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ABSTRACT

Electrical networks are special types of irreversible thermodynamic

systems. The underlying mathematical unity of the two fields allows many

of the techniques of network analysis to be generalized, thus permitting

a wide class of nonlinear, nonsteady-state irreversible processes to be

formulated in a network theoretic framework.

One of the most powerful of the network theorems is Tellegen's Theo

rem. Most, if not all, of the energy distribution theorems and extremum

principles can be derived from it.

In the following presentation we will derive several thermodynamic

inequalities as well as explicit conditions guaranteeing the stability or

the unstability of an equilibrium point, or a steady state.
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1. INTRODUCTION

Network analogs have been constructed for a wide variety of physical

systems, and have proven extremely useful in analyzing their dynamic

behavior.

Recently, Roth (1955) and Branin (1962, 1966) have pointed out that

the topological foundations of network theory are identical to those of

the vector calculus. This structural isomorphism between discrete and

continuous descriptions gives new insight into the structure of dynamical

systems, and allows many of the powerful techniques of graph theory and

network theory to be brought to bear on the thermodynamic analysis of

complex biological structures. By exploiting this connection, the essen

tial assumptions are revealed, permitting a more intuitive and systematic

derivation of thermodynamic relations heretofore arrived at by a more

circuitous and less illuminating route. The resulting mathematical

formalism extends the thermodynamic model to include nonlinear, nonsteady

phenomena.

We derive below several known thermodynamic inequalities and in doing

so clearly exhibit the minimal assumptions required for their validity.

We also derive conditions guaranteeing the stability and the unstability

of a steady state.

2. THERMODYNAMICS AND NETWORK THEORY

2.1 Irreversible thermodynamics, as presently constituted, is not a true

dynamical theory in the usual sense. Equilibrium thermodynamics deals only



with the initial and final states of a process. Conventional irreversible

thermodynamics is also a "static" theory yielding only the nonequilibrium

steady states, not the entire dynamical trajectory.

In view of the extreme complexity of the systems encountered in

biology, it would seem desirable to extend the thermodynamic phenomenolo-

gical model so as to facilitate the complete time dependent analysis of

complex, nonlinear nonequilibrium systems. The most straightforward

approach to such a generalization is to bring thermodynamics into conformity

with the other dynamical theories of physics.

The concept of a dynamical system is extremely important and extremely

general: with appropriate selection of the system state, it includes the

basic models of physics (classical and quantum mechanics, hydrodynamics,

elasticity, electromagnetism), of network and control theory, and of com-

2
puter science (Turing machines, automata, sequential machines).

It would be out of place here to develop the notion of dynamical

systems in complete generality. The reader is referred to the following

references for a more complete treatment. (Desoer, 1970, p. 42, Zadeh. and Desoer,

1964, Jurdjevic, 1970.) It will suffice here to restrict our attention to

that class of systems which may be adequately represented by differential

equations of the general form

x = F(x); x(0) = x^

That is, the system state x_ (whose velocity vector is x) is propelled by

the vector field F(x) such that the knowledge of x_, the state at any

initial time tQ, uniquely determines the trajectory for all times thereafter.
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We may frequently place an additional restriction on the dynamical system:

the vector field F is irrotational and therefore may be expressed as a

gradient field.

The detailed procedure for constructing network representations for

general thermodynamic systems is given elsewhere (Oster and Auslander,

1970; Oster, Perelson, Katchalsky, 1970). In this communication we will

give only a brief discussion to motivate the subsequent derivations and

focus our attention on the formal structure of the dynamical equations.

2.2 We must first ask what, if anything, electrical networks have in

common with other physical systems that thermodynamics seeks to describe.

For whatever else an electrical network may be, it is certainly a non-

equilibrium thermodynamic system. However, one does not ordinarily con

sider network theory as an application of irreversible thermodynamics;

this is because electrical engineers have developed a set of specialized

techniques which seem quite foreign to the classical methods of thermo

dynamics. In fact, the network approach is quite general and with

modifications can be applied to other thermodynamic systems.

One thing that immediately comes to mind is the remarkable ability

of electrical networks to imitate the dynamical behavior of non-electrical

systems. The success of such network analogs may seem surprising consid

ering the apparent basic dissimilarity between the network and the pro

cess whose dynamic behavior it imitates. Network "analogs" of electro

physiological processes are well-known; indeed, Kron and others have

devised network representations for practically all of the equations of
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physics, from the Navier-Stokes equations to Schroedinger*s equation (Kron,

1943, 1944, 1945, 1946, 1948).

The ubiquity of the network concept is no accident. If we examine

the essential mathematical assumptions underlying the various dynamical

theories of physics we find a great number of common features. There are

two mathematical structures underlying most physical models; one topolo

gical or "kinematic," and one "dynamic." The first deals with the con

nectivity properties of the state space in which the physical processes

are described, and the other has to do with the defined relationships

between the state variables that one chooses to characterize the system.

2.3 With regard to the topological properties of the state space, there

are dual mathematical structures available. On the one hand, point-set

topology gives rise to the operational structure of (vector) calculus which

continuum theories employ to generate partial differential field equations.

