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SUMMARY

The problem considered is that of controlling the input of a given

system (not necessarily linear or time-invariant) in such a way that

the output of the system follows a random process as closely as

possible, with the restriction that the input is to remain within pre

scribed bounds.

The problem is first developed at a quite general level, and a

necessary condition for optimal feedforward and feedback control is

formulated. This condition is also shown to be siifficient for linear

systems. The condition is subsequently specialized to linear time-

varying differential systems and random processes with a finite-

dimensional state. It is derived that for a certain class of systems

bang-bang type control is optimal.

Finally, the constraint on the input is dropped, which necessi

tates provisions with regard to the stability of the interconnection of

controller and system. The optimal control problem is completely

solved for a q\iadratic error criterion and a very large class of ran

dom processes, within the constraint that the optimal controller is to

be stable.
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I. INTRODUCTION

A very typical diaractcristic of present day control theory is

the desire not just to make control systems work well, but to opti

mize them in one way or another. The general approach is first to

exhibit the control situation, then to choose as a design criterion

some function which has to be maximized or minimized, and to design

accordingly-

It seems that in particular due to this attitude control theory

often appears to have little to do with control engineering. The reason

is that often it is impossible to justify the particTilar choice of optimi

zation criterion, since only very few of the factors which in any prac

tical case in fact determine the properties of the design have been taken

into consideration. Furthermore, only the simplest problems can be

solved, so that many realistic problems remain untouched by theoreti

cians.

The general feeling is, however, that the mathematical and

academic interests of these problems amply justify the efforts that are

being spent on them, and moreover, that even from the inadequate and

oversimplified examples considered much can be learned about the design

of good systems.
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In addition to being characterized by this craving for optimiza

tion, modern control theory distinguishes itself from the "classical"

theory of poles and Nyquist plots by a number of concepts and ideas,

which in many cases (in particular where nonlinear systems are in

volved) make more powerful and general approaches to various ques

tions possible. One of the most outstanding of the modern features of

control and system theory is the notion of s t a t e, which makes it

possible to describe large classes of systems and properties of systems

very adequately.

In this work a problem which is not at all new is approached along

the lines of modern control and system theory. The question is that of

controlling the input of a given system in such a way that the output of

the system follows a random process as closely as possible. This is a

typical servo-mechanism problem and applications may be found in

various fields. Instances where the problem arises occur in the design

of radar-tracking devices, but also in the design of many types of mea

suring instruments. Asa specific, elementary example one might con

sider a servo pen-recorder. The dynamic properties of the combination

of servomotor and pen are given; the question is to design a servo ampli

fier in such a way that the recorder is a faithful measuring instrument for

a given class of random signals.
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The problem just outlined, which will be referred to as the

optimal following problem, has mainly been studied in the context of

linear systems, quadratic error functions and linear controllers; it

is then known as the Wiener problem. In this study, a much broader

approach to the problem is taken, although in the end only little more

than the Wiener problem is actually solved.

The general problem has received some attention in the literature,

but much work still remains to be done. Fuller has exhibited the prob

lem, almost in the form in which it will be given here, and has brought

attention to the concept of feedback control. In the light of the approach
o

of Wonham the problem of this work could be considered as an example

of a large class of stochastic optimal control problems, but it has some

particular features of its own.

The problem will be developed at a quite general level in Section II,

employing an abstract characterization of the system and the random pro

cess. Later on the results are specialized almost all the way down to the

Wiener problem in Section IV.

Fuller^ has first pointed out how the concept of the state of a random

process is connected with feedback control. It is hoped that by the treat•=

ment of Sections II. 4 and III. 2 this concept will be made a little more

familiar. In Section III. 1, more or less incidentally, the ideas of instan

taneous controllability and observability of a linear time-varying system



are introduced. These notions seem to be relevant in the description

of such systems. Finally, in Section IV some questions concerning

the intrinsic nature of optimal stable controllers are brought up, but

only partially answered.

No attempt has been made to achieve complete mathematical

rigor, but an effort has been made to formulate the problems and

conclusions precisely.
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II. GENERAL. THEORY

II. 1 Problem Statement and Preliminaries

Consider a system Z; linear or nonlinear, time-invariant or

time-varying, with scalar input u(t) and scalar output y(t). Also

consider a (measurable) random process {r(t), t€(-co, co)| , also

scalar^

The topic of this research is the problem of providing an input

to the system in such a way that the output y(t) is at each instant t as

close as possible to the observed value of the random process, r(t),

with the constraint on the input to the system

|u(t)| < y{t), all t (11)

where y(t), oo > y (t) > 0, is a prescribed function of time- This

statement will be made precise in the following. In this section,

various notions and assumptions which are involved in the problem

statement will be discussed.

System. It is supposed that the system can be described by a input-

3, 4
output-state relationship of the form

y(t) =H } (1.2)

where y(t) denotes the output at time t, ^(1^) ^1^® initial state at t^ < t,

and u^^ ^ the input during the interval (t^, t]. No assumptions on the



nature of the state are made; typically, it will be a finite-dimen

sional vector, however.

From now on it will be supposed that interest is taken in the

problem from time t^=0 on. The initial state x(0) is presumed to be

known. It will figure as a parameter throughout the following and will

usually be suppressed in the notation.

Only systems will be considered that are bounded and that are

differentiate. These two notions will now be explained. Let U be the

space of allowable input functions u^
[0. oo)

Definition: A system S characterized by an input-output-state relation

ship of the form (1. 2) is called bounded if

sup |y(t)| <00 '
u€ U (1.3)
0 < t < T

for all T < oo, and for all initial states x(0) that one may wish to take

into consideration.

By this restriction, systems with "finite escape time" are excluded.

Definition; Let Z) be a system characterized by a relationship of the form

(1. 2). Suppose that an input is applied of the following form

u(t) = u°(t) + €. u (t) (1. 4)

with u (t) and u(t) both in U. Then the system S is called differen-

tiable, if for £. small enough the output of the system at any time t > 0
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ean be expressed as

y(t) =H{x(0); + C u (t) + (1.5)

In this expression, H is a linear operator depending
u

upon x(0) and Its domain consists of time functions
(0, go)

u,« , in U, its range consists of time functions y.. The notation
(0, go) (U, go)

H u(t) indicates the value that the function H u assumes at time t.
u° u°

Furthermore, o(t; u^^^ , u^^ ) is a term with the property

lim °'̂ ="°(0,t]' "(O.t]' ^g
€->0 £

where the limit is uniform in . i» ^.i i. e. , the quantity
(U, tj (U, tj

of which the limit is taken can always be made smaller than any fixed

number for all u° € U, all u € U, and all t,

The system with the input-output relationship

Y(t) = H o u (t), all t > 0 (1. 7)
u

will be called the variational system of S about u^, and will be denoted

as S . Note that this is a linear system which is always in zero state at
u

time t = 0; i. e., the response to zero input from t = 0 on is the zero

function. Furthermore, if S is bounded, ZJ is also bounded; since in
u

(1. 5) all terms besides eH ^ u (t) are bounded, H q must also be
u u

bounded.
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The adjoint of the variationsLl system of S about denoted

*
2 o » is introduced as the system with input-output relationship

u

y*(t) =H*q u*(t), all t >0 (1. 8)
u

where the linear operator H is the adjoint of H . defined by the
o o

U U

requirement that

<3i , Ho =<Ch*o (1.9)
u u

•ou

for all functions ' u and u with finite norms. The inner product that

will be found convenient is

T

^ J u(t) v(t) dt (1.10)
o

The norm of a function u is, as usual, defined as

II u II =<u, u> (1.11)

To make the notion of variational and adjoint variational system

somewhat more tangible, one might represent the operation of the

variational system in the form
t

y(t) - H u(t) = j h (t, t) u(t) dr (1.12)
u° J u®

o

By this relation, h (t, t) is defined as a generalized integral
u

operator kernel; it is the familiar impulse response. It is easy to show

*

that the adjoint variational system S may be represented by
u
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where

X

* ** P* #iio\y (t) =H u (t) = I h ^(t, t) u (t) dT (1.13)
t

h*^(t, t) =h ^(t, t) (1-14)
u u

Controller. A controller is defined as a device that performs the opera

tion

i. e., it is assumed that at each instant t the entire past of the sample

function of the random process up to and including t is known, and that

the instantaneous input is chosen on the basis of this knowledge. A con

troller characterized by (1.15) will be termed admissible if

for all sample functions r. and all t, where y (t), co > "Y(t) > 0,
\ ~oo, tj

is a prescribed function of time.

The controller represented by (1.15), which for brevity's sake will be

denoted as F, produces an input function u^^ corresponding to each

sample function r. . of the random process; F is therefore an opera-
^ (-00, go)

tor. In its turn, each input function u,- . produces an output function
(0, oo)

y,_ .. In this manner, one obtains from the random process |r(t), t €(-oo, oo)}
(0, oo) ^

two new random processes, {u(t), t€( 0, oo)) , and {y(t)j t€ (0, oo)} .

-9-



Optimization criterion* Consider the expression

1G(F, T) =- e( Pw[y(t) - r(t)] dt) (1.17)
o

Here W(e) is a positive, convex, twice-differentiable weighting

function. The following three restrictions are imposed, which involve

at the same tune the weighting function W; the random process »

the system S, and the controller F. Let w(e) = and w'(e) =
de

dw(e) ,
; then the requirements are

: E(W[y(t) - r(t)]) is bounded for all t > 0

R^:" E(|w[y(t) - r(t)] | ) is bounded for all t > 0 (1.18)

R3 : E(|w'[y(t) - r(t) + q] |) is bounded uniformly in q for q

in some interval (-q , q ) and for
o o

all t > 0.

1 2(Typically, W(e) = J ®» hence w(e) =e and w*(e) =1; then both R^^ and
2

R^ amount to the condition that E(jy(t) - r(t)j ) be bounded for all t > 0;

R^ is trivial). The conditions can be interpreted in several ways. When

the random process, the system, and W(e) are given, R^^, R^ and R^

restrict the class of controllers that is taken into consideration. If the

random process, the system, and the class of controllers are given, R^^,

R^ and R^ restrict the weighting functions W(e) that can be used. Other

interpretations are also possible. In the following, the first of these

-10-



approaches is taken.
4

By theorem 2. 7, of Doob (p. 62), the expression (1.17) for

£ (F, T) maJces sense when

i J E (W[y(t) - r(t)] )dt <oo (1-19)
o

This condition is fulfilled by restriction R^. Because of the validity of

(1.19), interchanging the expectation and integration is now also allowed

in (1.17).

That £(F^ T) depends upon T is evident; its dependence on F is

through the statistical properties of the random process ^y(t) J . Acon

troller F° is called T-optimal, if it is admissible, and

&(F°, T) < £(F, T), for all admissible F (1. 20)

Of great interest are T-optimal controllers for very large values of T.

A controller F° will be called optimal if it is admissible, if lim G(F , T)
T-»oo

exists, and if

lim £(F°, T) < lim &(F, T) (1-21)
T—>00 T->oo

for all admissible F for which the limit on the right exists.

n. 2 A Necessary Condition for a T-optimal Controller

In this section a condition will be derived which a T-optimal con

troller must satisfy, in the general setup of Section 11.1. It is desired

to minimize
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±

C{F, T) =E( i r W[y(t) - r(t)] dt) (2.1)
o

Consider a controller of the form

<2-2)

owhere F is a supposedly T- optimah controller, £ > 0 is small, and

F is arbitrary within the following conditions:

^ '̂(-00,1]) - ° wherever =- y(t)

I wherever ,.]} I<y(t)
-00 <F }<0 wherever F°{ r^_^ =+Y(t)

(2. 3)

for all t. Here y (t) is the function that constrains the input amplitude,

and ^'wherever" is to be read as: "for all sample functions r for
(-co, t]

which. By imposing these conditions on F the controller F can always

be made admissible by choosing e small enough.

Let u(t), u°(t), and u(t) be the inputs generated by the controllers F,
o —F and F, respectively, from a sample function r, ,: then

(-co, t]

u(t) =u°(t) +e u(t) , t > 0 (2.4 )

The output which corresponds to the input u. , is
\U, IJ

y(t) =H{x(0);u°'̂ ,^j (2-5)

For this it can be written by the assumption of the differentiability of the

-12-



system

y(t) =H |x(0); +£^H ^u(t) + o(e ;t) (2.6)

where it is abbreviated

(O.t]

o(£;t) = o{£:u (2.7)

If one also abbreviates

y°(t)= (2.8)

i. e., y^(t) is the output generated by the T-optimal controller F from

the sample function r, expression (2.1) can be written in the form
(-00, t]

G(F, T) =E( ^ I W[y°(t) - r(t) +£H ^u(t) +o(c ;t)] dt)
^o- u^

(2.9)

It is noted that o(c;t) is here a random process, which is bounded

(because of the uniform convergence of the limit (1. 6)), and such that

lim =0 (2.10)

£-^0

almost surely. The following property of any differentihble function is

now invoked, here applied to the weighting function W(e):

W(x+y) = W(x) + y w(x) + o*(y) (2.11)

(©)
where, as before, w(e) = — , and o'(y) has the property

de

lim -BllZL = 0, for all x (2.12)
y—^0 ^

-13-



Employing this in (2. 9) one obtains

T

g(Fi T) =E( i J W[y°(t) - r(t)] dt )

+E( ^^ û(t) +o(£ ;t)] W[y°(t)-r(t)] dt)
o u

T

+E(-;j ^ o'[CH û(t) +o(C;t)] dt)
o

o u

=€(F°, T) +5E;(i r H^u(t) w[y°(t) - r(t)] dt )
V u

o

T

^ . 1
+

1 ,

o

X

E ("i 6( t;t) w[y°(t) - r(t)] dt)

T

+E{i Jo'[£ H^u(t) +o(£;t)] dt) (2.13)
o U

It is proved in Appendix 1 that the last two terms on the right-hand

side of (2.13) can be replaced by of'(c), a number depending upon €. with

the property

o"(c)
lim = 0 (2.14)

Thus one can write for (2.13):

T

S(F. T) -e(F° T) =£E(i r H ^̂(t) w[ y°(t) - r(t)]dt) +o"(e)
u

o

(2.15)
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Now if is to be a T-optimal controller, the change of the con

troller from F to F should not be an improvement. Hence for all

admissible F

C (F, T) -C(F°, T) > 0 (2.16)

By choosing c small enough, the first term of the right-hand side of

(2.15) can always be made to dominate the second term. This means

that, since ^ > 0, condition (2.16) cannot be satisfied unless

1 ^ -E (- H^u(t) w[y°(t) - r(t)] dt) > 0 (2.17)
o

for all F allowable according to (2. 3).

