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1. Introduction.

The algorithm to be presented in Section 3 of this paper was developed

with unconstrained min max and unconstrained optimal control problems in

mind. It may therefore be helpful to review one of these problems so as

to highlight the peculiarities which make an adaptive algorithm highly

desirable. Thus, consider the problem

1.1 min g(x(T,u))

subject to

1.2 ^ x(t,u) =£(x(t,u),u(t),t), t€[0,T], x(0,u) =x^,
u S l" [0,T]

where x(t) G and u(t) ^ Under suitable assumptions, to be stated

later, the function (|)(u(*)) = g(x(T,u(*)))» from [0,T] into R , is

continuously differentiable, and its gradient at u(*) is given by

1.3 grad iti(u)(t) = (x(t,u) ,u(t) ,t)j 0<t <T,
where p(•,u) is computed from

1'^ dt ~ o< t <T.

p(T) = ?g(x(T,u))
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Because of this, it is natural to suggest that problem (1.1)-(1.2) be solved

by the following gradient method.

1.5 Algorithm;

Step 0: Select a Uq(') ^ L™ [0,T] and set i =0.
Step 1: Compute x(t,u^) for 0 £ t £ T by solving (1.2) for u = u^,

(forwards).

Step 2: Compute p(t,u^), for 0 £ t £ T, by solving (1.4)(backwards)

with p(T,u^) = Vg(x(T,u^)).

Step 3: Find the smallest integer j £ 0 such that

T

1 j 1 /* 21.6 <l>(u^-('2) + (—) I Ilgrad (j)(u^)(t)ll dt
•'o

< 0,

where 11*11 denotes the euclidean norm.

1 ^Step 4: Set u^+]^(') = Uj,(*) - (j) grad (j)(u^)(*).

Step 5: set i = i+1 and go to Step 1. Q

It is quite clear that in this algorithm, as well as in any other

algorithm which computes <j)(u^) and grad ^(u^)(*) at each iteration, the

major computational time is taken up with integration of differential

equations. Consequently, in such an algorithm, the target of an adaptive

feature should be the numerical integration procedure. Qualitatively

speaking, one should aim at a stable approximation scheme which is quite

coarse (and hence fast) when u^(*) is far from being optimal and which
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becomes progressively refined as an optimal solution is approached. As

we shall see, the proposed algorithm does just that, and experimental

results indicate that it can be from 3-10 times faster than comparable

schemes using a fixed integration procedure.

The adaptive approximation scheme which we shall describe has evolved

from the work on algorithm models and methods of implementing conceptual

algorithms described in [6l and [?]• The model approach to algorithms

is very powerful and hence we shall also adopt it in this paper. Be

cause of this, we shall present our work in three stages, each more

specific and more complex than the preceding: a general model and

convergence theorem in Section 2, a general adaptive gradient method in

Section 3, and an adaptive gradient method for unconstrained optimal

control in Section 4.

2. An Abstract Prototype.

Let ^ be a normed linear space (with norm U containing a set

of desirable points, which we denote by A. The algorithm model we are

about to present is designed to compute points in A. The specific

structure of this model is dictated by the manner in which we propose

to carry out numerical integration in Section 4.

Thus, let be a sequence of subsets of ^ such that
J j=0

2.1 C j = 0,1,2,

Let

2.2 D = U D .
j=0 J
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r 1 1Next, let lA,/ , A, : D, 2 be a sequence of search functions, and
J j-o ^ J

j. -00 irs 1
let {c,} » ^4 * D. IK , be a sequence of test functions. We shall

J j-o ^ ^

assume that these functions have the following properties.

2.2 Assumptions: (i) D='^

(ii) There exists a set M satisfying M n A ?^ <}), such that for

every z € M, z ^ A, there exists an e(z) > 0 a 6(z) > 0 amd a interger

N(z) > 0, such that

2.3 Cj (z") - Cj(z*) ^ - 6(z) ¥z* ^ Bj(z,e(z)) n m

Vz" e A^(z»), Vj > N(z),

where

2.4 B^(z,e(z)) = {z* € IIlz*-zll ^ e(z)} •

(iii) There exists a continuous function c: ^ such that for

the set M introduced in (ii) there exists a sequence {3 } > possibly
® s=0

depending on M, with 3 > 0 for s = 0,1,2,»'*, such that
s

2.5

s=0

and

2.6 |c (z) - c(z)I < 3 ¥z e Mn D.» Vj > s
J s J

2.7 Remark; Assumption (2.2)(iii) can be interpreted as follows. First,

for (2.5) to hold, we must have 3 "^0 faster than the arithmetical pro-
8
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gresslon {l/a) Hence, (2,6) implies that
s«±

2.8 ~ c(z)| 0 as j -»• 0, V D,

faster than an arithmetical progression. Next, (z) is usually the

result of j iterations of an infinite subprocedure for computing c(z).

Thus, (2.6) states that we must use a subprocedure for computing c(z)

which converges at least as fast as an arithmetical progression. Since

most algorithms converge at least linearly, we see that assumption (2.2)

(iii) should not be too difficult to satisfy. CH

2.9 Algorithm Model; Assume z^ e D^, > 0 and a e (0,1) are given.

Step 0: Set i = 0, j = 0, q(0) = 0 and e = e^.

Step 1; Compute a y ^ Aj(z^).

Step 2: If Cj(y) - go to Step 3; else, set j = j+1,
set e = ae and go to Step 1.

Step 3: Set = y, set = e, set q(i+l) = j.

Step 4; Set i = i+1 and go to Step 1. •

Comment: The sequences {q(i)3" introduced only for the

purpose of the proofs to follow. They need not be computed. Note that

by construction

2.10 i = 0,1,2,-••

2.11 ^ °q(l) i =0,1,2,•••

2.12 ^q(i+l)^^i+l^ " ^q(i+l) ^^i^ - " ^i+1 0,1,2,.
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Also, since D . ^ D , for i « 0,1,2,***, we see that A.Cz ) and 0(2)
i+J. 1 j 1 j 1

are well defined for all j ^ q(i) and hence Step 1 in (2.9) can always be

executed. Q

cr ^
2'13 Remark; Suppose that there exists a map A: Q 2 -such that

A(2) = lim A.(2) for all 2 ^ D. Then the algorithm model (2.9) can be
j-x» J

thought of as an implementation of the following "conceptual" algorithm

(see (1.3.9) in [1]).