On the other hand, combinatorial or algebraic topology provides a discrete,

or reticulated view of the state space and gives rise to ordinary differen

tial equations. The network representation employs combinatorial topology

to construct a discrete operational structure completely paralleling

that of the continuum theory. That is, the very same topological consid

erations arise in the derivation of the vector calculus and network theory,

the former being the limiting case of the latter (Branin, 1962; Branin,

1966).

For example, imagine that we wish to describe the distribution of

current j and potential |, ona smooth conducting surface. On the one
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hand, we could attempt a description in terms of continuous functions

giving the values of j and <j> at each point. This could prove rather cumber

some for complex geometries, boundary conditions and material properties.

Alternatively, we could obtain a reticulated description by imagining a

"grid," or network overlaying the conducting surface. We could then mea

sure the current, j , through each branch and the voltage across each branch,

v = Ad) . These measurements could then be arranged in matrix form. Intui-
i Yi

tively, it seems clear that, as the network mesh is made finer and finer,

we may approach the continuum distributions as closely as desired. The

tabulation matrices described above will then approach the continuum dif

ferential operators of vector calculus.

To see how this works, we must introduce a method for describing the

network topology, the so-called "connection matrices." These are easily

constructed by merely labelling each node, branch and mesh in the networks,

and assigning an arbitrary reference direction to each branch and an arbi

trary orientation (clockwise, say) to each mesh. We then construct the

connection matrices according to the following algorithm (Desoer and Kuh,

1969, p. 417 and p. 458):

(i) Node-branch matrix

if branch i is directed out of node j

if branch i is directed into node j

0 if branch i is not incident on node j

t
(ii) Branch-mesh matrix

+ 1 if branch i bounds mesh k in the + direction

(M) ., = J - 1 if branch i bounds mesh k in the - direction
0 if branch i does not belong to mesh k.

i
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If we now construct the vector of all branch currents, j = (j_, ..., j^),

and the vector of all branch voltages v = (v.., ..., v.), we can easily

verify that j lies in the nullspace of A and v lies in the nullspace of M:

Aj = 0 (1)

Mv = 0 (2)

This, of course, merely expresses the conservation of current flows

(Kirchhoff's Current Law, KCL) and the uniqueness of potential (Kirchhoff's

Voltage Law, KVL). Furthermore, one can also verify that the following

purely topological identity is always valid

AMT = 0 (3)

or MTA = 0 (4)

By defining a "mesh current vector" i and a "node to datum" potential

vector e = (<J>. - <j>Q, ..., (J) - 4>Q), where <{>. - <J>_ is the potential of the

i node with respect to an arbitrarily chosen reference node, the commu

tative diagram of Fig. la results (Branin, 1962, 1966).

The meaning of Fig. la is as follows: we are given a topological

structure, the linear graph of the network. We associate with the elements

of the graph (nodes, branches, meshes) two independent algebraic structures:

(a) a set of "flows" obeying a local conservation condition, KCL (1); (b)

a set of "efforts" (forces) obeying a uniqueness condition (i.e. state

4
functions), KVL (2). Figure 1 then represents the constraints imposed

on the flow and force variables due to the network topology. In the limit

of infinitesimal mesh size the topological identities (3) and (4) become
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the familiar vector identities, valid for any differentiable fields j,

divcurl (j) = 0 (5)

curl-grad (<j>!) = 0 (6)

2.4 In addition to the topological constraints imposed by conservation

(KCL) and/or uniqueness (KVL), there are 3 additional "dynamic" con

straints on the dynamical variables: the constitutive relations. From

the basic branch quantities j and v, we may define two further state

variables by integration: a generalized displacement q(t) = q(0)+ / j dt

and a generalized momentum, or flux, <f>(t) = <f>(0) + / v dt (Paynter, 1961,
•A)

p. 136). These state variables are connected by 3 constitutive relations

representing energy storage and dissipation as in Fig. lb (Oster, Auslander,

1970, Oster, Perelsen and Katchalsky, 1970). More explicitely we have,

respectively, for capacitive, resistive and inductive elements the

following constitutive relation

(a) v= fc(q) ; (b) fR(v,j) =0 ; (c) j= fL(<{>) (5)

Figure la and Fig. lb represent the complete operational structure of the

dynamical systems dealt with here. Furthermore, as we shall see in the

case of chemical reactions, not every network arises via reticulation of

the continuum.

2.5 We emphasize that we are not dealing with "network analogs" in the
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usual sense. We are concerned only with the formal mathematical struc

ture common to both network theory and thermodynamics (Sudarshan, 1962;

Trautman, 1966, p. 166). In this respect, we regard a network as merely

another, more explicit, way of writing the topological and dynamical con

straints of the system. Indeed, the differential equations may be obtained

more or less algorithmically from the network. The network representation

and the differential equation representation are, however, not completely

equivalent. While the network contains the dynamical equations as well

as the system topology, the network cannot usually be reconstructed from

the differential equations: information regarding system topology has

been lost in going from the network representation to the differential

equation representation (see Appendix A).

