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1. INTRODUCTION. In this paper necessary and sufficient conditions

are obtained in terms of the matrices A, B, and C under which the linear

time-varying dynamical system (A,B,C) realizes a stationary weighting

pattern (i.e., its input-output mapping is time invariant). In many situa

tions the possible system functions that can be realized is considerably

increased by introducing time-varying components in such a way as to keep

the input-output behavior time-invariant. Examples of this in network

theory are given in Refs. [1] - [3]. The importance of these results lies

in the fact that the synthesis of time-varying systems is in general most

easily accomplished by using the state variable formulation. Thus, in

attempting to realize stationary weighting patterns, the need for condi

tions on the matrices A, B, and C arrises naturally.

In the area of stability theory, it would be possible to obtain

stability criteria for time varying feedback systems if one could "split

off" a part of the time varying gain in such a way that the resulting

feedback system had a time-invariant input-output behavior. It will be

shown in Sec. 4 that for certain linear time-varying feedback systems, a

time-invariant input-output behavior can only be obtained in trivial cases.

2. PRELIMINARIES. The systems to be considered here are those

having a representation in the form

x(t) = A(t) x(t) + B(t) u(t)

(2.1)
y(t) = C(t) x(t)

where the state x(t) is a real n-vector, the input u(t) is a real m-vector,
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and the output y(t) is a real p-vector. The real matrices A(t), B(t),

and C(t) are respectively n * n, n x m, and p x n. A system in the form

of (2.1) will be denoted by (A,B,C).

As is well known, the output y of system (2.1) is given by

t

(2.2) y(t) = C(t) $(t,t0)xQ + / C(t) $(t,x) B(T) u(x)

where xn is the initial state at time tn and $ is the transition matrix

associated with A. The matrix W(t,T) = C(t) $(t,T) B(t) will be called

the weighting pattern of (2.1) [4], and a weighting pattern will be called

stationary if W(t,x) = W(t - t,0). A weighting pattern W is called

realizable if it can be realized by a finite dimensional system (A,B,C),

and the system (A,B,C) is called a realization of W. The system (2.1)

is called minimal if there are no other realizations of W having a lower

order.

y\ s\ s\

Definition 2.1; Two systems (A,B,C) and (A,B,C) with corresponding

state vectors x and x respectively are called algebraically equivalent

whenever x(t) = T(t) x(t) for some absolutely continuous matrix function

T possessing an absolutely continuous inverse. This equivalence will be

T ^
denoted by (A,B,C) -*• (A,B,C) .

If (A,B,C) + (A,B,C), then it is easily seen that

A(t) = T(t) A(t) T_1(t) + T(t) T_1(t), B(t) = T(t) B(t), and C(t) = C(t) T-1(t)

Also, if $(•,•) and $(•,•) denote the transition matrices for A and A respec-

/v . _i

tively, then $(t,T) = T(t) $(t,T) T (t). Therefore it is seen that two

algebraically equivalent systems have the same weighting pattern.

With regards to stationary weighting patterns, the following important
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result will be needed.

Theorem 2.1 (Youla [4]): All minimal realizations of a stationary weight

ing pattern are algebraically equivalent to a constant coefficient reali

zation (i.e., a realization (A,B,C) in which the matrices A, B, and C are

constant).

For any given system (A,B,C), the operator 6 is defined by (in any

expression it will be tacitly assumed that A, B, and C have the required

number of derivatives)

(2.3) (<5C)(t) =^ C(t) + C(t) A(t)

and the operator A by

(2.4) (AB)(t) =-^ B(t) + A(t) B(t)

The powers 6 and A are defined in the obvious way;

(2.5) (6nQ)(t) =^ (6n"1C)(t) +(S^CMt) A(t)

d ,An-l, ,n-l.(2.6) (A^Mt) = - S- (An ^(t) + A(t)(An"iB)(t)

(2.7) (6°C)(t) - C(t) , (A°B)(t) = B(t).