At this point the adjoint of the operator H is introduced. The
o

u

two time-functions that occur in (2.17) are of finite norm: Eq. (2.17) can

therefore be written as

T

E(- f u(t) Ĥ w[y°(t) -r(t)] dt) >0 (2.18)
o u

In this expression, •u(t) can be replaced by F |r^ . Introducing
conditional expectation, (2.18) can be put into the form

T

i J^e(f j]} E(H* w[y°(t) - r(t)] >0
o

(2.19)

If now a functional u (r, is defined by
'^T 1 (-co, tj J '

-15-



''TfVoo.t]} = (2.20)

the condition for optimality of F can finally be put into the form

T

i )dt> 0 (2.21)
o

for all F allowable according to (2. 3).

From this requirement the following theorem can easily be derived;

Theorem 1 : Let F° be a controller such that restrictions R,. R^, and
r 2

R^ are satisfied. Let the functional oo t] ^ be defined by (2.20).
Then a necessary condition for F to be T-optimal with respect to all

admissible controllers satisfying R , R and R is
12 3

>0 wherever F°{r= - y (t)

''T^(-oo,t])' = ° wherever | < v(t)
< 0 wherever F°(r, ^i}=+Y(t)

^ (-00, tj' '

(2. 22)

almost everywhere with respect to the probability measure induced by

the random process {r(t) , t € (-co, +co)} .

: The necessity of condition (2. 21) has been established. Suppose

that condition (2. 22) is violated in some region of non-zero measure.

Then it is easily recognized that an F can be chosen, within the require

ments imposed by (2. 3), such that (2. 21) is violated. This contradicts

the assumption that (2.22) is not necessary; hence (2. 22) is necessary

-16-



and the theorem has been proved.

It may be enlightening to adopt the following point of view. With

the notation

±

• f S {"^(-co, t]) ('(-co, t] )>

it is possible to rewrite (2.15) in the form

G(F, T) « e (F° T) +(|X,^, CF) {2- 24)

for £ small. It is seen that in some sense (i is the derivative of G(F, T)

with respect to F at F°; it corresponds to the notion of the Frechet-

, . . 5
derivative.

II.3 Sufficiency of Condition for Optimal Controller for Linear Systems

In general very little can be said about the sufficiency of the con

ditions of Theorem 1. In the case of a linear system, however, the

following theorem can be proved:

Theorem 2 : Suppose that the system S is linear. Let F^ be an ad

missible controller such that the restrictions R,, R^, and R,, are
1 2 3

satisfied. Then (2. 22) is a necessary and sufficient condition for F

to be T-optimal with respect to all admissible controllers satisfying

R^, R^, and R^.

-17-



Proof : The necessity of condition (2. 22) has been established in

Theorem 1. To prove the sufficiency of (2. 22), it must be shown

that if a controller F° satisfies (2. 22), it is T-optimal.

In order to do this, consider any admissible controller F

satisfying R^, and R^, and write it in the form

^ f^/ + F(r, t} (3.1)I (-co, t]J 1 (-00, t]J I (-co, t]-' '

Due to the admissibility of F and F°, it must hold

> 0 wherever F^/r, ,1 = - Y(t)

< 0 wherever F° |r^ oo t]} ~ ^

Corresponding to (3.1), the input to the system can be written as

u(t) = u°(t) + u(t) (3. 3)

and the output as

y(t) =H{x(0) : +"(0,t]}
.34Now by the definition of linearity ' this can be equivalently written as

y(t) =H{x(0);u°,Q^jj} + (3.5)

where the second term on the right-hand side indicates the zero-state

response of the system to u^^ . Thus, in the notation of II. 1,

H ^u(t)= h{0;u } (3.6)
U V » J

F fr, J
^ (-C30, t]*'

-18-



and

Furthermore, the following property of any differentiable convex func

tion W is invoked:

W(x+y)> W(x) + yw(y) (3.8)

dW (e)
where, as previously, w(e) = — .

Now, using ( 3. 5) and ( 3. 8), it follows

T

6(F,T) =E(i J W[y(t) -r(t)]dt)
o

T

=E(i j W[y°(t) -r(t) +H„u(t)] dt)
^ u

o

T

>E(i J W[y°(t) -r(t)] dt)
o

T

E(i ^ Ĥ u(t) w[y°(t) -r(t)] dt) (3.9)
o ^

where, as before,

y°(t) =h{x(0) ; u°Q (3.10)

Going through the same steps as by which Eqs. (2.18) and (2.19) were

obtained, and with the use of as defined by (2. 20), it follows from

(3.9):
1

G(F,T)- £(F°.T)>i Je t])*
(3.11)
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The right-hand side of this expression is obviously > 0 because of

the hypothesis (2. 22) on the behavior of the functional and the

inequalities (3.2) that F must satisfy. Thus the proof that condi

tion (2.22) is siifficient for to be T-optimal, in the case of a

linear system, has been completed, since the inequality

G(F,T)- G(F° T) > 0 (3. IE)

expresses that F° is T-optimal.

II.4' Optimal Feedback Control

Controllers which are expressed in terms of functionals on

the random process in the form of (1.15) have the disadvantage of being

practically unfeasible as soon as it is necessary to compute and im

plement them, except when simple analytical expressions can be found.

This difficulty may to some extent be overcome by the use of feedback

controllers, as opposed to controllers of the type that have been con

sidered so far, which will be denoted as feedforward controllers.

Before defining a feedback controller, the notions of the state of the

system S and the state of the random process ^r(t), t € (-oo, +co)J

should be discussed.

The notion of the state of the system 2 was already touched upon

in II. 1. For the purpose of this investigation it is sufficient to use the

3 4
following concept of state. * At all times t the system 2 is des

cribed by the state x (t) in the sense that there exist two relations of
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the form

x(t)= 5c{x(t^);u^^ , 0<t^<t <41)
o

y(t) = 'Y {x(t) , u(t) , t) (4- 2)

That is, at each instant t the state x(t) is uniquely determined by the

state at some previous instant ^(1^) input during the interval

(t , t] . The output y(t) is at each instant uniquely determined by the
o

instantaneous state x(t) and input u(t). Upon combining (4.1) and

(4. 2), the relation (1.2) that was used previously is obtained:

y(t) =H{x(t^):u j) (4.3)
^ o

The state of the random process {r(t), t€ (-co, -loo)} is a random
process |z(t), t e [0, ao)| , not necessarily scalar or even vector-

valued, which is defined on the sample space of |i'(t)| and has the fol

lowing properties:

i) For all t^, t^, . . . , t^ > t , for all r^, r^, . . . , r^,

and for all integers n,

P{r(t^)<rj, 1 ' "(-co. t] )

= P (r(tj)<r^, r(t2)<r2 '<V-"n ' ^

ii) At each instant t, z(t) is completely determined by its

value z(t^) at any previous instant t^ < t, and r^^ , i. e. , there
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exists a relation

Z(t) =^ ^ , for all 0< < t (4. 5)

It is seen that in a sense z(t) "summarizes" all information con

cerning the future of r(t) which is contained in r, By condition
(-00, t]

ii). the -state can be found by observing the random process* Clearly,

the notion of state is related to that of sufficient statistic* In the follow-

ing it will be assumed that either z(0) is known, or else that as t —^-oo
o

the right-hand side of (4. 5) becomes independent of z(t ) and thus z(0)

can be obtained from r,
(-00, 0]

Two examples of the state of a random process are 1) in the least

favorable case z(t) ~ ^ and 2) the case of a simple Markov pro

cess z(t) = r(t)*

Now the meaning of feedback controller can be explained*

Definition : A feedback controller is a controller which generates an

input to the system as an instantaneous function of the state of the random

process and the state of the system, i* e*,

u(t) = F(x(t), z(t), t) (4. 6)

with the restriction that the interconnection of the controller F and the

system S be determinate. The interconnection of the controller F and

the system S is said to be determinate if for all t the state of the

system x(t) is uniquely determined by the state x(t ) at some
o

-22-



preceding instant t^ and the input to the interconnection of the con

troller and the system during the interval (t^, t]. The input in this

case IS z (to. t]:

The sketch of Fig, 1 gives the interconnection of the controller

and the system.

(-00.t1

functional

z(t) =

(-co,t

z(t)
controller

u(t) =

F(z, X, t)

u(t)
system

x(t)

Figure 1. Interconnection of Controller and System.

y(t)

The condition of determinateness is necessary to ensure that

there is no non-uniqueness in the operation of the interconnection of

system and controller. It is always satisfied when the value of u(t)

has no immediate effect on the value of x(t).

To say that the interconnection of system and feedback controller

is determinate is equivalent to saying that to the feedback controller
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there corresponds a unique feedforward controller of the form

=^ {-^(-co.t]} (4-7)

such that the operation of the feedforward controller is the same as

that of the feedback controller. ^ The converse of this is not true,

however; there does not correspond a feedback controller to every

feedforward controller. That nevertheless it is possible to limit

the search for optimal controllers to feedback controllers will be

come clear in the following. First of all the following lemma is

proved.

Lemma 1 : Suppose that the system S is interconnected with a con

troller F of the feedback type, i. e. ,

u(t) = F(x(t), z(t), t) (4. 8)

Then the functional |r^ ^ as defined in (2. 20), but extended

to any controller F, can be expressed as an instantaneous function

of x(t) and z(t), where x(t) is-the state into which the system has

been brought by the controller F as a result of the sample function

(''(-cx.,t]) = (4-9)'

To simplify the notation the same symbol F is used for both the
feedback and the feedforward controller. When confusion is possible
the argument of the functional will be written out in full.
* . +A remark similar to footnote applies to
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Sketch of Proof : No attempt will be made to prove the lemma

rigorously, although intuitively there are few difficulties. First of

all, write the function ii™, fr, i) with the aid of the impulse
* ^ (-GO, t]J

response of the variational system, according to (1.13) and (1.14), in

the form

T

t ^
(4.10)

Consider the right-hand side of this expression. By giving r^ ^

also z(t) and x(t) are known. It will be argued that it is sufficient

to know these two quantities to find the right-hand side of (4.10).

Consider the various functions of time which occur under the integral

and expectation sign. The function h (t, t) is defined as the response
u

at time t due to an impulse applied at time t to the variational

o
system about u . Loosely speaking, h (t, t) can therefore be con-

u

sidered as the derivative with respect to t of the change of response

of the system itself due to an infinitesimally small step applied at time

t (with an appropriate multiplying factor). But the behavior of the sys

tem, from time t on, and hence also h ^(t, t), is completely determined
u

by z(t), x(t) and r. .. But statistically, r,^ . depends entirely on
(t, GO) (t, GO)

z(t); hence, statistically h (t, t) depends completely upon z(t) and x(t).
u

By the same argumen^, y(T) and r(T) also depend statistically only

upon x(t) and z(t) for t > t. Thus it follows that all quantities under
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/"

the integral and expectation sign depend statistically only upon x it)

and z(t); hence ^ can be expressed as a function of

x(t) and z(t) alone.

Asa consequence of this lemma the following theorem, which

brings out the usefulness of considering feedback controllers, can

easily be established.

Theorem 3 : Let F° be an admissible controller of the feedback

type, such that conditions R^, R2, and R^ are satisfied, and such

that the corresponding ji^-function satisfies the condition

> 0 wherever F°(x(t), z(t), t) = - y (t)

^.j,(x(t), z(t), t) ^ = 0 wherever |F°(x(t), z(t), t) | <y (t)

.0<0 wherever F (x(t), z(t), t) = + y (t)

(4.11)

almost everywhere with respect to the probability measure induced on

x(t) and z(t) by the random process {r(t)] and for almost all t. Then

the feedforward version of F° satisfies the conditions for a T-optimal

controller with respect to all admissible controllers satisfying R , R_,
1 ^

and R^.

Proof : Once Lemma 1 is established, the proof of Theorem 3 is very

simple. Let r^ ^ be a sample function for which condition (2. 22) is

to be checked. From this sample function^ the corresponding x{t) and
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z(t) can be found, and from these the values of F | t]) ~
F°(x(t), z(t),t) and M-T{^(_oot]^ " (t), z(t), t). But then it
follows immediately from (4.11) that F° and (i^ stand in the

correct relation to each other; hence, F satisfies condition (2. 22)

and therefore qualifies as a candidate for a T-optimal controller.

II. 5 Conditions for a T-optimal Controller with T = oo

In the preceding discussions the question of the requirements

for an optimal controller, i. e., a T-optimal controller for T = co,

has been avoided. The difficulty is that not much can be said about

the existence of the various limits as T tends to go. What can be

said is summarized in the following theorem.

Theorem 4 : Suppose that F° is an admissible controller such that

R , R«, and R^ are satisfied, and such that
X " J

lim S(F°, T) (5.1)
T—>oo

exists and is finite. Suppose furthermore that for this controller the

function ^ defined by Eq. (2. 20) has a limit M-qq }

as T—^00 in the sense that

T

lim —
T

T->oo
(5.2)

Now define a neighborhood of F by permitting variations of the type

^ =^°{''(-oo,t]) +^"^^(-00,1]} (5.3)
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with F such that II, R and R are satisfied, 0<G<e , F
1 z 5 m

allowable according to conditions (2. 3), and F such that

and

lim £ (F° +e F, T)
T-^oo

I')

lim

T->oo

(5.4)

dt (5.5)

(5.6)

exist and are finite. Then there exists an £. such that F° is locally
m '

optimal in this neighborhood if

''oo{'(-oo.t]l

> 0 wherever -- -Y (t)

= 0 wherever <y it)

1A

o

wherever + Y (t)

(5. 7)

almost surely with respect to the probability measure induced by the

random process |r(t), t€ (-co, +oo)} .