We shall demonstrate below that by using the network representation

of the dynamical system we will be able to clearly separate the topologi

cal and dynamical aspects of thermodynamic systems. We emphasize that

the separation of reversible and irreversible processes takes concrete

form only for electrical networks. In more general thermodynamic processes,

this separation is a purely conceptual device, serving only to clarify the

formal structure, and enabling us to construct an "equivalent network"

representation of the dynamical system.

3. THE STEADY-STATE CRITERION

3.1 Prigogine (1968) and Prigogine and Glansdorff (1954) have demon

strated that, for a wide class of dynamical systems, the quantity

dxP *' JiXi — ® in t,ie natural evolution of a nonequilibrium system
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toward a steady state; the equality holds only at the stationary state.

For simplicity, the proof of the inequality is given for the case of

one-dimensional diffusion of a single species (Degroot and Mazur, 1962).

Consider a volume, V, in contact through semipermeable membranes

with two large reservoirs maintained at constant chemical potentials.

Prigogine's theorem says that for time-independent boundary conditions,

x
=/ J-X <_ 0,

J v - -
the quantity d P =1 J«X _< 0, equality holding only at steady state. Here

J is the flux through a cross section of V and X = grad y is the driving

force for diffusion, being the gradient of the chemical potential of the

diffusing species.

Then, dxP =f J. |^ (Vy) =f J. via
3t

^V •'V 3V Mf

By the assumption of constant boundary conditions the first integral

vanishes. Since, by conservation, V»J = —

dP = - ^
x

/9y 9n = _ f ^y (dn \
3t at / 3n \3t /

v JV

The condition that the constitutive relation y = y(n) be monotonically

increasing is a thermostatic stability condition, and is assumed to

hold throughout the dynamical process. We then have
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3.2 The above inequality may be demonstrated in similar fashion for

any process whose energy rate may be expressed as a product of a sole-

noidal and an irrotational vector field. That is, the potential, y, and

the flow, J, may be replaced by any quantities obeying Kirchhoff's Laws:

X is the gradient of a scalar function and J satisfies a conservation

condition V«J = q.

In most thermodynamic systems the free energy rate (or power) is

given as the product of a solenoidal and an irrotational vector field.

That is, one dynamical variable is a potential function and the conjugate

dynamical variable represents the flow of a locally conserved quantity.

That this is generally so can be seen by examining the Gibbs Equation, or

its appropriate Legendre Transforms

dU = TdS - pdV +\~Vdn. + HdB + ... (8)

Electrical network theory concerns itself exclusively with the last two

terms representing electronic capacitive and inductive energy storage,

respectively.

The role of Kirchhoff's Laws is not accidental in this context. As

we have discussed in Section 2 KCL (Kirchhoff's Current Law) and KVL

(Kirchhoff's Voltage Law) are physical restatements of the topological

properties of the dynamical space. From a practical viewpoint, KCL and

KVL variables represent physical quantities measured in completely different
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ways (Trent, 1955): the engineering terminology of "through" and "across"

variables arose from the recognition that two types of measurements may

be performed on dynamical systems: a conserved quantity "through a flow

meter," and a force quantity measured as a potential drop "across two

terminal locations" (Koenig, 1960, p. 9; Shearer et al., 1967, Chap. 4;

Martens and Allen, 1969, p. 19).

3.3 Now, consider how measurements are performed on the volume V to

determine its state. A discrete number of readings must be made along its

length, which may be considered as port variables. That is, to any speci

fied degree of accuracy, the dynamical equations may be represented by a

network of resistors and capacitors as shown in Fig. 3.

The network topology via the Kirchhoff laws impose very important

constraints on the "through" variables (j) and the "across" variables (v).

One of their most important consequences is the Tellegen Theorem (Tellegen,

1952; Desoer and Kuh, 1969; Penfield, et al., 1970).

Tellegen's Theorem: Let v = vector of branch potentials (KVL variables:

voltage, chemical potential, pressure, etc.), and j = vector of branch

flows (KCL variables: current, chemical reaction flux, etc.), then

vTj = 0 (9)

i.e. the KCL and KVL variables lie in fixed orthogonal subspaces, the null-

spaces of A and M, respectively.

Proof: The proof follows directly from Fig. la, substituting in (9)
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either the homology (KCL) or cohomology (KVL) sequences for j or v,

respectively, we observe that (9) is equivalent to the identities:

MAT =0 (3)

AMT =0 (4)

which we have earlier identified with their continuum counterparts (5) and

(6). Q.E.D.

The reason for the generality of Tellegen's theorem is clear: it is

a purely topological result, independent of any assumption on constitutive

relations, steady states, etc. The only assumptions are the conservation

of flows (KCL), and uniqueness of potentials (KVL).

