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ABSTRACT

The point of departure in this paper is the definition of a

language, L, as a fuzzy relation from a set of terms, T = Jx} , to
a universe of discourse, U = jy}. As a fuzzy relation, L is

characterized by its membership function /j.: T x U —* (b,l] , which
associates with each ordered pair (x,y) its grade of membership,

/J.(x,y), in L.

Given a particular x in T, the membership function /j. (x,y)

defines a fuzzy set, M(x), in U whose membership function is

given by /Wx)(y) =/Ji (x»y)» The fuzzy set M(x) is defined to be

the meaning of the term x, with x playing the role of a name for

M(x).

If a term x in T is a concatenation of other terms in T,

that is, x = x. ... x , x.fiT, i = l,...,n, then the meaning of x

can be expressed in terms of the meanings of x. ,...,x through the

use of a lambda-expression or by solving a system of equations in

the membership functions of the x. which are deduced from the syntax

tree of x. The use of this approach is illustrated by examples.



1. Introduction

Few concepts are as basic to human thinking and yet as elusive of

precise definition as the concept of "meaning." Innumerable papers and

books in the fields of philosophy, psychology, and linguistics * have

dealt at length with the question of what is the meaning of "meaning"

without coming up with any definitive answers. In recent years, however,

a number of fairly successful attempts at the formalization of semantics -
1-20

the study of meaning - have been made by theoretical linguists, on

the one side, and workers in the fields of programming languages and com-
21-32

pilers, on the other. These attempts reflect, above all, the acute

need for a better understanding of the semantics of both natural and

artificial languages - a need brought about by the rapidly growing avail

ability of large-scale computers for automated information processing.

One of the basic aspects of the notion of "meaning" which has re

ceived considerable attention in the literature of linguistics but does

not appear to have been dealt with from a quantitative point of view, is

that of the fuzziness of meaning. Thus, a word like "green" is a name for

a class whose boundaries are not sharply defined, that is, a fuzzy class in

which the transition from membership to non-membership is gradual rather

than abrupt. The same is true of phrases such as "beautiful women," "tall

buildings," "large integers," etc. In fact, it may be argued that in the

case of natural languages, most of the words occurring in a sentence are

names of fuzzy rather than non-fuzzy sets, with the sentence as a whole con

stituting a composite name for a fuzzy subset of the universe of discourse.

Authoritative accounts of the development and foundations of semantics

may be found in the books by Black (l], Lyons [2], Quine [3], Linsky (*♦],

Abraham and Kiefer 15], Bar-Hillel [6], Carnap [77, Chomsky lal, Fodor
and Katz [9], Harris [lO], Katz Til] , Ullmann Jl2l , Shaumjan [13], and
others.
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Can the fuzziness of meaning be treated quantitatively, at least in

principle? The purpose of the present paper is to suggest a possible
33-1*2

approach to this problem based on the theory of fuzzy sets.

It should be stressed, however, that our ideas, as described in the se

quel, are rather tentative at this stage of their development and have

no pretense at providing a working framework for a quantitative theory of

the semantics of natural languages. Thus, our intent is merely to point

to the possibility of treating the fuzziness of meaning in a quantitative

way and suggest a basis for what might be called quantitative fuzzy

semantics. Such semantics might be of some relevance to natural languages

and may find perhaps some practical applications in the construction of

fuzzy query languages for information retrieval systems. It may also be of use

in dealing with problems relating to pattern recognition, fuzzy algorithms>

and the description of the behavior of large-scale systems which are too

complex to admit of characterization in precise terms.

2. Preliminary Definitions and Notation

Kernel space

Our initial goal is to formalize the notion of "meaning" by equating

it with a fuzzy subset of a "universe of discourse." To this end, we

shall have to make several preliminary definitions, with our point of de

parture being a collection of objects which will be referred to as the

kernel space.

A kernel space, K = Jwl , with generic elements denoted by w , can

be any prescribed set of objects or constructs. For example:

(a) K = set of stationary objects in a room.

(b) K = set of stationary as well as movable objects in a room.

(c) K s a finite set of lines which can be arbitrarily placed in a

plane.

(d) K = the set of non-negative integers.

(e) K = a set of objects that one has seen, is seeing or can visualize.
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(f) K = a set of smells.

