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Abstract

This paper deals with nonlinear networks which can be characterized

by the equation f(x) = y where f(*) is a piecewise-linear mapping of R

into itself, x is a point in R and represents a set of chosen network

variables, and y is an arbitrary point in R and represents the input to

the network. Lipschitz condition and global homomorphism are studied in

detail. Two theorems on sufficient conditions for the existence of a unique

solution of the equation for all y^R in terms of the constant Jacobian

matrices are derived. The theorems turn out to be of pertinent importance

in the numerical computation of general nonlinear resistive networks based

on the piecewise-linear analysis. A comprehensive study of the Katzenelson's

algorithm applied to general networks is carried out, and conditions under

which the method converges are obtained. Special attention is given to the

problem of boundary crossing of a solution curve.
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PIECEWISE - LINEAR THEORY OF NONLINEAR NETWORKS

1. Introduction

In this paper we present the general theory of nonlinear resistive

networks based on the piecewise-linear analysis. As far as we can deter

mine, the first work on the use of piecewise linear analysis to fairly

general nonlinear resistive networks was done by Katzenelson in 1965 .

Specifically, Katzenelson developed a method for solving nonlinear resis

tive networks which contain uncoupled resistors of the strictly mono-

tonically increasing type. For this special class of nonlinear networks,

it is not difficult to see that his algorithm always converges, and it

represents an efficient method of analysis. Recently Kuh and Hajj

T21
extended the applicability of Katzenelson's method in two directions .

First, they applied the Katzenelson's algorithm to analyze arbitrary

nonlinear resistive networks which possess a unique solution under all

possible inputs. Second, they developed a method of calculating input-

output characteristics of nonlinear resistive networks which possess

single or multiple solutions. In both cases, the method works well, yet

proof was not given of the convergence of the method. Furthermore, it

became obvious in the process of the development that there remain many

theoretical problems to be investigated. Typically, what are the condi

tions for the existence of a unique solution of the equation f(x) = y

where f maps R into itself and f is continuous but not differentiable?

What actually happens when a "solution curve" hits the boundaries of
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regions which are defined by the piecewise linear mapping? These ques

tions are investigated in detail in this paper. The conclusion provides

a theoretical basis for the piecewise-linear analysis of nonlinear net

works, and furthermore, will lead to better algorithms in the numerical

computation procedure.

In order to make this paper reasonably self-contained, we include in

[3 4]
our presentation a quick review of the method of mixed analysis ' in

nonlinear networks and a brief discussion of the Katzenelson's method of

solution. The principal results of the paper are in Sections 3 and 4,

where the problem of existence and uniqueness of solution in piecewise-

linear mapping is treated and a detailed study of the problem of boundary

crossing is given. We found that the sign of the network determinant in

each linear region is of crucial significance in the piecewise-linear

analysis.

2. Network equations and modeling

In dealing with general nonlinear networks we must include voltage-

controlled resistors, current-controlled resistors, and coupled nonlinear

elements. Thus it is most convenient to use the method of mixed analysis.

In mixed analysis, we partition the network into two subnetworks such that

we depend on the loop analysis for one and the cut-set analysis for the

other. Let cJv denote the complete network and its graph; let ;J\f denote
CI

the subnetwork and its graph for which the cut-set analysis is used; and

let lAL denote the subnetwork and its graph for which the loop analysis

is used. The branch voltage vector v can be partitioned into v and v, ,
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and similarly the branch current i can be partitioned into i and i. to

designate the voltages and currents pertaining to the subnetworks. The

element characteristics are specified in the hybrid form by

i
-a

= h

V
~a

S> ib

(1)

It Is seen that electric couplings among elements in the subnetwork ;^A)
a

and the subnetworkv^AI, are allowed in this representation. As far as
b

the two subgraphs are concerned, ^\\ is obtained from {J\\ by opening all

branches which belong too^L. Similaraly, <J\|, is obtained from oM by

shorting all branches which belong tocJ\( . For simplicity in derivation,

we assume that all current sources belong tOv_AJ and all voltage sources
3.

belong to cJv. .

Let us further partition the elements in <J\\ an<* v^AL into tree

branches and links of the two subgraphs. If the subgraphs are not con

nected graphs, then tree branches are actually branches which belong to

a forest. For simplicity we will use the terms tree and cotree to signify

the two-way partition; and we use subcripts t(tree) and £(loop) in the

voltage and current vectors to designate those which belong to the tree

and those which belong to the co-tree, respectively. Thus, the following

variables are introduced.

With this assumption, the resulting network equation is of the form
f(x) = y where x represents the network variables to be defined and y

represents the input. Without this assumption, the equation is of the
form f(x, u) = y, where u represents additional, inputs.
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V =

\l~'

v~bi

Tat

u

1 =

ia*

•hi

l
-at

>J

(2)

It is also obvious from the way that the two subgraphs are introduced

that the collection of tree branches of ^A( andcAL forms the tree of ^\\

and the collection of links of ^\\ and ^A) forms the co-tree of '^N. Let

-^and Jl designate the set of all tree branches and links, respectively,

of v_AI; let 'V and ii designate the set of all tree branches and links,
a a

of c_A(a» respectively; and let i and St., designate the set of all tree

branches and links, of ^\l , respectively. Then it follows that

0 = L U c^9 cL = rX UoL,. Furthermore, links in §£ form funda

mental loops in oM with only tree branches in ^ • Because of the last

fact, the fundamental loop matrix B of cAfis of the following special

form:

B = [1 F]
aa

F F
~ab ~bb_

(3)

Thus, Kirchhoff voltage and current laws lead to the following equations:

KVL:

v „ + F v = 0
•a£ ~aa ~at

v.. + F v . + F,, v, fc = e,
~b£ ~ab -at ~bb -bt ~b

-•>-

(4)

(5)



KCL:

-FT i - FTL iL + i
-aa ~a£ ~ab ~bfc -at

-fJ, L - L = 0
bb -be, ~bt

(6)

(7)

where e, and j represent, respectively, the fundamental loop voltage
.N.D ~a

source in ^Al. , and the fundamental cut-set current sources in .A) . Let
d a

us denote the fundamental loop matrices of ^\) ando\L by B and B, ,
~b!

respectively, and the fundamental cut-set matrices of v^Jy) and oM, by Q
a d ~a

and Q,, respectively. Then it is clear that

B = [1 F J
-a -aa

Q = [- F1 1]
-a -aa

h - l * ?bb]

9b=[-?bbi]

Note that the matrix F . in (3) contribute to the topological coupling

between (Jv) andcJvL.- With the above notation, Eqs. (5) and (6) can be
Gt D

written as

9a °

L9 ?bJ

1
-a

^b
Lf
ab

-F
.T 1

ab

0 J

Yat

•hi
Le,

We shall use the tree-branch voltages v of ^Jyj and the Link currents
-at

i, « of ^yvl, as the set of independent network variables. From Eqs. (4)

and (7), we express all the branch variables
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lat
ones

IbZ

as:

w —

V~al
V
-a

=

hi

9l ?at

0 B,
^b£

Next, the element characteristics in Eq. (1) are combined with the

Kirchhoff formulas in (12) and (13) to yield the basic set of network

equations:

9a 0 "

4
r T
Q•^a

0 ?b- 1 .0

0

T

?b

at

•b£

0 -F
ab

LF - 0 J
-ab

Let x denote the set of independent network variables:

A
x =

and y denotes the set of inputs

rV -.

e
The resulting network equations in (14) can be written as
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r. n

^a

*b
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(14)

(15)
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f(x) = y

where x and y are assumed to have a dimension n,

f(x) = C h(C x) + D x

where

c4
% ?

?b

characterizes the subgraphs <_^| and i_AI. , and
a b

A
D =

T 1

ab
0 -F

F k °-ab

specifies the topological relation between <_A( and (_Af

The Jacobian matrix of the mapping is then

3f

J(x) = -r^ = C H(x) C/ + D

where

A 9h

(17)

(18)

(19)

(20)

(21)

(22)

is the incremental hybrix matrix representing the branch characteristics.
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Let p denote the total number of branches inoAl, then H is of order p

and p ^ n.

In the piecewise linear analysis, the Jacobian matrix J is a con

stant matrix in each region of the n-dimensional x-space. Eq. (17)

becomes

i

J(k)x + w(k) =y , k=l,2,---r (23)

(k) (k)
where J is the constant Jacobian matrix and w is a constant vector

defined in a given region k, and r denotes the total number of regions in

(k) (k)
the x-space. Both J and w are obtained from the piecewise-linear

approximation of the function f(») in the n-dimension x-space.

The general multi-dimensional piecewise-linear approximation is far

from a trivial problem and will not be treated in this paper. Fortunately,

all practical devices encountered in circuits have nonlinear characteris

tics of a special "separable" form, that is, each dependent variable is

represented by the sum of nonlinear functions of single variables. For

example, the Ebers-Moll model of a transistor is given by

Vj/v v2/vT
11 = all^e' ~1^ + a12^e "1^

VVT V2/VT
*2 = a21(e ~l) + a22(e ~l)

(24)

The piecewise-linear approximation for this model is reduced to the

approximation of a scalar function, in this case, the diode characteristics
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v/vT
(e -1); and the familiar "line-segment" method is used. Thus, the

piecewise-linear approximation is needed only to be undertaken for the

branch characteristics rather than for the network variable x in Eq. (17).

In the p-dimensional branch-variable space, the boundaries of the piece

wise-linear regions are defined by p equations:

v
-a

lb
= g± i = 1, 2, ••• (25)

where g is a p-dimensional constant vector which is picked by the

circuit analysists in obtaining the piecewise-linear approximation accord

ing to nonlinear characteristics of the elements. In terms of the network

variable x, we have from Eq. (13)

CT x=g± i=1, 2, ... (26)

This equation which specifies the boundaries in the x-space will be used

in Section 4 where we study in detail the boundary crossing problem.