Stated in thermodynamic terms, Tellegen's Theorem implies the follow

ing transparent statement (Oster, Perelson, Katchalsky, 1970):

"In a closed thermodynamic system,

the free energy dissipated by the

irreversible processes is equal to

the reversible changes in free energy."

e.g., for an isothermal, isobaric system

(dt) +*= ° <10>
rev

d.S

where G is the Gibbs Free Energy and <f> = T -~- is the dissipation

function.

It is important to realize, however, that the scope of Tellegen's

Theorem transcends its interpretation in terms of energy. For instance,
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consider the following situation: given two thermodynamic systems S and

S« (say, electrical networks) with different processes and constitutive

relations but with the same topology. Tellegen's Theorem assures us that

at each instant of time, not only

Yi h = ° (11)
and

Y2 J2 = ° (12>
but also

•T j9 =0 (13)
:i H

and

Zl h = ° ! (1A)

This holds even though S- and S« may represent completely different thermo

dynamic processes. Furthermore, if v.(t) represents the potentials for

Sj^ at time t and J2(T) is the flows in S„ at any other time t, then

v1(t)T j2(x) =0. (15)

It is clear that these identities cannot be interpreted in terms of energy

conservation. Such relations, while not amenable to any simple physical

interpretation, are useful in proving many other theorems (see Penfield,

1970).

3.4 We now return to the steady state criterion. The proof parallels

that given in Section 3.1, but. now we begin with Tellegen's Theorem.
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Theorem:

Given a nonequilibrium thermodynamic system obeying the following

conditions:

(i) constant potentials on the boundaries

(ii) the thermodynamic stability condition

?C(3) > °
T

holds (i.e. x $ 0 implies x f'(q)x > 0), where

is the capacitive constitutive relation and

q(t) Eq(0) + f jdt.

Then the following inequality holds along any dynamical trajectory

R

equality holding only at the steady state, and where the sum is taken over

all dissipative processes (resistors).

Proof: Since, for each t, v and j lie in fixed orthogonal subspaces, their

time derivatives v and -r— j must also remain in the same orthogonal sub-

spaces. Therefore,

v j = 0. (17)

For any network of resistors (dissipation) and capacitors (storage)

(say, as in Fig. 2),
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R c P

resis. cap. ports

The third sum vanishes by assumption of constant excitation at the ports,

or bounderies.

The constitutive relation for the capacitive storage elements (see

(5.a)) are assumed to be thermodynamically stable (Callen, 1960):

f£(qk) > o. (18)

Then, since

vk = fk(qk> qk = fk(qk} V

R c

Aside from the restriction of monotonicity on the capacitor consti

tutive relations, nothing but the network topology and Kirchhoff's Laws

(which are equivalent to conservation of charge and uniqueness of poten

tial) has been employed. In particular, no statement concerning the

nature of the other elements need be made.

Note that the dual statement Zv, -jr j, < 0 is not true for the above
k dt Jk

network, since -j— j = q , whose sign is indeterminate in general.

Prigogine's Theorem therefore emerges as a direct consequence of

Tellegen's Theorem and thermodynamic stability.

Comment: Since the derivation employs the topological character of

the flow and force variables in the form of Kirchhoff's Laws, we may

£vk =-Ewjk10, QJE-D
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generalize the above inequality to arbitrary vector spaces. Any dynamical

system with m degrees of freedom may be modeled by a network with m inde-

9
pendent meshes. The mesh currents, i, correspond to generalized velocities,

/:and the mesh charges q = I idt are generalized coordinates.

4. CHEMICAL REACTIONS

By this approach we can deal with the phenomenological aspects of

chemical reaction dynamics. It is evident that the flux and force variables

employed to describe chemical reactions may be chosen to be "through" and

"across" quantities (Katchalsky and Curran, 1965). Therefore, the loose

notion of reaction "network" can be made precise by the appropriate

interpretation of the thermodynamic quantities.

Each reaction comprises a single degree of freedom in the dynamical
o

sense (Duinker, 1968), so that a reaction corresponds to a loop (mesh)

1 dnk
where the reaction flux of the rth reaction J = —- -r—=• is the loop

r v , dt
rk

current i , the loop charge q = I i dt is the degree of advancement of
r Jo r

the reaction, £; and v . is the stoichiometric coefficient of species k in

reaction r (Katchalsky and Curran, 1965; Haase, 1969).

Since a chemical reaction is a dissipative process, a dissipative

element must be included in each loop. It is this branch that thermo-

dynamically characterizes the reaction in the sense that the free energy

loss accompanying the progress of the reaction is represented by the

energy dissipated in the resistive branch.
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Now the topology of a reaction network is completely contained in

the stoichiometric matrix, v, which is obtained by writing the kinetics

in matrix form, as illustrated in the following example. Note that the

usual sign convention in chemical kinetics (reactants -, products +) is

identical to the usual sign convention for the loop matrix (Desoer and

Kuh, 1969). The substances may represent irreducible subunits of the

reaction,

A + B —

C —> D

D + E —

where

F + B

> or ^ v,n,=0orvn =0
b=l

-1 -1 1 0 0 0 Three

0 0 -1 1 0 0 • reac

v° 1 0 -1 -1 h tions

V
A

b species

(19)

The topological graph of this scheme is shown in Fig. 3, which may be

constructed algorithmically in the following way.