(g) K = a set of objects with which one can interact through the sense

of taction.

Note that we assume that K may include functions of time, e.g., moving

cars, growing plants, running men, etc.

Let A be a fuzzy subset * of K, e.g., in the case of (d), the sub

set of large integers. Such a subset can be characterized by its member

ship function ju« which associates with each element w of K its grade

of membership, /jfl(w), in K. Ue assume that /J^Cw) is a number in the
interval [0,1], with 1 and 0 representing, respectively, full member

ship and non-membership in A. For example, for the subset of large inte

gers, yuA can be defined subjectively by the expression

yuA(w) =(1 +(w-100)"2)"1 for u>100

= 0 for W4100

As an additional illustration, let K be the set of integers from

0 to 100 representing the ages of individuals in a group. Then a fuzzy

subset labeled "middle-aged," may be characterized by a table of its member-

Intuitively, a fuzzy set is a class with unsharp boundaries, that is,a

class in which the transition from membership to non-membership may be gra

dual rather than abrupt. More concretely, a fuzzy set A in a space X ={x} is

a set of ordered pairs {(x,/J«(x))^, where;uft(x) is termed the grade of
membership of x in A. (See[33jfor more detailed discussion.) We shall assume

that iin(x) is a number in the interval [o,l] ; more generally, it can be a
36 kZ

point in a lattice • ' The union of two fuzzy sets A and B is defined by

yu«y q(x) = Max(^jfl(x) ,/Jq(x)). The intersection of A and B is defined by
p«n 0(x) = Min(/jft(x) ,/j0(x)). Containment is defined by AcB«^/j.(x) £ >*b^x^
for all x. Equality is defined by A = B<=f/j«(x) =/i0(x) for all x. Comple
mentation is defined by/jfl/(x) = l-pA(x) for all x. The symbols v and A
stand for Max and Min in infix form. Note that a membership function may be

regarded as a predicate in a multivalued logic in which the truth values

range over [0,ll.
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ship function, e.g.,

w(=aqe) 40 41 42 43 44 45 46 47 46 49 50 51 52 53

/JA(w) 0.3 0.5 0.8 0.9 1 1 1 1 1 0.9 0.8 0.7 0.5 0.3

where only those pairs (w, /JA(ui)) in which /JA(u) is positive are tabula
ted.

Note that pA can be defined in a variety of ways; in particular,
(a) by a formula, (b) by a table, (c) by an algorithm (recursively), and

(d) in terms of other membership functions (as in a dictionary). In many

practical situations /ja has to be estimated from partial information

about it, such as the values which /JA(w) takes over a finite set of

sample points w,,...,ww. When a fuzzy set A is defined incompletely -
and hence only approximately - in this fashion, we shall say that A is

partially defined by exemplification.* The problem of estimating /i~

from the set of pairs J(w, ,/ja(w, )) , ...,(wN, /JA(w».))} is the problem of
abstraction - a problem that plays a central role in pattern recognition.

Uie shall not concern ourselves with this problem in the present paper and

will assume throughout that pA(u) is given or can be computed for all w
in K.

Universe of discourse

As was indicated earlier, our goal is to formalize the concept of

meaning by equating it with a fuzzy subset of a certain collection of ob

jects. In general, this collection has to be richer than K, the kernel

space, because the concepts we may wish to define may involve not only the

elements of K, but also ordered n-tuples of elements of K and, more

generally, collections of fuzzy subsets of K. For example, if K is

the set of non-negative integers, then the relation of approximate equali-
2 2ty, s* , is a fuzzy subset of K (K = space of ordered pairs (u,,w£),

with u, € K and w26 K) rather than K. Similarly, if K is the col
lection of integers from 0 to 100 representing the ages of individuals

*

Definition by exemplification is somewhat similar to the notion of an
ostensive definition in linguistics.
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in a group, then "middle-aged" may be regarded as a label for a fuzzy
2

subset of K, while "much older than" is a fuzzy subset of K .

Informally, the "universe of discourse," is a collection of objects,

U, that is rich enough to make it possible to identify any concept, within

a specified set of concepts, with a fuzzy subset of U.