Proof : As in the proof of Theorem 1, it holds for any finite T

£(F%eF.T)-G(F°T) =4 J
+o(e) (5.8)
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Now as T tends to oo, the two quantities on the left have a limit by

hypothesis. Furthermore
T

111 iT—^CD ^
o

T

= lim i
T-r>oo ^

(5. 9)

since

T—^00 o

T

- lim E(F{r, ^,} n {r,T J ' ^ (-oo,t]X '*00 X (-CD,t]J
T-^00

o

T

=lim I i J E( F (li, - (1^) )dt Î
T-^oo o

^ T
<lim i J E( F)^ dt . lim ^ J E( (i ^ -|i^)

T->co o T->cd o

^dt

= 0 (5.10)

because of relations (5. 2) and (5.5) and with the use of Schwartz's in

equality. Now since the^imits as T goes to 00 of all terms in (5. 8)
I

besides o(£) exist, also lim o(£) must exist and remain a term o'(c)
T—^00

of order G . Thus one can write for (5. 8) as T—^00
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lim S(F° + gF, T)- lim C(F°, T) =
T-> oo T-> oo

o

(5.11)

By the same arguments as in the proof of Theorem 1 it can be reasoned

that the function has to satisfy condition (5, 7) if the controller F^

is to be locally optimal. This completes the proof.

By means of this theorem one now has a tool in p to investigate

the optimality for T = co of any given controller; it is not necessary,

for example, to investigate sequences of T-optimal controllers with

T—-^co. It is clear that Theorem 4 expresses necessary conditions for

a oo-optimal controller, since optimality implies local optimality in

any neighborhood.

Of course, corresponding to Theorem 4 there exists a stronger

statement for linear systems in the following form.

Theorem 5 : Let the system S be linear. Suppose that F^ is an ad

missible controller such that Rj^, R^, and R^ are satisfied, and such

that

lim 6(F°, T) (5.12)
T-^oo
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exists and is finite. Also suppose that for this controller ^'^cd

as T—^oo in the sense required by (5. 2). Let F be any other ad

missible controller such that R^, and R^ are satisfied and

lim £ (F, T)
T—>co

(5.13)

lim

T—>co

X

/Kl {'(-co.t]} I')
and ^

lim i r E(p {r, (F{r, ^^j-F^fr _ .i})) dt
^ . T I ^^00 1 (-0O, tj' 1 (-c»,tj/ ^ (-co, tJJ
i*—^oo ^

o

(5.15)

exist and are finite. Then F° is optimal with respect to all such con

trollers F, i. e.,

lim G(F°T) < lim £ (F. T) , all such F, (5.16)
T—>00 T—>00

if and only if

> 0 , whenever F° |r^ ^ =- Y

= 0 whenever |F°|r^

< 0 whenever F° {r *i}~ Y
v t J '

*^00 {^(-00, t]}

(5.17)

almost surely with respect to the probability measure induced by the

random process {r(t), t€ (-00,+oo)j.
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Proof : The proof can be very short. The necessity follows from

Theorem 4. To prove the sufficiency of condition (5.17), it is re

called that for a linear system it can be written for all finite T (see

proof of Theorem 2)
T

C(F,T)- e(F°.T) >i J
o

(5.18)

where

F = F - F° (5.19)

By the same argument as in the proof of Theorem 4, and by the use of

(5.13), (5.14) and (5.15), it follows that as T —>ao, the right-hand side

of (5.18) approaches
T

which exists by hypothesis (5.15). Now since both F and F° are ad

missible,

I, .JI - -vW
• (5-21)

•^10 if = +V(t)

From this it follows immediately that

lim C(F, T) - lim £(F°, T)
T—>co T—>co

T

> 0

which implies that F° is optimal. This completes the proof.
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III. APPLICATION TO LINEAR, TIME-VARYING DIFFERENTIAL

SYSTEMS AND A CLASS OF MARKOV-TYPE RANDOM PROCESSES

In this section, the results of Section II will be specialized to

. linear, time-varying differential systems

. non-stationary random processes of which the state is a

finite-dimensional diffusion process. The main results will consist

of a number of manipulatory results which will be useful for finding

actual solutions, and the fact that for a subclass of the cases considered

the optinial controller is .of the; bang-bang type.

However, first considerable attention should be given to the char

acterization of the systems and the random processes that will be con

sidered.

III. 1 The Characterization of Linear, Time-Varying Differential

Systems

The type of system to be considered is that which can be ^described

by the relations (k(t) =A(t) x(t) +h{t) u(t)
- - - (1.1)

y(t) = c(t)'x(t) + k(t) u(t)

where, as before, u(t) and y(t) (scalars) are the input and output, res

pectively, and x(t) = col(x^(t), ^^(t), . . ., state of the
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system. The dot indicates differentiation with respect to time; A(t)

is a time-varying n x n matrix; b(t) and c(t) are time-varying

column vectors of dimension n; k(t) is a time-varying scalar func

tion; the prime denotes the transpose. All quantities are supposed to

be real.

The solution of (1.1) for some input and some initial state can most

conveniently be given in terms of the transition matrix <j) (t, t), which is

defined as the solution of

^ i(t, t) =A(t) ^(t, t)
(1. 2)

^(t, t)

where _I is the identity matrix. With the aid of the transition matrix

the solution of (1.1) takes on the form

t

y(t) =£(t)' ^ (t, t^)x(t^) + ^(t, t) b(T) u(t) dr)

+ k(t)u(t) , t> t (1.3)

where x(t ) is the initial state at t = t . This relation is in fact the
— o o

explicit form of the representation which has been used to characterize

the system up till this point:

y(t) =H{x(t^) ; ^ (1,4)

It was seen in Section II. 3 that in the case of a linear system the

variational system is exactly the ssime as the system itself, with the
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restriction that the initial state at time 0 is always 0; hence the

variational system is characterized by

7(t) = H

t

=C(t)'S ^(t, t) b(T) u(t) dr +k(t)u(t)
(1. 5)

From this expression it is seen that the impulse response of

the variational system is given by

h(t, t) = c(t)' i(t, t) h{r) + k(t) 6(t-T) (1. 6)

where the subscript u° has been dropped from h ^(t, t), since the
u

impulse response does in this case not depend upon the trajectory.

It follows that the impulse response of the adjoint variational

system is given by

h*(t, t) = h(T, t) = yt)' ^ (t, t)'yT) + k(t) 6(t-T) (1. 7)

Hence the adjoint variational system is characterized by

y*(t) =b(t)'̂ ^ ^(t, t)'£(T) u*(t) dr +k(t) u*(t) (1*8)

From the transitivity property of the matrix i. e., the fact

that

i(t,t^) =i(t,t^)ytj,t^) (1.9)

for all t, ty and t^, it is easily derived by differentiation with re

spect to tj^ that the matrix t)' satisfies
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by

•) dr (1.11)

(1.10)

^(t, t)' =_I

If therefore the state of the adjoint variational system is defined

J

x*(t) ='j^ ±(t, t)'c(T) u*(t]
t

it follows easily that in state form the adjoint variational system is

described by

x*(t) = -^(t) 'x^(t) + e<t)u*(t)

y*(t) = -b(t)'x*(t) + k(t)u*(t)

L x*(T) = 0 (1.12)

Because of the close connection of the system 2 itself and the

variational system, the system described by Eqs. (1.12), but without

the restriction x*(T) = ^ , will be called the adioint system of 2; it

will be denoted as 2*.

In the sequel some facts concerning the equivalent representation

of the systems 2 and 2* by scalar differential equations will be useful.

In order to do this, first the following notions are introduced.

Definition : A linear differential system 2 described by Eqs. (1.1) is

called instantaneously controllable at time t if the system can be

brought into any state x(t), from zero state, during an arbritrarily
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short interval of time preceding t.

Definition; A linear differential system S described by Cqs. (1.1)

is called instantaneously observable at time t if it is possible to

determine any initial state x(t) by observing the zero-input response

from this state during, an arbitrarily short interval of time following t.

Define two chains of vectors as follows

=(-1)'"*^^ (-^+ A(t) )'Mt) , i =0.1. •••, n
d i (1-13)c^.)(t) =(-^+ A(t) ) c(t). i =0.1..... n

under the assumption that all vectors i = 0, 1, ...» n, and

c,.»(t), i = 0, 1, ...» n exist and are continuous. The relevance of the

vectors b,.,(t) and c,.,(t) will become evident from the following lemma:
Hi) Hi)

Lemma 2 : Suppose that a linear differential system S is described by

Eqs. (1.1), and that the vectors K.»(t) and ^..(t), as defined in (1.13),
Hi) "xi)

exist and are continuous. Then if the vectors b^^j(t), i =0,1, . . . , (n-1),

are linearly independent during an arbitrarily short interval of time pre--

ceding t^, the system S is instantaneously controllable at time t^.

Furthermore, if the vectors c^.j(t), i =0, 1, . . . , (n-1), are linearly in

dependent during an arbitrarily short interval following t^, the system

S is instantaneously observable at time t^.
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Proof: To prove the first part of the lemma, consider the following

expression for the state at time t^ into which the system has.been

brought from zero state at some time t < t by some input u. ^
o ' (t,t j

^o£(t^) =̂ (1-14)
Now apply an input which consists of a linear combination of delta

functions just prior to t^:

n-1

u(t) = A u. 8*^^ (t - t -) (1.15)
1=0 1 o

where t \ indicates an "instant just prior to t and the u. are arbi-
o o 1

trary constants. With the use of (1.10) it is not difficult to verify that

the response to this input at time t^, according to (1.14), is precisely
n-1

x(t )= 2! uK (t -) (1.16)
O ^-Q 1—(1) o

Since by hypothesis the vectors )» i = 0,1,. .., (n-l), are linearly

independent, they span the space, and every state x(t ) can be reached,
— o

which implies that S is instantaneously controllable at t .
o

To prove that the linear independence of the vectors c^.j(t)»

i = 0,1, — , (n-1), during an arbitrarily short interval of time following

t^ means that the system S is instantaneously observable at time t ,

consider the zero-input response from any state x(t^)

y(t) = c(t)' <|>(t,t ) x(t ) , t > t (1.17)
— — o — o — o

By differentiating repeatedly with respect to t and setting t =

where t ^ is an "instant just after t ", it follows with the aid of (1. 2)
o o * '
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=%)0'
(1.18)

= £<„.i)(t„'')'i(t„)

Since by hypothesis the vectors )» i = 0,1, . . ., (n-1) are

linearly independent, the £]qs. (1.18) can'always be solved for x(t^)

if the y^^^(t ^) are observed, which completes the proof that 2 is
o

instantaneously observable.

Now for a system 2 that is instantaneously controllable or ob

servable during some interval of time (t^, t^^), the following resvilt

can be shown to hold:

Lemma 3 : Let 2 be a system described by Eqs. (1.1) such that

the vectors c.,.(t) exist, are continuous, and are linearly indepen-
""(i)

dent during some interval (t , t ). Then during this interval the
o 1

input u(t) and the output y(t) obey a differential equation of the form

k=0 dt dt

which will be abbreviated as

such that 6 (t) ^ 0 during this interval,
n
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Furthermore, if the vectors i = 0,1, (n-1) exist, are

continuous, and are linearly independent during the input and

*" * . *output (u (t) and y (t), respectively) of the adjoint systpm S obey

a differential equation of the form

a...,

which will be abbreviated to

* d . * sjs d *D{-^) y = N (-^) u (1.22)

such that (t) 5^ 0 during this interval.

Finally, if both the sets of vectors b,. Jt) and c,..(t),
—<1/ —(i)

i = 0,1, ..., (n-1), are linearly independent during the interval (t , t ),
o 1

then a .(t) = 0, j = 0,1, . ., p, during (t , t ) implies
~J o 1

k(t) =0, b(t)'c^ (t) = 0. i =0,l (p-1) (1.23)

£(t)%.j(t) = 0, 1=0,1 (p-1), (1.24)

and

a*_.(t) =0, j =0,1, ...,p (1.25)
all during the interval (t^, t^).

Proof : From (1.1) it follows by differentiating y repeatedly with

respect to t, that

(1.26)
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=c^^j(t)'x(t) +c^Q^(t)'yt)u(t) +|̂ k(t)u(t) (1.27)

2

2

+ k{t)u(t) (1. 28)
dt

^ y(i) - - X ^ itvv, i+\i-,n-\ 4-^

dtn-l HO) -

n (1.29)
+ k(t)u(t)

dt^

Now since the vectors c,..(t), i = 0,1, ... , (n-1), span the n-dimen-
-11)

sional space by hypothesis, there must be (n+1) time functions P^(t)

such that

-(0)'* '̂ •*• ^1)'̂ ' +••• +P„(t) c^^j(t) =0 (1. 30)

with P^Ct) ^ 0 during the interval (t^, t^). Then it is possible to

eliminate x(t) from the Eqs. (1. 26)-(l. 29) with the aid of (1. 30); it

follows easily that y(t) satisfies the differential equation

•
dt

dt^
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= P_(t) —- k(t) u(t)
dt^

+Pn'*' 7^%)(t)"b(t)u(t) + k(t)u(t)
dt dt

+ + Pi(t) c^Qj(t)'b (t) u(t)

+ Pg(t) k(t) u(t) (1.31)

The right-hand side of this equation can easily be put into the required

form of (1.19).

