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, ABSTRACT

A simple proof of global inverse function theorem in IR is given.

A global homeomorphic version of the theorem is proved first. A global

diffeomorphic version follows by an application of the classical local

inverse function theorem.
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The problem of determining that a given function from|Rn into(^n has

an inverse is very useful in applications. In 1959, Palais established

the necessary and sufficient condition for a function to be a diffeomorphism

of R onto itself, which appeared as an episode in a paper dealing with

the determination of spaces of intertwining operators on differential forms.

This global version of the classical inverse function theorem has been

[2—121
applied widely in nonlinear network theory and is generally re

ferred to as Palais Theorem by circuit theorists. Palais originally

stated it without proof as a corollary in [1]. We believe that a simple

proof of this useful theorem will be helpful to the readers of this

Journal.

This note presents a proof that is intuitively appealing and easily

understood with a modest background in mathematical analysis '

We first prove the necessary and sufficient condition for a global

[2]
homeomorphism ; the case of a global diffeomorphism follows easily

by an application of the classical inverse function theorem.
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THEOREM

Let f be a map from IR into (R , then f is a homeomorphism of 1R-

onto Rn if and only if f is
2

(1) a local homeomorphism and

3(2) a proper map .

Proof: =*• By assumption f is a (global) homeomorphism, hence it is a

local homeomorphism. Because f is continuous, it maps any compact set

into a compact set. [13, p. 78; 14, Theorem 4.1, p. 207].

*= We prove this in three steps: (1) f is surjective (onto),

(2) f is injective (one-to-one), (3) f~ is continuous. To facilitate

the presentation, we denote the domain of f by X and the range by Y; of

course, X = Y = Rn.

(1) Surjective: Let Y± be the image of f, i.e., Y = f(X), or more

specifically, Y1 = {y e y|f" (y) is anonempty subset of X}. We know

that Y is connected. If Y- is both open and closed, knowing also the

fact that Y1 is not empty, we can conclude that Y « Y [13, p. 59], i.e.,

f is surjective.

1. A homeomorphism of X onto Y is, by definition, a continuous bijective
map f: X -»- Y such that f-1 is also continuous.

2. A map f: X -** Y is said to be a local homeomorphism if whenever x £ X
and y^Y are such that f(x) » y then there exist open neighborhoods
U of x and V of y such that f restricted to U is a homeomorphism of U onto V,

3. A continuous map is said to be proper if the inverse image of any
compact set is compact.
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(i) Y1 open: Let y e y then there exists an xx £ X such that f(x )=y ,

Now f is a local homeomorphism means that there exist open neighborhoods U

of x. and V of y. such that f is a homeomorphism from U onto V. So V C Y.

and Y is thus open.

(ii) Y closed: Let y be an accumulation point of Y , then there exists

a sequence {y.J- with y G Y- Vi, and y •*• y. Consider K = ly } U {y},

which is clearly closed and bounded in Y, hence compact. [13, p. 58; 14
i

Theorem 4.5, p. 208]. By assumption, f (K) is compact in X. Now pick

-1 -,00 -1
x. £ f (y.). ix,/ is a sequence in a compact set f (K) in a metric

1 ^ 1
space IK , therefore {x.} has a convergent subsequence, say {x. } -»• x.

i i

3 j=l 00
[13, p. 56; 14, Th. 4-4, p. 208]. But {f(x. )} is a subsequence of {y.} ,

J J=l 1
therefore converges to the same limit y. f is a continuous map because it

is a local homeomorphism, hence f(x) = f(lim x. ) = lim f(x. ) = y, there-
j-*» J j-*» xj

fore y e Y . Hence Y is closed. [13, p. 47; 14, p. 203].

(2) Infective: Suppose that f is not injective, hence there exist two

distinct points x , x. such that f(x.) = f(x«). Without loss of generality,

we can assume f(x_) = f(x„) = 0. Let a: [0,1] -*• X be defined by a(t) =

(l-t)x. + tx? and 3 = f°a. Geometrically, a is the line segment joining

x- to x_ and $, its image in Y under f, is a closed curve through 0. (Fig.

1). Let B: [0,1] x [0,1] -*• Y be defined by B(t,T) = (1-T)p*(t). Thus for

each T, B(*,t) is obtained by shrinking the closed curve 3 toward the origin.

The rough idea of the proof is to shrink the curve 3 toward the origin, the

corresponding curve a will be continuously deformed into some curve joining

x- to x«; the contradiction will be reached in the limit when 3 degenerates

into a single point.
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(i) Construction of the inverse image of B (Fig- 2); Let us define for

each t a map A(t>Oi 10,1] -*• X by the following process of piecing together

the local inverses of B. First let A(t,0) = a(t). Since f is a local homeo

morphism, there exist homeomorphic neighborhoods of a(t) and 3(t), U- and V.

respectively. Define A(t,-): [0,T_] •+• U- to be the local inverse image of

B(t,x) for t£ [0,x]L] where t1 is so chosen that B(t,x) € V ,for all x€ [0,1,

Thus we have f(A(t,Tx)) = B(t,x1) and we can define A(t,-) on [t,,t ] with

t2 > x as the local inverse of B(t,«) around B(t,x1). Repeat the same proce

dure; at each step, we extend t from x to x with t > x . We are going

to show by contradiction that the domain of A(t,.) can always be extended to

include 1. Suppose that the above process fails to do so. Then the increasing

sequence {xk> is bounded by 1 and has a least upper bound T, so {x } •*• T < 1.