2.14 Algorithm Model: Assume 2^ ^ D is given.

Step 0: set i = 0.

Step 1: Compute a y G A(2^).

Step 2: If c(y) - 0(2^) < 0, set 2^^^ = y and go to Step 3; else step.

Step 3: Set i » i+1 and go to Step 1. dJ

We shall now establish the convergence properties of algorithm (2.9).

2.15 Lemma: Suppose that assumptions (2.2) are satisfied, and that
00

algorithm (2.9) has generated an infinite sequence {z.} C M, (see (2.2))
^ i=0

which has an accumulation point 2 . Then the corresponding sequence {£.}
^ i=0

satisfies 8^ 0 as i -♦- <».
CO

Proof; Since {e.} is a monotonically decreasing sequence which is
^ i=0

bounded from below by zero, it must converge. Suppose, therefore, that

*

2.16 8^ 8 > 0 as i

We shall show that this leads to a contradiction. Since 8^ = (2.16)

implies that there exists an integer N ^ 0 such that
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2.17 = e* ^nd q(i) = q* VI ^ N.

But this implies (see Step 2 of (2.9)) that

^q(i+l)^^i+l^ " ^q(i+l)^^i^ ° ^ *^^i+l^ " ^ *^^i^ 1" ^
q q

V i > N.

Thus, (2.18) implies that c ^(z^) - ®® as i -> » .
q

Now, suppose that z as i -> <» for i e K C {0,1,2,...}. Since

{z^}^ ^ CM, there exists by (2.2)(iii) 3 * > 0 such that
q

2.19 |c ^(z^) - c(z^)| < 3 ^ Vi e K, Vi > N.
q ^ q

it
Since z^ ^ z as i -»• " for i G K, and since c(») is continuous by (2.2)(iii),

there exists a k € K, k ^ N such that

2.20 |c(z^) - c(z*)| <3* Vi e K, i >k.
q

Hence, from (2.19) and (2.20), we obtain that

2.21 c ^(z^) ^ c(z*) - 23 * Vi e K, i >k,
q q

and therefore we have obtained a contradiction, of our previous conclusion

that c ^(z^) - 00. Thus, the lemma must be true. Q
q

2.22 Lemma. Suppose that (2.2)(ii) is satisfied and that algorithm (2.9)

jams up, for i = s, at z^GM^ ^q(s) between Steps 1 and 2, so

that a point z cannot be constructed. Then z G A.
s+i s
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Proof I Suppose that ^ A. We shall show that this leads to a contra

diction. Since we assume that z G M n D . v and that z ^ A, it follows
s qCs; s

from (2.2)(ii) that there exist a 6 >0 and an integer N ^ 0 such that
S S

2.23 c^(z") - c^(Zg) < - Vz" GA^Cz^), Vj >

(where N > q(s) so that c.(z ) and A. (z ) are well defined for all j > N ).
s— jsjs — s

Since the algorithm is cycling between Steps 1 and 2, it must be constructing

ran infinite sequence iy > such that
^ r=0

2.24 G®q(s)+r' ^ 0,1,2,*'*,

2.25 y^ GA^^g^^^(Zg), r = 0,1,2,'--,

^q(s)+r^yr^ " ^q(s)+r^^s^ ^ ^ " 0,1,2,-•• .

Let t be an integer such that ^ 6^ and q(s)+t ^ N^. Then for

r > t (2.25) and (2.26) contradict (2.23). Hence we must have z G A. •
s

2.27 Definition; Given an infinite subsequence K C {0,1,2,•••} we shall

associate with it an index function k: K ->• K defined by

2.28 k(i) = min{j G K|j > i+l} •

2.29 Lemma: Let {z.} be any sequence constructed by algorithm (2.9),
^ i=0

r swith an associated sequence {9(i)j£s!0» ^ infinite subse

quence of {0,1,2,•••,}, with index function k. If {z.}~ is contained
^ i=0

in the set M (see (2.2)) and (2.2)(iii) is satisfied, then

-8-



q(k(i))

''qCk(±)) '̂'k(l)^ - ^ '̂ q(1+1)^^1+1 '̂ ^ '̂ '
j=q(i+l)

Proof; Let b: {1,2,3,***,} {0,1} be defined by

2.31 b(i) = r ^ ""
I 1 otherwise.

Now, from (2.12), we must have

2.32 \(1+1)^^1+1^ 1 ^q(l+l)^^l^ " ^1+1' ^ ° 0,1,2,...

Suppose that for some 1, q(l) = q(l+l); then, for this 1, (2.32) becomes,

because of 2.31,

°q(i+l)^®l+l^ - " ^i+1 - °q(i)^''i' °
+ 2b(l+l)B

where 3 /.x ^ {3 } , with (3 } as In (2.2)(111).
® S=0 ® 8=0

Next, suppose that for some 1, q(l) ^ q(l+l), then, again making use of

(2.31), and of (2.6) twice, we obtain from (2.32),

"^q (1+1) - "^q (1+1)^^1^ " ®i+l

"=<^1^ + ^(1) - ®1+1

- °q(l)^^i^ •*• ^^q(l) " ®1+1

- '^q(i)^\^ ^®q(i) ° •*•

Combining (2.33) with (2.34), we obtain.

2.35 ^q(l+l)^^l+l^ - ^q(l)^^l^ ^ ~ 0»1>2,
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Hence, for any 1 ^ K, we obtain from (2.35),

k(i)

J=l+2

q(kCi))

^ "^qd+D^^i+l^
j=q(i+l)

the last inequality holding because b(j) € {0,1}, 3 > 0 for s = 0,1,2,-
s

and because q(j) « q(j-l) whenever b(j) = 0. •

2,37 Theorem; Suppose that assumptions (2.2) are satisfied, and consider

a sequence {z^}, with the associated sequences {e^} and {q(i)}, constructed

by algorithm (2.9). If {z^} ^ M, where MC is as defined in (2.2) (ii),

then, either {z^} is finite, because the algorithm has jammed up at its

last element z , in which case z ^ A, or {z.} is infinite, in which case
S 8 X

every accumulation point of {z.} is in A. (When {z.}~ has no accumu-
^ i=0

lation points, the theorem is vacuous).