From these definitions, the "controllability" and "observability"

matrices are defined respectively as

r

(2.8) (^(t) =

(6°C)(t)

(o^CHt)

(6nllC)(t)
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and

(2.9) P (t) = [(A°B)(t)|(A1B)(t)|...|(An"1B)(t)]

These matrices play a predominant role in specifying the conditions for

controllability and observability of the system (A,B,C) (see [5], [6],

[7]).

For constant coefficient systems (A,B,C) the system function H(s) is

given by H(s) = C (Is - A)~ B. The system function H(s) has a Laurent

series expansion about s = °° of the form

(2.10) H(s) ==]£] H^ -k

k=l

and associated with this expansion is the Hankel matrix

(2.11)

H0 Hl H2 ' * *

Hl H2 H3 ' • '

A necessary and sufficient condition for a constant coefficient system

(A,B,C) to be minimal is that the truncated Hankel matrix

(2.12) Sn =

H„ H, H
h-1

H„ H, H
n

L
H -, n ... **o_ o
n-1 n zn-z

have rank n[8]. Also for constant systems (A,B,C) the matrices 0^ and
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Pn of (2.8) and (2.9) are given by

C

(2.13) Q = CA
n

n-1
CA

n-1(2.14) Pn = [B,AB, ..., A" A B]

and it is easily seen that

(2.15) S = QP
n Ti n

Thus it follows that (A,B,C) is minimal if and only if 0 and P are of

full rank.

For time-varying systems (A,B,C) the analog of the truncated Hankel

matrix is:

(2.16) Sn(t) = (^(t) Pn(t)

with Q^ and P given by (2.8) and (2.9). The matrix S of (2.16) plays
n n n

an important role in realization theory [5].

3. A CONDITION FOR THE REALIZATION OF A STATIONARY WEIGHTING

PATTERN. The main result of this section is given in the following

theorem.

Theorem 3.1: Suppose a system (A,B,C) is such that A is 2n-2 times

continuously differentiable (where n is the order of A(t)), B and C are

-5-



2n-l times continuously differentiable. Then a necessary and sufficient

condition for (A,B,C) to be a minimal realization of a stationary weight-

It
ing pattern is that (6 C)(t) B(t) be constant for k = 0, 1, 2, ..., 2n-l,

and the constant matrix

(3.1) S =

(6°C)B («S1C)B

(61C)B (62C)B

(6n"1C)B

(6nC)B

(6n"1C)B (6nC)B ... (62n"2C)B

have rank n.

Before giving a proof of Theorem 3.1, some preliminary lemmas will

be needed. First of all, with regards to algebraically equivalent

systems we have the following.

Lemma 3.1 [5]: Suppose (A,B,C) -»- (A,B,C). Then

(3.2) 6kC = ^OT*"1 k = 0, 1, 2, ...

(3.3) &*% =T AkB k= 0, 1, 2, ...

and thus the matrix 6 given by (2.16) is the same for all algebraically
n

equivalent systems.

This lemma follows from a simple induction argument; see Ref. [5]

for a proof. From this Lemma it is clear that if (A,B,C) is algebraically

equivalent to a constant coefficient system, say (A,B,C), then (6 C)(AJB)(t)

must be constant for all i and j. Indeed, for some T we have
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(3.4) (6iC)(AjB) = (6iC)T"1 T(AjB) = (61C)(AjB)

But

(3.6)

>\ /\

and since A, B, and C are constant, 6 C = CA and AJB = A B. Thus it

follows that (6 C)(AJB) is constant.

Lemma 3.2: If for a given system (A,B,C), (6 C)(A J$)(t) is constant,

then (6j+1C)(AkB) = (6jC)(Ak+1B)(t).

i k
Proof. Since (6 C)(A B) is constant, its derivative is zero, which

implies that

(3.5) ^ (6jC) tS =-6jC ^ (lh).

