equal to the voltage coordinate v. at each of

the 4 breakpoints connecting the first two segments.

The third segment of each of the 4 prescribed v.-i. curves is

characterized by a negative slope and can be realized next by connecting

a v^-controlled convex resistor with a negative resistance function in

series with the 2-element network realized so far. The resistance func

tion R3(0 and current-intercept function I-(0 for this element are

shown in Figs. 3(d) and (e). The value of R-CO for v2 = 0,2,4, and 6

is obtained by subtracting the reciprocal slope of the third segment

associated with each v--i. curve from the reciprocal slope associated

with the second segment. The value of I^(v9) for v« = 0,2,4, and 6 is

equal to the current coordinate i_ at each of the 4 breakpoints connecting

the second and the third segments.

The last two segments associated with each of the 4 v--i- curves

can be realized in the same manner upon connecting two v„-controlled

convex resistors in series with the preceding 3-element network. The

resistance function R#(0 and current-intercept function 1.(0 are easily

computed as before and are given in Figs. 3(f) and (g). Similarly, the

resistance function R-O) and current intercept function le(0 are shown

in Figs. 3(h) and (i).

(b) Modeling the output characteristic curves i2 = g-Cv^iQ.

Since each v9-i9 curve has 5 breakpoints, it would be necessary to use
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where n is the total number of breakpoints in each v.-i. curve in the

family. Observe that the number of elements in the model does not depend

on the number of v.-i. curves prescribed for each family of characteristic

curves. Of course, it is up to the circuit designer to specify a sufficient

number of curves since the unspecified continuum of curves will be generated

automatically by the model on the basis of a linear interpolation between

each pair of prescribed curves and a linear extrapolation beyond the first

and last prescribed curves. The piecewise-linear functions characterizing

each of the x-controlled concave and convex resistors will contain the

same number of segments as the number of curves prescribed in each family

of characteristic curves.

So far we have not yet discussed the family of x-controlled bi-concave

and bi-convex resistors since they are used in more specialized applications,

such as in the modeling of the Triac in Sec. 5, where the characteristic

curves exhibit odd symmetries. On such occasions, the use of bi-concave

and bi-convex resistors will obviate the need to implement the decom

position technique described in Sec. 2, while at the same time obtain

a model containing half as many elements.

5. NONLINEAR DC CIRCUIT MODELS OF SEMI-CONDUCTOR DEVICES

We will now apply the black box approach presented in the preceding

section to synthesize nonlinear dc circuit models of several widely used

devices; namely, the bipolar transistor, the FET, the unijunction tran

sistor, and the Triac or SCR. Due to the limitation of space, the models

will be presented without much detailed discussion since the same pro

cedure is applied in each case. The characteristic curves of each device
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to be modeled will be given at the outset in piecewise-linear form.

Each curve is represented by a sufficient number of segments adequate

for most practical applications. If better accuracy is desired, the

models presented in this section could be easily refined by adding

additional x-controlled concave and convex resistors.

(a) Bipolar transistor model. Only npn transistors will be con

sidered here since the same models would apply to pnp transistors under

minor modifications [8]. The most versatile model to be proposed for

the npn transistor in Fig. 4(a) is the Model A shown in Fig. 4(b). The

relationship between the slope and breakpoint of each segment and the

characteristic functions associated with the building blocks are indi

cated directly on top of the prescribed characteristic curves in Fig.

4(c) and (d). Observe that Model A is capable of simulating not only

the nonlinear current gain in the active region, but also various high

injection nonlinear effects such as the variation of collector output

conductance in different regions of the I -vs.-V„„ plane. Among other

things, Model A is capable of simulating all features possessed by the

dc version of the Gummel and Poon model [13]. However, the parameters

associated with Model A can be determined much more easily than that

required by Gummel and Poon [13-14].