To prove that the adjoint system leads to a similar differential

equation, one proceeds in the same way; the only difference is that in

the final res\ilt (1. 31) the c... are replaced by b,.,, b by c, and the
—(i; _ _

Pi(t) by P*(t).
To show the last part of the lemma, suppose first that a (t) = 0

during (t^, t^. This means that in Eq. (1. 31) in the right-hand side no
-.n , .

d u(t)
terms in should appear. But since p (t) ^ 0, one must have

dt° "
k(t) = 0 during the interval (t , tj. If in addition to a (t) = 0, also

o 1 n

a^_j(t) = 0, then neither should terms in ^ j ' appear in the
dt "

right-hand side of (1. 31). it follows by inspection of the second Tine of

this right-hand side, that then £^Qj(t)'b{t) =0. Continuing in this

fashion, it follows that ^(t) =0, j =0,1, . ., p, implies

k(t) = 0, c (t)'b (t) = 0, i = 0,1, . . ., (p-1)
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The proof that £/.v(t)'b (t), i - 0,1, . . ., (p-1), implies b (t)*c (t)=0,
li; -(i) -

1 = 0,1, , (p-1), is given in Appendix 2. That this fact together with

k(t) - 0 implies = 0» j = 0» 1, •••, p, is not difficult to recognize

i'^spection of the differential equation for the adjoint system corres

ponding to (1. 31).

Observation : The following facts are also true, but will not be proved

since they will not be needed.

converse of Lemma 2: If the system S is instantaneously

controllable (observable) at time t , then the vectors b (t )
o "^i) o

i =0,1, ..., (n-1) (respectively c^.^ (t^"^), i =0,1, ..., (n-1)) are linearly
independent.

. A stronger version of Lemma 3: If the vectors c (t). i = 0 1
»

. . ., (n-1), are linearly independent during an interval (t , t,), the
o 1

system S is equivalent during (t^, t^) to the system described by the

differential equation (1. 31). Two systems are called equivalent if every
j

input-output pair (u y ) of one sy^stern is also ah"input"=^ou.tput
* o' r

pair for the other system, and vice-versa. Similarly, if the vectors

^i)(t)» i - 0,1, ..., (n-1), are linearly independent during (t , t^), the
system described by the differential equation derived from the adjoint

system is equivalent to the adjoint system 2 .

. It is finally remarked that instantaneous controllability and

observability, as defined here, differ from the notions of controllability
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and observability (without adjective) as currently used in the literature

6 .
(Kalman), in the definitions of which the words "during an arbitrarily

short interval of time" are replaced by "during some interval of time. "

In the case of time-invariant systems, however, instantaneous con

trollability of course implies controllability, but also is implied by

controllability. The same is true for observability.

Results which are related to those obtained in this section can be

7
found in a note by A. Chang.

III. 2 Description of a Class of Random Processes

The random processes that will be considered are those which are

in some sense the projection of a finite-dimensional diffusion process.

Before defining this class of random processes more precisely, the

notions of Markov process and diffusion process will be discussed.

A vector process ^(t) = col(Zj^(t) , z^Ct), .. ., ) is a Markov

process if

p{z(ti)< z{t^)< .... z(y < I tj]

= At^)< Z^. z(tj< z^ I z(t)] (2.1)

for all z , . .., z , all t,, . . ., t > t, all integers n. Note that a
—1 —n i n — ^

vector inequality has to be taken component by component. A Markov

process can be very adequately described in terms of its transition

distribution function

-44-



F^(t. Z;T, y =P{Z(T) « 4 I z(t) =2} (2. 2)

usually only defined for t > t. The transition density function f_ of
' z

the Markov process, if it exists, is defined as

(t.z^; T, £)
f (t, z; T, ^ ) = ——— — (2. 3)z - - atj a^2.-.v'^^k

g
In the following, the notions that are developed in Doob (VI. 3),

are used, except that they have been extended to the vector case.

To define a diffusion process, one can take two different points

of view. The first possible approach is to define a diffusion process

as a Markov process such that the following set of hypotheseisj is fulfilled:

: The transition density f^ exists and has appropriate

regularity properties (differentiability and so on).

: The following limits exist

p{|| z(t. At) - ^(t) II >^}
lim ' —: ^—!— = 0 (2.4 )

At—5^0 At

for any£ > 0 ;

/ ^(t+At) - £(t) \
lim EI I^(t) =£ J =p(^» t) (2. 5)
At J 0 \ At /

[ z(t+At)-z(t)] [ z(t+At)-^(t)]
lim E

At} 0

= Q(z, t) (2. 6)

/ [^(t+At)-£(t)] [£(t+At)-^(t)] ' »
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where || . || denotes the Euclidean norm of a vector, p(z, t) is a

vector-valued function of ^ and t, and Q(z, t) is a symmetric positive

semi-definite matrix for each z and t. For the limits (2. 5) and (2. 6)

to exist it may be necessary to truncate the random variable z(t+At).

Condition (2. 4) means (by definition of continuity of a random

process) that £(t) is a continuous random process. The vector

p(z, t) might be called the infinitesimal mean and the matrix Q (z, t)

the infinitesimal covariance matrix of the process.

: Both p(£, t) and Q(^, t) satisfy appropriate regularity con

ditions.

The second approach is to define a diffusion process in such a

way that each sample function of the process is the solution of a

stochastic differential equation of the form

dz(t) = p(z(t), t) dt + ^(z(t), t) d V (t) (2. 7)

Here p(^, t) is the same function as before, and the matrix A (z, t) is

related to the matrix Q(z,t) as follows

Q(z, t) (£, t) A (z, t)' (2.8)

Both A and Q are k x k matrices. Finally, v(t) is a sample

function of a k-dimensional Wiener process with independent com

ponents each of which has unit variance parameter. In electrical
dv(t)

engineering language, the process — is a k-dimensional Gaussian
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white noise process with independent components each of which has

power density unity.

If again appropriate regularity conditions are imposed upon

p^(^, t) and A(z, t), it can be shown that the random process {^(t)}

which is defined with the help of the stochastic differential equation

(2. 7) has exactly the same transition density function as the process

defined \mder the hypotheses and

Therefore the two approaches can be considered equivalent. In

the following the second approach, namely that of considering each

sample function of {z(t)} as a solution of (2. 7), will be taken. One

reason for doing this is that presumably in practice many diffusion

processes are generated according to a mechanism described by (2. 7);

moreover, it will develop into a convenient approach.

It can be shown that f (t, z ; t, 4) satisfies two partial differen-
z — —

tial equations, called the Kolmogorov equations^ each of which, along

with the appropriate boundary and initial conditions, determines f
z

completely. The so-called forward equation (also called Fokker-

Planck equation) is

= X f_(t,z ; T, C) (2.9)
dr z'"-

wherej? is the partial differential operator
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with

tr It: = -ntry. .
2 dz

a ' Id* a

~ " a£ 2 "aT" -"aT" (z.io)

£(z,t) = £(2, t) - J { Q(z..t) ) (2.11)

a
Here is the vector-"valued" operator

8i-) <2.12)
12 k

In expressions such as (2.10) and (2.11) it is manipulated as a column

g
vector, but care has to be taken of the order, since -r— operates on

a z

everything that follows it.

The so-called backward equation , which in studies of this kind

seems to play the most important role, is derived in Apjpendix 3; it is

given by

af (£, t; £ , t)
9^ =/'f^(z ,t; £, t) (2.13)

where is the partial differential operator

^ ^ +1 -fi" h
*

Note that andc^Pare adjoint partial differential operators'
*

but that < '̂ operates on ^ only, and oP on z only. For both (2. 9)

and (2.13) the initial condition (respectively terminal condition) is
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f^(t, £ ; t, y = 6(z - y (2.15)

and the boundary conditions follow from the requirement

f^(t, z;t,yc^=l, all T> t (2.16)

Two more comments on the diffusion process are the following:

If the functions p(z, t) and A (z ,t) do not depend upon time, the statis

tical properties of (z(t)} are invariant with respect to translations in

time; then the process is stationary.

If the differential equation (2. 7), is linear, i. e., it takes on the

form

dz(t) = Pj(t) z(t) dt + A (t) dv(t) (2.17)

where P(t) and A (t) are time-varying matrices, ^(t) is a k-dimensional

non-stationary Gaussian process. In this case

IT (^, t) = P(t)z^ (2.18)

and

Q(z,t) = Q(t) = A(t) A(t)' (2.19)

with an apology for the loose notation,

Now that the properties of a diffusion process are established,

one can proceed to outline the requirements for the class of random

processes {r(t)} that will be considered in this study.

/•
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It is supposed that each sample function of [ 3:(t) j can be con-

sidered an instantaneous scalar function of a k-dimensional diffusion

process as described in the preceding pages; i. e., there exists a

relation

r(t) = p(z(t), t) (2. 20)

It is furthermore supposed that it is possible to recover the

present value of ^(t) from the past of r(t); i. e., there exists a rela

tion

o

where it is assumed that either z(0) is known or else the right-hand

side of (2. 21) becomes independent of z(t ) as t —>-C30, so that
— 0 o

z(0) can be obtained from q] * clear that if {r(t)} is of the
type described here, the random process ^z(t)} qualifies as the state

of the random process {r(t)} , as defined in Section 11. 4.

It is not so clear, how large this class of random processes is.

At least all stationary Gaussian random processes with rational power

densities are included.* To illustrate this, and to clarify the notion of

the state of a random process in general, the following example is given.

* Also many Gaussian non-stationary processes are included. Compare
with Kalman and Bucy's prediction theory. ^
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Excimple:Let{r(t)JbeastationaryGaussianrandomprocesswith

zeromeanandpowerdensityfunction

c/f*=I(jZirf+1)I2(2.22) '(j2irf+2)(j2irf+3)I

Thisrandomprocesscanbethoughtofashavingbeenobtained

bypassingGaussianwhitenoise—^withunitypowerdensitythrough

afilterwithtransferfunction

H(s)=—(2.23) '(s+2)(s+3)

Apossiblerepresentationforthissysteminstateformis

dv(t)
z(t)=^-2Ojz(t)+j(2.24)

r(t)=(-12)z(t)(2.25)

Itisobservedthat{£(t)Jisadiffusionprocesssince(E.24)can

beputintheform

dz(t)=/-20\z(t)dt+/I0\dv(t)(2.26) ^-20^z(t)dt+^1Oj

wherev{t)isatwo-dimensionalWienerprocessofwhichthefirstcom

ponentisv(t).Itnowbecomesclearthat[z(t)j-isthestateoftherandom

process{r(t)J.IfEqs.(2.24)and(2.25)areingeneralwrittenas

z(t)=Pz(t)+Av(t)(2.27)

r(t)-p'z(t)(2.28)
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and the value z(t ) of z(t) at some instant t < t_ is known, the
— o — o — 1

value r(tj^) of r(t) at some instant t^^ in the future can be expressed

as

'(tj) =£' (e-'*!"*©' z(t^) +J A(t) dv(T)) (2.29)
t

o

Of the right-hand side of this expression the first term is completely

known if ^(t^) is known. But since v(t) is a process with independent

increments, the second term is completely independent of anything that

happened prior to t^, so that all relevant information is contained in

the first term, which is determined by z(t ).
— o

The question how to recover z(t) from r, ^ is easily
— (-00, tj

solved. The white noise " can be regenerated by passing r(t)

through a filter with transfer function

J_ ^ (s+2)(s+3)
H(8) (s+1)

Now by Eq. (2. 24) ^(t) can be thought of as being obtained by passing

through a filter with transfer matrix

-1^s+2 0^ ^1

52-

(2. 31)

0 s+3

Then z(t) can be recovered by passing r(t) through a filter with

transfer matrix



(s+3
s+1

s+2

s+3 s+1 ' (2. 32)

III. 3 The Condition for an Optimal Controller

Let 2 be a linear differential system with n-dimensional state

x(t) as described in Section III. 1. Let | r(t)| be a random process

with k-dimensional state ^^(t)} as described in Section III. 2.

When one is seeking for an optimal controller of the feedback type,.

say,

u(t) = F(x, (t), ^(t), t) (3.1)

Theorems 3 and 2 provide a tool in the function • for checking

whether a given controller is optimal or not. The function was de

fined as

p^(x(t), z(t), t) = e| Ph (t, t) w[y(T) - r(T)] dt | x(t), z(t) |
~ ~I

(3. 2)

Theorem 3 in conjunction with Theorem 2 asserts that for a

linear system a controller F is optimal if and only if

> 0 wherever F(x, t) = - yCt)

p^(x ,£, t) ^ = 0 wherever |f(x, £, t)| < y(t) (3.3)
^ < 0 wherever F(x, t) = + "Y(t)

almost surely with respect to the probability measure imposed by the

random process | r(t)| and the controller F on the random variables
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x(t) = X and z(t) = z.

Before proceeding to find an equation for it is established

that x(t) and £(t) jointly constitute a (n+k)-dimensional diffusion

process. Upon combining the stochastic differential (2. 7) for z(t)

with the system equation (1.1), substituting (3.1), it follows

" P(£(t), t) dt + A (£(t), t)dv(t)

dx(t) = (A(t) x(t) + Mt)F(x(t), z(t), t)) dt

It is immediately recognized that (3. 4) defines a diffusion

process (x(t), ^(t)), and it is not difficvilt to derive that the backward

Kolmogorov equation for the corresponding transition density function f
X, z

IS

^ ^X Ovi
" 9^

with

ITL = X+(A(t)x + b(t) F{x,z,t))' (3.6)

where X is the backward operator for f , as given by (2.14).

In Section III. 1 an expression was given (Eq. 1. 7) for h (t, t).

Employing this in expression (3. 2) for the function |jl^, it is seen

that |x^ can be written in the form
T

-̂Mt)' ^ ^(t, t)'£(T) E(w[y(T)-r(T)] |x(t)=x, £(t)=^)dT
t

+ k(t) w[y(t)-r(t)] (3.7)
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When now all quantities are expressed in terms of the overall

state x(t) = X, z(t) = z, and the conditional expectation is written out in

terms of the transition density f , it follows that
X, z

t) =

b(t)' I ^(t, t)'c^(T) dr 1.* w[ £(t)' £+k(T)F(£, £, t)
- P(?, T)] di d?

