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ABSTRACT

The notion of "similarity" as defined in this paper is essentially a
generalization of the notion of equivalence. In the same vein, a fuzzy
ordering is a generalization of the concept of ordering. For example, the
relation x > y ( x is much larger than y ) is a fuzzy linear ordering

in the set of real numbers.

More concretely, a similarity relation, S , i1s a fuzzy relation

which is reflexive, symmetric and transitive. Thus, let x,y be elements
of aset X ami ps(x,y) denote the grasde of membership of the ordered
pair (x,y) in S . 'Then S is a similarity relation in X if, and only
if, for all x,y,z in X, us(x,x) =1 (reflexivity) , us(x,y) = us(y,x)
(symmetry) , amd ug(x,z) > \{r(us(x,y) A ig(y,z)) (transitivity) , where

v amd A denote Max anmd Min, respectively.

A fuzzy ordering is a fuzzy relation which is transitive. In particu-

lar, a fuzzy pertial ordering, P , is a fuzzy ordering which is reflexive

and antisymmetric, that is (up(x,y) >0 amd x # y)=> up(y,x) =0. A
fuzzy linear ordering is & fuzzy partial ordering in which x #y =»
us(x,y) >0 or p.s(y,x) > 0 . A fuzzy preordering is a fuzzy ordering
vhich is reflexive. A fuzzy weak ordering is a fuzzy preordering in which

x#ty =» u(oy) >0 or uly,x)>0.

Various properties of similarity relations and fuzzy orderings are in-
vestigated end, as an illustration, an extended version of Szpilrajn's thearem

is proved.



I. Introduction

The concepts of equivalence, similarity, partial ordering and linear
ordering play basic roles in many fields of pure and applied science. The
classical theory of relations has much to say about equivalence relations
and various types of orc’ier:lngts.:L The notion of a distance, d(x,y), between
objects x and y has long been used in many contexts as a measure of
similarity or dissimilarity between elements of a set. Numerical t‘.aa.xononw,2

3

factor apalysis,” pattern classificationh’s ,6,7 and analysis of proximi-

8,9,10

ties provide a number of concepts and techniques for categorization and

clustering. Preference orderings have been the object of extensive study in

econometrics and other f'j.elds.ll’12

Thus, in sum,there exists a wide variety
of techniques for dealing with problems involving equivalence, similarity,
clustering, preference patterns, etc. Furthermore, many of these techniques
are quite effective in dealing with the particular classes of problems which

motivated their development.

The present paper is not intended to add still another technique to the
vast armamentarium which is already available. Rather, its purpose is to intro-

duce a unifying point of view based on the theory of fuzzy se‘l'.s]'3

and, more
particularly, fuzzy relations. This is accomplished by extending the notions
ofA equivalence relation and ordering to fuzzy sets, thereby making it possible
to adapt the well-developed theory of relations to situations in which the
classes involved do not have sharply defined boundaries.* Thus, the maiti
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In an independent work which came to this writer's attention, S.Tamura,
S. Higuchi and K. Tanska have applied fuzzy relations to pattern classi-
fication, obtaining some of the results described in Section 3.

1
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contribution of our approach consists in providing a unified conceptual frame-
work for the study of fuzzy equivalence relations and fuzzy orderings, thereby
facilitating the derivation of known results in various applied areas and,

possibly, stimulating the discovery of new ones.

In what follows, our attention will be focused primarily on defining some
of the basic notions within this conceptual framework and exploring some of
their elementary implications. Although our approach might be of use in areas
such as cluster analysis, pattern recognition, decision processes, taxonomy,
artificial intelligence, linguistics, information retrieval, system modeling
and approximetion, we shall make no attempt in the present paper to discuss its

possible applications in these or related problem areas.

2. Notation, Terminology and Preliminary Definitions

In [13] , & fuzzy (binary) relation R was defined as a fuzzy collection
of ordered pairs. Thus, if X = {x} and Y = {y} are collections of objects

denoted generically by x and y, then a fuzzy relation from X to Y or,

equivalently, & fuzzy relation in X U ¥, is a fuzzy subset of XxY character-
ized by a membership (characteristic) function wp vhich associates with each
pair (x,y) its "grade of membership," uR(x,y) , in R. We shall assume for
simplicity that the range of u, is the interval [0,1] and will refer to

the number uR(x,y) as the strength of the relation between x and y.

In the following definitions, the symbols v and A stand for Max and

Min, respectively.