Proof: The case of {z^} finite was established in lemma (2.22). Hence,

let us suppose that {z^} is infinite and that it has at least one accumu

lation point, z. Suppose that K is an infinite subset of {0,1,2,•••,},

with index function k(*)(see (2.27), such that the subsequence {z.}

converges to z.

By lemma (2.15), we must have -»• 0, and hence q(i) ^ «> as i •> «».

By (2.2) (iii) there exists a continuous function c: ^ ->• and a se-
00

quence {3 } such that 3 > 0, s = 0,1,2,***, > 3 < °° and
®s=0 ® ^ ®

s=0
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2.38 " ^qd)' ^ °

Since the function c(*) stipulated in (2.2)(iii) is continuous,

we must have

2.39 c(z.) c(z) as i for i ^ K.
i

Consequently, since 3 0 as s °®, we obtain from (2.38) and (2.39) that
3

2.40 - ieK " ^q(i)^ ~ '

Now suppose that z ^ A. We shall show that this leads to a contradiction

of (2.40).

By (2.2)(ii), there exist § > 0, S > 0 and an integer Nsuch that

2.41 c^(z") - c^(z') <- 6 Vz» e Bj(z,g) n m, Vz" EA^(z'),

Vj > N,

where B^(z,S) is defined as in (2.4). Since z^ -»• z as i -> «, i E K, and

q(i) -> ®® as i 00, there exists an integer such that for all i E K, with

i (see (2.4) and (2.11))^

2.42 z^ E ®q(i)^ '̂̂ ^ ^ ^

and

2.43 q(i)>N

Since z^^^ E by construction, (2.41)-(2.43) yield.
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1 LL c fz ^ - c , ^ (z ) < - 6 Vi G K, i > N-.'̂ qCt+l)'- i+l'' qd+l)*- i' - ' - 1
I

Now, let

n

j«0

Then {y } is a monotonically increasing sequence which is bounded from
n=0

t 1°°
above because of (2.5), and hence iy i must converge, i.e., it must be

^ n=0

a Cauchy sequence. Hence, since q(i) as i ->• <», there must exist an

integer N2 ^ N^ such that

2-^6 1 S/8 Vi > 1 e K.

where k(*) is the index function of K (see (2.27)). Next, since 3 -»• 0
s

as s 00, there must exist an integer N^ ^ N^ such that ^5/8 for

all i ^ N^, and hence

2.47 l<=q(i)<®l) " <6/8V1 >Nj. le K

and also

2.48 l°q(i+l)(^l^ " <6/8V1 >N3, le K.

Combining (2.47) and (2.48) we now obtain

2-49 l=q(H.l)(^l> - '=q(i)<Vl 1 Vi >N3. 1e K.

Now making use of (2.30), (2.45) and (2.46), we obtain
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-^^^q(k(i)) " "'̂ qd+l)^

•*• "^qd+D^^l+P " "^qd)^®!^

< 6/4 + Cq(i+x)(2i+i) - ^qd)^''!^'

VI e K, i > N .

Finally, adding and substrating right hand side of

(2.50) and making use of (2.44) and of (2.49), we obtain,

. '̂ q(kd))^^kd)^ ~ '̂ qd) '̂'i^ - '̂ qd+D ~ "^qd+D^V

+"^qd+D^^l^ - '=qd) '̂'l^ 16/4-6 +5/4 =- S/2 VI e K. 1>N3.

Since (2.51) implies that ~ as i -> <», i ^ K, we see that (2.51)

contradicts (2.40), and hence we must have z ^ A, which completes our proof. •

2.52 Remark; It is clear from the above theorem that whenever M n A = (|),

contrary to assumption (2.2)(ii), and the sequence constructed by

algorithm (2.9) is in M, then cannot have any accumulation points. Q

2.53 Remark: Since by lemma (2.15), {e^} must converge to zero for {z^^}

to have an accumulation point, it appears reasonable to insert into (2.9)

the following "Step 3*: If i/k = 0 modulo k, set e = ae and go to Step

4; else, go to Step 4," where k > 0 is an integer. Theorem (2.37) remains

valid with this modification. CH

3. The Algorithm.

As in Section 2, let ^ be a normed linear space, with norm

and let <|): be a continuous function. . Consider the problem

3.1 min{<t)(z) |z }.

As we shall see in the next section, we may not be justified in assuming
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that the function (})(•) is Freehet differentiable or even continuous on ^ .

However, we may assume that there exists a subset M on which 4) (•) is

continuous and a function h(*) which, for all purposes, acts as the

gradient of 4*C*) oii M. Hence we shall only be able to solve problem (3.1)

if z is in this set M.

3.2 Assumptions: We shall assume that

(i) there exists a set M* C^ such that 4)(*) is continuous on M*;

(ii) for any z ^ M' and any y G

3.3 *'(z.y) =
X4'0

exists;

(iii) there exists a function h; ^ which is continuous on M* and

a set M C M' such that (a) for every z G m there exists a 6(z) > 0 such

that (z*+Xh(z')) G M' for all X G [0,6(z)], for all z* G M satisfying

Iz' - zll 5(z), and (b) for every z G m' and every y G

3.4 4)*(z,y) =<h(z),y>^

where ^ is a continuous scalar product on • •

The following result is obvious.

3.5 Proposition; Suppose that z G M minimizes 4)(z) for z ^ . Then

h(z) = 0. •

We shall assume that we have an infinite sequence of linear subspaces
00

{D.} of such that D - ^ D. for j = 0,1,2,* ** and such that D. =
3 ^ J j=0 ^

together with approximation functions (|)^: -*• R^, j =0,1,2, and
h^ : ->• Dj , j = 0,1,2,***, which satisfy the following assumption.
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3.6 Assumption; Given any z € M* and any Y > 0» there exists an e(z,Y) > 0

and an integer N(z,y) ^ 0 such that

3.7 |4'j(z') - <l>(z')l 1 Y

3.7* Dhj(z') - Y

for all z* e B(z,e(z,Y)) n m* , for all j ^ N(z,y), where

3.8 B(z,e) ={z* |llz*-zll^ £e} . Q .

We now present a steepest descent type algorithm which uses adaptively the

approximating functions (j). (•) and h.(*)* This algorithm approximates a
J • 3

gradient method due to Armijo [1].

3.9 Algorithm:

Initialization: Select an integer £ 0. Then select a z^ ^ D. n m,
u " Jq

Eq > 0, a e (0,1), e e (0,1) and € (0,1].