3. Existence and Uniqueness of Solution

In this section we shall confine ourselves to the problem of exis

tence and uniqueness of solution of Eq. (17), f(x) = y, where f is a

continuous piecewise-linear function. A piecewise-linear function is

defined by a finite number of hyperplanes which divide the whole space

into a finite number of convex regions surrounded by boundary hyperplanes,

(k)
and by a set of constant Jacobian matrices J , k = 1, 2, ... r, each of
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which describes the linear behavior in each region as in Eq. (23). Only

regions containing non-empty open sets need be considered, for any region

of dimension less than n is contained in a boundary hyperplane. Through

out this section, the constant vectors w , ..., w in (23) do not

appear explicitly, and hence nothing is mentioned about them. Continuous,

piecewise-linear functions are not <l Iffcrcnt iable on the. Imiiixlar los of

regions; thus usual analytical techniques can not be applied Lo study the

behavior of functions in the whole space. Let R , ..., R b<; the regions,

and let J , ..., J be the constant Jacobian matrices of regions

R,, ... R , respectively. If some of the Jacobian matrices are singular,

then the uniqueness of solution does not follow because each region

contains a non-empty open set. Therefore, we assume at the outset

fkldet JK J $ 0 for k = 1, 2, -.., r (27)

throughout this section.

The principal purpose of this section is to derive useful theorems

which give conditions for the existence of a unique solution of continuous

piecewise-linear mappings. The results will be used in Section 4 to pre

sent the solution method. However, first we need to give some necessary

theoretical backgrounds. Especially, we will discuss thoroughly the

Lipschitz condition pertaining to continuous piecewise-linear mappings

and some results on global homeomorphism.

Lipschitz conditions

It is easy to show that f satisfies a Lipschitz condition. Let
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x and x be two distinct points in the x-space. The line-segment

joining these two points, denoted by L , is paramctically represented by:

L = {x :x=x(A) - (1 - X) x(1) + Ax(2), 0 <A< 1} , (28)
x

L is split up into a finite number of portions L = {x : x = x(X),

X. . <X<X.} (i=l, ...,m), where Xrt = 0 and X =1, and each
l—i — — i u m

portion L, belongs to a region R as shown in Fig. 1. Then, it follows

from Eq. (23) and the definition of L.:

<2K e/..(D mf(xU)) - f(xti;) - £ {f(x( A )) - f(x( A ))}
i-1

S^-w^]^-^ (1)) (29)

Let K.. be the maximum of the matrix norms of J , ..., J , then we

obtain

Of(x(2)) -f(x(1))» <Kl »x(2) -x(1)il (30)

which is a Lipschitz condition of f. We will see below that if Eq. (17)

has a unique solution for all y £ R , then the uniquely determined inverse

f also satisfies a Lipschitz condition. For this, we first present the

following lemma.

Lemma 1

Let f be a continuous piecewise-linear mapping of R into itself.

If Eq. (17) has a unique solution for all y £ Rn, then the inverse image
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of any straight line has the following property: If two distinct points

of the inverse image belong to one region, then the intersection of the

region with the straight line joining the two points is a portion of the

inverse image; and furthermore, no other points of the inverse image

belong to the region.

Proof: Let

L = {y :y= y(A) = (1-A) y(1) + Xy(2), -- <A<-} (31)
y „ ~

be a straight line, and assume that x=f (y ) and x = f~ (y^ ')

are the two distinct points in a region, say R... Then, any point of the

intersection of R. and the straight line joining x ans x may be

represented by x = (1-A) x + Xx , or equivalently x - x = X(x

- x ). This is shown in Fig. 2. Then it is seen that

£<*>- f(*(1)> -J(1) (x-x(1>)= AJ(1V2>-x(,))

= A if(x(2)) - f(x(1))}

Therefore, the following relation is immediate

f(x) = (1-A) f(x(1)) + Af (x(2)) (32)

from which f(x) e L and hence x is in the inverse image of L .
Y. Y.

(3)To show the second half of the lemma, let x be the inverse image

of a point y = (1-u) y^ ^+ uy^ ' e L ,which lies in R and is not on

-13-



the straight line joining x^ ' and x^ . It is clear that the two vectors

x - x and x - x are linearly independent. Now it is readily

seen that

jW^-x'1')^^) -f(;(1))

.-0> .?<D = ,(?<2> -?(1))

This implies that the simultaneous linear equations

' j(l)8 .,«> .yO) (33)

has two linearly independent solutions x - x and (x - x )/u,

which is impossible due to the non-singularity of J . This completes

the proof of Lemma 1.

Assuming that Eq. (17) has a unique solution for all y e R , the

above lemma implies the following: There exist real numbers 0 = An < A_ <

... < A < 1 such that the inverse image of the portion of L for

A <_ A £ A lies in region R for i = l, 2, ..., tas shown in Fig. 3.

Then

*(2) - ,<« - rV2)> - rV")
-I-It (±j

(X(2) -X(1)) (34)

If we denote the maximum of the matrix norms of J , ..., J by

K«, it is seen from (34) that

»?(2)-*(1)» <k2 hm -xah (35)

-u-



This proves the following lemma.

Lemma 2

Let f be a continuous piecewise-linear mapping of R into itself.

If Eq. (17), has a unique solution for all y £ R , then the uniquely

determined inverse mapping f satisfies a Lipschitz condition.

Theorems on homeomorphism

Our primary concern has been to find conditions for Eq. (17) to have

a unique solution for all y £ R . The foregoing discussion has made it

clear that f is continuous if Eq. (17) has a unique solution for all

y £ R . In mathematical terminology, f is said to be a homeomorphism of

R onto itself. Hence, what we are trying to find are conditions for f

to be a homeomorphism.