One way of constructing such a collection is to start with a kernel

space K and generate other collections by forming unions, direct pro

ducts and collections of fuzzy subsets. Thus, let A + B (rather than

AUB) denote the union of A and B ; let A x B denote the direct

product of A and B ; and let !F(A) denote the collection of all fuzzy

(as well as non-fuzzy) subsets of A. Then, with K as a generating

element, we can formally construct expressions such as *

E = K + K2 + ... + Kr (1)

E = K + K2 +T(K)

E = K + K2 + K xT(K)

E = K + K2 +3r(T(K))

E = K + K2 + (<F(K))2

etc.

More generally, E can be any expression which can be generated from K

by a finite application of the operations + , x and 7 , and which con
tains K as a summand.

The set expressed by E will, in general, contain many subsets which

are of no interest. Thus, the universe of discourse will, in general, be

a subset of E. This leads us to the following definition, which summmar-

izes the foregoing discussion.

Note that 9(K), the power set of A, is a subset of T(K). Note also

that K is an element of 9(K) (as well as T(K)), rather than a subset
of 7(K). Hence K +T(K) *T(K).
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Definition 1. Let K be a given collection of objects termed the kernel

space. Let E be a set which contains K and which is generated from

K by a finite application of the operations + (union), x (direct pro

duct), and IF (collection of fuzzy subsets). Then, a universe of discourse.

U(K) or simply U, is a designated (not necessarily proper) subset of E.

Example 2. Let K be the set of integers from 0 to 100 representing
2

the possible ages of a population. Let E = K + K and let U be the sub

set of E in which K is restricted to the range 20-55. Then, such terms

as "young," "middle aged," and "close to middle age" may be regarded as

labels for specified fuzzy subsets of K. (See Fig.l). Similarly, "much

older than" may be regarded as a label for a fuzzy relation, that is, a
2

fuzzy subset of K . As a more specific illustration, consider an element

of K such as 32. This element of K might be assigned the grade of

membership of 0.2 in the fuzzy set labeled "young"; 0.1 in the fuzzy set

labeled "close to middle age"; and 0 in the fuzzy set labeled "middle

aged." Similarly, a pair such as (44,28) might be assigned the grade of

membership 1 in the fuzzy set labeled "much older than," while the pair

(44,38) might be assigned the grade of membership 0.4 in the same fuzzy set.

Example 3. Let K have the same meaning as in Example 2f and assume that

U = K. As in Example 2, we can define such terms as "young," "old,"

"middle-aged," "very young," "very very old," etc. as labels for specified

subsets of U. However, if we were to attempt to define the term "very"

in this fashion, we would fail because "very" is a function from *T(K) to

*F(K), that is, it is an operation which transforms a fuzzy subset of K

into another fuzzy subset of K. (See Fig.2.) Thus, "very" has to be defined

as a collection of ordered pairs of fuzzy subsets of K , with a typical

pair being of the form ("old," "very old"). In other words, "very" may be

equated with a subset of 9"(K) xT(K) but not with a subset of K. This

implies that: (a) U = K is not sufficiently rich to allow the definition

of "very" as a fuzzy subset of the universe of discourse; and (b) that

U = K + T(K) xT(K) (2)

is sufficiently rich for this purpose.
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Close to middle age
/

Middle-aged
/

60 Age

Fig.l. Characterization of "young," "close to middle-age" and

"middle-aged" as fuzzy sets in U.
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55 65

Fig.2. Representation of "very" as a function from T(K) to T(K)
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Comment 4. The above example illustrates an important point, namely,

that the problem of finding an appropriate universe of discourse, U,

given a set of terms which we wish to define as fuzzy subsets of U, may

in general be quite non-trivial. Ue shall encounter further instances

of this problem in Sections 3 and 4.

The concept of the universe of discourse provides us with a basis

for formalizing certain aspects of the notion of meaning. A way in which

this can be done is sketched in the following section.

3. Meaning

Consider two spaces: (a) A universe of discourse, U, and (b) a set

of terms, T, which play the roles of names of fuzzy subsets of U. Let

the generic elements of T and U be denoted by x and y, respectively.

Our definition of the meaning of x may be stated as follows.

Definition 5. Let x be a term in T. Then the meaning of x, denoted

by M(x), is a fuzzy * subset of U characterized by a membership func
tion /j(y|x) which is conditioned on x. p(y|x) may be specified in

various ways, e.g., by a table or by a formula or by an algorithm or by

exemplification or in terms of other membership functions.