+ k(t) w [£(t)*x + k(t)F(x, z, t) - p (z, t)] (3. 8)

If now the abbreviation

w(x, z, t) = w[£(t)!.^ +k(t)F^(5£, t) -p(£, t)] (3. 9)

is introduced, (3. 8) can more compactly be written as

t

Mt)' i(T, t)'£(T) drj^f^ (̂t, X, £;t, £, £) w(|, £, t) d£ d£
t

+ k(t) w(£, X, t) (3.10)

Now define a function g(x, z, t) as follows:

g(x, £, t) = i.(T, t)' £(t) dr z^ '̂ ——

(3.11)

A partial differential equation for the function g(x, £, t) can be obtained
g

by applying the operator ( • • -f TlX) to it and using the facts
at
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0

° (3.12)

fjj, z<*' i' i' !> = 6(*-i) 6(£- i) (3.13)

i(T, t)' = -A (t)' *(t, t)" (3.14)

It follows that

(-gj-+ i.(x, z,t) = - A(t)' g(x, z, t) + c(t)w(x,z,t) (3.15)

The appropriate terminal condition is

£(x,z, T) = 0 (3.16)

and |i,p(x, £, t) can be obtained from £(x,t) by the relation

M-xte £» ^) = - Mt)'g(x, z, t) + k(t) w(x, z, t) (3.17)

The boundary conditions in £ and x for g(^, z, t) follow from its

definition (3.11) and are that as x and z goto + oo the function

g^(x, t) should not grow too fast.

The results of this section can be summarized as follows.

Theorem 6 : Let 2 be a linear, time-^varying differential system des

cribed by Eq. (1.1). Let furthermore the random process {r(t)} be of

the type described in Section III. 2., such that its state {z(t)} is a

k-dimensional diffusion process. Let F be an admissible feedback

controller such that conditions R^, R^, and R^ are satisfied. Then a
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necessary and sufficient condition for F to be T-optimal with respect

to all admissible controllers satisfying R^f and R^ is that the

function |x^(x, z^, t), which can be solved from Eqs. (3.15), (3, 16), and

(3.17), satisfies the following conditions

t)

> 0 wherever F(x, z^, t) = - "Y(t)

= 0 wherever |F(x, z, t)| < •Y(t)

< 0 wherever t) = + "Y(t)

(3.17a)

almost surely with respect to the probability measure imposed by the

random process ^r(t)| and the controller F upon the random variables

x(t) = X and ^(t) = ^ (for almost all t € [O, T]).

For a given controller, Eq. (3.15) could be solved for g; then

from this can be obtained by formula (3. 17). For later purposes,

it will be useful to have a partial differential equation in itself.

This equation can be derived very easily by comparing the expressions

i

(3.15) and (3.17) with the state equations (1.12) which characterize the

adjoint system S . It is seen that g takes the same position as the

«JU

state X , w takes the place of the input u , (x,p that of the output

* 9 /V. d
y , and that the operator + nl) substitutes the operator .

From this it can readily be seen that by eliminating g in exactly the

same way from (3.15) and (3.17) as by which x can be eliminated from

Eqs. (1.12), the function (X,p must satisfy a partial differential equation

of the form
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^'W (3.18)
jjc j{j

where D and N are the polynomials with time-varying coefficients

which occur in the scalar differential equation which characterizes the

adjoint system. The appropriate terminal conditions that go with (3.18)

can be formulated in terms of

d i " I(-gJ-+?/l) ^="'l'---' (n-1) (3.19)

Equation (3.18) is not very useful as it stands because it will

hardly ever be possible to solve it for It will, however, be possi

ble to use it to derive a property of the optimal controller for a certain

subclass of systems, which will be done in the next section.

Observation: A possible approach for solving the optimal con

trol problem seems the following. As was mentioned before, |x^ can

be found by solving (3.15) for g^. This is to be done backwards since

a terminal condition is given. By this same terminal condition, |x^(x, z, T)

is known. A choice for T) could be made such that the optimality

condition (3.1.7a) is satisfied. If it then is assumed that this controller

is also optimal during a very short interval preceding T, it could be used

to compute K^.p(x, z, T-AT), with AT small, and on the basis of this

^(^» T-AT) could be determined. Continuing in this fashion an iterative

procedure could be developed to find the optimal controller.
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III.4 Some Observations on the Character of the Optimal Controller

Although in general it seems very difficult to actually find

optimal controllers, it is possible to make some remarks about their

character in general. First the following lemma is proved.

Lemma 4 : Suppose that S is a linear differential system as des

cribed in Section 111.1, which is both instantaneously controllable and

instantaneously observable during some interval (t^, t^). Let n be

the degree of the polynomial with time-varying coefficients D and

m the degree of the polynomial N in the scalar differential equation

for the system

D(-^) y(t) = N(|j)u<t) (4.1)

Let be a random process with the k-dimensional diffusion

process as its state, as described in Section 111. 2. Then if

the weighting function W is quadratic and

m< ^ ; (4. 2)

n k
nowhere in R x R x (t ,t-) can the function (x_(x, z, t) vanish

o 1 1 — —

identically over some non-zero region.

Proof : The proof of the lemma is almost purely algebraic. Suppose

XI kthat in some finite region S of R x R x (t^, t^)
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z, t) = 0 (4. 3)

Then since itwas derived in the preceding section that the function |x^

has to satisfy Eq. (3.18), it follows that it must hold in S

N + In )w(x, z, t) = 0 (4. 4)

It will be shown that this cannot be satisfied for any controller if

m < — and therefore not for the optimal controller, either. At this

point the proof will only be given for a quadratic weighting function, i. e.

1 2W(e) = 2" ® ~ ® (4.5)

The result may be extended to more general weighting functions, how

ever.

To give the proof, it is first of all noted that if the degree of

TV *N IS m, the degree of N is also m, by Lemma 3. This means that

N (-— +'7ll) the highest degree inwhich the operator (-—— +??l)

appears is m.

Secondly, the function w(x, £, t) and the operator (-^ +^)
9t

can be more explicitly written

w(x^.z,t) = c(t)'x + k{t) F(x^,z,t) - p(z, t) (4.6)

+ Z + (A(t)x +Mt)F(x, z, t))' (4. 7)

where is the operator as given by (2.14); it operates only on z, and

does not involve F(x, z, t).
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By applying repeatedly to w(x, t), it follows

that

("^ +7^)w(x, z, t) =£^jj(t)'x +

+(-^ +;??i)k(t)F(x^,z.t) - (If )p(£..t)
(4. 8)

More compactly, this can be written as

<If "%) - %o) - ^ 'P
(4. 9)

Continuing,

w =C(2,'£ + £<l/b F +

(4.10)

and finally.

+{-l^+ nLf^F(4.11)
*

It follows by inspection of these expressions that if N is of

degree m, the function F will only occur in the equation
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N* (-|j- +^ )w =0 (4.12)

tagged with the coefficients

k(t), c^ (t)' b(t). i =0.1 (m-1) (4,13 )

Put the fact 'that the degree of N and N is m, means

a^_^(t) =0, j =0,1, . . ., (n-m-1) (4.14)

which by Lemma 3 implies

k(t) =0, c^.j(t)'b(t) =0, i =0,1, . . ., (n-m-2) (4.15)

This, together with the previous statement, implies that the function

F will not appear in Eq. (4.12) if

n-m-2 > m-1 (4.16)

or, since m and n are integers, if

m< I (4.17)

In fact, in this case Eq. (4.12) takes the form

m m

^ a*(t)c^..(t) *X - a*(t) (-|r +<^)''p(z, t) = 0
j=0 J "" j=0 J

^ (4.18)

If this were to be satisfied identically in S, one would need

m

^ (t) £(j) (t) =0 (4.19)
j=0
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during (t , t^), which contradicts the assumed instantaneous observa

bility of the system S. Thus it has been shown that there cannot be

any such region S, which completes the proof that nowhere in

R xR x(t ,t,) the function |i^(x, z, t) can vanish identically, when
o 1 T

n

m<

The following comments are in order. The lemma suggests

that if m< ^ during (t^, t^^) the optimal controller is of the bang-bang

type, i. e., the input to the system during (t^, t^) is always either +•Y(t)

or -yCt), since the function t) is non-zero almost everywhere

in the space R x R x (t^, t^). This is not necessarily true, however,

as will be explained in the following.

First of all, the following terminology is introduced. Call the

subspace of R x R defined by

5.,t) = 0 , (4.20)

the switching surface at time t of the optimal controller. It follows

from Theorem 3 that outside the switching surface the optimal control

is either + or -"Y(t), but that on the switching surface the input may

assume intermediate values. There are two possibilities:

i) The probability that the phase point (x, (t), ^(t)) remains on the

switching surface for any length of time after reaching it, is zero. In

this case it will not affect the operation of the controller if the value of
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F(x, £, t) is changed on the switching surface to either +"Y(t) or --ylt).

This means that bang-bang control is indeed optimal.

ii) The probability that the phase point (x(t), £(t)) stays on the

switching surface for some time after it reaches it is greater than

zero. In this case the optimal control is not necessarily bang-bang

during the entire period (t , t,). Just as in the deterministic control
o 1

problem, this case will be referred to as the singular case.

To demonstrate that the singular case is not imaginary, the

following example is given:

Example of a singular <case: Let the system S be time-invariant with

transfer function

H(s) = (4. 21)

The state of this system is one-dimensional; it can be taken to be the

output, y(t). Lemma 4 applies to this case, since m = 0 and n = 1.

Furthermore, let {r(t)} be a random process which is obtained

by passing a bounded simple Markov process q(t) through a linear

time-invariant filter with transfer function (see Fig. 2)

q(t)-\ >
1

s+1
"V

) ^ •r(t)

Fig. 2 Generation of the Process {r(t)j

-64.



The value of q(t), which is the state of the process [q(t)j ,

can be recovered from r(t) by the relation

q(t) = r (t) + r<t) (4. 22)

Since the state of the linear filter -—j- can be taken to be the output

r(t), clearly the state of the random process [r(t)j can in this case

be taken to be the pair (r(t), q(t) ). It is seen from relation (4.22)

that one can, as well, choose the state to be

z(t) = col(r(t), f (t) ) (4. 23)

It was specified that the simple Markov process |q(t)| was

bounded, say, by B (one could for example take a Wiener process

with elastic barriers at -B and +B). If |q(t)| is bounded by B,

also {r(t)}is bounded by B; hence by (4. 22), {r (t)} is bounded by 2B.

Thus a random process [^r(t)j has been obtained with state

x(t) =(r(t), r(t) ), such that (r(t)} and{r(t)}are bounded by B and 2B,

respectively. Now consider a controller for the system that is con-.

sidered given by

u(t) = r(t) + 2 f (t) (4. 24)

It is seen that this controller is in fact the inverse of the system, since

it represents a linear filter between r(t) and u(t) with transfer function

(s+2). It is clear that if at some instant t the
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y(to) - r{t^) = 0 (4. 25)

and if from on the controller operates according to (4. 24), the error

will remain zero, no matter what is the behavior of r(t) after t . Fur-
o

thermore, because of the boundedness of r(t) and f (t), the input u(t)

according to (4. 24) will be bounded by 5B.

Now suppose that

\(t) > SB, for all t (4. 26)

Then clearly the best control within the amplitude constraints on u(t)

is to let

F(x(t), z(t), t) = F(y(t), r(t), t (t), t) = r{t) + 2f (t) (4. 27)

as soon as zero error is reached, and to let the controller operate like

this for the rest of the period [ 0, T]. The error will remain zero; hence

the phase point (y(t), r (t), f (t) ) remains on the plane y - r = 0. Then

this plane must be at least part of the switching surface since by

Lemma 4 the control cannot be non-bang-bang on more than a subspace

of R X R .

If the case T—is considered, clearly the behavior of the

controller until zero error is reached is of little importance as long as

the probability that zero error is reached at some finite time is one. A

good controller seems to be
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F(y, r, r,t)= <

+"Y(t) if r-y > 0

r + 2r if r-y = 0 (4. 28)

-•Y(t) if r-y < 0

Obseryation : The remarks which preceded the example were only

valid for the case where m < There seems little reason, however,

that they should not hold for other values of m, too. This is expressed

as follows: j

Conjecture : Lemma 4 and the subsequent discussion are valid for

m < n-1.

No proof of this conjecture has been found to date. More substan

tiation is offered in the next section. That the conjecture need not be true

for m = n is intuitively clear, since in this case k(t) ^ 0, which means

that there is direct transmission between input and output of the system.
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optimal control, of linear differential systems

WITH A QUADRATIC WEIGHTING FUNCTION AND NO AMPLI

TUDE CONSTRAINTS ON THE INPUT

When in the problem of the preceding section the amplitude

constraint on the input is dropped, a solution for the optimal following

problem can easily be obtained. One question that now enters into the

picture, however, is that of the stability of the interconnection of

system and controller. In Section IV. 1, the optimization criterion is

extended in order to include provisions for stability. The optimization

problem is solved explicitly for finite T in Section IV. 2 the. behavior*

and the properties of the solution as T approaches oo are studied for

an illustrative example in Section IV. -

IV. 1 Optimization Without Amplitude Constraints. Stability

Consider the problem outlined in the previous section, namely

that of finding the optimal controller for a linear differential system

S with n-dimensional state x(t), but now without the constraint on the

amplitude of the input u(t).

In this case an optimal feedback controller can easily be found.

Consider the relation which expresses the output of the system in terms

of the state and the input:
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y(t) = c(t)'x{t) + k(t) u(t) (1-1)

The error at any instant t is given ^)y

e(t) = y(t) - r(t) = c(t)'x(t) + k(t) u(t) - r(t) (1. 2)

It is clear that if k(t) ^ 0 during some interval of time (t^, t^^), the error

can always be made identically zero during this interval by letting the

input take on the following value:

r{t) - c(t)'x(t)
u(t) = (1-

k(t)

This breaks down, however, if k(t) = 0. In this case, the error can be

made arbritrarily small at all times by considering the feedback con

troller

u(t) = K( r(t) - y(t) ) (1- 4)

and choosing K large enough.