(6j+1C)(AkB) =[^ (6jC) +(6jC)A](AkB)

=~ (6jC) bh + (6jC) A(AkB),

and using (3.5) in (3.6) gives

(6j+1C)(AkB) = - (6jC) ~ (A1^) + (6jC) A(AkB)
(3.7)

- (6jC)(Ak+1B).
Q.E.D,

k 0
Corollary 3.1: Suppose (6 C)(A B) is constant for k = 0, 1, 2, ..., N.

i i
Then (6 C)(AJB) is constant for all i and j satisfying i + j <_ N. Further-

*1 jl *2 j2more, if i1+J1 =i2+j2 <N, then (6 XC) (A XB) = (6 ^C) (A ^B).

Proof. The proof proceeds by a repeated use of Lemma 3.2 and

0 0
induction on i + j. First of all, by hypothesis (6 C)(A B) is constant,
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so the conclusion is true for i + j =0. Suppose that (6 C)(AJB) is con

stant for all i and j satisfying i + j = n < N. Then by Lemma 3.2

(6nC) (A°B) constant => (<5n+1C) (A°B) = (6nC) (AXB)

(6n_1) (A°B) constant => (6nC)(A^) = (611"1) (A2B)

(61C) (An 1B) constant =» (62C) (Ln"h) = (61C) (AnB)

(<5°C)(AnB) constant => (61C)(An+1B) = (6°C)(An+1B)

Hence, it is seen that

(3.8) (6n+1C)(A°B) = (6nC)(A1B) = ... = (6°C)(An+1B).

Since n<N, n + 1 £ N and thus by hypothesis (6 C) (A B) is constant.

Thus from (3.8) it is seen that the conclusion is true for i + j = n + 1

if it is true for i + j = n. Q.E.D.

By completely similar arguments it is easily seen that the following

is also true.

Corollary 3.2: Suppose (6 C)(A b) is constant for k = 0, 1, ..., N.

Then the conclusion of Corollary 3.1 is true.

We are now in a position to give the

Proof of Theorem 3.1: Necessity: If (A,B,C) is minimal and realizes

a stationary weighting pattern, then from Theorem 2.1 it is known that it

is algebraically equivalent to a minimal constant coefficient system

(A,B,C). Hence, from Lemma 3.1, and in particular (3.4), it is seen that
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(6 C)B must be constant. Further, the matrix S is the truncated Hankel

matrix S of (2.15) for (A,B,C), and thus has rank n since (A,B,C) is

minimal.

k
Sufficiency: Suppose (6 C)(t) B(t) is constant for k = 0, 1, ... 2n-l,

and that the matrix S of (3.1) has rank n. Let Q and P be given by (2.8)

and (2.9) respectively. Then from Corollary 3.1 of Lemma 3.2 it follows

that

(3.9) Sn(t) = (^(t) Pn (t)

and

(3.10) Sn(t) = (5(^X0 Pn(t)

are both constant, and also S (t) = S.
n

Since S has rank n, there exists an n x n submatrix S of S which is

nonsingular. From (3.9) it is seen therefore that there exist n x n

submatrices 6 and P of 0 and P respectively such that

(3.11) S = Qn(t) Pn(t)

Now consider the system ((&Q )Q~ ,QB, CCL ). Note that Q^(t) is

nonsingular due to (3.11) and S being nonsingular. It will now be shown

that this is a constant coefficient system. First of all, from (3.10)

and S (t) being constant, it follows that (60 )(t) P (t) is constant since

a. ~

it is a submatrix of S (t). Also, S is constant and nonsingular, which
n

implies that

(3.12) (6Qn) Pn S"1 =(6Qn) CQ1
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is constant. The matrix (6Q )(t) B(t) is constant by hypothesis.

Finally,

(3.13) CQ"1 = CP P"1 Q"1 = (CP ) S"1,
n n n ti n

and since CP and S are both submatrices of S, it is seen that CQ~" is

constant. Thus ((65 ) Q~ , 5B, CQ~~ ) is constant. ^ _

Consider the transformation ((6Q^) Q~ ,5B, CQ~ ) + (A,B,C).