Example 6. Let U be the universe of objects which we can see. Let T

be the set of terms white, gray, green, blue, yellow, red, black . Then

each of these terms, e.g., red.may be regarded as a name for a fuzzy sub

set of elements of U which are red in color. Thus, the meaning of red.

M(red), is a specified fuzzy subset of U.

Example 7. Let K be the set of Integers from 0 to 100 representing

the ages of individuals in a population, and let the universe of discourse

be defined by U = K. Furthermore, let the set of terms be T ={young, old.
middle-aged, not old, not young, not middle-aged, young or old, not young

It is understood, of course, that, as a special case, M(x) may be non-
fuzzy.
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and not old i.

Consider the term x = young. The meaning of x is a fuzzy subset

of U denoted by M(young). Suppose that the membership function of

M(young) is subjectively specified to be

^i(vl young) = 1 for y<25

=(1 +(^t^)2)"1 for y>25

and similarly

/Kylold) = 0 for y < 50

=(1 +(^r2)"1 for y>50
and

aj(vI middle aged) = 0 for 0 < y < 35

=(1 +(^j^)V1 for 35iy<45

=(1 +(^^V1 for y>45

The meaning of the remaining elements of T can be defined in terms

of young, old, and middle-aged by interpreting "not" as the operation of

complementation,(or, equivalently, negation); "and" as the operation of

intersection; and "or" as the operation of union in U. More specifically,

jj(vlnot old) = 1 - jj(vlold)

aj(vI not young) = 1 - u(y| young)

/j(y|not middle-aged) = 1 - jj(v! middle-aged)

jj(y| young or old) = u(vl young) v ,u(vl old)

fiCvl not young and not old) = (1 - ^j(v1 young)) A (1 - ^j(y|old))
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where the symbols a and v stand for Min and Max, respectively. Thus,

for y = 57, for example,

ju(57|old) = 0.66

/j(571not old) = 1 - 0.66 = 0.34

u(571young) = 0.024

ju(571 young or old) = 0.66 V 0.024 = 0.66

ju(571not young and not old) = (1 - 0.024) A (1 - 0.66)

= .976 A 0.34

= 0.34

Mote that the operations "not," "and," "or" are not elements of T

and hence need not be defined in the same way as "young," "old," etc.

However, if these operations were listed as elements of T, then we would

need the space T(K) xT(K) to define "not" (which is a function from

^(K) to T(K)) as a subset of T(K) xT(K); and we would need the space

<F(K) xf(h) xT(K) to define "or" and "and" (which are functions from

T(K) xT(K) to T(K)) as subsets of T(K) xT(K) xT(K).

With Definition 5 as a starting point, we can define a number of no

tions which are related to the notion of meaning. In particular:

Definition 8. A fuzzy concept, or simply a concept, is a fuzzy subset of

the universe of discourse. In this sense, a term, that is, an element of

T, may be regarded as a name for a subset of U. Thus, if x is a term,

then its meaning, M(x), is a concept.

Although x and M(x) are entirely different entities, it is ex

pedient to abbreviate M(x) to x, relying on the context for the determina

tion of whether x stands for a term or for its meaning, M(x). This is

what we usually do in everyday discourse, because in such discourse it is

rarely necessary to differentiate between x and M(x). On the other

hand, it is important to differentiate - or, at least to understand the

difference - between x and M(x) in the case of programming languages,
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machine translation of languages, and other areas in which ambiguity of

interpretation can lead to serious errors.

It is convenient to classify terms and concepts according to their

level, which is a rough measure of the complexity of characterization of a

concept. More specifically:

Definition 9. Let K be the kernel space of U, the universe of dis

course. Then a term x and the corresponding concept M(x) are at level 1

if M(x) is a subset of K or, more generally, K , n = 1,2,..., for some

finite n; x and M(x) are at level 2 if M(x) is a subset of T(K) or
n

(3TK)) for some finite n; and, more generally, x and M(x) are at

level Q, if M(x) is a subset of (& " (K))n for some finite n, where
<3-*'x(K) stands for *F(... *iF(5W)) , with £-1 ?»s in the expression.

Equivalently, and recursively, we can say that M(x) is a concept at

level c if M(x) is a collection of concepts at level £-1.