Holtzmann and Liu gave necessary and sufficient conditions for a

continuous mapping f to be a homeomorphism as a corollary of Palais

theorem ' . Their conditions are: (i) f is a local homeomorphism,

and (ii) lim Hf(x)H = °° as W -*• °°. The local homeomorphism is defined

as follows: For each x there exists a neighborhood of x which is mapped

homeomorphically onto a neighborhood of f(x). Let V be a neighborhood,

then f : V -»• f(V) is required to be one-to-one, and furthermore it is

required that f : f(V) -> V is continuous.

We will give a corollary to the above result which is suitable to

continuous piecewise-linear mappings that form a special subclass of

general continuous mappings. For this purpose we need the following
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lemma.

Lemma 3

Let f be continuous piecewise-linear mapping which is a homeomorphism

of R onto itself. Then, for any unit vector a and for any point x £ R

there exists one and only one non-zero vector 3(ct, x) such that

f(x + vB) = f(x) + vet (36)

for sufficiently small positive v.

Proof: Set y*1' = f(x) and y*2* = f(x) + a. Let L be the straight

line joining two points y^ ' and y , as defined in Eq. (31). Since

f is continuous, f (y (A)) + f (y^ ) = xasA-*-0. Hence, there

exists a positive constant A. -»• 0 such that x and f (y( A_)) both lie

in a same region, say R . Let 3(a, x) be the vector defined by

3(a, x) =-i (r1(y(An)) -x}. (37)

If 0 < v < A., then the point x + v3 lies on the line segment joining x

and f (y(A-.)), which is wholly contained in region R.. . Therefore, the

following relation follows immediately

f(x + v3) -f(x) =vJ(1)3 =-^ J(1) {f"1(y( An) -x}

Y~ {y(An) - f(x)} = v* (38)AQ ~ u

-16-



Thus, the existence of one such 3 has been demonstrated. If more than

one 3 exist, then the one-to-one correspondence of f does not hold;

hence, the uniqueness of 3 follows. This concludes the proof of Lemma 3.

Lemma 4

Let f be a continuous piecewise-linear mapping of R into itself.

A necessary and sufficient condition for f to be homeomorphism of R onto

itself is that for any unit vector a and for any x £ R there exists one

and only one nonzero vector 3(d, x) such that

f(x + vB) = f(x) + v a

for sufficiently small positive v.

Proof: The necessity follows from Lemma 3, and hence we need

to prove sufficiency only. It is interesting to see that condition (ii)

of Holtzman and Liu's statement is automatically satisfied for continuous

piecewise-linear mapping provided that the relation in (27) is valid.

Let us assume the contrary, that is, Hx^ 'II •* °° while Hf(x^ *)W <_B,

where B is a positive constant. Since the number of regions is finite,

there should be at least one region, say R1, which contains infinitely

many distinct points of the sequence {x }. Therefore, without loss of

generality, we can assume that {x } belongs to region R . Then, we

obtain

f(x(k)) - i(x(1>) - J(1) (x(k> - x(1))

The left-hand side of the equation is bounded and the right-hand side
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has to diverge for Hx^ ' -x H-*- °° as k -*• °°. This is the desired

contradiction.

It remains to be shown that the condition of the lemma implies local

* n *
homeomorphism. Let x be an arbitrary chosen point of R , and let y be

* *

the corresponding point, that is, y = f(x ). We are concerned with a

local property of f at a neighborhood of x , and therefore we may throw

away all boundary hyperplanes except those on which x lies. Such a

modified continuous piecewise-linear function will be denoted by f. In

this case, the whole space is. divided into a finite number of cones with

the common vector x , each of which is a region as shown in Fig. 4. Then,

for any point x' £ Rn, the half-line

HL ={x :x=x(A) =A(x' -x*), A >_ 0} (39)
x ~

is wholly contained in a region. Therefore, we obtain the following

statement: For any unit vector a there exists one and only one nonzero

vector 3(a), such that

f(x + vB) = f(x ) + v a (40)

for v _> 0. This statement indicates that the mapping f of R into itself

~-l
is a one-to-one onto mapping. Therefore, f is continuous due to Lemma

2. Hence, f is actually a homeomorphism of R onto itself. Since f

•k

coincides with f in a neighborhood V of x , the mapping f of V onto

f(V) = £(^)> which is a neighborhood of y , is a homeomorphism. This

implies that f is a local homeomorphism. Thus the proof of Lemma 4 has

been completed.
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Sufficient conditions. Holtzmann and Liu's corollary as well as Lemma

4 are highly useful to discuss theoretically the properties of f. However,

they are not of much practical value to judge whether or not a given

function f is a homeomorphism. In this respect it is important to have

various sufficient conditions under which homeomorphism of f is guaranteed.

Two theorems will be given, they represent extensions of theorems for

continuously differentiable mappings .

Theorem 1.

Let f be a continuous piecewise-linear mapping of R into Ltself,

and let J, J denote the matrix composed of the first k-rows and the first

k-columns of the constant Jacobian matrix J J of region R.. The mapping

is a homeomorphism of R onto itself if, for each k = 1, 2, ..., n the

determinants

det J.(1), •••, det J^r)
~k ' ' ~k

do not vanish and have the same sign.

Remark.

If the constant Jacobian matrices J J ^ all belong to

class P introduced by Fiedler and Ptak* " \ then the sign condition in

the above theorem is automatically satisfied. Since class P matrices

are generalizations of positive-definite matrices, positive-definiteness

of Jacob!ans also implies the sign condition. It is clear that matrices

which satisfy the sign condition are not restricted to class P matrices .