Since the dynamic range of operation of most bipolar transistors

in practice usually covers only a small portion of the first quadrant,

Model A may be further simplified under certain assumptions. For

example, Model A reduces to Model B in Fig. 5(a) if we approximate the

saturation region of the output characteristic curves in Fig. 4(d) by
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a single straight line with slope G-, as shqwn in Fig. 5(c), and if «we

delete the third segments which normally are needed only in the region

of high collector voltage.

A further reduction from Model B to Model C in Fig. 5(d) is possible

provided the family of input characteristic curves in Fig. 5(b) is approxi

mated by a single curve as shown in Fig. 5(e), and provided the collector

output conductance in the active region is assumed to be a constant as

shown in Fig. 5(f). Model C still contains a nonlinear current-controlled

current source. This element, which belongs to Category IV, may be re-=-

placed by a linear voltage-controlled current source upon decomposing the

concave resistor R in Fig. 5(d) into two nonlinear resistors Ri and K*

in the equivalent Model D shown in Fig. 5(g). The v«-ii curve for Rl ia

characterized by the relation vi = 7- I„(i'), where k is any convenient
, a K U o

scaling constant (Fig. 5(h)). The v"-i" curve for Rj,1 is chosen to take

up the "slack" (Fig. 5(i)) in order that the composite v.-i. curve (Fig..

5(j)) is identical to that shown in Fig. 5(e).

Another variant of Model C is the Model E shown in Fig. 5(k). The

validity of this model is based on, a very special observation by Gummel

and Poon [13]; namely,, for a large class of bipolar transistors,, the

collector curves in the active region when projected backwards, would

all meet at a focal point as shown in Fig. 5(£). This observation, has

been verified experimentally by this author to be approximately true for

most bipolar transistors. Model E takes advantage of this property an<|

consequently requires only the evaluation of Rr,(I_) and E_. The remains

ing parameters G_, E_, and G. are known for various types of translators*.
IS o \j
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With the help of a curve tracer and a straight edge, it has been found

that R (I ) and E could be determined almost by inspection! Hence,

Model E seems to be an excellent compromise between accuracy and sim

plicity in the determination of the model parameters.

(b) Field effect transistor model. Only n-channel FET will be

considered here since the p-channel model would follow trivially. The

most flexible model for the n-channel FET in Fig. 6(a) is the FET Model A

shown in Fig. 6(b). This model is designed to simulate the prescribed

characteristic curves in Figs. 6(c) and (d) exactly. It bears a strong

resemblence to the npn transistor Model A of Fig. 4(b). However, a

nonlinear resistor R. is used instead of a controlled concave resistor

since the FET input characteristic curves can be approximated accurately

by a single I^-vs.-V-- curve.

Model A can be simplified to Model B in Fig. 6(e) provided we approxi

mate the first and the third segments of the family of ^tTvs-^-qq curves

by a single straight line each. In this case, the linear resistor R^ of

Model B is used to simulate the first segment and the concave resistor R3

of Model B is used to simulate the third segment. By a precedure dual to

that used in deriving the npn transistor Model D, we can replace the non

linear controlled source in the FET Model B by a linear controlled source

to obtain the equivalent FET Model C shown in Fig. 6(f).

(c) Unijunction transistor model. This device is probably one of

the more difficult ones to model since no realistic unijunction transistor

model has yet existed. Using our unified approach, we obtain the uni

junction transistor Model A shown in Fig. 7(b). The VBB-controlled linear

resistor arid the nonlinear controlled source EB(vBfi) are used to simulate
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the negative resistance segment of the input characteristic curves in

Fig. 7(c). The corresponding v-i curves in the fourth quadrant are

clipped by the ideal diode R9. Finally, the family of near vertical

segments in Fig. 7(c) are realized by the V_ -controlled convex resistor
JtSU

R... In the output portion of this model, the I -controlled linear
•*• E

/\

resistor Rg and the I -controlled convex resistor R_ are used to realize

the first and the second segment, respectively, of the T-o0-vs.-Vw out-
B2 BB

put characteristic curves in Fig. 7(d).