The domain of a fuzzy relation R is denoted by dom R and is a fuzzy
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set defined by

H3om R(x) = ; UR(x;y)) xeX (1)

vhere the supremum, Vv , is taken over all y in Y. Similarly, the range
’ y

of R is denoted by ran R and is defined by

'-'-ran R(y) =VuR(X,Y), xeX,yeX (2)
X

The height of R is denoted by h(R) and is defined by

h(R) =V vV ug(x,y) | (3)
x ¥y

A fuzzy relation is subnormal if h(R) <« 1 and normal if h(R) = 1.

The support of R is denoted by S(R) and is defined to be the non-
fuzzy subset of Xx Y over which p.R(x,y) > 0.

The containment of a fuzzy relation R in a fuzzy relation Q is
denoted by R c Q and is defined by MR & "‘Q , which means, more explicitly,

that p.R(x,y),< uQ(x,y) for all (x,y) in XxY.

The union of R and Q is denoted by R+ Q (rather than R U Q) and

is defined by uR-l-Q = Hp Vv “Q’ that is
IJR,’_Q(X,Y) = MEDC(HR(X,N), UQ(x,Y))’ xeX, yelX. (%)

Consistent with this notation, if {Ra} is a family of fuzzy (or non-fuzzy)

sets, we shall write Z R, to denote the union UR_ .
a @ x O



The intersection of R and Q is denoted by RNQ and is defined by

Mrnq “ YR H.

The product of R and Q is denoted by RQ and is defined by
u.m = uRnQ. Note that if R,Q and T are any fuzzy relations from X to Y,

then

R(Q + T) = RQ + RT
. . ’
The complement of R 1is denoted by R and is defined by Hps = 1l - Hpe

If RcX=*Y amd QcY¥Y~2Z, then the composition, or, more specifically,

the max-min composition, of R and Q 1is denoted by RoQ and is defined

by

Mpo o(x52) =V (u(x,y) A wly,z) ), xeX, z e (5)
y

The n-fold composition RoR ...oR is denoted by R".
From the above definitions of the composition, union and containment it

follows at once that for any fuzzy relations RcXxY, Q,TcY¥Y~Z ard

S ¢ Z»W, we have

Re(QeS ) =(RoQ )es (6)

Rv(Q +T ) =RoQ +Rc T ' (7)
and

QCT =» ReQCRoT (8)



Note On occasion it may be desirable to employ an operation * other than

A in the definition of the composition of fuzzy relations. ‘Then (5) becomes
Mg « g(%s2) =; (up(x,¥) * 1y (y,2)) 9)

with R * Q called the max-star composition of R amd Q.

In order that (6), (7) and (8) remain valid when A is replaced by * ,
it is sufficient that * be associative and monotone non~-decreasing in each of
its arguments, which assures the distributivity of * over + .* A simple
example of an operation satisfying these conditions and having the interval
[0,1] as its range is the product. In this case, the definition of the com-

position assumes the form

M. glxs2) =V ( m(%,¥) + 1 (¥,2)) (10)
y

where we usg the symbol . in place of A to differentiate between the max-min
and max-product compositions. In what follows, in order to avoid a confusing
multiplicity of definitions, we shall be using (5) for the most part as our
definition of the composition, with the understanding that, in all but a few
cases, an assertion which is established with (5) as the definition of the com-
position holds true also for (10) and, more generally, (9) (provided (6), (7)

and (8) are satisfied).

*
An exhaustive discussion of operations having properties of this type can
be found in [15] .



Note also that when X and Y are finite setis, uR may be represented
by a relation matrix whose (x,y)th clement is pﬁ(x,y). In this case, the
defining equation (5) implies that the relation matrix for the composition of

*
R and Q is given by the max-min product of the relation matrices for R

ard Q.

Ievel sets and the resolution identity

For o in [0,11, an a-level-set of a fuzzy relation R is dencted

by Rcr and is a non-fuzzy set in XxY defined by

R, = {(x,y)] w(xy) 2 a ] (11)

Thus, the Ra form a nested sequence of non-fuzzy relations, with

o >o —=>» R c R (]2)

An immediate and yet important consequence of the definition of a level

set is stated in the following proposition.

Proposition l. Any fuzzy relation from X to Y admits of the resolution

@R, Ocacxgl (13)

R =

Rt

where ¥ stands for the union (see (4)) and o« Ra denotes a subnormal

non-fuzzy set defined by

by g (oY) = "R(’;’y) ’ (x,¥) e XXY . (14)
. .