»

Proof: It is easy to see that the theorem is valid for n = 1, be

cause in this case y is a continuous piecewise-linear function of x1,

-19-



which has positive slopes or negative slopes everywhere, as shown in Fig.

5. Therefore, the theorem can be proven by induction.

Let us assume that the statement of the theorem is valid for

n = k - 1 and the case of n = k is considered. In this case,

yi = ?(xl' *"' xk-l' Xk} (i=1> •"» k> (41)

or in the form of vector function, we have

y = f(x) (42)
•- »

For the purpose of notational simplicity we introduce the following conventions

x_k= [xr ••., x^]7

y_k- tyr ••-, y^f (43)

U-Ifi- -•fk-ilT
and

y.k - U <x-k- \) (**)

k-1
If the value of x, is fixed, the mapping f of R into itself is still a

continuous piecewise-linear mapping. Furthermore it is clear that the

mapping f , satisfies the condition of the theorem for n = k - 1, and

k-1
hence f , is a homeomorphism of R onto itself. From Lemma 2 the

inverse mapping f , defined by

satisfies a Lipschitz condition. As seen from the proof of Lemma 2, the

Lipschitz constant solely depends on J, ,, .... J, , , and hence the
-k-1 -.k-1
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constant can be chosen independently of the value of x, .

Let x = {x , •••, x^ ,x^ ] be an arbitrary point and let

y ° {yn > "•» vi,_i» yk 1 be tne corresponding point. That is,

y = f(x ). We define a half-line starting with x^0' as follows:

HL. -(x :x=x(Axk) -[x<°>, .... *£>, x£0) +Axk]T, AxR >0}
(46)

Then it is clear that

Hx(0) -x(AxR)ll =AxR (47)

Since f satisfies a Lipschitz condition with Lipschitz constant k y it

follows that

=h^ - *+<$>. 40) +̂ k>° ±h(0) -!wv>e
1 K! *\ (48)

Since f_k is a homeomorphism, there eixsts one and only one point

x'(Axk) =[x'(Axk), ..., x'^Ax^, x£0) +Axk]T (49)

such that

X.T =W^W' x£0) +Axk) (50)

for any Axfc. From (48), (50) and from the fact that f"1 is Lipschitzian,

it is seen that
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lx(Axk) - x'(Axk)H ="x_k(Axk) - x;k(Axk)

1 K1K2 AV (51)

This together with (47) implies

(0)ix ' - x'(Axk)ll < (1 + KjK ) AxR (52)

Then, there exists a positive constant 6 > 0 such that the points x
(0)

and

x'(6) belong to the same region, say R., regardless of whether or not the

point x is an inner point of a region as shown in Fig. 6. It is to be

noted that f is linear in region R1 . Therefore, for 0 _< Ax, < 6

«,^>-«(°)+^fr,(«)-x(0)), (53)

which is equivalent of saying that the line-segment joining x and x*(6)

is the set {x :x = x'(Axk), 0 <_ Axfc <_ 6}. In region R , the behavior of

the function f is described by the Jacobian matrix

(1)

J(1)
JJc-l

(1)

Therefore, for 0 < Ax. < 6
— k —

(1)

(1)
(54)
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L

.1

0

Ay,

^k-i ~
x;(Axk) - x<°>

(i) (i)
xk-i<Axk> " xk-i

Ax,

The application of Cramer's rule yields

AyR det J(1)

Ax (1)
k det J, ,

~k-l

det -'il)
~k-l

(55)

(56)

which has the same sign throughout the space according to the assumptions

made in the theorem.

The arguments above make the following statement legitimate: For

any point x there exists one and only one unit vector a (x) such that a

sufficiently small change along this direction vector makes no change in

the values of y,, ..., y. , but causes an increase of the value of x, .
1 k-1 k

Similarly, there exists one and only one unit vector u (x) such that a

sufficiently small change along this direction vector makes no change in

the values of v., ..., y. , but causes a decrease of the value of x. .
"'I 'k-l k

Let y = ly- , ..., y, -» y,] be an arbitrarily given point, then

the homeomorphism of f , implies that there exists one and only one point

x(1) ={Xl(1), ..., x/1}, 0]T for which
1 k-1

i-k -k<x-k}> 0)= f (57)
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Starting with the initial point x and following the way described in

the preceding paragraphs, we can either increase or decrease the value

of x, while preserving the values y1 = y , ..., y, , = Y^i constant.

As described in the preceding paragraphs, the direction vector along

which the point tranverses can be determined at any point. The linear

movement along the direction vector can thus be described as long as

the point lies in the same region. At the critical point where a

boundary is crossed, a new direction vector must be determined. In

this manner, a continuous piecewise-linear curve can be traced, and the

curve so obtained is called a "trajectory", which is parameterically

represented by the value of x,. It is evident that the trajectory does

not intersect with itself. Furthermore, following the line of reasoning

which was used to prove Lemma 1, we conclude that the trajectory is a

continuous curve consisting of a finite number of line-segments and half-

lines for -°° < x, < °°, each of which lies in a region. The derivative
K.

dy /dx in each region is given by one of the following ratios:
K. IC

det J(1) det J(1)
(1) * ' (1)det J.v n; det j; ;

~k-l -k-1

(58)

which are all positive or negative. Therefore, the function yk of variable

x is strictly monotone increasing or strictly monotone decreasing; and
k

furthermore the range of yk covers the whole real line -<» < yk <°°. This

implies that there exists one and only one value xk = xk which gives
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*

yk - yk- If we denote the point of the trajectory which corresponds to
& it

the parameter value x = x by x , it Is clear that
K. K. ~

y_ = f(x ) (59)

*

and the point x is the only point which satisfies Eq. (59). These imply

that f is a one-to-one onto mapping, thus the proof of Theorem 1 is

completed.