Step 0: Set i = 0, j = q(0) « j^, and e = e^.

Step 1: Compute h^(z^).

Step 2: Set X = 1.

Step 3: Compute

3.10 0. (z. ,X) = (z -Xh (z )) - <l>. (z.) +-^ <h (z),h (z) W
31 3131 31 zj j

Step 4: If 0j(z^,X) > 0, set X= 3X and go to Step 5; else, set

y = z^ - Xhj(z^) and go to Step 6.

Step 5: If X £ ®lse, set y = and go to Step 6.

Step 6: If "• £ - e, go to Step 8; else, go to Step 7.

Step 7: Set j = j+1, set e = ae, and go to Step 1.

Step 8: Set z^^^ = y, set q(i+l) = j, set £^^+1 ° ^

and go to Step 1. Q
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3.11 Comment; The sequences {q(i)} and {e^} are in correspondence with

those appearing in the algorithm model (2,9). They are only introduced

for the convenience of the proofs to follow and need not be commuted in

practice. o

3.12 Remark: As we shall see in the next section, the set M can be

chosen to be a very large set containing the origin, and that ? M for

some i can be interpreted as an indication that the sequence gene

rated by algorithm (3.9) cannot converge to a solution of (3.1). O

Since we make no convexity assumptions for the function <j)(*)» the

best we can hope to establish for algorithm (3.9) is that if z ^ M is
00

an accumulation point of {z.} or if z ^ M is a point at which the
1 1=0 ®

algorithm has jammed up, then h(z) = 0, or h(z ) = 0. We now proceed
s

to show that algorithm (3.9) has exactly this property. To be specific,

we shall show that algorithm (3.9) is of the form of the algorithm model

(2.9) and that the assumptions (2.2) are satisfied by it.

For this purpose, we make the following identifications:

3.13 Definition: We set A = {z <= M|h(z) = O}, c(*) = <J)(*)>

and we define Aj(0 by the calculations in Steps 1 to 5 of algorithm

(3.9). a

We shall need the following results

3.14 Proposition: Given any z € M* and any y > 0, there exists an

e(z,Y) > 0 and an integer N(z,y) such that

3.15 kjCz') - iKz)! <Y
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3.16 Ilhj(z') -h(z)ll(^^Y

for all z* GB(z,e(z,Y)) ®j ^ M*, for all j ^ N(z,y). O
The above proposition follows directly from assumption (3.6) and

from the continuity of <|)(*) and h(*) on M*,

3.17 Lemma; Suppose that z ^ M is such that h(z) 9^ 0. Then there exists

an e(z) > 0 and an integer k(z) > 0 such that

k (z )3.18 <(>(2'-6''̂ ®)h(z')) - *(z') +1 <h(z*),h(z*) >^ <0
for all z' G B(z,e(z)) n m, where 3 G (0,1) is as defined in algorithm (3.9).

Proof: Since z ^ M, it follows from the assumptions (3.2) that there exist

a 6(z) > 0 and an integer k(z) ^ 0 such that [z', z*-3^^^^h(z*)] Cm* for all
z* C B(z,6(z)) n M, and such that

k(z)3.19 4>(z-3 h(z)) - (()(z) +—2— <h(z),h(z) >
gk(z)

1 ^— <h(z),h(z) >(^ •

Now, since 4'(*)» h(«), and < •,• are continuous on M*, there exists an

e(z) C (0,6(z)] such that for all z* C B(z,e(z)) n m

3.20 |(()(z'-e''̂ ^^h(z')) - i(>(z') <h(z').h(z') W

- 4i(z-6^ 'h(z)) + <(>(z) - <h(z).h(z) W I
.k(z) ^

It now follows from (3.19) and (3.20) that (3.18) must hold for k(z) ^ 0

and e(z) > 0 defined so as to satisfy (3.19) and (3.20). Q
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3.20 Corollary; Suppose that z ^ M is such that h(z) 0. Then there

exists an e(z) > 0 and integers k(z) ^0, N(z) ^0, such that

3.21 (()^(z' - 3^^^h^(z')) - <h(z'),h(z')

for all z' € nun B(z,e(z)), for all j ^N(z). •

Corollary (3.20) follows directly from proposition (3.14), lemma (3.17)

and the continuity of <j)(*) and h(*)«

_00

3.22 Theorem: Suppose that there exists a sequence {3„} , 3„ > 0 for
- S /\ o00 s=0

s = 0,1,2,*such that ^ ^3„ <~ and such that
s^O

3.23 |c(i.(z) - (|)(z)| < Vz 6 M' n D^, Vj ^ 8.

Consider any sequence {z^} constructed by algorithm (3.9) and suppose

that {z^} CM. If {z^} is finite, because the algorithm has jammed up at

z , its last element, then h(z ) = 0; if {z.} is infinite, then every
S ' 8 X

accumulation point of {z^}, which satisfies z € Malso satisfies h(z) = 0.

Proof; Theorem (3.22) follows directly from theorem (2.37) because of

the identification in (3.13) and because assumptions (2.2) are then

satisfied as a result of the assumptions (3.2), corollary (3.20), and

of the assumption stated in theorem (3.22). O

4. An Application to Optimal Control

Consider the problem

4.1 minimize g(x(T,u))

subject to

-18-



4.2 " f(xCt,u),uCt),t), t e [0,T]; x(0,u) = x^,

where g: -*• R.^, f: x R™ x IR'̂ , u: [0,T] •*• R™, and T > 0

is given.

4.3 Assumption: We shall assume that

(i) g(*) is continuously differentiable;

n m 1
(ii) £(•,•,•) is continuously differentiable on R x R x R ,

(iii) u e m'= {u [0,T]|8uH^ = ess sup 0u(t)il < 2w},
t e [0,T]

where w ^ (0,°®) is some very large number, 8*9 denotes the euclidean

norm, and^°^[0,T] is the space of m-vector valued, regulated functions

[2];

(iv) for every u G M', (4.2) has a unique, absolutely continuous

solution x(*,u). Q .

The reason for defining the set M*, in (iii) above, in the specific

manner chosen, stems from the need to satisfy the assumptions (3.2) to

gether with the assumptions which we shall shortly need in conjunction

with numerical integration formulas.