To each specie we associate a capacitive branch (labelled A, B, C, D,

E and F in Fig. 3); to each reaction we associate a loop. Now the defini

tion of affinity is a = - vy, where y, is the chemical potential of specie

b. Since affinity is a KVL variable, a + vy = 0 is the expression of KVL

for the associated network. The affinity of reaction r will be the voltage

across the resistor inserted in loop r to represent the dissipative process,

Thus in general, the resistor branch current j and branch voltage v com

pletely characterize the dynamic behavior of the reaction loop. In
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analyzing the system, the loop matrix B has a natural decomposition obtained

by taking the resistors R. as links and the remaining capacitive branches

as tree branches (Desoer and Kuh, 1969, p. 481). In this manner the link

(or cotree) variables represent the thermodynamics of the reaction. Since

with this unique partition there is only one link in each reaction loop,

the loop matrix may be written immediately as

B = I V (20)

Therefore, the graph may be drawn directly from the stoichiometric

matrix.

The proof of the steady-state criterion follows exactly as before.

Let R = link (resistor) index and c = tree (capacitor) index. From

Tellegen's theorem we have

.T .

3.R YR =
.T •

^c ^c j.c D*c(?>3c °
T
j Df (q)j < 0, (21)

where Df£(q) is the Jacobian matrix of f(q).

Again, once the topological structure is recognized, the proof pro

ceeds independently of the physical nature of the variables, so long as

they are "Kirchhoff Law variables."

This network representation of chemical reactions offers several

advantages over conventional representations. The topological relation

ships and dependencies are immediately apparent. It is clear, for example

that to maintain a steady state, at least one loop must not contain any
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capacitor. For example, branches A, E and F must be source branches

(voltage sources), i.e., the corresponding species must hold constant by

external reservoirs. Note that a voltage source is a limiting case of a

capacitor whose voltage is independent of q. KCL applied to each node

yields immediately the integrals of motion, i.e., linear combinations of

substances remaining constant during the reaction. A basic result of

graph theory is that the node-incidence matrix, A . , is of rank n-1

(Desoer and Kuh, 1979). Therefore the node-incidence matrix automatically

generates a complete and nonredundant set of integrals.

Reaction loops, or feedback appear as dependent meshes, as inthe

classical Onsager triangle scheme shown in Fig. 4 (Katchalsky and Curran,

1965). It can be easily verified that > A = 0 merely expresses the

mesh

fact that mesh abc is the sum of meshes (reactions) 1, 2, and 3, which is

evident from the graph.

If any substance participates in more than two reactions, the graph

must be nonplanar. This has no effect on any of the above statements.

5. MINIMUM ENTROPY PRODUCTION

In 1891 Maxwell formulated the "minimum heat theorem" (Maxwell, 1892),

which states that, for linear resistive circuits driven by constant sources,

the flows distribute themselves in such a way that the power dissipated

(i.e., heat generated), P, is a minimum. Since the circuit is assumed

isothermal, dividing the heat, Q, dissipated in the resistors by the

ambient temperature, T, we find that ^ = -jr , the entropy production, is
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also minimum (Prigogine, 1947).

An examination of this theorem reveals once again that the conclu

sions may be generalized to arbitrary thermodynamic systems described by

Kirchhoff Law variables.

We first drop the requirement that the resistors be linear. We then

define two new quantities (Millar, 1951; Duffin, 1956, 1947, 1948) for

each branch, the "content," G, and its Legendre Transform, the "cocontent,"

G:

and

'k

0

K = / v,AL G => .Gk (22)

vk

/Gk= I jkdvk G =7Gk- (23)

*

Note that G + G = P, the total dissipation. For linear constitutive

relations, G = G = (1/2)P.

Consider first the case of systems driven by constant current sources

T
From Tellegen's Theorem, j v = 0. Consider now a virtual change in the

j's: j. > j, + Sj, , subject only to the constraint that the variations

also obey KCL. Therefore

(j + 6j)Tv = 0. (24)

T
By subtraction Sj v = 0, i.e., the variations are also perpendicular to

T
the voltage subspace. And so, <SG = v 6J = 0. Therefore, at the steady

state, the content is stationary. If, in addition, all the resistor
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characteristics are strictly monotonically increasing, then G can be

shown to be strictly convex (Duffin, 1956, 1957, 1948); hence the stationary

point is the unique absolute minimum.

Alternatively, we could have considered variations in the forces,

v + Sv, subject to KVL, and arrived at

6G* = jT6v = 0. (25)

for systems driven by constant force (voltage) sources.

For the special case of linear resistors, the extremum is exactly

T
the minimum power theorem of Maxwell, 6P = 6(j R, j) = 0.

A resistive network with constant sources is always in the steady

state, since it has no dynamic elements. A network with dynamic (energy

storage) elements and with constant sources will be purely resistive in

the steady state only. Hence, again, the steady state is characterized

by the stationarity (or the minimum) of the content. As far as station-

arity is concerned, no assumption as to the nature of the branch relations

has been assumed, so the theorem holds for arbitrary nonlinear, coupled

systems, provided that the nonlinear coupled resistors are reciprocal (so

that the content can be well defined) (Brayton and Moser, 1964).