By applying interchange of rows and of columns the following theorem

may be easily derived from the first theorem

Theorem 2

The mapping f is a homeomorphism of R onto itself if there exist

two permutations (i , i2> ..., i ) and (j , j2, ..., j ) of (1, 2, ..., n)

such that the determinants

(60)

do not vanish and have the same sign for each k= 1, 2, •••, n, where the

(a, $) - element of the square matrix J \ . . I of order k is the
\ 31' '", Jk '

(A),
(i . io) - element of the matrix J

This theorem further extends the applicability of Theorem 1, since

non-principal cofactors may be used to ascertain the global homeomorphism

of continuous piecewise linear mappings. It should be pointed out that
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the theorem only gives sufficient conditions. The following example

illustrates that the conditions are not necessary.

Example 1

Consider the piecewise linear mapping described by the following two

equations:

In Ry

In R2:

Yi = T xi + x2 1

y2 =

yl = " 2 Xl

1

2X2

y2 " " Xl " 2 X2

(1) _

- TT 0

(2) .

-1

The two regions R1 and R„ are shown in Fig. 7. Note that the Jacobian

determinants have the same sign but the matrices do not satisfy Theorem

2 since there exist no corresponding cofactors which are both nonzero

and have the same sign. Yet, the mapping is a global homeomorphism of

2
R onto itself.

4. Method of solution

Algorithm

We first describe briefly the Katzenelson algorithm for obtaining

the solution of Eq. (17):
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f(x) = y (61)

where f is a continuous piecewise linear mapping of Rn onto itself. To

begin, we choose arbitrarily a point x^ ' in the x-space and denote the

region where x lies R-. In R- the equations in (61) are linear and

are represented by

J(1) 2+w(1) - v. (62)

Substituting x into the above equation, we obtain

J(1> x<X> +„(1) =y(1> (63)

where y is the corresponding point in the y-space, i.e. f(x )=y .

Let the actual input to the network be y , and denote the line segment

joining y and y by L . The problem is then to determine the

inverse image of the line segment L . The inverse image of y is the

actual solution x , and the inverse image of L is called the solution

curve in the x-space. Combining (62) and (63) and letting y = y , we

obtain

x=x<» +jW"1 (y(£) -y<D) (64)

If it happens that the x obtained above is in R-, it is then the actual

solution; and the solution curve is the line segment Iw-* connecting
x

x*- ^ and x and it is in R... Usually it is not, and we proceed with the

(2)
following iteration. The next starting point, x , is the intersection
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of the line segment L /-,\ and the hyperplane which represents the boundary
x

of R . Thus

x(2) .X(D +x(l) jd)"1 (y(0 _y<l>) (65)

where X is a parameter and

0 < X(1) <1 (66)

(2)
It is chosen to force x to lie on the boundary of L. Lot y be the

(2)
corresponding point in the y-space. Clearly y t: L and the first

portion of the inverse image of L is thus determined. Next, we move the

input from y along L toward y(f), the inverse image will move out of

R in the x-space and enter a new region R_. This fact has been demon

strated in the previous section.

(2)
In the next iteration, we start with x in R«. We repeat what

(2) (3)
was done before but use J to compute the next point x . Thus

(3) (2) . ,(2) T(2) , (f) (2),
xx/=x+XJ (y -y )

(2) (3)
As in the previous case X is chosen so that x lies on the common

boundary of R« and the succeeding region R~, and

0 < X(?) < 1 (68)

In Fig. 8, the first two iterations are illustrated. The process con

tinues until the actual solution x is reached.

Boundary crossing

-28-
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The purpose of this section is to present a detailed analysis of

the problem of boundary crossing in the iteration without recourse to

the theory of Section 3.

In Section 2 we discussed briefly the problem of piecewise linear

approximation. Because of the nature of the circuit elements usually

encountered, it is feasible to make the piecewise linear approximation

directly to the network branch characteristics in terms of the branch

v

Let H and II be the. constant branch hybrid matrices cor

ii,

responding to regions R- and R„, respectively. Recall that the common

boundary is characterized by the branch variable, say v, , the k-th

equation of (25). The branch hybrid matrices for the two regions are

related by

H<2> = H« + 6H = H(1) +

0 0 ... 6_, ... 0
Ik

0 0 ... 6 ... 0

0 0 ... 6. ... 0
pk

(69)

where H and H are of order p. Note that 6H which represents the

difference between H and H is nonzero only in the k-th column since

the boundary is specified by v, = constant. In the n-dimensional x-space,

the corresponding common boundary is given by (26)

c, x = constant
~k ~

-29-
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where c, is the k-th column of the matrix C which specifies the two sub-

graphs. The Jacobian matrices J and .

related according to Eqs. (69) and (19):

graphs. The Jacobian matrices J and J in the two regions are

TJ^2) = C (H^ + 6H) CT + D =J^ + C 6H C

where

A p
(72)

Thus the difference of the two Jacobian matrices is a dyad, which is of

rank one. The above gives a clear relation among the n-dimensional

network variable x, the p-dimensional branch characteristics and the

network topology.