By considering some very elementary examples it is evident

that the interconnection of controller and system as recommended above

may be unstable, in the sense that as time progresses some or all of the

state variables become unbounded. This is not surprising, since in the

preceding development no provisions to prevent it were made.

It is not clear how one can introduce such provisions in a natural,

non-artificial way, such as is done in the "Wiener optimal filtering and

control theory, where "realizability" is related to "stability" in an

essential manner. In this investigation, the same artifact will be used
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as is usually employed in situations of this kind, namely, that of in

cluding in the optimization criterion a term which depends upon the

magnitude of the state at the final instant T. It will be seen in IV. 3,

however, that in a sense this approach is non-essential.

To get around the problem of instability, the problem of

Section III is modified by not minimizing ^ (F, T) but instead the

quantity

i;(F, T) = £(F, T) + i XE ( ||x(T)||^ (1.5)

where as before || . || indicates the Euclidean norm of a vector, and
T

8(F, T) =E(i rw[y(t) - r(t)] dt) (1.6)
o

The constant X. > 0 is a coefficient which determines the relative

importance of the last term of t/jF, T).

Consider any feedforward controller F which can be represented

as

^h-oo,t])= ^°h-co,t]) +6^{'̂ (-oo,t]}
where F° is a supposedly optimal controller. Since no amplitude con

straints are imposed, no particular conditions need be imposed upon

F except that it be finite everywhere. For a differentiable system, it

was derived in Section II. 3, that it holds for ^ (F, T)
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T

G(F, T) =e (F°, T) jE((^Th-oo,t])^h-oo,t]}'<^^

+ o(t) (I* 8)

For the second term in (1. 5) a similar result can easily be

obtained. Let u° and u,^ •, be the inputs that are obtained from
(0, tj (U, tj

the controllers and F, respectively, and let be the input

obtained from F. Then

u(t) = u°(t) + t u(t) (!• 9)

It follows for x(T)
T

x(T) =<^(T, 0) x(0) +^^ (T, t) Mt) u{t) dr (1.10)

or T

x(T) = + (T, 0) x(0) + (T, T) b(T) u°{t) dr
o

T

+ £ ^ (T, t) ^t) u(t) dr

o

T

=x°(T) +£ ^ ^(T, t) h(T) u(t) dr (1-H)
o

where x°(T) indicates the state into the system has been brought by

the optimal controller F° as a result of a sample function .

Now from this it can very easily be derived
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E(II X(T)ll^) =E(II x°(T)||̂ ) +2eE( Pb(T)'i(T, t)'x^°(T) u(t) dr)
o

+ o(e) (1.12)

Introduce the notation

"T^-co.t]} = E(yt)-i(T, t)'x°{T) I (1.13)
and replace u(t) = F (r, in (1.12). It follows that

^ ( -00, tJJ
T

E(||x(T)||̂ =E(||x°(T)||̂ ) +2e Je(v^ F ))dt
o

+ o(e) (1.14)

Using this in (1. 5) together with (1. 8), it is found that T) can

be represented as

'U-(F,T) =e(F° T) +J X. E(II X°(T)||̂
T

o

T

+£KJ E(F{rj_^^^j} )dt
o

+ o(£) (1.15)

Now from this expression by the same arguments as used in the

proofs of Theorems 1 and 2, it can be reasoned that a necessary and

sufficient condition for F° to be optimal is that
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= 0 (1.17)

almost surely with respect to the probability measure induced by the

random process (r(t)} . The condition takes this simple form since no
, _o

amplitude constraints were imposed upon F .

As before, if a feedback controller F(x(t), ^(t), t) is used,

|i^ ^ can be expressed as an instantaneous function of x(t) and

z(t). It is not difficult to convince oneself that the same is true for

• If one therefore redefines v as follows,T\ (-co,t]/ T

v^(x{t), z(t). t) = E (b(t)'i(T, t)'x^°(T) Ix(t), z(t) ) (1.18)

condition (1.17) reads

p.j,(x(t), z(t), t) = n^(x(t), z(t), t) + XT v^(x (t), z(t), t) (1.19)

= 0 (1. 20)

almost surely with respect to the probability measure imposed upon

x(t) and z(t) by the random process [r(t)j and the controller F .

The function v^(x, z, t) can be written as

v^(x, z,t) = b(t)' <1> (T,t)' If (t,x,z;T,£, n ? d| d£ (1.
T — — z

where f is the transition density function of the diffusion process
X, z

21)

(x(t), z(t) ) induced by the controller F°. Define a function h(x, z, t) as
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follows:

h(x, z, t) =-*(T, t)' J ^(t, X, z;T, |, £) £ df d£ (1. 22)

It is related to " (x, z, t) by

"t'-' tte 5.' t) (1- 23)

By applying the operator ( — +7tl) to h, it follows (with the use of

the relations m. 3.12, m. 3.13 and ni. 3.14) that

^"at ^ ~ ~ te £'

The terminal condition is

h(x,z, T) =-x (1.25)

It was found in Section III. 3 that the function can be expressed

in terms of a function g as follows:

~ ~ w(x, £, t) (1.26)

where £ is the solution of

^"at ^ " - :^t) •g(x, z, t) + c(t) w(x, z, t) (1. 27)

g(x, z^, T) = 0 (1. 28)

Now define a function g by

^(x, z, t) = g(x, z, t) + X.Th(x, z, t) (1. 29)

By adding Eqs. (1. 27) and \T(1. 24), and (1. 28) and X.T(1. 25), it

follows that g satisfies
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{4- +Tfl) g(x, Z, t) =- A(t)"g(x, z, t) + c(t) w(x^, z, t) (1. 30)
cjt — ~

^(x, z,T) = - X. T X (1-31)

Furthermore, in terms of g the condition (1. 20) for the optimal con

troller takes the form

^^(x, z, t) = -Mt)'g(x, z, t) +k(t) w(x, z^, t) (1. 32)

= 0 (1. 33)

where (1. 32) was obtained by adding (1. 26) and X.T(1. 23).

The results of this section can be summarized as follows:

Theorem 7 : Let S be a linear, time-varying differential system des

cribed by Eq. (111. 1.1). Furthermore let the random process |r(t)| be

of the type described in Section III. 2, such that the state is a

k-dimensional diffusion process. Let F° be a feedback controller such

that conditions Rj^, R^, and R^ are satisfied. Then a necessary and

sufficient condition for F° to minimize the quantity
T

Tr(F,T)=i Pe (W[y(t) - r(t)]) dt +ix E(|| x(T)||̂ ) (1.34)
o

is that

ir,p(x, z^,t) = 0 (1.35)

almost surely with respect to the probability measure imposed by the

random process | r(t)} and the controller F° upon the random variables
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x(t) = X and ^(t) = and for almost all t.

Upon comparing this theorem with Theorem 6 it is interest

ing to note that the only effect of introducing the constraint on the

terminal state is that of modifying the terrninal condition for the func

tion g(x, z, t), which is the solution of the same equation as the function

£(x, z, t).

In the next section the problem will be completely solved for the

case of a quadratic weighting function.

IV. 2 Solution of the Optimization Problem for a. Quadratic Weighting

Function

In this section the following specialization of the general problem

of this report is considered.

. The system S is an n-dimensional (time-varying) differential

system as described in Section III. 1.

The random process |r(t)| has the k-dimensional diffusion

process {z(t)} as its state.
1 2. The weighting function W is quadratic, i.e., W(e) = -r- e ,

hence w(e) = e.

. There are no amplitude constraints on the input u(t).

The interconnection of controller and system is to be stable

in the sense that || x(t)|| remains finite as t—>co with probability one.
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. The optimization criterion is that of minimizing the quantity

&(F,T) E( W[y(t) - r(t)] dt) (2.1)

with particular interest in the case where T = oo.

Since no method seems available to solve the problem which

is outlined above directly, instead the problem is considered which is

obtained by replacing the last two entries of the list by the following

single entry:

The optimization criterion is that of minimizing the quantity

tr(F,T) =C(F,T) + i XE (II x(T)||̂ ) (2.2)

It is noted that actually the original problem (specified by the

list on page 76) makes little sense if T is finite, since then the be

havior of the system after time T is of little interest and hence also

the stability is of little concern. It is still to be seen, however, when

the modified problem makes sense for T ^oo.

Consider now the modified problem. It is claimed that the opti

mal controller takes the form

F°(x, £, t) = (2-3)

where ^(t) is a column vector and t) a scalar function.

This claim will now be proved. Suppose that the controller

given by (2. 3) is used. Then the interconnection of controller and
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system is described by the set of equations

x{t) = (A(t) + b(t) |^(t)') x(t) +Mt) f2(£(t), t) (2.4)

y(t) = (c(t) + k(t) ;^(t) )'x(t) +k(t) t) (2. 5)

The solution of ec[U3Ltion (2. 4) at some time t ^ t can be put in the form
T

= X(*r» t) x(t) + ]C(t, 0-) b(cr) ^
t ''

where X{r, t) is the transition matrix connected with the matrix

(^t) +b(t) ^(t)'). It can be seen from this expression that the condi

tional expectation of x(t) given x(t) = x must be linear in x, since in

(2. 6) only the first term on the right-hand side depends on x(t) = x .

Consider now the function g(x, z, t), which by Theorem 7 is of

importance in solving the optimization problem. By its definition

(IV.. 1. 29) and the definitions of ^ and h, one can write

T

g(^£, t) = - ^(t, t)'c(T) E(w[y(T)-r(T)] |x(t)=x, ^(t)=£) dr)

t

- \ T i(T, t)' E(x(T) I x(t)=:x. z(t)=z) (2. 7)

By assumption, w(e) = e and is therefore linear. By (2. 5), y(T) is

linear in x(t). Then it follows from the observation following Eq. (2. 6)

that both conditional expectations which occur in the expression for

^(x, z, t) are linear in x. Hence, 2(x, z, t) must be linear in x, and it must

be possible to put it in the form
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g(x, z, t) =_G J^(t) X + g2(z, t) (2. 8)

where G.(t) is a time-varying matrix and g^(z, t) is a vector-valued
"~tL

function of z and t alone. One can now substitute (2. 8) into Eqs.

(1. 30)and (1. 31) from which ^(x, z, t) is to be solved. Taking into

account the linearity of w(e), it follows from (1. 30) that

^(t)x + Gj(t)(^t)x + b(t) ^(t)'x +

+—Ft ^^

= - A(t)'^(t)x - ;^t)'g2{z, t)

+c(t) (c(t)'x + k(t) X+k(t)4'2(£.. t) -p(£.t)) (2.9)

and from (1. 31) that

5.1 (T) X + g^Cz, T) = -\ T X (2.10)

Since (2. 9) and (2.10) have to hold identically in ^ and z^, they can be

separated and the following equations are obtained (for brevity the ex

plicit time-dependence of G^, A, b, etc., is dropped)
\

5i +5i^ + 5i + 5i k ti =£<£.'

(-^+ ^ +A') g2(z, t) = c(k<f2(z, t) - P(z, t) )-G^ b t)
(2.12)
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G^(T) = -\TJ_ (2.13)

£^(2, T) = 0 (2.14)

For a given controller, the matrix function can be solved

from (2.11) together with terminal condition (2.13). If G^^ is given,

Eq. (2.12) constitutes a linear partial differential equation in the func-

tion £2^^* has as its terminal condition (2.14) and as boundary

condition that as ^ goes to + 00, should not grow too fast.

The optimality condition, as given by Eq. (IV. 1. 35) of Theorem 7

reads in terms of the functions G. and g _ as follows:
—1 ... — 2

0 = fA.p(x, z, t) = -b' gix, z, t) + k w(x, z, t)

"t*5.1^5. " £2^-'

+k (£'x + k^'x +kH'2(£, t)-p(z, t) )

(2.15)

which can be separated as follows

£' = •£' 9i + ^(£' +k^j') (2.16)

and

® £2^-' ^2^-' ^

From Eq. (2.16) the function ^^(t) can be expressed in terms

of Gj^(t). Similarly, from (2.17), can be expressed in terms of

£2^—'̂ ^* The so-found relations can be substituted into Eqs. (2.11) and
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(2.12) to yield the following equations for the and corres

ponding to the optimal controller:

and

5l +5i (A -^b c') + (A-ibc')'G^ + ^G^bb'Gj =0
Ic

(2.18)

(2.19)

The terminal conditions remain

G^(T) = - \ T1 (2. 20)

£2(2. T) = 0 (2.21)

When from these equations the functions G^ and are solved,

they can be substituted into (2.16) and (2.17) to yield the optimal controller.

;Pquation (2.18) is a homogeneous matrix Ricatti differential equa

tion and can be transformed into a linear matrix differential equation by

the substitution

G(t) =H(t)'̂ (2. 22)

After the solution has been obtained, it will be verified that it is

nonsingular, so that the substitution is allowed. The following equation

for H is obtained:
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-S+(A-^bc"jH+H(A-ibe')'=-^bb'(2.23)
k

H(T)=-I(2.24)

ItisobservedthatthematrixA-ibc*,whichoccursin(2.18)

and(2.23),characterizesthesystemwhichisobtainedfromtheoriginal

system

X+bu(2.25)

y=c'x+ku

byusinganinput
v-c'x

u=(2.26)

wherevisanewinput.Thisnewsystemisdescribedby

x=(A-^bc_')x+^bv
(2.27) y=V^'

Itisnotedthatthisnewsystemhasidealtransferbetweentheinpiitv

andtheoutputy.Onewouldchoosethistobetheoptimallycontrolled

systemwhennorequirementsareimposedonthestability.Thesystem

describedby(2.27)willbecalledthederivedsystemcorrespondingto

thesystem(2.25).Itwillplayaroleofsomeimportanceinthefollowing.