In the max-min (or quasi-Boolean) product of matrices with real-valued

elements, A and v play the roles of product and addition, respectively.ls’ o
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or equivalently

M, RQ’(x,y) = o for (x,y) e R

1]

O elsewhere.

Proof. ILet uR (x;Y) denote the membership function of the non-fuzzy set
o

R, in XxY defined by (11). Then (11) implies that

p.Ra(x) 1 for uR(x)Za'

(15)

0 for I-LR(X) <«

and consequently the membership function of g o Rar may be written as

u§ o R (x) =V« vRa(x)

o o

Va

a < Hglx)
()

which in turn implies (13).

Note It is understood that in (13) to each R, corresponds a unique o .

If this is not the case, e.g., «, # o, and R = R, , then the two terms
' “ ) 2

are combined by forming their union, yielding (a,v o 7_) R, - In this way,
'

a summation of the form (13) may be converted into one in which to each R,

correspords & unique o . Furthermore, if X and Y are finite sets and the

distinct entries in the relation matrix of R are denoted by 042 k =1,2,s00,K,

where K is a finite number, then (13) assumes the form

-7 -



(16)

N
w
A
~

R=%Sa R , 1
'kak o

As a simple illustration of (13), assume X =Y = {x., x,» xb} » With

the relation matrix Mg given by

1 0.8 0
e = 0.6 1 0.9
0.8 0 1
! ]

In this case, the resolution of R reads

R =0.6 {(x,,x)), (x,, x,), (x,,%)), (x,,x,), (x,,%,), (x,,x ), (x,,% )}
+0.8 {(x,x,)), (x5 x,), (x,,%,), (x,,%,), (x;,%,), (x,,%x,)} |
+ 0.9 {(x,)x, )s (32: xz)’ (xzyxa); (x;)xJ n

+ 1 {(x,5x,), (x,, x,), (x;,x,)} (17)

In what follows, we assume that X = Y. Furthermore, we sh&all assume for

simplicity that X is a finite set, X = {x|,x2,...,xn} .

3. Similarity Relations

‘The concept of a similarity relation is essentially a generalization of

the concept of an equivalence relation. More specifically:

Definition. A similarity relation, S, in X is a fuzzy relation in X which
is

(a) reflexive, 1i.e.,



lls(x,x) =

(b) symmetric, i.e.,

P-S(x:y)

ard (c) transitive, i.e.,

or, more explicitly,

ug(x,2) 2 v (n(x,¥) A uly,z))

1 for all x in dom S-

= lls(y;x)

S o>S8¢§S

y

for all x,y in dom S

(18)

(19)

(20)

Note. If * is employed in place of o in the definition of ‘the composition,

the corresponding definition of transitivity becomes

or, more explicitly

SDODS *§

us(x,z) >V (us(x,y) * PS(Y;Z))
y

(21)

When there is & need to distinguish between the tramnsitivity defined by (20)

and the more general form defined by (21), we shall refer to them as max-min

and max-star transitivity, respectivelye.

An example of the relation matrix of a similarity relation

in Fig.l. It is readily verified that S =5¢S and also that

~

1
0.2
= 1
0.6
0.2
0.6

—

Fig. 1. Relation matrix of a similarity relation.

0.2
1

0.2
0.2
0.8
0.2

1
0.2
1
0.6
0.2
0.6

0.6
0.2
0.6
1

0.2
0.8
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0.2
0.8
0.2
0.2
1

0.2

0.6
0.2
0.6
0.8
0.2
1

-

is shown

= T e



Transitivity
There are several aspects of the transitivity of a similarity relation

which are in need of discussion. First, note that in consequence of (18), we

have
s os° = s:sk, k =3,4,.0e (22)
and hence
S8 <> §=5 (23)
where
§=5+F +5 + eun (24)

is the transitive closure of S . Thus, as in the case of equivalence rela-

tions, the condition that S be transitive is equivalent to

S=§=S+82+S3+ooo (25)

An immediste consequence of (25) is that the transitive closure of any

fuzzy relation is transitive. Note also that for any S

1
]

S=82=-—,°—S

and if S is reflexive, then

The significance of (25) is mede clearer by the following observation.