(d) Triac model. The Triac Model A shown in Fig. 8(b) was designed

to simulate the input and output characteristic curves shown in Figs. 8(c)

and (d). The input portion of this model consists of a single nonlinear

resistor ^ characterized by the Vg-Ig curve shown in Fig. 8(c). The

output portion of the model consists of a linear resistor GA for simu-
A

lating the segment through the origin, and an I.-controlled bi-concave
G

resistor R2(in parallel with it) for simulating the odd symmetric second

segments associated with the output characteristic curves in Fig. 8(d).

The remaining two odd-symmetric segments are realized by connecting two

IG-controlled bi-convex resistors R3 and R, in series with the parallel

combination of G. and R-.
A 2

Since a Triac may be modeled by two SCR's connected back-to-back

in parallel, the Triac Model A in Fig. 8(b) can be transformed into an

SCR model upon replacing the controlled bi-concave and bi-convex resistors

by controlled concave and convex resistors having identical first quadrant

characteristic curves.
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6. CONCLUDING REMARKS

The unified procedure described in this paper can be used to synthe

size a nonlinear dc circuit model for simulating the prescribed family

of input and output characteristic curves of any 3-terminal device. The

only assumption we made is that each curve belonging to the family of

input or output characteristic curves must be prescribed in piecewise-

linear form with the same number of breakpoints. The number of circuit

elements in our model is proportional to the number of breakpoints and

is independent of the number of curves prescribed for each family. Our

model will simulate each prescribed characteristic curve exactly. It

will also simulate the continuum of characteristic curves lying between

each pair of prescribed curves by assuming a uniform variation from one

prescribed curve to the next. In other words, a linear interpolation

between curves is automatically implemented by our model.

Some of the desirable features of our approach are: (1) our approach

is applicable to the modeling of any 3-terminal device. Since the pre

scribed characteristic curves are simulated exactly, the only inaccuracy

lies in the initial approximation used in specifying the characteristic

curves, and not in the model itself. (2) Since each element in our model

is responsible for realizing a specific portion of the prescribed char

acteristic curves, it is often possible to simplify a given model by

deleting those elements which do not affect the region of the character

istic curves covered by the dynamic range of operation. (3) The char

acteristic functions and circuit parameters associated with the circuit

model could be determined directly from the slope and breakpoint of

-20-



the characteristic curves. No involved calculation or computer optimi

zation techniques are needed.

Some of the undesirable features of our approach are: (1) the ele

ments in the model do not bear any physical or geometrical relationship

with the device. This is a distinct disadvantage in the design of inte

grated circuits when the effect of doping and other manufacturing para

meters must be carefully controlled through computer simulation. (2) Ours

is strictly a dc model. The extension to include high frequency char

acteristics does not seem to be feasible at this time. (3) In order to

use our model efficiently, new computer programs must be developed to

allow the building blocks listed in Table 1. This objection is not

serious, however, since the simplicity and accuracy of our model should

justify the inclusion of these building blocks in future circuit analysis

programs.
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LIST OF TABLE AND FIGURE CAPTIONS

Table 1 Complete set of model building blocks.

Table 2 Equivalent circuit models for elements in Category III.

Table 3 Equivalent circuit models for elements in Category IV.

Fig. 1 An illustration of the parallel and the series mode of model

decomposition.

Fig. 2 A nonlinear dc circuit model for a hypothetical 3-terminal device.

Fig. 3 The nonlinear functions characterizing the elements of the circuit

model in Fig. 2.

Fig. 4. A nonlinear dc model for npn transistors.

Fig. 5 Simplified nonlinear dc models for npn transistors.

Fig. 6 Nonlinear dc models for n-channel field effect transistors.

Fig. 7 A nonlinear dc model for unijunction transistors.