Then

(3.14a) A-Q^1(6Qn) -Q^1 (^

(3.14b) B » B

(3.14c) C = C

However,

(3.15) 6Qn =^ +V*

So (3.14a) becomes

(3.16) A=(Q^1 Qn +A) -Q^1 0^ =A.

Therefore, (A,B,C) is algebraically equivalent to the minimal constant

system ((60 ) Q~ i OB, CQ~ ), and hence is a minimal realization of a

stationary weighting pattern. Q.E.D.

By using Corollary 3.2, a theorem dual to Theorem 3.1 can be proved

along analogous lines. This fact is recorded in the following theorem.

Theorem 3.2: Under the conditions of Theorem 2.1 a necessary and

*

Minimality follows from S having rank n.
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sufficient condition for (A,B,C) to be a minimal realization of a sta

tionary weighting pattern is that C(t)(AHB)(t) be constant for k = 0, 1,

..., 2n-l, and the constant matrix

S =

CA°B

CA1B

CA^

CA2B

CAn'1B CAn'2B . . .

ct?-h

CAnB

CA2n"2B

have rank n.

A result similar to Theorems 3.1 and 3.2 has been obtained by

Silverman and Meadows [5] which would require that the matrix 0 .(t) P -(t)

be constant (see (2.8-9)). However, this condition requires the calcula

tion of (6 C)(AJB) for all 0 <_ i, j£ n+1; whereas the conditions of

Theorem 3.1 (or Theorem 3.2) requires only the calculation of (6 C) for

i = 0, 1, ..., 2n-l. This reduction in the required number of calcula

tions is made possible by the use of Lemma 3.2 and its corollaries.

4. AN APPLICATION TO FEEDBACK SYSTEMS. Consider the feedback

system shown in Fig. 1, in which L is a linear time-invariant system

with the representation

(4.1a) x(t) = Ax(t) +Bu1(t) + du2(t)

(4.1b) y(t) = Cx(t)

(4.1c) y2(t) = fx(t) .

With the input u«(t) = u?(t) - k(t) YnM» the dynamic equations for the
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feedback system are easily seen to be

(4.2a) x(t) = (A - k(t)df) x(t) + Bu^t) + du£(t)

(4.2b) yx(t) = Cx(t)

(4.2c) y2(t) = fx(t)

The question is now raised as to whether the system of (4.2) can be

dk
a realization of a stationary weighting pattern if -jr- $ 0. It will be

shown that this can only happen in the trivial case when either d or f

is the zero vector. This result is based on the following theorem.

Theorem 4.1: Consider the system (A + k(»)df, b, c) where A is a real

constant n x n matrix, d, f, b, and c1 are real constant n-vectors, and

k(.) is a 2n-2 times continuously differentiable real valued function of

dk
t with -t— f 0. Also assume that (A,b,c) is minimal. Then (A + k(«)df,b,c)

at

is a minimal realization of a stationary weighting pattern if and only if

d = 0 or f = 0.

Proof: Sufficiency. This is immediate since d = 0 or f = 0 results

in the system (A,b,c).

Necessity. This will be proven by showing that the assumption that

(A + k(»)df,b,c) is a minimal realization of a stationary weighting

pattern implies that one of the following two conditions must be

satisfied:

i) cA^ = 0, i = 0, 1, 2, ..., n-1

ii) fA^ = 0, i = 0, 1, 2, ..., n-1
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Then since (A,b,c) is minimal, the matrices

Q = cA and P = [b,Ab, ..., A b]

Ia""1/
are nonsingular. Since i) implies that Qd = 0, it follows that i) thereby

implies that d = 0. Similarly ii) implies that Pf = 0 and thus that f = 0.

Before proving i) and ii) it will be convenient to first prove the

following lemma.

Lemma 4.1: Consider the system (A + k(-)df,b,c). If cA d = 0 for

k= 0, ..., N, then (6kC)(t) = cAk for k= 0, 1, ..., N+l. If fA1^ =0

for k = 0, 1, ..., N, then (t^b)(t) =A1^ for k= 0,1, ..., N+l.