Let xi'

s sesy xik be k points in X such that p.(xi JX: )y eeey
}

i,

’ xik ) are all > O. Ten the sequence C = (:a:il y eees xik) will

u(xj_k_l

be said to be a chain from x, to x, 6 ,
- o1y i

- 10 -
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defined as the strength of its weakest link, that is

strength of (xi ) eees X
|

) =ulxy %y ) A eee Amlxg x ) (26)
k |

1z a1 i

From the definition of the composition (Eq.(5)), it follows that the

¢

(1,J)th element of S° , €=1,2,3,..., 16 the strongest chain of length £

from xg to x 3 Thus, the transitivity condition (25) may be stated in
words as: For all xi,x'j in X,

strength of S between Xy and x j = strength of the strongest chain

from Xy to xJ. . (27)

Second, if X has n elements, then any chain C of length k>n+1

from xXg to Xy must necessarily heve cycles, that is, one or more ele-
! k+1

ments of X must occur more than once in the chain C = (xi y eeey X )e
)

o]

If these cycles are removed, the resulting chain, C , of length <n ,will
have at least the same strength as C, by virtue of (26). .Consequently, for

any elements X; xJ in X we can assert that

strength of the strongest ¢hain from x, to x 5= strength of

the strongest chain of length <n from x, to X, o (28)

Since the (1,j)th element of S is the strength of the strongest chain

from xy to x 37 (28) implies the following proposition,18 vwhich is well-



known for Boolean matrices.

Proposition 2. If S is a fuzzy relation characterized by a relation matrix

of order n , then

= 2 3 2 n

§ =8 +8° +8 #eee = S +5 4 ... +8S (29)

Note Observe that (29) remains valid when in the definition of the composition
and the strength of a chain A is replaced by the product, i.e., Sk, kK =2,35e00
is replaced by the k-fold composition S-85 < eee 5, with . defined by

(10) , and (26) is replaced by

strength aof (xi' ,ooo,xik) = l-l(xi', xiz ) l-l(xil ,X13 ) cese p(x. -1, xik) (30)
G sime 8 < aAb for a,be [0,1], it follows that
S 58¢8 =»> S>58-8S (31)

that is, max-min transitivity implies max-product transitivity. This observa-
tion is useful in situations in which the strength of a chain is more naturally

expressed by (30) than by (26) .

A case in point is provided by the criticisms'??20:2

levelled at the
assumption of transitivity in the case of weak ordering. Thus, suppose that
X is a finite interval [a,b] and that we wish to define a non-fuzzy pre-

Perence ordering on X in terms of two relations > and =z such that
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a) For every x,y in X, exactly one of X>y,y>X, or Xy 1is true
b) # is an equivalence relation

c) > is transitive.
In many cases, it would be reasonable to assume that
xoy <> |xy| ce>0

vhere ¢ is a small number (in relation to b-a ) representing an "indifference"
interval. But then, by transitivity of & , x2y for all x,y in X , which
is inconsistent with our intuitive expectation that when the difference between

x and y is sufficiently large, either x>y or y > x must hold.

This difficulty is not resolved by making o a similarity relation in X
s0 long as we employ the max-min transitivity in the definition of =~ . For,
if we make the reasonable assumption that p #(x,y) is continuous at x =y,

then (20) implies that n(x,y) =1 farall xy in X.

Te difficulty may be resolved by making o & similarity relation and
employing the max-product transitivity in its definition. As an illustration,

suppose that

k(x,y) = e-Blx-y] s Xy eX (32)

where B is any positive nmumber. In this case, x4 may be interpreted as

"{s not much different from."



let x,y,z ¢ [a,b] , with x <z . ‘'Then, substituting (32) in

2 (x,2) =\§ w(x,y) u(y,z)
we have

B a(x,2) =Vv e-Bly-x‘ e-Blz-yI
= y

ov e Bly=x) -B(z<y)
ye [x,2]

= o~B(zx)

= u(x,2z) (33)

which establishes that m’= w and hence that (32) defines a similarity

relation which is contimwous at x =y end yet is not constant over X .

Finally, it should be noted that the transitivity condition (20) implies

and is implied by the ultrameric inqeuautyza for distance functions.