Fig. 8 A nonlinear dc model for Triac.
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I. Linear Resistors and Controlled Sources

(a) linear resistor (b) linear conductor

9—*-
r*-

v°Ri icGv

(c) linear controlled
voltage source

o—*-

<^ kx

v«kx

(d) linear controlled
current source

o—>-

4> kx

i°kx

n. Independent Sources and Nonlinear Resistors

(a) voltage
source

o >

(b) current
source

o >

(c) ideal
diode

o >•

^E v (T)I v

vcE i°I vnO,i*0
j»0,v<0

(d) concave
resistor

9 >

(e) convex
resistor

o »

(f) nonlinear
resistor

a—»-

2(G,E) v 2(R,I) v

i»G(v-E),v;>E vWi-I).!*!
»0,v<E «Of i<I

f(v,i)«0

BE. Nonlinear Controlled. Sources and Controlled Linear Resistors

(a) x-controlled
voltage source

» >

(b) x-controlled
current source

0 >

(c) x-controlled
linear resistor

o—*-

(d) x-controlled
linear conductor

o—>-

4 E(x) A.x)
7

•*R(x) v

?
*G(x)

BZ".

v»E(x) i*I(x) v°R(x)i ieG(x)v

Controlled Nonlinear Resistors

(a) x-controlled (b) x-controlled (c) x-controlled (d) x-controlled
concave resistor convex resistor bi-concave resistor bi-convex resistor

O-U
+

H[6(O.E(x)] v |°J[R(x),I(x)]

T —T
l«G(x)uo(v-E(x)) v*R(x)uo(i-l(x))

-i*—, *±*—,

?[s(*),a«)] pi[R(»u(i
[<*k>.e%)] v |i|pAx),A

i«G(x)uo(v-E(x))

+G*{x)u,o(v+^(x))
v«R(x)uo(j-I(x))

♦ R*(x)u*°(i+f(x))

TABLE I
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NAME AND
SYMBOL

I. x-controlled
voltage
source

v*E(x)

2. x-controlled
current
source

3. x-controlled
linear
resistor

R(x)

v=R(x)i

4. x-confrolled
linear
conductor

CIRCUIT MODEL I

vx-ix curve for Rx-Vxs"k~E(ix)

vx-ix curve for Rx:ixa"k~ ^vx)

<H • •

- Mq +

$>"y «b\J\ vb<l>2i v,A2i v„<t>R(»>»l

O— i > 4 « ft

^"•a curve for Ra:va°-Jp£
vb-ib curve for Rb :vb =-"4 ig

4-ri&^i

IK *Jt\ A 2v v^ |)G(x)fv

*———•—*

L:2va-ia curve for Ra:vaa 4-io
I 2

vb-ib curve for Rb:vbB~T'b

CIRCUIT MODEL 2

i ix
-*-•-

<5>kr» 4
»— « 4 ♦

vx-ix curve for Rx :ix BTTE^vx^

i Jx

0>kvx Rx I vx <t)

o— •

vx-ix curve for Rx :vxaT Iflx)

jy.
"l#

W'y Vblflfy va[£Ra wWxW

va-ia curve for R0 :ia B 4" vg
vb-.b curve for Rb :ib=- 4-v^

va -ia curve for Ra: ia B"4 v|

vb-ib curve for Rb-''bB~~4"vb

TABLE 2



Nome end Symbol

I. x-controlled
concave resistor

r^

H [QMtEM]

2. x-controlled
convex resistor

R [R(x),I(x)]

3. x-controlled
bi-concave resistor

i.