Proof: Suppose cA d = 0 for k = 0, 1, ..., N. The proof that

i i(6 c)(t) = cAJ for j = 0, 1, ..., N+l, will proceed by induction on j.

First of all, 6 c = c so the result is true for j = 0. Suppose

(6Jc)(t) = cAJ for some j £ N. Then

(4.3) (6j+1c)(t) =^ (6jc)(t) +(6jc)(t)(A +k(t)df)

and since (6Jc)(t) = cA? and cAJd = 0 (4.3) becomes

(4.4) (6j+1c)(t) = cAj+1 + k(t) cAjdf = cAj+1

which proves the result. A similar proof is used to show A b = A b for

k = 0, ..., N+l if fA1^ = 0 for k = 0, 1, ..., N.

Returning now to the necessity proof of Theorem 4.1, suppose
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(A + k(»)df,b,c) is a minimal realization of a stationary weighting pattern.

From Theorems 3.1 and 3.2 it is known that (6 c)b and c(A b) must be con

stant for i = 0, 1, ..., 2n-l. Since b and c are constant, these condi

tions are satisfied for- i = 0. For i = 1 they give

(4.5) [cA + k(t)cdf]b = const,

and

(4.6) c[Ab + k(t)dfb] = const.

dk
Since -r— t 0 it is seen from (4.5) and (4.6) that cdfb = 0, which leads

at

to three possibilities:

a) cd = 0 and fb i 0

b) cd i 0 and fb = 0

c) cd = fb = 0

Consider a) first, then i) will be obtained by induction. Therefore,

suppose a) holds, and cA d = 0 for k = 0, 1, ..., N-1 (N < 2n-2). Then

k k
from Lemma 4.1, (6 c) = cA for k = 0, 1, ...,N. Hence

(4.7) (6N+1c)b = cAN+1b + k(t)cANdfb

Using the fact that (6 c)b is constant for i = 0, 1, ..., 2n-l, it follows

from (4.7) that cA dfb = 0. But fb ± 0, so cA d = 0. Consequently, by

induction on k, it is seen that cA d = 0 for k = 0, 1, ..., n-1 establishing

i).

In a similar manner b) yields ii). For case c) let j be the first

integer such that cA d and fA d do not both vanish. If there is no such
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integer j £ n-1, then both i) and ii) hold and we are done. Therefore

suppose j < n-1. From Corollary 3.1 of Lemma 3.2 and Theorem 3.1 it

follows that (6mc)(A d) is constant for m+k £ 2n-l. Hence (6 c)(A*'b) is

constant for m £ 2n-l-j. Also, from Lemma 4.1 it is known that cA d

= fA b = 0 for all i < j implies that

(4.8) 5*0 = cAj

(4.9) Ajb = Ajb.

Hence,

(4.10) (5j+1c)(t)(Ajb)(t) =* [cAj+1 + k(t) cAjdf]Ajb

and since j+1 < 2n-l-j (recall j < n-1), the left hand side of (4.10) is

constant. Thus there follows from (4.10)

(4.11) (cAjd)(fAjb) = 0

However, one of the terms in (4.11) is nonzero by the choice of j.

Therefore, either

a') cAjd = 0 and fkh ± 0, or

b1) cAjd 4 0 and fA^b = 0.

It is easily seen that a1) leads to i) and bf) leads to ii) in the same

way as a) and b) led to i) and ii) respectively. Q.E.D.

The result of Theorem 4.1 can be extended to multiple input-multiple

output systems, and this is done in the following theorem.

Theorem 4.2: Consider the system (A + k(»)df,B,C) where A, d, f, and
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k(') are as in Theorem 4.1, B is a real constant n x m matrix, and C is

a real constant p x n matrix, and (A,B,C) is minimal. Then (A + k(«)df,B,C!

is a minimal realization of a stationary weighting pattern if and only if

d = 0 or f = 0.