In the x-space, the common boundary between R- and R„ can be repre

sented in terms of the normal vector of the hyperplane, n

(x , n) = constant (73)

or (Ax , n) = 0 (74)

Comparing (73) and (70), we note that the normal vector n can be identi

fied with the vector c, which describes the graph. Eq. (74) implies the

following:

J(2) Ax = J(1) Ax + anT Ax = J(1) Ax
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Hence, the piecewise-linear representations of f(x), J x + w and

(2) (2)
J x + w , coincide with each other on the boundary hyperplane in (73)

if w and w are appropriately chosen. This guarantees the continuity

of the piecewise-linear function f(x).

Let us now consider the solution curve in R and R« as shown in

Fig. 8. The normal vector n is shown. It is seen that the scalar product

(x(2) - x(1), n) > 0 (75)

We wish to derive the conditions on J and J , which insures

(*(3) -x(2), n) > 0 (76)

From Eq.' (65), we have

,(2) _;(l) .jd)"1 x(l) (?(f) _x(i)) =̂ i)"1 x(1) i? (?7)

Substituting (77) into (75), we obtain

(J(1) X(1) Ay, n) > 0
or

(1) (1)~1T(XV J Ay, Ju; n) > 0

(78)

Note that the first term in the scalar product of (78) is a direction

vector in the y-space, the second term contains the information of the

network in R. and the boundary. In order to determine the nature of the

•»l~



solution curve beyond R-, we need to compute the corresponding vector

(2)-1T
J n. Using (71) and identifying c, with n, we obtain

where

n = (J(1) + anT) n = (j(1) + n aT) 1n

=J<1>"1T n-j'1)"" »(aTJ(1)_1T n+l)"1 aT J(1>"1T n
-IT

= K J(1) n (79)

-IT
T (1} -1

K = (l + o JU; n) (80)

-IT

is a scaler. Thus the relation between the two vectors J ~

(2)-1T
J n is specified by the scalar K in Eq. (80). Using the familiar

determinant identity:

det (1 + P Q) = det (1 + Q P) (81)

it is not difficult to show that

det J(2^ =Kdet J(1) (82)

Therefore, we obtain the following important relation:

-IT det J(1> -it
JK } n = t^- JU; n (83)

~ det Ju; "*
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With the above relation, it is easily shown that if the determinants of

Jacobian matrices J and J have the same sign, Eq. (76) follows.

Thus the sign condition on the determinants alone ensures that the solu

tion curve will enter a new region when a common boundary is reached.

In view of the above study, and Theorem 2 and Example 1 of Section

3, it might be conjectured that the sign condition on the determinant

(k)
J alone is necessary and sufficient for global homeomorphism of a

continuous piecewise linear mappings. The following example indicates

that this is not the case.

Example 2

In Fig. 9, we indicate the six regions of a 2-dimensional x-space.

The continuous piecewise linear mapping, and its linear Jacobian matrices

are given as follows:

In (1) _

In R2: (2)
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InR3:

In R, :
4

In R_:
_>

1 " ~*1 " /T 2

-x.

yx - -xx +-^ x

-x.

y^ =
G

y2 = - vT Xj^

-1

(3)

_2

/7

= j(2> +

_2

_>/Y l.
2 ' " 2

(4)

(5)
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J<3> +

_4

/3

0 -A

-3 0

j<*> +

r t
_2
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[0, -1]
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In R,:
b

yi =

y-> =

x1 +
vT

(6)

i 4
^

J<5> +

_1

I 2 , 2J

In each case, we indicate the relation of Lhe Jacobian matrices of the

neighboring regions in terms of the normal vectors. To complete the

picture, we need to check the relations between J and J . We note

that

(1)

_2

T(6)

_4

0

[0, 1]

In this example det J = 1, for i = 1, 2, .... 6.

(1)Let us next examine the mappings in some detail. Let x

^3 , (4) _ r t A1 „(5)
- [1, 0], x (2) =11, 4 L *(3) =[" 2»̂ f 3» ;v"" =[_1»0]>*
r 1 A , , (6)

= I- 2 » 2 3 ~

easy to see that

1 /3[ y , « 3 as shown in the figure. It is
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f(x(1)) =x(1) , f(x(2)) =x(3) and f(R^ =K± \J R2

f(x(2)) =x(3) , f(x(3)) =x(5) and f(R0) =R. |) R.

f(x<3)) =x(5) ,f(x(4)) =x(1) and 1^) =R5O \

f(x(4>) -x(1) ,£(x(5)) -x<3) and fjR,) -R.W R2

f(x(5)) =x(3) ,f(x(6)) =x(5) and fCR5> =R3 U\

f(x(6)) =x(5) ,f(?(1)) =x(1) and f(R6) =R5V Rfi

Therefore, for y ^ 0, there exists two distinct solutions; for y = 0,

there is a unique solution x = 0. Thus, even though the determinants of

the Jacobian matrices in all six regions have the same sign, the mapping

is not homeomorphic.