Example 10. Suppose that K is the set of objects which can be seen or

visualized. Then the concepts labeled "white," "yellow," "green," "red,"

"black," etc. are at level 1 because they can be represented as fuzzy sub

sets of K. Likewise, the concepts labeled "redder than," "darker than,"

etc., are at level 1 because they can be represented as fuzzy subsets of

K . (E.g., if y. and y„ are objects in K, then with the ordered pair

(yifVp) we can associate a grade of membership p^y^ty^) i-n a fuzzy set

in K2 labeled "darker than.")

Consider, on the other hand, the concept labeled "color." This con

cept is essentially a collection of the concepts M(white), M(yellow),

M(green), ..., M(black),and as such is a subset of ^"(K). Thus, "color"

is a name for a concept at level 2.

Still higher on the scale is the concept labeled "visual attribute."

In this case, we may view "visual attribute," as a collection of concepts

labeled "color," "shape," "size," etc. each of which is at level 2. Hence,

"visual attribute," is a label for a concept at level 3.

Clearly, concepts at level higher than 1 are generally harder to define
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by exemplification than concepts at level 1. It is for this reason that

in teaching a natural language to one who does not know any other language,

e.g., a child, we usually begin by defining via exemplification a set of

primitive concepts at level 1 which form a basic vocabulary, and then build

up on this vocabulary by defining other concepts on level 1 as well as

concepts on levels higher than 1 in terms of the concepts already defined.

One of the basic aspects of the notion of meaning which we have not

mentioned so far is that of context-dependence. Clearly, the meaning of

"tall building" is quite different in New York from what it is in Washington,
D.C. Thus, in identifying the meaning nf a term x with a fuzzy subset M

of the universe of discourse, it is tacitly understood that M depends not

only on x but also nn the context in which x occurs. Depending on the

nature of context-dependence, this may or may not seriously complicate the

association of a meaning with a composite term - a subject discussed in the

following section.

4. Lanquaoe

In the preceding section we have defined the meaning of a term xgT

as a fuzzy subset, M(x), of the universe of discourse U, with the under

standing that M(x) is characterized by a conditioned membership function
>j(yl x).

In this spirit, it is natural to regard a language as a fuzzy corres
pondence between the elements of T and U. More specifically:

Definition 11. A language. L, is a fuzzy binary relation * from a set

A fuzzy binary relation R from X ={x} to Y ={y} is a fuzzy subset
of X x Y. Let /jR(x,y) denote the membership of an ordered pair (x,y)
in R. The domain of R is denoted by dom R and is defined bv u fx)-

* Aaom Rv

V/JR(x,y), where V denotes the supremum over Y. A fuzzy relation from X
V V

to X is reflexive iff ^jr(x,x) = 1 for all x in X. R is symmetric iff
/jR(x,y) =/jR(y,x) for all x,y in X; and R is transitive iff Rz>R*R,
where the composition, RoQf Df relations R and Q is defined by

/JRoQ(x»V> =V>JR(x,z) A/JQ(z,y). Further details may be found in [39J.
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of terms, T, to a universe of discourse, U. As a fuzzy relation, L is

characterized by a membership function jj. : T x U—• [0,1 ] which associates
with each ordered pair (x,y), xfeT, ye U, its grade of membership yu.(x,y)

in L, with 0 </i(x,y) < 1.

The fuzzy relation L induces a correspondence between the elements

of T and the fuzzy subsets of U. Thus, to a term x in T corres-
o

ponds a fuzzy subset M(x ), that is, the meaning of x , whose membership

function is defined in terms of yu.(x,y) by

AVi(x )(v) = ^vy). ye U (3)
o

which implies that u (x,y) may be equated with ^u(ylx).

Note that if we consider a particular element of U, say y , then

R (x,y ) defines a fuzzy set, D(y ), in T in which a term x has the

grade of membership

^DCy )(x) " /JL(x>V„>.
o

Intuitively, this fuzzy set, to which we shall refer as a descriptor set,

serves to characterize the extent to which each term in T describes a

given element of U.