Specifically, let the complement of a similarity relation S be a dissimilarity
relation D , with

mp(xy) =1 - u(x,y) , X,y e X (34)

Ir un(x,y) is interpreted as a distance function, d(x,y) , then (20) yields
1 - d(x,z) > \; ((1’d(x)Y)) A (1“"1(3/:2))

and since

-1k -



(1 - a(xy)) A (@ -a(y,2z)) =1 - (alxy) v aly,z)) ~ (35)

we can conclude that, for all x,y,z in X,
a(x,z) < dlx,y) v a(y,2) , (36)

vhich is the ultrameric inequality satisfied by d(x,y). Clearly, (36) implies
the triangle inequality |

a(x,z) < dlx,y) + a(y,z) (37)
Thus, (20) implies (36) and (37) , and is implied by (36).

Returning to our discussion of similerity relations, we note that one
of their basic propertiés. is an immediate consequence of the resolution identity
(13) for fuzzy relations. Specifically,

Proposition 3. Iet
S=ZaS,, 0 <a g1 (38)

be the resolution of a similarity relation in X . Then each Sa in (38) is
an equivalence relation in X . Conversely, if the So: »0<cagl, area

nested sequence of distinct equivalence relations in X, with o, >« 2@ Su c Sa
1 2?

S, non-empty end dom §_=dom S, , then for eny choice of a's in (0,1] which
includes o =1, S is a simflarity relation in X .

-15 -



Proof. => First, since us(x,x) =1 for all x in the domain of S, it
follows that (x,x) ¢ s, for all ¢ in (0,1] ard hence that 8, 1is reflexive

for all o in (0,17 .

Second, for each ¢ in (0,1] , let (x,¥5) e Sa » which implies that
us(x,y) > o and hence, by symmetry of S, that us(y,x) > a . Consequently,

x) ¢S and thus S is symmetric for each « in (0,17 .
¥s o o

Third, for each ¢ in (0,1] , suppose that (x, ,xz) € s, and (xz,x3) ¢S,
Then u.s(xl,xz) > o and us(xz,x3 )' > o and hence by the transitivity of S,
ug(x,,x;) > @ « Tis implies that (x,,%,) ¢ s, amd hence thet S is

transitive for each « in (0,17 .

<= First, since S, is non-empty, (x,x) € S, and hence ,us(x,x) =1

for ell x in the domain of Sl .

Second, expressed in terms of the membership functions of S and Sa »
(38) reads

"ls(x)y) = \é o “'S (x,y) ) XY € dom S
o .

It is obvious from this expression for us(x,y) thet the symmetry of Sa for

each o in (0,1] implies the symmetry of S .

Third, let X)X, X, be some arbitrarily chosen elements of X. Suppose

that

- 16 -



ps(xl,'xz) = o and ps(xz,xj) =g |

Then, (x,,xi) e SomB and (xé,xa) ¢ SW\B , and consequently (x,,xa) €8,

nB

ivi S .
by the transitivity of anB

From this it follows that for all X, 5%, X, in X, we havé

and hence

Ms(x, ,x,) > (ng(x, ,x,) A ns(x,,x,))
2

which establishes the transitivity of S .

Partition Tree

let “a denote the partition induced on X by Sa » O ca gl « Clearly,
“o:’ is a refinement of “or if o'> « » For, by the definition of rta, , two
elements of X, say x and y, are in the same block of “oe' ife us(x,y) > a’ .

This implies that us(x,y) > o« 8nd hence that x and y are in the same block
of ® .
o

A nested sequence of partitions n’a 2N yeeey X may be represented
%
diegramatically in the form of a partition tree, as shown in Fig.2. It

should be noted that the concept of a partition tree plays the same role with

respect to a similarity relation as the concept of a quotient does with respect

* .
The notion of a partition tree and its properties are closely related to the
concept of the hierarchical clustering scheme described in [22] .
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X1 1*3 X4l |*e| |*2| |[*sISi0

%3 X4| %g ¥2|*5[~So8
K| *3{ *4| %6 x21*s["So0.6
I [*2|*3| *a|*5| *6 [ ———Sq 5

Fig. 2 Partition tree for the similarity relation defined in Fig. 1.
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to0 an equivalence relation.