Corner problem

Up to now we have not considered the possibility that the solution

curve might hit a corner, a common boundary for three or more regions.

In the following we will study this possibility and indicate what will be

done in such a case.

Let us assume that the solution curve hits a corner point x

which is on mutually distinct s-boundary hyperplanes

Hi = {x :<x -x°°» n(1)) =0} (i=l,2,".,s) (84)
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where n , ..., n are notmal unit vectors. The corner problem under

consideration is to find a region, in which the extension of the solution

Ck.)curve lies. Since the problem is a local one at x , we may forget

about all boundaries other than H„, .... H .
1 s

The solution curve is a portion of the inverse image of the line

segment L joining y and y with direction vector

a= v-/D (85)

Let L be any straight-line with direction vector a, then the Inverse

Image of L has two half-lines, one of which is in parallel with x '

- x and lies in the same region as x , and the other one is in

in parallel with x - x ' and lies in the same region as x , as

shown in Fig. 10. Therefore, by constructing a straight-line L, whose

inverse image crosses one and only one boundary at a time and by tracing

the inverse image, we can determine the outgoing vector x - x .

We are going to use a perturbation method to construct a desirable

line L. The underlying idea and the process of construction can be seen

from the following description:

(i) First choose an arbitrary inner point, z , of a region R., ,

(k-1)
in which x lies. At this step, the straight-line L is the one

passing through f(Z ) and having a direction vector a. We trace the

inverse image of L, in Region R_, starting with Z . A small pertur

bation applied to L can be found so that the inverse image hits one and

only one boundary. Let Z^ '(Z ) and L(E ) be the modified Z^1' and L,

respectively. Assume that the inverse image of L(Z.) hits only one
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(2)boundary, say H1, at Z (E ), and enters into the neighbouring region,

say R2»

(ii) We trace the inverse image of L(E ), in region R„, starting

(2)
with Z (Z_). If the inverse image never hits any boundaries, then the

region R« is the one to be found, in which the extension of the solution

curve lies. If otherwise, a small perturbation applied to L(E ) can be

found so that the inverse image hits one and only one boundary. Let

Z(2'(E ,E2) and L(Z ,Z2> be the modified Z^(E )and L(E ), respectively,
Assume the Inverse image of L(Z1, ?]„) hits one and only one boundary, say

(3)H«, at Z (E , £«)> and enters into a neighbouring region, say R~. It

is important to notice that the second modification is small enough so

that the inverse image of L(E-, E„) crosses H- as in the case of L(Z1).

Thus , the inverse image of L(Z , E~) crosses H and H~

(JO(iii) In general, we have Z (E-, ..., £» -,) and L(E.. , ..., E„ ),

of which inverse image crosses H., ..., H«. We trace the image, in

region R-, starting with Z(£., ... Z„ .). If the image never hits any

boundaries, then the region Rp is the one to be found , and the process

terminates here. If otherwise, a small perturbation can be found so that

the inverse image of L(Z-, ..., Z„ ., E«) hits one and only one boundary

and crosses H., ..., H„ as the inverse image of L(E., ..., Zp_.) does.

This process cannot continue indefinitely because there are only a finite

number of regions. Therefore, after a finite number of steps, we can find

a region where the extension of the solution curve lies. The computational

details of the process will not be treated here.
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5. Conclusion

In this paper we presented the theory of piecewise linear analysis

of nonlinear resistive networks. In order to allow the most general

class of network elements, the mixed analysis is used in the network

formulation. The resulting network equation is of the form f(x) = y

where x represents the chosen network variables, y is the set of input, and

f is a continuous piecewise linear function which maps R into itself.

The main problem of interest is to determine the conditions on f for

which the equation has a unique solution for all y. Detailed studies are

given with respect to Lipschitz conditions, Holtzmann and Liu*s Lemma on

homeomorphism and new necessary and sufficient conditions pertinent to

the piecewise linear mapping. Two useful sufficient conditions in terms

of the constant Jacobian matrices in all regions are derived.

Special attention is given to the problem of boundary crossing in

Obtaining the solution curve. It is shown that the sign of the Jacobian

determinants of all the regions is of crucial importance in tracing the

solution curve. Finally, a brief discussion is given on the corner

problem where more than two regions intersect.

It seems that there still exist two important unsolved problems in

piecewise linear network analysis. The first is the approximation in the

multi-dimensinal space. In this connection, the approach used by Iri

based on the Barycentric coordinates seems to be promising . The

second is the problem of developing an efficient computational method

m
for equations with multiple solutions .
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x(2)=x(l)

f(x(XJ)

rs/ Cw» rs/ r^

Fig. 1. Illustration of the piecewise-linear mapping of a straight line

joining x and x



Fig. 2. Line segment in R., as represented by x= (1 - X) x^1' + Xx^



*v/

Fig. 3. Illustration of the inverse mapping of a straight line joining

y(1) and y(2)



R-

Fig. 4. Study of local homeomorphism



Fig. 5. One-dimensional monotonically-increasing piecewise-linear

mapping



Fig. 6. Illustration of the proof of Theorem 1



Fig. 7. Example 1
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y

rsj
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fSJ

x-space y-space
fSJ

Fig. 8. Solution curve to illustrate the Katzenelson algorithm
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r>j

Fig. 9. Example 2



/

Fig. 10. Illustration of the corner problem.
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