Supposenowthatthetransitionmatrixofthederivedsystemis

givenbyi[j(t,t);i.e.,\\>{t,t)isthesolutionof
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^ ^(t,T) =(A "^ ^ £')4j.(t»T) (2.28)

±{T>r) = 1

It can be derived or checked that with the aid of this transition

matrix the solution of (2. 23) satisfying (2. 24) is

H(t.T) = - J + (t,T)b(T) —b(T)'ij;^(t,T)' dr
t k(T)

- (2.29)

It is noted that of the two terms of the right-hand side of (2. 29)

the first is negative semi-definite and the second negative-definite®

since i|i(t»T) is nonsingular for all t and T, so that it follows that

H (t,T) is negative-definite and hence nonsingular.

By inverting this matrix, the matrix Gj(t) can now be found and

from this the feedback part of the optimal controller:

—V .T)"^ - c (t)'
^ k(t)^ ~ ~ ' ' (2.30)

If a controller with this is usedip the interconnection of

controller and system is described by

X=(A - ^ be' +-y bb* <y2(£'t>
k

y= i b' X + k <p2(2»t)
(2. 31)
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Suppose that the transition matrix of this system is t); i. e.,

%(t, T) is the solution of

X(t, T) =(A - i be' + b' H'̂ )^ (t. T) (2. 32)
k

X(t, t) =

It can be derived or checked that with the aid of the transition

matrix X(t, t) the solution of Eq. (2,19) for written in

the form

£2'5.. ^ 2 rz; T, £) p(£, T) dj
(2. 33)

where, as before, f^ is the transition probability density function of the

diffusion process (£(t)| .

By Eq. (2.17), the feedforward part of the optimal controller ^2^—*

is expressed in terms of relation

'P2'-' ^ &2'-'
k

By combining the results obtained so far, it follows that the optimal

controller can be represented by

u°(t) =(i^VH-^- ic')x +^2 (2-35)
k k

or, equivalently,

u°(t) =^(r(t)-c'x(t)) +iy b' H"^x(t) + b' g2(2(t), t)(2. 36)
k k

It is observed that the first two terms of this expression represent

precisely the control which woxild be optimal if no constraints were placed
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on the terminal state. The last two terms constitute a correction to

this. It is furthermore observed that the function also can

be written as ,p

t) =Xx(T. t)' kfr) T)-^ b(T) E(r(T) I )dr
(2. 37)

so that the optimal input u°(t) is entirely determined by x(t) and the

function E(r{T)|r, •,) for t > t. In fact, the control is linear in
' (-00, tj ~

these quantities.

It seems likely that this resxilt is not only valid for random

processes which have a finite-dimensional diffusion process as their

state, but for a much larger class of random processes.

It is observed that the characteristics of the random process

I r(t)I only enter into the optimal solution by way of the conditional

expectation function E{r(T) ] r^ ^ The feedback part of the con

troller is completely independent of the characteristics of the random

process. It seems likely that the solution of the stochastic problem is

closely related to the solution of comparable deterministic problems.

In the next section, some attention will be given to the behavior

of the solutions as T approaches co.

IV. 3 Optimal Stable Solution; An Example

It is of considerable interest to investigate the behavior of the

solution obtained in the previous section as T—^00, but since this
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question involves a number of complications, the treatment will here

be limited to an example which exhibits some of the typical features

of this type of problem.

Example : Consider the system which is described by

X = - X + u

(3.1)
y = X + ku

with k 0 = constant. This system is complete controllable, completely

observable (Kalman^) and uniformly asymptotically stable. It has the

frequency transfer function

H(3) = (3. 2)

k+1It is noted that if —> 0, the system has a stable inverse, so that

it is to be expected that the optimal solution will be related to this inverse.

Furthermore let the random process ^r(t)J be a simple Gaussian
2Markov process with time constant 0 and variance o" . Of this process

the state is z(t) = r(t) and the conditional expectation

E( r(T)| r^_^ = r{t) e ® ^ (3-3)

The derived system is characterized by

X = (-1-i) X+ i V

y = V <3.4)

It is observed that the stability of the derived system is determined

k+1
precisely by the sign of —. The transition matrix of the derived system
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(3.5)

i^t, t) = e

With the aid of this the expression for H(t, T) can readily be

integrated; it is found to be

2k(k+l) [ ^ J \T

Using this result the optimal controller can easUy be found. Now as

T approaches oo there are two possibilities:

k+1i) —^—> 0. Then as T—^co H(t,T)—^-oo and hence

H(t,T)"^ >0
k+1 — ,

< 0. Then as T—^oo H(t, T)—> . and hence
ii) k ^ 2k(k+l)

H(t, T)"^ ^ 2k(k+l)

k+1
Note that if —; = 0, i. e., k = -1,

so that in this case

T-t 1
H(t, T) = -

, 2 \T (3. 7)
k

which means that this case can be included in both (i) and (ii).

The controller which is obtained by replacing H ^in equation

(2. 30) by the limits as given above is characterized by

i) f (t) = - i
(3.9)

ii) ^j^(t) =2+i
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The transition matrix of the interconnection of system and these

controllers can be solved from (2. 32); it is found that

(t-T)
i) X(t, t) = iji (t, t) = e (3.10)

k+1 ,
"IT" ^

ii) X(t, t) = t) = e (3.11)

Using these transition matrices in Eq. (2. 33) and (2. 34), the feed

forward part of the controller is found to be

i) ^ z (3.12)

=^ k! !kti!e'
The controllers so obtained can now be written in the form

i)J^>0 u°(t) = (3.14)

ii) Jf-< 0 u°(t) =(24±) x(t) 4i |±&gL|-r(t)
(^.15)

It is seen that the control used in case (i) is precisely the one which

gives the derived system, so that ideal control is achieved, since the

k+1error is zero at all times. Moreover, this system is stable if —> 0.

k+1The system given under (ii) is also stable if —^— <0, as can be

seen from the transition matrix given by (3.11), but its optimality remains

to be investigated. This will be accomplished with the aid of Theorem 5.

For this theorem it is required to find the function and its limit as

T > CD. To find this function, the whole machinery that was developed

for the function jx^ , but keeping X. = 0, can be used. From the results
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inSectionIV.1itfollowsthatcanbesolvedfrom

M.^(x,z^,t)=-b'GiX-b'+k(c'x+k^'x

+k<f2(z^,t)-p(z,t))
(3.16)

whereandaretobesolvedfrom

G^+^A+A+^+b=c(c+k^')(3.17)

^It^)I-zfet)=c(kt)-p(z,t))-Gjb
(3.18)

G^(T)=0(3.19)

£2(£,t)=0(3.20)

Makingtheappropriatesubstitutions,theseequationscanbesolved.

Forthecontrollergivenby(3.15)itisfoundthat
T-tT-t

.n,k2k(k+l)0k p..p(x,z,t)=2k(k+l)ex+k-(k+l)e®^

(3.21)

ItfollowsimmediatelythatasT—>oo

P'̂(x,z,t)^0(3.22)

pointwise,provided^whichisimpliedby1+
Theorem5,however,requiresthat
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in the sense that

lim

T—>00 TX^ '̂̂ T(^(-oo,t]} •"^ooi'C-oo.t] JI)<it-0
(3.24)

This means that in order to prove that |r^ ^ ĵj =0, one has to

demonstrate

T

T->co T XE(|(Ji^(t) x(t) +n^Ct) z(t) 1^) dt =0 (3. 25)
o

It can be shown that this is indeed so for the controller given under (ii),

provided 1 + < 0- The proof of this is not difficult but requires some

labor. It is interesting to note that the convergence of |r^ to

zero is pointwise correct for 0<1+^ <1, but not in the sense required
by (3. 24).

Before applying Theorem 5 in all its detail, it is helpful to make a

definition and some comments. A controller F will be called a stable

controller if the quantity

E(|f|^ (3.26)

remains bounded for all t. Furthermore the system described by

X = A X + b u (3. 27)

y = jc'x + k u (3. 28)

will be called stable if the quantities
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E(|x(t)|^ (3.29)

and

E(|y(t)|^ (3.30)

remain bounded for all t, for all random inputs for which E(|u(t) | )

remains bounded for all t. Here the norm of a vector a = col(aj, . . . a^)

(not Euclidean norm) is defined as

|a| = \ Ia. I (3.31)
i=l

It is clear from these definitions that if both the controller and the

system are stable, the interconnection of system and controller is

2 2stable in the sense that E(|x(t)| ) and E(|y(t)| ) remain bounded

for all t.

It is not diffictilt to check that the system considered in the example

is stable in the sense required here, and that also the controller given

k+1 k+1by (3.15) is stable provided ^ < 0. If = 0, however, the transi

tion matrix of the interconnection of system and controller can be seen

to be X(^» t) = 1, which means that the controller cannot be stable.

When one now returns to the problem of deciding on the optimality

of controller (3.15), and Theorem 5 is invoked, it is first of all observed

that the conditions R^, R^, and in this case amount to the requirement

that

E(|y(t) - r(t)l^) (3.32)
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be finite for all t. If < 0, this condition is fulfilled by F° and

by all stable controllers. Furthermore, it can be checked that the

quantity lim £(F°, T) exists.
T->co

Then# since as was checked, jx |r. =0, the theorem
CO I (-00,tj J

asserts that F° is optimal with respect to all controllers F for

which the following three quantities exist and are finite:

lim C(F, T) (3.33)
T—>co

lim 1
T-»oo T J - F° dt (3.34)

o

T
lim ^
T—>oof

o

(3. 35)

1

The third quantity presents no problems, because ix = 0 • and
CO *

therefore it is 0. The second quantity is finite if F° is stable and F is

stable, since
1

T

f JpE(|F-r»|̂ an<

o o —'

(3. 36)

The first quantity is finite for all stable controllers; those controllers

F for which the limit does not exist will be ruled out.
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One can therefore conclude from the theorem that if the controller

F° is stable, it is optimal with respect to all stable controllers F for

which lim £ (F, T) exists. From this it follows that the controller
T-^co

given by (3,15) is indeed the optimal stable controller provided < 0.

If = 0, however, the resulting controller (obtained from either
iC

case (i) or (ii)), is optimal in the sense that it produces zero error at

all times, but it is not stable in the required sense. It appears that in

this case an optimal stable controller does not exist.

The connection of the solutions obtained here with the Wiener

optimal solution follows.

When by taking the Laplace transform of (3.14), (3.15) and (3.1) the

Laplace transform of u(t) is expressed in terms of the Laplace transform

of z(t) = r(t), it is found that in the cases (i) and (ii) the respective rela

tions are

a)l+i>0 U(s) = Z(s) (3.37)

where U(s) and Z(s) represent the Laplace transforms of u(t) and z(t),

respectively. The filters which are represented by these relations are

precisely the filters that would have been obtained according to the

Wiener optimization procedure for the cases 1+ ^ ^®sind 1+|̂ <0.
It is noted, however, that the nature of the controller that is ob

tained by the Wiener optimization procedure is different from the one

-93



obtained here, in that the Wiener solution is essentially a feedforward

filter and the present solution is in the form of a feedback controller.

The feedback solution has a feedforward version, which can be repre

sented in terms of the same linear filter as the Wiener solution, plus

an initial condition for this filter, depending upon the initial state of

the system and random process. The Wiener solution assumes zero

initial conditions of the same filter. But if the optimal controller which

is obtained is stable, the effect of any initial condition vanishes with

time so that no essential difference in operation over the infinite time

interval [ 0, oo) results.

Additional observations

Observation 1 : The solution for the optimization problem as outlined

in the preceding section clearly breaks down if k(t) = 0. If in the

example that was worked out in this section one lets k—>0, the optimal

solution ^^(t) as given by (3. 9) behaves asymptotically in one of the two

following ways:

i) k 1 0. Then H'^(t), 0<t<T (3*39)

ii) kf 0- Then cf»^(t) ^ i o<t<T (3.40)

It can be verified that the corresponding asymptotic behavior of ^2^^*

is given by
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i) k i 0. Then ^ ^ (3.41)

ii) k f 0. Then ^2(^» t)^ (3.42)

By combining these two resiolts, it is conjectured that the optimal con

troller for the system described by setting k = 0 in (3.1), namely

X = -X + u

(3.43)
y = X

can be approximated arbitrarily closely by a feedback controller of

the form

F(x, z, t) = K(-x + z) (3. 44)

with K—>+co.

This phenomenon is typical for systems with k(t) = 0. In general,

properly speaking, no optimal feedback controller (stable or not) exists,

but optimal (stable) control can be achieved arbitrarily closely by a

feedback controller of the type

F(x, z^,t) =K (j^j(t)* X + ili2(z,t)) (3.45)

with K >+oo. (No rigorous proof of this statement has been obtained

to date).

Observation 2 : The preceding observation strengthens the conjecture

made in Section 111.4; namely, that if k(t) = 0, bang-bang type control

is optimal when the input amplitude is constrained, since for the non-

constrained case, very large input amplitudes seeni to be required.
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Finally, Observation 1 suggests what might be a suboptimal con

troller for the constrained case. Consider the system

X = A X + b u ^ ,
- - - (3.46)

y = £'x + ku

with k = constant o. Suppose that for this system ein.optimal (stable)

controller is obtained, which as k | 0 behaves as

F(x,z, t)-^i (v^j(t)'x + (3.47)

with and independent of k.

Then if the function y (t) by which the input amplitude is con

strained is large enough to allow "reasonably good" control of the

system given by

X = A X + b u (3.48)

y = £' X

in following the random process {r(t)j (i. e. the rates of change

in x(t) and its derivatives that can be effected by applying inputs

bounded by y (t) are not much inferior to those needed for optimal

control without amplitude constraints) then it can be expected that

the controller

F(x;z ,t) =y(t) sign (^^(t)'X + (3.49)

is a reasonably good controller for the system (3.48). Moreover,

this controller satisfies the constraint of boundedness of the input
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amplitude; hence, it can be considered as a candidate for a suboptimal

controller for the system (3.48), with input amplitude constraints.
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V. CONCLUSIONS

It should be clear, after reading this report, that the optimal

following problem has in general not been solved. Although in

Section II some theorems concerning necessary and sufficient

conditions for optimal controllers are given, not much progress

has been made to finding analytical or numerical solutions.