The partition tree of a similarity relation S 1is related to the rela-
tion matrix of S by the rule: X, and . X5 belong to the same block of
ﬁa iffe us(xi,xj) > o o This rule implies that, given a partition tree of

S , one can readily determine us(xi,x J) by observing that

us(xi,xa) = largest value of ¢ for which x, and X, ere in the

seme block of X . (39)

An alternative to the diagrammatic representation of a partition tree is
provided by a slightly modified form of the phrase-marker notation which is
commonly used in linguistics.23 Specifically, if we allow recursion and use
the notation «(A,B) to represent a partition m , Whose blocks are A and
B , +then the pa.ftition tree shown in Fig.2 may be expressed in the form of

a string:
0.2(0.6(0.8((x,x,)), 0.8(1(x,), 1(x,))), 0.6(0.8(1(x,), Ux)))) (ko)

This string signifies that the highest partition, %, , comprises the blocks
(x,,x,), (x,), (x,), (x,) amd (x.). The next partition, % g , comprises
the blocks ((x,x,)), ((x,),(x,)), amd ((x,),(x;)). And so on. Needless
to say, the profusion of parentheses in the rhrase-marker representation of
a partition tree makes it difficult to visualize the structure of a similarity

relation from an inspection of (40).
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Similarity Clesses
Simiiarity classes plgy the same role with respect to a similarity rela-

tion as equivalence classes do in the case of an eguivalence relsation.
Specifically, let S be a similarity relation in X = {x',...,xn} character-

ized by a membership function “S(xi’xj) o With each x, ¢ X , we associsate

i
a similarity class denocted by S[xi] or simply [xi] o 'Tis class is a fuzzy

set in X which is characterized by the membership function
“Stxi](xj) = uglxyrx,) . - (4)

Thus, S[x,] is identical with S conditioned on x,, that is, with x

1’ i

held constant in the membership function of S .

To illustrate, the simlilarity classes associated with Xy and X, in

the case of the similarity relation defined in Fig.l are

sfx,] = (x,,1), (x,,0.2), (x;,1), (x,,0.6), (x,0.2), (x6,0.6)

slx,] = (x,,0.2), (x,,1), (x;,0.2), (x,,0.2), (x,0.8), (x6,0.2)

By conditioning both sides of the resaolution (38) on x we obtain at

i 2
once the following proposition.

Proposition k. The similarity class of X;5 X; € X, admits of the resolu-

tioix

8(x;] = § a8 [x,] | (42)

vhere S [x.,] denotes the block of S which contains x,, amd oS [x_]
o i o i T o 1
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is a subnormsl non-fuzzy set whose membership function is equal to « on

Sa[xi] and vanishes elsewhere.

For exemple, in the cese of S[x,], With S defined in Fig.l, we
have
. = + Q. +
s[x,] 0.2{x2,x5_'} (0 6{x~,x6} l{x‘,x3}
and similarly

S[xi] =0.2[x',x3,x4,x6} + 0.8{x{} + 1[x2}

The similarity classes of a similarity relation are not, in general,
disjoint - as they are in the case of an .equivalence relation. Thus, the
counterpart of disjointness is & more general property which is asserted in
the following proposition.

Proposition 5. Iet S[xi] and S[xj] be arbitrary similarity classes of S .
Then, the height (see (3)) of the intersection of S[xi] and S[xj'j is
bounded from above by us(xi,xJ) , that is,

h(S[xi] N S[xj]) < "S(xi’xj) (33)
Proofe By definition of h , we have
h(slx,1N S[xJ]) =\;k(us(xi:xk) A “s(xy"k))

“vhich in view of the symmetry of S mey be rewritten as



h(sfx,]1N S[xJ]) = \}:k( ug(x,,x, ) A us(xk,xj)) (uh)

Now the right-hand member of (L44) is idemtical with the grade of membership of

(xi,xJ) in the composition of S with S . ‘Thus

h(sfx,1n S[xj]) = usos(xi,xj)
vhich, in virtue of the transitivity of S , implies that
h(S[xi]n S[xj']) < p.s(xi,xj) (45)

Note that if S is reflexive, then S° =S and (45) is satisfied with the

equality sign. Thus, for 'Ehe example of Proposition 4, we have
n(sfx, 10 S[xz]) =02 = us(x',xz)
since S 18 reflexive.

The following corollary follows at once from Proposition 5.

Corollary 6. The height of the intersection of all similarity classes of X
is bounded by the infimm of us(xi,xj) over X . 'Thus

n(sfx,10 ...nsfx 1) < ;1 ;J ns(xi,xj) (¥6)

We turn next to the consideration of fuzzy ordering relations.



L. Fuzzy Orderings

A Puzzy ordering is a fuzzy transitive relation. In what follows we

shall define several basic types of fuzzy orderings and dwell briefly upon

some of their properties.