6. STABILITY OF STEADY STATES

Prigogine has also proposed the "excess entropy production"

S _P r. > Sj.SX. as a stability criterion for thermodynamic systems

(Prigogine and Glansdorff, 1965). Intuitively, it would seem that
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variations about a stable steady state that effect a net entropy reduction

of the system are not favored in a thermodynamically stable system. Con

versely, SxP < 0 should be some indicator of system instability. We can

make this notion clearer and more precise by examining the nonequilibrium

system par excellence, the electrical network. For example, consider the

chemical reaction network operating at a steady state.

In order to study the stability of the steady state, we may linearize

about the steady state and obtain the small-signal dynamical equations

(Coppel, 1965, Chap. 3, Sec. 3),

Rq + Sq = 0, (26)

q = (-R~ S)q, (27)

where R, S are real, symmetric, nonsingular matrices. If the resistor

and capacitor characteristics are strictly monotonically increasing, it

can be shown that there is a unique steady state which occurs at the

unique minimum of the total content of the network (Duffin, 1946, 1947,

1948; Desoer and Katzenelson, 1965). Furthermore, a simple Liapunov-

type reasoning (see pp. 816-820 of Desoer and Kuh, 1969) shows that given

any initial state, the circuit will asymptotically reach the unique steady

state. It follows, therefore, that whenever the steady state is unstable,

at least one resistor (dissipative process) must have a characteristic

with a negative slope at the steady-state operating point.

Now, consider the following facts: X is an eigenvalue of R S if

and only if 1/x is an eigenvalue of (R~* S)~ = S~ R. The matrix S is
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1/2
positive-definite by thermodynamic stability, therefore S is a well

defined, real symmetric, positive-definite matrix. Now S R is equiva-

—1/2 -1/2 1/2 -1 -1/2
lent to S RS by the similarity transformations S (S R)S ; so

-1 -1/2 -1/2 -1/2 -1/2
S R and S RS have the same eigenvalues. Observe that S RS

is congruent to R, and therefore has the same index, i.e., the same

number of negative eigenvalues (Martin and Mizel, 1966). From these facts

we draw the following important conclusions:

(1) If the matrix R has all its eigenvalues positive, then the

steady state is (locally) asymptotically stable;

(2) If R has one or more negative eigenvalues, then the steady

state is unstable (Coppel, 1965, p. 69 and 75).

The rate of free energy loss in the resistors is

T
R = j R*J > ^u = resistor branch matrix. (28)

T
Using KCL in the form j = M i, we have

T T
P = i MR.M i

•T •
= q Rq,

(29)

T
where R = MR,M is the resistor mesh matrix (Desoer and Kuh, 1969) and

i = mesh currents.

Consider any perturbation of branch currents and voltages about the

steady state, conforming to KCL, KVL, and the local (linearized) constitu

tive relations. If for some such perturbation and considering only

resistor currents and voltages,
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SjTSv = Sj\sj = SiTR6i < 0,

then R has at least one negative eigenvalue; hence the steady state is

unstable.

We have proven the following:

Theorem

(i) If, for any perturbation of branch voltages and branch currents

about the steady state, and conforming to KVL, KCL and the

constitutive relations,

Z '̂k k

resis.

Sv, > 0, (30)

then the steady state is locally stable,

(ii) If, for some such perturbation,

E ^ «v, < 0, (31)
'k k

resis.

then the steady state is locally unstable.

This result may be obtained more quickly (but less precisely) by

T
starting from Tellegen's Theorem, v j =0, or

5vT Sj =0 (32)

we obtain

Z *v\+ 2 *v\+ J2 6jk5vk • °-
resis. «^_

cap. ports
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By assumption of constant boundary conditions, the last sum vanishes.

Inserting the (linearized) constitutive relations, we obtain the small-

signal equations of motion:

6jTRb6j + SjTS5q =0,

SqTRbSq +^ [(l/2)6qTSSq] =0,

6?V? =-aT fie' <33>

where £c(q;5q) =(l/2)6q SSq is the "small-signal energy" about the

steady state.

If the system is unstable, the trajectory initially moves away from

the origin, 6q = 0. Therefore o is increasing, at least initially.

Therefore

6qTRSq <0 (34)

or

resis.

This reasoning, however, does not indicate what kinds of perturbations,

5v, and Sj, , are allowed in the search for a negative sum.

The question naturally arises: What sorts of physical phenomena can

generate dissipative instabilities, i.e., locally active constitutive

relations? Roughly speaking, it corresponds to the existence of "state-

controlled resistors." Since the network represents a conceptual separa

tion of processes actually occurring within the same volume element, the

-25-



state variables (q,v) will enter into the resistor characteristics in a

parametric fashion. For example, the phenomenological diffusion resis-

CDtance in part 2 is concentration dependent (LD = —), i.e. the state

variable of the capacitance feeds back to modulate the resistor charac

teristic (Katchalsky and Curran, 1965; Othmer and Scriven, 1969). This

is a familiar effect in many nonlinear circuit devices such as multivi

brators. In thermistors (Chua, 1969) the thermal state of the resistor

(i.e. the heat capacitance) modulates the constitutive relation of device.