For linear systems and random processes with finite-dimen

sional, diffusion-type states, the analysis has been pushed to a

point in Section III where it might be possible to devise numerical

iterative procedures for finding an optimal controller (see observa

tion at the end of Section III. 3). Some remarks about the general

nature of optimal controllers can be made.

A complete solution has been obtained in Section IV for the

case of a linear, finite-dimensional differential system, a quadratic

weighting function and without amplitude constraints on the input.

This solution exhibits some interesting features which deserve

further investigation. The most striking phenomenon is the fact

that the optimal controller is to a remarkable extent independent of

the characteristics of the random process. A question of interest

that was brought up in Section IV is the stability problem, which also

merits continued attention.
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The solutions which were obtained in Section IV for the case

of an unconstrained input instigate some speculations about sub-

optimal solutions for the constrained case.

The problem which is solved in Section IV includes as a

special case the Wiener problem.
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VI. APPENDIX 1. ESTIMATION OF CERTAIN TERMS

It is required to prove that the following two terms which

occur in equation (I. 2.13) can be replaced by o(£ ):

Ij =E( i J o(t; t) w[y°(t) - r(t)] dt ) (A. 1.1)
o

T

I2 = E{ - r o'[£ H^u(t) + o{£;t)] dt ) (A.l. 2)
o

The following series of approximations can be made for L:
T

lljl 1^J"e| o(£.;t) w[y°(t) -r(t)] | dt
o

J (E(o(£;t))V (E(w[y°(t) - r(t)])V^^dt
° (A.l. 3)

By the requirements-imposed by the definition of differentiability

of the system S, the limit

lim 0(£;t) _ /A 1 AX
£ >0 (A,1.4)

is uniform in This means that for a given 5

it is possible to find an such that for 0 <£.<£^ and for all

' So.t]

1 6 (A.l. 5)

or, equivalently.
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|o(e;t)|^< 6^ (A.1.6)

Because of the uniform validity of this statement it follows immediately

that

(E|o(l;t)| < 6C (A.1.7)

for clII t. By condition R2» the second factor of the integrand of the

last member of (A.l. 3) is bounded, say by B. It follows

|l^| < B6S. (A.l. 8)

This implies that is of order , since for each given 5'=6B there

exists an £. such that for 0 <L < C
m m

|lj|<8'«. (A.1.9)

The second term of interest is In expression (A.l. 2), the

quantity o' is defined by the relation

W(x + y) = W(x) + yw(x) + o'(y) (A. 1.10)

It follows from Taylor's theorem

-1o*(y) = / (y - -n) w'(x + q) dq (A.1.11)

Referring to Eq. (I. 2. 9) of the text, it follows that

(LH u(t) + o(€.;t))

o'[ £. H^u(t) + o(^.;t)] = r [gH ^u(t) +o(£:t)--ti]
u Jq u°

. W'[y°(t)-r(t) + q] dq

(A. 1.12)
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By assumption of the boundness of the system and hence also of

the variational system, the term H u(t) is bounded, say by B' .
u

For e small enough, also

o(e ;t) (A. 1.13)
C

is bounded, say by B". Thus it follows that

I £. H _u(t) + o(C.;t)|< (B' + B")£ = B£ (A.1.14)
u

where B=B* + B" is not the same as in (A.l. 8). By this inequality,

o' as given in (A. 1.12) can be approximated as follows:

|o*[ ^ H ^u(t) + o{£ ;t)] I
Be

< ICH ^u(t) + o( e ;t) - Til |w'[y°(t)°r(t) +ti] | dq
0 ^ (A. 1.15)

Be

2 e B|w'[y°(t)-r(t) + q] \ dr\ (A. 1.16)
0

By restriction the expectation of the second factor of the integrand

of (A. 1.16) is bounded uniformly in t], say by C. It follows that

2 2
u[t) + o(e;t;j Ij < ^ e ~

u

Upon using this in (A.l. 2) it follows very easily that is estimated by

the same term

E(|o'[£H u(t) + o(£;t)]|)< 2e.^ B^ C (A.1.17)
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II^l < 2^ C (A.1.18)

which immediately implies that is of order £ . This completes

the proof.
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Vn. APPENDIX 2. PART OF PROOF OF LEMMA 2

The proof that £^^j(t)'b(t) - 0, i =0,1, . .., (p-1) during the

interval (t^, t^) implies c(t)'̂ ^j(t) =0, j =0,1, .. ., (p-1), during

the same interval, will be given by induction on j. The assertion

is true for j =0, since ^Qj(t) =- b(t) and c(t) =£^Qj(t).

Assume that the assertion is true for j = k-1. Consider

° = + ^•)''c(t) (A. 2.1)

Now let (p(t) be a testing function which is at least k times differen

tiate and which vanishes outside the open interval (t , t^). Multiply

(A. 2.1) by <f(t) and integrate over the interval (t^, t^). Since f(t)

and all its derivatives must vanish at the endpoints of the interval, it

follows by partial integration that

0=/,f<t) b(t)' (-^ + A')"^ c(t) dt (A. 2.2)

=j£(t)' +A)''b(t) >f(t) )dt (A. 2.3)
which can easily be checked with the use of the binomial expansion.

For the integrand of (A. 2. 3) it can now be written

C(t)' ((— + A)"^ Mt)H'(t) )

= £(t)' ( + A)*"' + A) b(t)H'(t) ) (A. 2,4 )
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=(c(t)'(- +A)\{t) (t) - (C(t)'(-|̂ +A)'''̂ b(t)

(A. 2. 5)

Since by the induction hypothesis

c(t)'b „_ (t) =(-1)'" c<t)'(-|j- +A)'"^ Mt) =0 (A. 2. 6)

the last term in (A. 2. 5) vanishes and one obtains for the integrand

of (A. 2. 3) the expression

(c (t)'(- +A)"^ b(t) )W(t) = If (t)
- ~ ~ ~ (A. 2.7)

Since the integral (A. 2. 3) vanishes, it follows that

r£<*>' dt =0 (A. 2. 8)

This holds for all testing functions (t). Since by assumption both

c(t) and »(t) are continuous, it follows that

c(t)'̂ j^)(t) =0 (A. 2. 9)

for t in the interval (t ,t,). This completes the proof by induction.
o 1
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Vin. APPENDIX 3 : DERIVATION OF BACKWARD KOLMOGOROV

EQUATION

Since the diffusion process ( ^(t)} is a Markov process, the

Chapman-Kolmogorov equation can be invoked. It follows that one

can write

z; T, £) =J f^(t, z; t +At, £) f^(t +At, £; t,£) d£ (A. 3.1)

where At > 0 will be taken small. For the time being scalar notation

will be used. Subscripts will indicate the niimber of the component,

i. e., is the ith component of the vector Q_. is the i, jth element

of the matrix Q,etc.

Now suppose that the necessary derivatives of f (t, z;t, H with

respect to its first two arguments exist, so that the following Taylor

expansion can be made

(t, z;t, n

af (t, z;t,£)

+ — +

z • ' —* '

8f (t,z;T,£)

+ '^k - ar +
k

+ I <«1 - "z " +
8z^

-106-



a^f (t,z;T,£)
"^2' dz^~az^ '*'

a^f (t, z;t, ?)
+ T (€,. - -..)' ' " ~2 "k k' - 2

(A. 3. 2)

For brevity, the arguments of the partial derivatives of the function

f will be dropped. With the aid of (A. 3. 2), Eq. (A. 3,1) can be
z

written as follows

f^(t,z;T,n =

af

® "at^ ^

af

+ (z (t+At) - z (t) ) ^
1' ' az

af

+ (z^(t+At) - Zj^(t) )

2
+ j (z^(t+At) - Zj(t) ) —

azj
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+ 2 (ZjH+At) - z^(t) ) (Z2(t+At) - z^(t) )
Bh

8Zi 8^2

82f

dz.

z(t) = z (A. 3. 3)

It is observed that the term f^(t,£;t, £) can be canceled on both

sides. Now no matter whether the diffusion process is defined accord*

ing to the hypotheses and or by the use of the stochastic

differential equation (11. 2. 7), the limits (II. 2. 5) and (II. 2. 6) exist

and are as given. By dividing (A. 3. 3) by At, letting At ) 0, and

using these limits, it follows that

di di af

0 =
at

+ + p, (z, t)
k'-' ' az.

a^f a^f
•*" I S 1^-' 2 2 Sz'-' 8z 8z

az 1 2

8^f
+ + 2 T (A. 3.4)

It can be proved that the remaining terms in (A, 3. 3) indeed go to zero

upon division by At. Equation (A. 3. 4) is the backward equation

sought. It can^be^put in vector notation and then read^ as follows;
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3f_

3^^ ' 2 dz '' 8z ' "z
(A. 3. 5)

0= -|r + T ^

1 9 '
where the vector function = £(z^, t) - ^^ 5

- (A. 3. 6)

The forward equation will not be derived, since it will not be

needed. Its derivation can be found in the literature.
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IX. APPENDIX 4 : FULLER'S PROBLEM

Fuller lia.s studied the problem of finding an optimal con

troller for the ca.se when the system is characterized by

X = b u

y = X , b > 0 (A. 4.1)

(i.e., the system is a simple integrator), and the random process

is the Wiener process. The Wiener process is a one-dimensional

diffusion process r(t) = z(t), where each sample function is a

solution of
I

dz(t) = dv(t) (A. 4.2)

It is claimed that the controller

F(x, z,t) = y sign(z-x) (A. 4.3)

is an optimal solution, for a weighting function W which is symmetric

about 0, y (t) = y = constant, and T = co.

The assertion will be verified by computing the function |x^(x, z, t)

and from this M'qq(x, z, t), and comparing the latter against F(x, z, t).

It is known from Section 111. 3 that the function can be obtained

from the function g(x, z, t), which is the solution of Eq. (m. 3.15),

which in this case reads
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(-^ + g(x,z,t) = w(x-z) (A.4.4)

The terminal condition is

g(x, z, T) = 0, (A. 4. 5)

and is expressed in terms of g as follows

li^(x, z, t) = -bg(x, z, t) (A. 4. 6)

The operators ?fl and ^ are given by

= of + b F(x, z, t) (A. 4. 7)

^ i N ^
2 o 3^2

(A. 4. 8)

The following is now observed. By the use of controller (A. 4, 3) the

following relations hold, where (A. 4. 9) is obtained by putting F

into (A. 4.1):

dx(t) =b y sign[z(t) - x(t)] dt ^ (A. 4. 9)

dz{t) = n2 dv(t) (A. 4.10)

Subtracting, it follows
J.
2

d(x-z).(t) = by sign[ z(t)-x(t)] dt - dv(t) (A. 4.11)

It follows immediately that e(t) = x(t) - z(t) is a Markov process.

From this it is concluded that (from the definition of g (II. 3.11)

g(x, z,t) = - E(w[e(T)] I z(t) = z, x(t) = x) dr (A.4.12)
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is a function that depends upon x - z = r| alonej therefore one can

write

g(x, z, t) = g(x-z, t) (A. 4.13)

Upon using this in (A. 4. 4) and by applying (A. 4. 7) and (A. 4. 8), it

follows that g satisfies the partial differential equation

.SfclL . |
8ti

(A, 4.14)

with the terminal condition

g(Ti, T) =0 (A.4.15)

equation (A.4.14) could be solved, but the main interest is in the

stationary solution which is presumably obtained as T—>x). If it

is assumed that as T—>oo, the solution of (A.4.14) with terminal

condition ( A.4.15) becomes independent of T and constant, and con

sequently the function g('n,t) is replaced by a function ^(il) , it

follows that this function should be the solution of the ordinary differ

ential equation

i Si'̂ ) _ ^ sign (q) -^1^ =w(ti) (A. 4.16)
dq ^

The general solution of this equation is
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pri
+̂ J^^(y) exp ("1^ (^-y) )dy +Cexp(-|̂ ) +c• ,

o

> 0
- <gh) =

^ _

"S ^ exp( (Ti-y) )dy+c^ exp(-^ ti)+
11 T] < 0

(A. 4.17)

Since W(e) is even, w(e)must be odd, and also g(il) must be odd.

Since g(il) is also continuous at "H = 0, it follows that g(0) = 0 =

= c + c ' = c, + c, *. From the fact that is continuous at
11 a T]

T) = 0, it follows that c = - c^. Now the boundary conditions on g(Ti)

do not allow it to go to oo exponenti^ly fast, so one must have

and

00

= -^ rN_ J
W(y) exp (- y) dy

o ~ o
o

u

=- fN. J
W(y) exp ( y ) dy

-CO

(A.4.18)

(A.4.19)

By using all these facts, and manipulating expression (A. 4.17) some

what, it can be shown that the function u , in which the main
' "^co

interest is, and which is given by

|JL (x, z, t) = - b g(x-z)
CO

can be expressed as

413-

(A.4. 20)



Z. t).= ^

00

N
[W(x-z+y) - W(y)] exp ( y ) dy, x-z > 0

2b

"N J +y) -W(y)] exp(+-^y) dy, x-z<0
-CD (A.4. 21)

It still remains to verify that n,p(x, z, t) actually converges to this

function in the sense required by Theorems 4 and 5-. Since solutions

ps-^tial differential equations of the type of (A. 4,14) converge ex

ponentially, there should not be any problem about this, however.

It finally can be verified that, indeed.

M-_(x, z, t)
CO

> 0 wherever F(x, z, t) = "y

< 0 wherever F(x, z, t) =+y

(A.4. 22)

so that it can be concluded from Theorem 5 that the controller which

is considered is optimal.
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