But B(t,-) is continuous, lim B(t,x, ) = B(t,T); and since {A(t,x )}" is a
k_K0 K k k-1

sequence in a compact set f (B(t,x) : x € [0,1]), it has a subsequence con

verging to a limit A(t,T). Now because f is continuous, f(A(t,T)) = B(t,T),

hence the domain of A(t,.) is extended to include T; moreover, in the case

when T < 1, it can even be extended beyond T by local homeomorphism. Thus, we

can define a map A: [0,1] x [0,1] ->• X with the property that f°A = B, and

also A(0,t) = x , A(1,T) = x , Vx.

(ii) Continuity of A(*,x): We will show that for each T, A(*,t): [0,1] •+ X

is continuous by open-set arguments [13, p. 70; 14, pp. 201-202], Let ©

be any open set in X and let its inverse image under A(*,t) be denoted by

(J; equivalently, VJ is the inverse image under A(*,x) of the intersection

of (0 with the image of A(«,x). Now for each t, let the homeomorphic

neighborhoods of A(t,T) and B(t,T) be U and V , respectively. Note that
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U (U nQ) has 9T as its inverse image under A(«,x) and U f(U n ©)
*=[0,l] te[0,l] t
also has rj as its inverse image under B(»,t) since B = foA. But f(U n (t))

are open in Y, so does U f(u n (T)). Because B(*,t) is continuous,^
te [0,1] Z

is open in [0,1]. This completes our proof that A(*,t) is continuous.

Now for T = 1, B(t,l) = 0, Vt. Geometrically, this is done by

shrinking 3 to the origin. The corresponding A(t,l) is still a continuous

curve joining two distinct points x. and x?. But the inverse image of a

single point under a local homeomorphism f can not be a continuous curve.

To demonstrate this, suppose it were true, every neighborhood of x. would

contain points of f (0) other than x- itself, then it would be impossible

for homeomorphic neighborhoods of x_ and 0 to exist. Thus we have proved

that f is injective.

Remark: Here we have in fact tacitly constructed a covering homotopy A

of B (15, Th. 3, p. 59).

(3) Continuity of f : Recall that continuity is a local property.

[13, p. 68; 14, pp. 201-202]. The fact that f" exists globally (by (1)

and (2)) together with the local homeomorphism assumption asserts that

f is continuous. Q.E.D.

Lemma 1

Let f be a continuous map from R into IP- , then f is a proper map

if and only if lim Hf(x)fl » <».

Proof: ** By contradiction. Suppose that there is a sequence {x,} with

11x^11 •+ ooj yet II f(x, )H <_ M < °°. Consider the closed and bounded ball
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BM = {y|"y[> <.M>, because fis proper, f~ (O is compact. However, {xfc}

is contained in f" (B ), but HxJI •> °° contradicts the compactness of f (BM).
-1

*" f is continuous implies that for each closed set K, f (K) is

closed. Suppose K is bounded yet f~ (K) is not, then there exists a sequence

{x^} in f-1(K) with ilx.ll •* °°. Clearly {f(x^} CK. But by assumption
Of (x, )ll •* °°, which contradicts boundedness of K. Q.E.D.

Lemma 2

Let fbe aCk map (k _> 1) from Rn into Rn, then fis alocal C-
/ ^F

diffeomorphism if and only if det (y) ^ 0.

Proof: This is the well-known classical local inverse function theorem.

[13, p. 211 and Ex. 17, p. 217; 14, p. 167],

Corollary:

Let f be a C map from Rn into R , then f is a C -diffeomorphism if

and only if

(1) det (||) f 0 Vx

(2) lim Hf(x)ll = °°
llxil-*"

Proof: It follows from the Theorem, Lemma 1 and 2, as well as the fact

that differentiability is a local property. [13, p. 198; 14, p. 142].

Q.E.D,

4. AC -map is, by definition, a map with continuous derivatives up to
order k. AC -diffeomorphism is, by definition, a bijective Ck map
such that the inverse is also Ck.
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FOOTNOTES

1. A homeomorphism of X onto Y is, by definition, a continuous bijective

map f: X -*• Y such that f is also continuous.

2. A map f: X -> Y is said to be a local homeomorphism if whenever x £ X

and y £ Y are such that f(x) = y then there exist open neighborhoods U

of x and V of y such that f restricted to U is a homeomorphism of U onto V

3. A continuous map is said to be proper if the inverse image of any

compact set is compact.

4. AC -map is, by definition, a map with continuous derivatives up to

k k
order k. AC -diffeomorphism is, by definition, a bijective C map

k
such that the inverse is also C .
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FIGURE CAPTIONS

Fig. 1. For the proof by contradiction, it is assumed that x- f x„ and

that f(x-) = f(x„) = 0. The line segment a which joins x- to x2 is

mapped by f onto the closed curve 3.

Fig. 2, As T goes from 0 to 1, B(t,T) = (1-t) 6(t) travels in a straight

line from 3(t) to 0. For the same fixed t, the corresponding curve

A(t,T) is constructed from B(t,x) by successive local homeomorphisms.
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