4.4 Definition: For any u € M*, let h(u)(*) be defined as follows:

4.4 h(u)(t) = P(t,u). t e [0,T]

where x(t,u) is the solution of (4.2) corresponding to the given u, and

p(t,u) is given by

4.5 ^p(t.u) p(t,u), te [O.T],
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with the boundary condition

V 3r(x(T,u))^ ri4.6 p(T,u) = ^ ^

4.7 Definition: for any u ^ M* let $(u) be defined by

4.8 $(u) = g(x(T,u)),

where x(T,u) is the solution at T of (4.2), corresponding to the given u. •

In view of theorems (A.l) and (A.13) in the appendix, the following

result is obvious.

4.9 Theorem: Let u* ^ M* and e > 0 be arbitrary. Then there exist k > 0

and Y ^ 0 such that

4.10 sup llx(t,u) - x(t,u )ll £kllu-u ll-
t S [0,T]

and

4.11 ess sup llh(u)(t) - h(u )(t)0 £e
t e [0,T]

*

for all u e B(u ,y) where

cu

4.12 B(u ,Y) = e M' 111 u-u 112 1 »
t

and lluPj =(f«u(t)B^dt) '̂̂ . •
0

The following result follows directly from [3].

4.13 Proposition: For any u S M* and any u ^^™IO,T]

/ 1/ \ ^t - $(u )4.14 4)'(u ,u) = lim 7
X4'0
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exists and is given by

T

4.15 $'(u*,u) =<h(u*),u >2=y <b(u*)(t),u(t) >dt,
0

where ) denotes the scalar product in . Q

For the purpose of establishing the convergence properties of the

algorithm to be described for solving problem (4.1)-(4.3), which can be

written in the form min{$(u)|u e M'}, it is convenient to embed it into
m +

L follows.

First, we define M C M' by

4.16 M=» {u S M* jBull^ _< w}.

4.17 Definition; Let ^ let M', MC l be the sets of

classes of functions incuced in L®IO,T] by the sets of regulated functions

M', M, respectively, and let (|): M'-^R^,h: M'-^ h™[0,T], and (j)*:

MX -»• (R^ be defined as natural extensions of $(•)» h(') and

i.e., if u* e M», ueq5®[0,T], v* e and v€ L^EO,!] are
such, that u ^ V and u ^ v, then (j) (v ) = (u ), h (v ) = h (u ) and

4>*(v ,v) = <|)*(u ,u).

In view of definition (4.17), we see that problem (4.1)-(4.3) can

^By we denote the space of equivalence classes of square in-

tegrable functions from [0,T] into iR"^, with norm II *112 defined by Ilull<
T 1(J^ llu(t)il ^dt)Y, where II'B denotes the euclidean norm.
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be embedded Into the problem mln{(J>(u)|u G M*}.

4,18 Lemma; Assumption (3.2) is satisfied by the set M and the functions

<!>(•), •<!>*(• »•)> h(-) and(*,* ) defined in (4.17).

Proof: This lemma follows directly from theorem (4.9), proposition (4.13),

and the fact <*,* ^2 continuous on L^IOjT]. CI3

We are now ready to construct the various approximations needed to

define an algorithm for solving the problem (4.1)-(4.3).

4.19 Definition: For any integer j > 0, let

4.20 T1 = T/2^, j = 0,1,2,

and let

4.21 t. = sri., s = 0,1,2, ,2^ .
js 'j' ' ' ' *

Furthermore, for j = 0,1,2,-'*, let denote the space of functions

u: [0,T] ->• 1R™, such that the components u^(*) of u(*)» i = l,2,***,m,

are real valued step functions with mesh points at t. , s = 0,1,•••,2 ,
3 ®

which are continuous from the right and which satisfy u^CT) « u^(T-ti.), 1 =

l,2,**',m. Q .

4.22 Definition: For j = 0,1,2,***, let F^: x x x -»•

and F2: R xR xR xR xR ^ ^e one step integration

functions for the differential equations

^•23 •^x(t,u) =f(x(t,u),u(t),t), t e [0,T],
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and (x(t,u)\ /f(x(t,u),u(t) ,t)
p(t,u)/ \-3f (x(t,u),u(t),t)^p^^^^^

respectively, where f is as in (4.2). (For example, F2 are part of a

Range-Kutta formula of the form (4.25) or (4.26) below). Then, for any

2^ 2^ 2^uGDj, we define the sequences {x^(s,u)}^_q, {xj(s,u)}j^Q and {p^(s,u)}^_Q

as follows:

4.25 X(s+l,u) =x^(s.u) +njFj^(Xj(s,u).u(tjg),tjg,nj)
8 = 0,1,2,..., 2^-1,

with x^(0,u) = Xq, and

(s,u)\ /x'(s+l,u)\ / , V / N(8-,u)j° ^pj(8+r,u)j 'Pj'" '̂38>•
t. ,r|.), s = 0,1,2,••*,2 -1,
js j

. Og(x,(2^u))'̂
with xj(2^,u) =x^(2^,u) and p^ (2 ,u) =

Eventually one must associate piecewise continuous functions of t

with the sequences {x^(s,u)}, {xj(s,u)} and {p^(s,u)}. For our purposes,
it is most convenient to do this as follows. For j = 0,1,2,***, we de-

fine the functions x: [0,T] x5^ R°, xj: [0,T] x +R" and
p^: [0,T] X5j a® follows:

4.26 ' —
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^.27 XjCt,u) «Xj(s,u) for t € lan^ ,(8+l)nj), s =0,1, ••• ,2^-1,

s Xj(2^-l,u) for t =T,

4.28 xj(t,u) =xj(s+l,u) for t ^ [sri^,(s+l)r|j)» s =0,1,2, ••• ,2^

=xj(2^,u) for t =T,

4.29 p^(t,u) =pj(s+l,u) for t e [sn^, (s+l)!!^), s =0,1,2,* ••,2^
=p^(2^,u) for t =T,

where x^(s,u), xj(s,u) and pj(s,u), s =0,1,***,2^, are defined by (4.25)
and (4.26). O

4.30 Assumption; We shall assume that the Integration formulas (4.25)

and (4.26) are such that given any e > 0 and any w > 0, there exist an Integer

J ^ 0 and K ^ (0,°®), such that

4.31 sup ix(t,u) - x.(t,u)ll <-j '
t e [0,T] ^ 2^

and

- 2 2
4.32 sup (llx(t,u) - x'(t,u)II + ilp(t,u) - p (t,u)ll )

t e [0,T] J

£ e

for all u € M n , for all j ^ J ♦ •

We shall show In the appendix that, for suitable conditions on f,

assumption (4.30) Is satisfied by the first order Runge-Kutta formula. It

appears that It Is also satisfied for higher order Runge-Kutta formulas as well,

We are now ready to define the approximation functions
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KO).