In summary, a language. L, is a fuzzy relation from T to U charac

terized by a membership function p. (x,y). As a relation, L associates

with each term x in T its meaning. M(x ), which is a fuzzy set in U
o ' o

defined by /Wx )(y) = /jl(x ,y). Furthermore, L associates with each
o

element yQ of U a fuzzy descriptor set. D(y ), defined by /jq, n(x) =
/JL(x,yo). °

Comment 12. Our definition of a language as a fuzzy relation is closer in

spirit to the traditional conception of language in linguistics than to

its definition in the theory of formal languages. In the latter, a language
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is defined as a subset of strings over a finite alphabet - a definition

which fails to reflect the essential role of a language as a correspondence

between a set of strings and a set of objects. As we shall see presently,

if one adopts as a starting point the definition of a language L as a

fuzzy relation from T to U, then a language in the sense of the theory

of formal languages may be regarded as the domain of L.

Example 13. As a very simple illustration at this point, consider the case

where U = K = set of integers from 60 to 80 representing the heights

of individuals in a population, and T consists of the terms "short,"

"average," "tall," "very tall." Suppose that the membership function of a

language L from T to U is defined as follows:

uL(short. y) =(1 +(^)2)"1

^.(average, y) = (1 + (^r—) )"

u.(tall. y) = 0 for 60 < y <66

/JL(tall, y) =(1 +(^r^)"*2)"1 for 66 < y <80

2
jj.(very tall, y) = ( jj. (tall, y))

Assume y = 68 . The corresponding fuzzy descriptor set may be

expressed as

D(yQ) ={(short. 0.5), (average, 1), (tall. 0.5), (very tall. 0.25)V

Domain of a language

If L is a fuzzy language from T to U, then its domain. D(L),
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is a fuzzy set in T which is the "shadow" * of L on T. The ex

pression for the membership function of D(L) is

^D(L)(x) = V >jl(x'V) (5)

where the supremum V is taken over all y in U .
y

If T is a set of strings over a finite alphabet, then D(L) is a

fuzzy subset of T. In this sense, D(L) corresponds to the notion of

a fuzzy language described in [4l].

Intuitively, D(L) serves to indicate, in a sense, the degree of

meaningfulness of each term in T. LJe include the qualification "in a

sense" in this statement because the concept of meaningfulness has many

aspects which are not covered by the above interpretation of D(L).

From the definition of D(L) it follows at once that if each term

x in T is fully meaningful in the sense that its meaning, M(x), is

a normal ** fuzzy subset of U, then the domain of L coincides with T.

For, we can write

If A is a fuzzy set in X = X1 x Xg x ... x Xn, X. =Jx.},i =l,...,n,
with membership function /j(x.,...,xJ, then the shadow of A on X_x...xX is a

1 n —' c. n

fuzzy set in X- x ... x X whose membership function, ^j.. , is given by

/J1(x2,... ,xn) a V /i(x^,...fx ). Additional details may be found in [35],
xl

**

A fuzzy set A in X is normal iff Vjj„(x) = 1 and subnormal iff
x H

V/jft(x) < 1. Thus, in Example 13, the fuzzy sets M(short) and M(average)

are normal while the fuzzy set M(short and average) is subnormal.
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^D(L)(x) = V >uL(x,y) = 1» X6T

and hence D(L) = T.

Another simple consequence of (5) is the following. Assume that

each x ih T is fully meaningful. Let M(x ) denote the normal fuzzy

subset of U which is the meanina of a term x in T. This subset in-
—°

duces,* via the relation L, a fuzzy subset M(x ) of T whose member-
o

ship function is given by

u (x) =v/j (x,y) a/jm( }(y)
M(x_) y L mV

o V

or

Clearly,

M_ (x) = V/i,(x,y) A/i, (x_,y) .

M(x ) y
o

by the normality of M(x ). Thus, as should be expected on the grounds of

consistency, the term x has unity grade of membership in M(x ).

Computation of /j.(x,y)

So long as the number of elements in T is small and U is a reason

able simple space in relation to the information processing capabilities

If R is a fuzzy relation from X ={x} to Y =jy}, then a fuzzy set

A in X induces a fuzzy set B in Y whose membership function is

expressed by /J0(y) =V >JR(x,y) A/JA(x). (See [40] for additional details.)
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of the system employing L as a language, it may be practicable to define

L by tabulating its membership function p. (x,y).