The identical phenomenon arises in membrane oscillators (Mauro, 1961;

Teorell, 1962), stirred tank reactors (Aris, 1969), and auto- and cross-

catalytic chemical reactions (Prigogine and Nicholis, 1967; Lefever and

Prigogine, 1968; Lefever, 1968).

7. COUPLED PHENOMENA

So far, for the sake of simplicity, we have restricted ourselves to

single mode energetic processes. However, the real interest in irrever

sible thermodynamics, insofar as biological systems are concerned, lies

in multiple energy couplings and transductions; e.g. coupled diffusion,

diffusion-reaction, mechanochemical and electrochemical processes. The

central device employed in network thermodynamics is the conceptual

separation of reversible and irreversible processes. As we have stressed,

such a reticulation is a purely formal device; but it permits a graphical

representation of the system equations for complex processes. The repre

sentation of nonelectrical dynamical systems by linear graphs is a well
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established technique in engineering (Shearer, et al., 1967; Koenig, et al.,

1969; Martens and Allen, 1969).

In principle, it is possible to represent by network graphs the more

general thermodynamic processes mentioned above, in which many types of

energy are involved. However, for such phenomena, network graphs are

unwieldy and confusing. A more satisfactory graphical notation, called

"bond graphs" has been developed which is particularly well suited for

irreversible thermodynamics. A detailed account of bond graph representa

tions is available elsewhere (Oster and Auslander, 1970; Oster, Perelson

and Katchalsky, 1970; Karnopp and Rosenberg, 1968). Here we indicate how

the notion of reciprocity may be extended to nonlinear thermodynamic

systems via the network representation.

In the "near-equilibrium" range, where the constitutive relations

may be taken as linear, the Onsager condition on the dissipative processes

in a steady state is expressed as

L = LT (36)

where

j = Lv. (37)

In general, however, the constitutive relations are nonlinear:

j = gR(v) for irreversible processes (38)

q = gc(v)

<J> = 8L(y)

n
for reversible processes. (39)

J

For the capacitive, or reversible constitutive relations, the symmetry
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of the derivative, or Jacobian matrix of g is equivalent to the familiar

Maxwell Relations:

[Dg] = [Dg]T (40)

The corresponding equation for the dissipative constitutive relation is

[DgR] =[DgR]T (41)

which reduces to (36) in the linear case. A large class of systems are

amenable to a bond graph description that employs only reciprocal "ele

ments" of 3 types; energy storage, dissipation, and transduction. For

this class of system we may invoke a Theorem due to Brayton:

Theorem:

Any interconnection of reciprocal elements is reciprocal (Brayton,

1969).

Reciprocity emerges as an integrability condition on the respective

constitutive relations, and with the above theorem, extends to nonlinear,

nonsteady thermodynamic systems of large complexity.
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APPENDIX

The purpose of this appendix is to elaborate on the remark (see

Section ) that a network diagram representation contains more information

than a differential equation representation.

Modern dynamical system theory recognizes that theories are invented,

not discovered. Therefore, a clear distinction is maintained between (1)

the physical system under study, (2) any one of the possible models chosen

to describe it, and (3) the mathematical representation of the model

(Fig. A-l).

The model is specified by a set of axioms summarizing what we judge

to be the minimal assumptions required to describe the physical behavior

of the system. (The axioms, of course come from the ingenuity of the

model-builder, and are usually valid over a more or less restricted

range of behavior.)

Once the axioms are listed, however, there are usually available

several ways of translating these assumptions into mathematics, e.g.

ordinary differential equations, partial differential equations, integro-

differential equations, integral equations, operator equations, etc. A

choice of mathematical description for the model is called a mathematical

- -• 12representation.

In the case of electrical networks, several representations are

available: state equations, mesh equations, loop equations, node equations,

mixed equations, etc. That is, the model generates an equivalence class

of mathematical representations.
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Frequently, many of the representations are interchangeable, in the

sense that one may be derived from another, e.g. Lagrangian, Hamiltonian

and Hamilton-Jacobi formalisms in classical mechanics. This is not always

the case, however. For example, the mesh equations are not always a

special case of loop analysis: it is possible to have a mesh completely

embedded in surrounding meshes. Such a mesh cannot be described by (funda

mental) loop equations, since it cannot contain a link.

A network diagram is a very convenient method of representing a

dynamical system, since different algorithms lead to all of the other

mathematical representations. However, it is generally not possible to

uniquely reconstruct the network that originally generated a set of

dynamical equations, (e.g. dual networks, Desoer and Kuh, p. 454). In

going from the network the diagram to the dynamical equations the topolo

gical information is lost. That is, a set of state, loop, node, etc.

equations do not uniquely determine a network, but only an equivalence

class of "dynamically similar" networks.