Proof: Sufficiency is obvious. To prove necessity, write B and

C as follows:

B= <V b2 V

C„

C =

where b. and c! are constant n-vectors. Since (A + kdf,B,C) realizes a

stationary weighting pattern, clearly every system (A + k(»)df,b ,C.)

must also. Theorem 4.1 cannot be used immediately to conclude that

either d = 0 or f = 0 since (A,b.,c ) may not be minimal for any i and

j. However, (A + k(»)df,b.,c.) is algebraically equivalent to a constant

system since (A + k(.)df,B,C) is. Therefore, using the same arguments

as in the necessity proof of Theorem 4.1 it is seen that, for each i and

j, one of the following must hold:

a) c.A d=0 k=0,l, ..., n-1

b) iA^Td =0 k = 0, 1, ..., n-1

Suppose b) does not hold for some j, then a) must hold for all i. Thus
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CA d = 0 k = 0, 1, ..., n-1.

Similarly, if a) does not hold for all i, then

fA1^ =0 k= 0, 1, ..., n-1

Hence the requirement that either a) or b) hold for all i and j is

equivalent to the requirement that one of the following hold:

a1) Qd = 0

bf) fP = 0

where Qf = (C'.A'C, ..., A*11"1^) and P = (B,AB, ..., A^B). Since

(A,B,C) is minimal, P and Q are of full rank. Thus a') implies that

d = 0 and bf) implies that f = 0. Q.E.D.

Returning now to the feedback system of Fig. 1, it is seen that the

representation of (4.2) is in the form considered in theorem 4.2. Since

we are only concerned with input-output mappings it is always possible

to select a representation such that (4.2) satisfies the minimality

assumptions of the theorem. Thus it follows from Theorem 4.2 that the

feedback system of Fig. 1 with k $ 0 will realize a stationary weighting

pattern only in the trivial cases of d = 0 or f = 0.

A less restrictive requirement on the system of Fig. 1 would be to

set u2 - 0 and ask for a stationary weighting pattern for the input-

output pair u- and y1. For this case the dynamic equations would be

(4.12a) x(t) = (A - k(t)df) x(t) + Bu^t)

(4.12b) y^t) = Cx(t)
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We can no longer assume that (A,B,C) is minimal, but from the proof of

Theorem 4.2 it is seen that for (4.12) to be a realization of a stationary

weighting pattern it is necessary that either CA d = 0 or fA j3 = 0 for

k = 0, 1, ..., n-1.

Suppose first that CA d = 0 for k = 0, 1, ..., n-1. It is easily

seen that with zero initial conditions at t a t.

t

(4.13) yi(t) =C f e^^Iltajd) -k(T)dfx(x)]dT,

k At _
and since CA d = 0 for k = 0,1, ..., n-1 implies that Ce d = 0 this becomes

t

(4.14) yn(t) = f CeA(t"T)Bu1(T)dT.

Thus, in this case the weighting pattern for u1 and y- is not changed by

the feedback.

Now, suppose that fA a = 0 for k = 0, 1, ..., n-1. With x(t.) = 0,

it is seen that

t

(4.15) fx(t) =f f eA(t"T)[Bu1(T) -k(T)dfx(T)]dT.
i

Since fA1^ = 0 for k = 0, 1, ..., n-1 implies that fe tB = 0, (4.15)

becomes

t

(4.16) fx(t) = - J k(T)fdfx(x)dT
t,

z

-/
0
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Therefore, fx(t) satisfies the differential equation

(4.17) 7- fx(t) = - k(t)fdfx(t),
at

and since fx(tQ) = 0 it follows that fx(t) = 0. From (4.13) it is then

seen that y. is given by (4.14), and the weighting pattern for u. and y.

is unchanged by the feedback.

These results are sumarized in the following Theorem.

Theorem 4.3: If the weighting pattern of any input-output pair in Fig. 1

is stationary, then it is independent of the feedback k(.)«

Acknowledgment: The author wishes to express his gratitude to Professor

R. W. Brockett for many helpful discussions.
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Fig. 1. Time-Varying Feedback System.
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