In most cases, however, the storage capacity of a system is not ade

quate for a tabulation of p. (x,y). This makes it necessary, in general,

to characterize p. (x,y) in part by a table and in part by a procedure

which makes it possible to compute the values of p. (x,y) for a given x

rather than look them up in a table.

The same limitations make it necessary, in general, to characterize

T by a grammar, GT, rather than by a listing of its elements. Typically,

then, the elements of T are strings of words separated by spaces, with

the grammar GT providing a set of rules for the generation of all such

strings which represent the terms of T. Thus, a term in T is either a

word or a concatenation of words. These two types of terms will be referred

to as simple terms and composite terms, respectively, when there is a need

for differentiating between them.

As in classical semantics, a central problem in quantitative semantics

is that of devising a procedure for computing the meaning, M(x), of a

composite term x in T from the knowledge of the meanings of the simple

terms x. ,x„,..., x.. whose concatenation forms x. The converse problem,

namely, the problem of description, is that of (a) determining a term x

in T whose meaning, M(x), is a specified fuzzy subset of U, or (b)

determining the descriptor set in T corresponding to a given element y

in U. In general, (a) is a more complicated problem than (b) because in

most cases it involves an approximation to the given fuzzy subset by one

which corresponds to a term in T. UJe shall not consider either (a) or (b)

in the present paper.

The problem of the computation of p. (x,y) for composite terms is

a relatively simple one when x may be represented as an N-tuple of

parameters for a given program or, alternatively, as an IM-tuple of argu

ments for a lambda-expression. A more difficult problem is that of

constructing a program for computing ju,(x,y), with x as a parameter,
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given the grammar GT for generating the terms in T.

As an illustration of these problems consider first the case where

x is an IM-tuple (x1 »x„,... ,x-.) in which each x. is a simple term
which has a specified meaning in U characterized by a membership function

^j.(y) =/j.(x. ,y). For example, the x. could be the attributes of a re

cord in a file reading (old, tall. 15. very, fat). Thus, x. = old.

x„ = tall, x, = 15, x, = very. x5 = fat. Assuming for simplicity that U
is the real half-line, the procedure for the computation of /J, (x,y) as

a function of y could have the following form for each y > x,. Expressed

in plain words:

2
1. If x = very set z^^ = (pAy)) . Else if x = blank set

Zjl =^5(y).

2. Set z„ = z.vpAy)

3. Set z, a ju.(y)A z„

2 -14. Set /J,(x,y) = z, (1 + (y-x,) )

Equivalently, the computations to be performed on the given attributes
30

may be expressed in the form of a lambda-expression. For the example

under consideration, assume for simplicity that r(x,) =1 if x, = blank

and r(x,) =2 if x, = very. Then

>iL(x,y) =A(x1,x2,x3,x^,x5) [(>JL(x1,y)A(^L(x2,y) V(^L(x5,y))r X4 ))

(1 +(y-x3)2)"13[old, tall. 15, very, fat] (6)

In this expression, the factor A(x.,...,x5) signifies that the arguments
old, tall. 15. very, fat should be substituted, respectively, for the bound

variables x. ,x„,x,,x, ,x,- in the bracketed expression.
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As a simple illustration of the case where T is characterized by a

grammar, assume that the simple terms of T are the following: young.

old, very, not, and, or and that the composite terms of T are genera

ted by the production system P defined below, in which S, A, B, C, 0

and Y are non-terminals. (The parantheses serve as markers.)

s -* A c —• 0

s —*> S or A c -* Y

A —•> B 0 —* very 0

A —%• A and B Y —* very Y

B —* C 0 -* old

B —> not C Y —* young

C —• (S)

Typical terms generated by this grammar are:

not very young

not very young and not very old

young and not old

old or not very very young

young and (old or not young)

To compute ^j.(x,y) when x is a composite term, we shall use an

approach similar to that described by Knuth in [32]. Specifically, suppose
that we are given >u. (young, y) and p, (old, y). The remaining simple

terms are regarded as functions on^"(K) or ^(K) x?"(K) (in the sense of

Example 7) which are defined by the following rules associated with those

productions in P in which they occur. Employing the subscripts L

and R to differentiate between the terminal symbols on the left and right

hand sides of a production and using /j(E) as an abbreviation for p. (E,y),

where E is a terminal or non-terminal symbol, the rules in question can

be expressed as

S —* A —-• jj(Sl) =>i(AR) (7)