4,33 Definition! For j »0,1,2,..;, we define the functions $^->• 1R ^
and h.: D. -*• D, as follows:

j j J

4.34 g(Xj(2^>u))

af0?'(s+1) ,u(sn.) ,sn.)^
^.35 hj(u)(t) = J ^p^(s+l,u),

for t e [sn^,(s+i)nj), s =0,1,2,...,2^-1

4.36 hj(u)(T) =hj(u)(T-rij) • •

4.37 Definition: For j = 0,1,2,*'*, we define D. G L™[0,T] to be the
3 ^

subspace induced by the set of functions D^. For j = 0,1,2,3,***, we

define the functions (|).: D. IR^, h.: D. ->• D. by obvious extension of
j j j 3 3

^.(*)» h (•)» i«e« for any u G D. and a v ^ D. such that u € v, . (v) =
J J * 3 3 3

^.(u) and h.(v) is the class of functions in D. containing h.(u). Q .
3 3 3 3

Remark: Obviously, the space sets D^, and the functions ^j(*)

and h^(0» above, are only introduced for convenience of defining con

vergence properties of the algorithm below, because the space of regu

lated functions to which numerical calculations are confined is not a

normed space under the "'̂ 2 ^orm. ^

4.38 Algorithm (Solves problem (4.1)-(4.3).)

Initialization! Select an integer Jq ^ 0. Then select u^ € D. , > 0,
^0

a € (0,1), 3 G (0,1) and € (0,1].
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Step 0; Set 1 - 0, j = e « e^.

Step 1; Compute hj(u)(*) according to (4^35), (4.36) by means of

(4.25), (4.26).

Step 2: Set X = 1.

Step 3t Compute e^(u^,X) = (u^-Xh^ (u^)) - ^j \
+

according to (4.34), by means of (4.25), (4.35) and (4.36).

Step 4; If 0j(u^,X) > 0, set X= 3X and go to Step 5; else, set

y = Uj^ - Xh^ (u^) and go to Step 6.

Step 5: If X^ ^^min' else set y = u^ and go to Step 6.

Step 6: Compute $j(y) according to (4.34), by means of (4.25).
Step 7; If (y) " ~ SO to Step 9; else, go to Step 8.

Step 8; Set j = j+1, set e = ae, and go to Step 1.

Step 9: Set " y» set i = i+1 and go to Step 1. Q .

4.39 Theorem: Suppose that assumption (4.30) is satisfied by the inte

gration formulas used in algorithm (4.38). Consider any sequence

constructed by algorithm (4.38) in the process of solving problem (4.1)-

(4.3) and suppose that there exists w > 0 such that Cm. If is

finite because the algorithm has jammed up at u , its last element, then
. s

h(u ) = 0; if {u.} is infinite then any u C M satisfying lim Ou. - ull« = 0,
i j ~

where {u. } is any subsequence of {u.}, must satisfy h(u) = 0
j

Proof: This theorem follows directly from theorem (3.22), once we recall

that problem (4.1)-(4.3) can be embedded, in the problem min{(|)(u)|u C M*},

where <j) and M are as in (4.17), by making use of lemma (4.18) and assumption

(4.30). •

•1. ^ 2 ^
Note that Hh.(u.)IL is simple to compute since h.(u,)(') is a step function,

J 1 ^ J
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Appendix A; Continuity of x(t,*) and p(t,*)

A.l Theorem; Under the assumptions and definitions of Section 4, given

It

any u ^ M', there exist k > 0 and y ^ 0 such that

A. 2 sup Ilx(t,u) - x(t,u ) II ^ kOu-u li^
t e[0,T]

for all uGB(u*,y) ={u € M*|llu-u II2

Proof: Let w' G (0,°®) be such that

A.3 sup Bx(t,u )ll < w'.
t €[0,T]

Then, because of assumption (4.3)(ii) and the generalized mean value

theorem, there exist € (0,®®) and K2 ^ (0,®®) such that

A.4 llf(x^,v^,t) - f(x2,V2,t)Il £ K^Bxj^ - X2B + K2llv^ - V2II

for all x^, *2 ^ ^ |IIx*II £ 2w*}, for all v^, ^2 ^ (v* ^ £ 2w}

and for all t € [0,T]. (w is defined in (4.3)(iv).) Now set

K,T

A.5 Y=ialn{ , (K^y/T e ^

Choose any u G B(u ,y). Since x(*,u) is continuous and Bx(O,u)0 = Bx^D < w',

there must exist a t > 0 such that

A.6 llx(t,u)ll £ 2w' Vt e 10,7]-

Then from (A.4), we have

A.7 Bf(x(t,u), u(t),t) - f (x(t,u*) ,u*(t) ,t)ll

£ K^Bx(t,u) - x(t,u*)II +K2Bu(t) - u (t)B
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for all t e [0,t]. Consequently, for any t e [0,t],

t

A.8 llx(t,u) - x(t,u*)ll =8 f [f (x(t',u) ,uCt *) ,t*)
-^0

- £(x(t'.u*), u*(f),t'))dt'fl
t t

£y Kj^lxCt'.u) -x(t'.u*)»dt' +J K20u(t')-u*(t')0dt'

However, the Holder Inequality gives us

4k

*l2
I, X

A.9 r K2"u(t')-u*(t')Ddt' _< r K2llu(t')-u*(t')lldt' <K^/rilu-u

Thus using (A.9) and the Bellman-Gronwall inequality in (A.8), we get

t

A.IO Dx(t,u)-x(t,u*)H £ IIu-u*B2 exp{ / K^dt'}
* KT°<K2>/t"1Iu-u "2 ®

for all t € [0,T]. Now we show by contradiction that t ^ T. If t < T, we

can assume without loss of generality that

A.11 llx(t,u)ll = 2w'.