P| [6(x),E(x>]

4. x-controlled
bi-convex resistor

r*

[mxM(x)]

[rftojlo]

v-l Curves as Function of

Parameter x

Case l:G(x)20,E(x)20
ti

Case 2:G(x)<iO,E(xteO
ni v-E(x)

Case I: R(x)20,l(x)2>0

'I(x)
reciprocal slope

R(x)

-* v

Case2:R(x)sO,l(xteO
i

reciprocal slope
«R(x)

v«i

i
slope°G(x)

'I(x)

r* V

Art
0 v»E(x)

4tope»GXx)

E(xteO,E(x)SO

i-I(x)

reciprocal
slopetRlx)

reciprocal
slopesR(x)

■♦v

'fix)

I(x)>o,I%)£0

Mathematical Model

-G(x)uo(v-E(x))

where u(») is
the unit ramp
function:

u(z)°z,ziO
«0,z<0

v"R(x)u«(i-I(x))

where u(») is
the unit ramp
function:

u(z)-z,ziO
«0,z<0

=G(x>uo{v-E(x))

tG*(x)u"(vtElx))

where u(«) is
the unit ramp
function:

u(z)«z,z*0
80,z<0

and where:

v«R(x)uo(j-l(x))

tfrtx)u*(i*ftx))

where u(») is
the unit ramp
function:

u(z)ai,z*0
»0?z<0

and where:

u^z)»-u(-z)

Circuit Model

G(x)*0,E(x)*0

+

V 0)i(x) i*R6t)2;

R(x)*0,I(x)*0

E(x)*0,e1x)sO

IUteO,ftxteO

TABLE 3



(a)

e >

controlling
parameter

(b)

controlled
resistor Rj

with controlling
parameter=xj

(e)

controlled

resistor Rj
with controlling

parameter* xj

controlled

resistor Rj'
with controlling

parameter5 xj

•rg|(v,,x,)

controlling
parameter
=x.

^Qz^V^)

(c)

o • ••»•

Y!

FIGURE I

controlled
resistor Rj

with controlling
parameter =xj

o ">

+

u

wi

—•-

(h)

controlled

resistor Rj
with controlfing

parameter*^-

controlled

resistor Rj'
with controlling

parameter* xj

v!=0, for
ii£0

controlling
parameter

controlling
parameter



'l
mA

6

•l =9|W,,v2)

\^°0v

(a)
VOLTS

Jh-CO

(c)

>2
mA

6

i2=g2(v2,i,)

FIGURE 2



G,(v2)tmtT R4(v2),Kil

E2(v2), volts RB(v2),Ka

R-fitXKa
A

R8(i,),Ka
A

EgCi,)v volts
A

Grfl,>,mTJ
A

E,0(i,),volts
A

(t)
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(a)

npn TRANSISTOR

breakpoint I
(VBE=EB(VCE))

(c)

(b) MODEL A

stope*Gc(lB)+ —T*
WW

breakpoint breakpoint 2

(d)
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(o) 1K0DEL B|

(d) [MODEL C

(g) [MODEL D|

••fcw?

IB
<stope-G^vce)

DrsoKpotnt
(Vfeg-E^c))

(b)

slope

reciprocal slope

focal
point •'„-''>*'

^ fcff^l "r"-"' - - " " "
VBE "EC

stops«R#^U

0C-IC«8)>

(c)
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(a)

n-CHANNEL
FET

(c)

(e) MODEL B

reciprocal
slope

°6d(v6S)

h *e

(b)IMODEL A

breakpoint I reciprocal stops

(d)

(f) [MODEL C

breakpoint 2

Wos-ErfNfes))
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reciprocal
slope

=Re%b>

+Re<W

(a)

UNIJUNCTION

TRANSISTOR

Vbb=o

VBB=AV

VBB=2AV

VBB=3AV

VBB =4AV

reciprocal
slope

=RB(IE)

reciprocal slope

RE(Vbb>

breakpoint I

<Veb<vbb»
(c)

(b) MODEL A

IB2 reciprocal slope
=RBaE)tRBaE)

breakpoint I
(IB2=IBHE))

(d)
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(a) TRIAC

(c)

>v*

reciprocal slope
:RA(IG)tRA(I<5)+

breakpoint 2

reciprocal slope

(b) MODEL A

IgsO

I6°2AI

I C3AI reciprocal slope

Ra(Ig)+W^

breakpoint 2

ilope=S/]
breakpoint I

•*v.

reciprocal slope

(d)
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