A —> B --^ ^j(AL) =>j(Br)

B -* C _*> p(BL) =>J(CR)



S —» S or A
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/j(SL) = p(SR) V>j(Ar)

A and B -^ /J<\) = p(AR) A >u(BR)

8 —* not C •=> p(BL) = 1 - >J(CR)

0 -* very 0 ^ >j(0l) = (p(0R))2
Y-* very Y —> >j(Yl) = (>j(Yr))2
C -* 0 =§> >j(Cl) =p(0R)

C -* Y ^ jj(Cl) = >i(YR)

C -s> (S) —^ /j(CL) = jj(Sr)

0 -* old =^ >J(0L) = Jj(old)

Y —*• young ^ >jCY ) = u(voung)

Now consider a composite term such as

x = not very young and not very very old (8)

In this simple case the expression for the membership function of M(x)

can be written by inspection. Thus,

>JL(x,y) =(1 -jJL2(voung.y))A(l -pL4(old,y)) (9)

More generally, as a first step in the computation of p. (x,y) it is

necessary to construct the syntax tree of x. For the composite term

under consideration, the syntax tree is readily found to be that shown in

Fig.3. (The subscripts in this figure serve the purpose of numbering the

nodes.)

Proceeding from bottom to top and employing the relations of (7) for

the computation of the membership function at each node, we obtain the

system of nonlinear equations
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•A2.

A* and B8

b\ not C,

not Ci 0 10

y* very 0

very Y7 very 0 12

young old

Fig.3. Syntax tree for x = not very young and not very very old
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p<v7) = uL(vouna.v)

p(Y6) = >i2(y7)
Jl(Cg) = p(V6)

>i(at> = 1 - >j(C5)

>j(A3) = P«fc>

^(D12) = jj. (old.y)

|i(Ou) = p2(o12)
>J(D1Q) " ^2(on)
>i<Cg) = >J(010)
>i(B8) = 1 - >i(Cg)

>J(A2) = jj(A-)A/i(Bq)

/JL(x,y) =. A^Sj) =/j(A2)

(10)

In virtue af the tree structure of the syntax tree this system of equations

can readily be solved by successive substitutions, yielding the result ex

pressed by (9).

The simplicity of the above example owes much, of course, to the

assumption that T can be generated by a context-free grammar. The problem

of computation of /J. (x,y) may become considerably more complicated when

this assumption cannot be made. And, needless to say, it becomes far more

complex in the setting of natural languages, in which both the semantics and

syntax are intrinsically fuzzy in character.

Uhen we speak of the fuzziness of syntax in the case of natural lan

guages, we mean that, for such languages, the notion of grammatically is

a fuzzy concept. For example, the set of sentences in English is a fuzzy

subset, E, of the set of all strings over the alphabet fA,B,...,Z,.,blank} .

Thus, if x is a sentence, then ju-(x), the grade of membership of x in
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E, may be regarded as the degree of grammaticality of x.

A fuzzy set of strings may be generated by a fuzzy grammar in which
p

a typical production is of the form o( —*• A , where o( and /5 are

sentential forms and f> is the grade of membership of A in a fuzzy

set conditioned on c( • (I.e., the consequent is a fuzzy set conditioned

on the antecedent. See [^l] for additional details.) This does not
imply, however, that a fuzzy grammar of this nature can provide an

adequate model for the fuzziness of the syntax of a natural language.

Indeed, it appears that we are still quite far from being able to con

struct such a model for natural languages and use it as a basis for

machine translation or other applications in which the semantics of

natural languages plays an essential role.

Concluding remarks.

In the foregoing discussion we have addressed ourselves to but a few

of the many basic issues involved in the construction of a conceptual

framework for a quantitative theory of fuzzy semantics. Our limited aim

has been to suggest the possibility of constructing such a theory for

artificial languages whose terms have fuzzy meaning, and, indirectly, to

contribute to a clarification of the concept of meaning in the case of

natural languages.

At this early stage of its development, our approach appears to have

potential applicability to the construction of fuzzy query languages for

purposes of information retrieval, and, possibly, to the formulation and

implementation of fuzzy algorithms and programs. Eventually, it may

contribute, perhaps, to a better understanding of the semantic structure

of natural languages.
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