Then from (A.5), (A.IO), and (A.11) we find that

A. 12 ilx(t,u*)ll ^ llx(t,u)ll - ^ ® '

But (A.12) contradicts (A.3) and we must conclude that t ^ T. Consequently

(A.IO) and the fact that u was arbitrary in B(u ,y) imply the desired result. O
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A.13 Theorem? Under the assumptions and definitions of Section 4, given

any u CM' and any e > 0, there exists a y > 0 such that

A. 14 sup Ilp(t,u) - p(t,u )ll ^ e
te[0,T]

for all u e B(u ,y) « {u e M'|Ilu-u II, < y)

9C

Proof; Let K. = sup 0p(t,u )il. Then, by assumption (4.3)(ii) and (A.l),
te[0,T]

there exist ^ (0,«) and Yjl > 0 such that

A. 15

A.16

A. 17

1^ f(x(t,u), u(t),t)^ 1^4

~ f(x(t,u), u(t),t)^ - 1^ f(x(t,u*), u*(t),t)

for all uG B(u ,y^) and for all t e [0,T]. By assumption (4.3)(i), (4.6),

and (A.l), there exists y G (0,y^] such that

* -K.T!lp(T,u) - p(T,u )11 1 "I e

-V
ee

2K3T

~ . *
for all u € B(u ,y). Now using (4.5) and adding and subtracting appropriate

terms, we obtain from (A.15), (A.16), and (A.17)

A. 18 llp(T-s,u) ^ p(T-8,u*)II = fip(T,u) - p(T,u )
s

f f(x(T-s',u),u(T-s'),T-s')^ p(T-s',u)
0

+1^ f(x(T-s*,u*),u*(T-s'),T-s')^ p(T-s',u*)]ds*i
-K.T

^ ^ ^ j.
1 2® +

s

f Upd-s*
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-K,T ®
^ ee ^ + / K^Bp(T-s*,u) - p(T-s*,u )Bds*

•tl

for all u € B(u ,y) and for all s ^ [0,T]. If we apply the Bellman-

Gronwall inequality to (A.18) we obtain

* fA.19 llp(T-s,u) - p(T-s,u )II < e e ^ exp[ / K^dt'] < e

for all u e B(u ,y) s G [0,T]. Hence the proof is complete. LJ

-3Q-
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Appendix B; Error Analysis of tile First Order Runge'-Kutta Integration

Formula

In addition to the assumptions of Section 4, we make the following

assumption.

B.l Assumption: For w 0 defined In (4.3) (Iv), there exists a K ^ (0,®®)

such that

B.2

and

B.3

f(?3^»v,t) - f(^2»V5t)0 £

-f (^j^»V,t)

•ax

-f(^2»v»t)

^2-1

<K(iic^-y2 + 11^1-^2"^)

for all ^2* C-j^> ^2 ^ for all v ^ {v* ^ R™|Bv'0 _< 2w}, and for all
t e [0,T]. •

B.4 Definition: Let the one step Integration functions F^ and used In

(4.25) and (4.26) be defined by

B.5

B.6

F^(?,v,t,a) = f(C,v,t)

F2(C,C,v,t,a) =
-f(C,v,t)

£(5,v.t)^C

1/2

(Then (4.25) and (4.26 become first order Runge-Kutta Integration formulas.) CII
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B.7 Definition; For each j ^ 0, we define the truncation errors Tj(s,u)

and yj(s,u) by

B.8

B.9

B.IO

B.ll

Tj(s+l,u) « — (x(t^g^j^,u) - x(t^g,u))

- F^(xCt^g,u), u(t^g), s «0,1,...,2^-1

T^(0,u) = 0

J
Uj(8-l,u) -

- F2(x(t^^,u), P(tjg,u), u(t^g^^), tjs_i,nj)

s = 1,2,...,2"

(2-^ ,u) = 0

for all u GD^.

The following result Is an obvious consequence of Theorem (8.1.1) In

U].

B.12 Lemma: Under the assumptions of Section 4 and (B.l), there exists

Q ^ (0,°o) such that

B.13

where

B.14

and

Ix (s,u) - x(t. ,u)Il £ Qt (u) s = 0,l,...,2-
J J® j

T^(u) =max{0Tj(s,u)B | s =0,1,...,2^}
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B.15

where

B.16

[xjcs,u)n rx(tjg,ur
Pj(8.u)J Lp(t^^,„)_ < Q

--xjca^.u)

J>j (2^ .u) _
x(T,u)

Lp(t,uU

+ (u) ) S —0yXy>««)2

Uj (u) ° max{llyj (s,u)fl | s »0,1,...,2^}

for all ^ ^ 0j j ®0,1,... . Q

B.17 Theorem; Under the assumptions of Section 4 and (B.l), there exists

€ (0,®o) such that

B.18 sup 0x. (t,u) - x(t,u)fi £ Q,/2'
te[0,T] ^

for all u e D. n m' and for all j = 0,1,..., where x. is defined by (4.26)
3 J

with as in (B.4).

Proof: First we note that (B.l) and the Bellman-Gromwell inequality imply

that there exists Q2 ^ (0,«») such that

B.19 sup 0x(t,u)ll ^ Qo
te[0,T]

for all u € M*. Since u ^ ®j ^ M' implies that x(t,u) exists for all

t € (t. ,t, .,) s = 0,1,..., 2^-1, we can apply the mean value theorem
js js+1

to (B.8) to find ^jg ^ ^^js'̂ js+l^

B.20 T^(s+l,u) = f(x(t^g,u), u(tjg), t^g)

- f(x(tjg,u), ^(tjg)» t^g) s=0,1,..., 2^-1
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for all u € D n . Nov, since u € p n S* is constant on It. ,t.
3 j j s j s+l

f1 —
we see that f(x(t,u), u(t),t) exists for all t G and that

fCxCt,u),u(t),t) is continuous for all t G It ,t ]. Thus we may apply
jS jS

the mean value theorem to (B.20) to find t. ^ (t. ,t. ) such that
j s j s j s

B.21 Tj(b+1,u) = f(x(tjg,u),u(tjg),t^g) (t^g-t^g) s - 0,1,...,2^-1

for all u€ 5^ n H*, Also, for u^ n m*,

B.22 ~'f (x(t,u) ,u(t) ,t) = •—f(x(t,u),u(t),t)f(x(t,u),u(t),t)

+-—f (x(t,u),u(t),t)

for all t S (t. ,t -). Thus by assumption (4.3)(ii), (B.19), (B.20),
3 s J s+i

and (B.22), there exists ^ (0,°°) such that

B.23 0Tj(s+1,u)0 < IQjIj s =0,1,..., 2^-1

for all u G D. n m*. But now from (4.19), (B.9), (B.13), (B.14), and

(B.23),

B.24 llx.(s,u) - x(t, ,u)II ^QQ«T/2^. s « 0,1,..., 2^.
3 js 3

for all u € n M'. Then, as before, we can apply the mean value theorem

and (B,19) to show that there exists G (0,~) such that

B.25 llx(t,u) - x(t^g,u)B £ s =0,1,..., 2^-1

for all u G D. n M* and for all t ^ [t. ,t. .,). The theorem now follows
j 3s' js+1

directly from (4.19), (4.26), (B.24), and (B.25). Q

B.26 Lemma; Under the assumptions of Section 4, there exists Q ^ (0,«>)
6
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such that

B.27 sup llp(t;u)II £ CL
t€IO,T] ^

for all u € M'.