As a closing comment, let us emphasize that, in our view, insofar

as possible, all consequences of the model must be derived mathematically

from the various mathematical representations. No intermixing of "physical

reasoning" is permitted below the level of the original model axioms (Fig.

5). Otherwise, once conclusions are reached and" have to be tested against

experiment, one is never sure whether it was the model assumptions that

went awry, or one of the "intuitive" steps inserted in the analysis.

Of course a good model leads to verifiable and disprovable conclu

sions which determine the range of validity of the model. Thermodynamics
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is a fairly general model whose principal restriction is the assumption

of "local equilibrium;" this enables one to uniquely define the various

state parameters and constitutive relations.

The best of all possible worlds is when several models lead to

similar conclusions, e.g. the wave and particle models of light. A col

lection of such model-independent results, or "robust theorems," is

entitled to be called a theory.
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LIST OF SYMBOLS

A defined on Fig. 2

affinity = - v y

B = partitioned mesh matrix

C branch capacitance matrix

d coboundary operator

D diffusion coefficient

Df(x) Jacobian matrix of f(x)

e defined on Fig. 2

c small signal energy

G content

G cocontent

i defined on Fig. 2

I identity matrix

j defined on Fig. 2

J. thermodynamic flux

J reaction flux of reaction r

LD Onsager phenomenological diffusion conductance

M defined on Fig. 2

N particle vector

P dissipation

q branch charge vector

q mesh charge vector

Q = heat
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R gas constant

R resistor mesh matrix

branch resistance matrix!b
S entropy

s -C"1

t time

T = absolute temperature

v defined on Fig. 2

V volume of system

X. thermodynamic flux

3 boundary operator

y chemical potential vector

v stoichiometrix matrix (reactions x species)

£ degree of advancement of reaction r
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FOOTNOTES

1. Meixner (1963, 1966) has also employed the formal similarity between

electrical network theory and irreversible thermodynamics in the con

text of linear passive systems.

2. Not all models used in physics are dynamical systems. Statistical

fluctuations are not included: therefore for, say, prediction, filter

ing and stochastic control the model must be enlarged.

3. Most experimental systems are limited to simple input functions, e.g.

constant excitation, step, impulse, sinusoidal, e.g. plane wave, etc.

4. The KCL and KVL variables represent the homology and cohomology

groups associated with the linear graph (Branin, 1966, Hocking and

Young, 1961).

5. The entropy flow term does not, of course, obey a conservation law

except in pure heat conduction, but this causes no problem in the

general treatment (Oster, Perelson, Katchalsky, 1970).

6. Tellegen's Theorem is merely the Poincare Lemma: d«d = 0, where d is

the exterior derivative (Sternberg, 1964, p. 101). The dual expres

sion is: 3*3 = 0, where 3 is the "boundary operator," (Sternberg,

1964, p. 107). This latter identity gives a concrete topological

interpretation to all the other identities: "the boundary of the

boundary is zero" for any simply connected domain.

7. By duality, Ev, "Hf 3K £ 0 is true for RL networks, i.e., systems with

inertial elements and dissipation, but not capacitive energy storage.

8. In Eqn. (20) we will partition M, the mesh matrix in a particular

way. The partitioned form we relabel as B, the "loop matrix," to
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distinguish it from M.

9. With certain geometrical and dimensional restrictions to be dealt with

elsewhere (Oster and Auslander, (1970)).

10. Remarks: (1) One negative resistor does not imply R has one negative

eigenvalue. For the chemical reaction network, however, R is always

diagonal; hence one negative resistor does imply a negative eigenvalue.

(2) The above argument shows that if R has negative eigenvalue(s), the

steady state cannot be stabilized by adjustment of the energy storage

elements. (3) The critical case (X = 0) is ruled out by the fact that,

for our networks, R is nonsingular. (4) Since R and S are real and

symmetric, X is necessarily real.

r\ —T—11. £;. is not the "perturbation energy" about the steady state v j:

(v + 6v) (j + <5j) = v j + 6v Sj + 6v j •+ v6j ,

so >-. does not include the "correlation" terms,
^-c

12. The model we employ in this paper,' for instance, assumes conservation

of energy and conservation of flows as represented in Kirchhoff's

Laws, KVL, and KCL.
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KVL

KCL

M A
o -^ v -^ e

M' A
• ^-j ^-o

A » noda incidanca matrix

M = mash current matrix

i = mash currant vector

j = branch currant vector

v * branch voltage vector

e = node to datum
voltage vector

Fig. la. Topological relationship between dynamical variables
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v -<f>

q^r- j
/

KVL

t
constitutive relations

1
KCL

Fig. lb. Constitutive relations between dynamical variables



AA/V—I—wv—i—vw

X T

Fig. 2. Network realization of 1-dimensional diffusion
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(a) CIRCUIT (b) TOPOLOGICAL GRAPH

Fig. 3. Graphical representation of reaction network
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Fig. 4. Onsager scheme
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