Proof: Because (B.19) holds, (4.3) implies that there exists ^ (0,«>)

such that

B.28 j f(x(t,u),u(t),t)^ I £

and

B.29 llp(T,u)II £Q^

for all u € M* and for all t G [0,T], Then from (4.5),

s

B.30 Dp(T-s,u)ll «Dp(T,u) -J -5- f(x(T-s* ,u) ,u(T-s*) ,T-s*)^p(T-s* ,u)
dx

•ds
s

£ +/^ Q^llp(T-s* ,u)lids'

for all u € M* and for all s = [0,1]. Thus, by the Bellman-Gronwall

Inequality,

Q5S QcT
B.31 llp(T-s,u)i £Q^e ^

for all u G M' and for all s ^ [0,T] which Is the desired result. Cl

B.32 Theorem: Suppose that the assumptions of Section 4 and (B.l) hold.

Then, given any e > 0, there exists an Integer J(e) £ 0 such that
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2 - 2^/2
B.33 sup C"xCt,u) -x!Ct,u)il + BpCtju) - p. (t,u)ll ) £e

for all ^ ^ j ^ and for all j ^ J(e) where xj and p^ are defined by

(4.27) and (4.28) with as in (B.4).

Proof; First we note that (B.19) holds i.e.

B.34 sup llx(t,u)ll _< Q«
teio,!]

for all uSM'. Now suppose that we let ijJ(s,u) denote the first ncom'-
2

ponents of y.(s,u) and y (s,u) denote the second n components of y.(s,u).
J j J

Then proceeding as in the proof of (B,17), we can show that there exists

^ (0,°®) such that

B.35 lly^(s-l,u)ll IQoTl. s = 1,2,..., 2^
3 "5 3

for all u € n m*. Consequently, from (B.ll) we find

B.36 yj(s,u) <Q^Tij s =0,1,..., 2^

for all u^ 5j ^ M'. From (B.6) and (B.IO),

B.37 y^(s-l,u) =~ T,u) - p(t ,u)
3 'Ij J® J®

- Tlj gl
s = 1,..., 2^

Since uG5^ n fi*, p(*,u) is continuous on [0,T] and p(t,u) exists
for t^ (tj ,,t, ),we can apply the mean value theorem to (B.37) to

js-1 3S

find at. ^ (t. -,t. ) such that (notice that t. - - t. = - ri.)
JS jS""X jS jS~J. jS J
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B.38 HjCs-l.u) K«ecCt^^,u),uCtjg),tjg)'̂ p(tjg,u)

" 8 = 1....,

Also, u(t. t) = u(t. ) since u € 5, nfi'. Thus (4,3)(il), (B.26),
jS""l js J

and (B.34) imply that the right hand side of (B.38) converges to zero

uniformly for all u ^ M* as j Hence, from (B.ll) and (B.36),

we conclude that there exists an integer ^ 0 such that

B.39 U.(u)<Q I

for all u e n M' and for all j ^ Furthermore, from (4.3) (i),

(4.22) and (B.24), there must exist an integer J2 ^ such that

1/2

B.40 [IIx:(2^,u) - x(T.u)02 +Op^(2^u) - p(T,u)D^] <Q'̂ |

for all u e D. n M' and for all j > applying (B.39) and (B.40)
j —

to (B.15) yields

9 2 eB.41 [llxj(s,u) - x(tjg,u)II +llp^(s,u) - p(tjg,u)fl ] <-2
i

s = 0,1,..., 2

for all u € D n M* and for all j ^ J2* complete the proof, we note

that x(»,u) and p(»,u) are continuous on [0,T] and for u ^ n m*, x(t,u)

and p(t,u) exist for t e (t. i,t ). Also, in view of (B.34) and Lemma
jS—X jS

(B.26), x(t,u) and p(t,u) are bounded on ®j ^S'. Thus by
applying the mean value theorem, we can find an integer J(£) ^ J2

that

-37-



Z . . .„.2 1/2 ^ ^B.42 iaxCt^g,u) + flpCt^g,ii) - pCt,u)ll. 3 £~

s = 1,2,..., 2^

for all t € [t^ _t. ), for all u e 5. n 5', and for all j > J(e). Thejs~l' js" j —

theorem now follows directly from (4.25), (4.26), (B.41), and (B.42). Q
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Conclusion: To evaluate the performance of the optimal control algorithm

(4.38) we have performed a number of numerical experiments. These

experiments were done as follows: Tor a given problem, we would choose an

initial point, an integration formula (Runge-Kutta order 1 or 4) and an

integer i with i = 10, or 8 respectively. Then we would solve this
max max

problem numerically twice. The first time always setting j = jjnax (4.38),

i.e. not using the adaptive procedure. The second time we would set Jq ~ ^

and use the algorithm as stated, stopping to increase j when j = was

reached. In all of our experiments we have found that the adaptive method

was at least twice as fast as the fixed step size method. In several cases

it was five to >ten times faster.

Thus, the method presented in this paper is of theoretical and of

practical interest. It shows that it is possible to account theoretically

for the effects of numerical integration. Also, it shows that the numerical

integration process can be handled adaptively, and our experiments indicate

that this leads to reduced computational times.

The algorithm presented in this paper is of the humble, first order

variety, however, it is not difficult to see that the adaptive integration

techniques proposed could also be used in conjunction with Newton—Raphson,

or implementable conjugate gradient methods of the type described in [5].

Finally, it should be pointed out that there are also problems outside

of optimal control where function approximations must be used and where the

algorithm C3.9) presented in this paper could be quite useful.
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