A fuzzy relation P in X is a fuzzy partial ordering iff it is

reflexive, transitive and entisymmetric. By amtisymmetry of P is meant that

uP(x,y) >0 and uP(y,X) >0 =y x=y, xy ¢ X (47)

(On occasion, we may use the notation x ¢ y to signify that p.P(x,y) > 0.)

An example of a relation matrix for a fuzzy partial ordering is shown in

Fig.3.

1 0.8 0.2 0.6 0.2 0.4

0O 1 0 0 0.6 O

= 0o 0 1 0 0.5 O

My 5

0o o 0 1 0.6 0.k

.0 0 ) 0 1 0

0O o0 0 0 0 1

~ J

Fig.3 Relation matrix for a fuzzy partial ordering.

The corresponding fuzzy Hasse diagram for this ordering is shown in Fig.h.

In this diagram, the number associated with the arc joining Xy to x j is
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Fig. 4 Fuzzy Hasse diagram for the fuzzy partial ordering defined
in Fig. 3.
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uP(xi,x j) , with the understanding that x, is a cover for x that is,

J i?
there is no x, in X such that uP(xi,xk) >0 amd uP(xk,xJ) >0 .
Note that the numbers associated with the arcs define the relation matrix by

virtue of the trensitivity idemtity P =¥ .

As in the case of a similarity relation, a fuzzy partial ordering may be
resolved into non-fuzzy partial orderings. This basic property of fuzzy par-

tial orderings is expressed by the

Proposition T. | Iet

P=SogP , O<axgl (48)
o o
be the resolution of a fuzzy partial ordering in X . Then each P in (48)
a
is a partial ordering in X . Conversely, if the Po:’ O<cagl, ares
nested sequence of distinct partial orderings in X , with o, > azé;; ch c Por
] 2

P, non-empty and dom Pc: = dom P, then for any choice of a's in (0,1]

which includes a=1, P is a fuzzy partial ordering in X .

Proof. Reflexivity and transitivity are established as in Proposition 3.

As for entisymmetry, suppose that (x,¥y) e Pa and (y,x) e P+ Then

p.P(x,y) > ,‘ uP(y,x) > « and hence by antisymmetry of P, x =y . Con-
versely, suppose that p.P(x,y) =g>0 and uP(y,x) =8>0. Iet y=aAB.
Ten (x,¥y) e PY and (y,x) ¢ P‘Y , and from the antisymmetry of P'Y it
follows that x =y .

In many applications of the concept of a fuzzy partial ordering, the

-25 -
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condition of reflexivity is not a natural one to impose. If we allow
. p.P(x,x) , X eX, totake any value in [0,1] , the ordering will be referred

to a8 irreflexive.

To illustrate the point, assume that X is an interval [ a,b 1, and
up(x,y) = £(y=x) , with 2(y=x) =0 for y < x and £(0) =1 . 'hen, 25
was noted in Section 2 ((31) et seq.) , if £(x) is right-continuous at
'x =0, the max-min trensitivity of i, requires that f{x)=1 for x>0.
However, if we drop the requirement of reflexivity, then it is sufficient that
f be monotone non-decreasing in order to satisfy the condition of transitivity.

For, assume that f 1is monotone non-decreasing smd x <y <2 , X,¥,2, ¢ [8,b] -

Then .

up(x,2) = £(z-x)

= £((z=y) + (y=x)) (49)

and since

£((z=y) + (y=x)) > £(z-y)

£2((z=y) + (y=)) > £2(y=)
we have

£((z=y) + (y=)) > £(z=y) » 2(y=x)
and therefore

- uplz) 2V (gl 4 hly,2) )

vwhich establishes the transitivity of P .

It should be noted that the condition is not necessary. For example, it

is easy to verify that for any .—5?_-'—3- <B < t—)g_-;, the function
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£(x) = fx, ngs-%—
= D 1 '
= - px, 'y \<x\<b-a'

corresponds to a transitive fuzzy partial ordering if B(b-a) < g‘- .

With each x, ¢ X , we associste two fuzzy sets:

Te dominating class, denoted by P; [xi] and defined by

“Pe. [xi](xj) = uP(xi,xJ) ’ xyeX 3 (50)

and the dominated class, denoted by P, [xi] and defined by

uP\< [xij(xj') = uP(xJ,xi) s xy € X. (51)
In terné of these classes, Xy is undominated iff
.uP(xi,xJ) =0 Pfor all X, # x, | (52)
and Xg is undominasting iff
uP(xJ,xi) =0 for a.ll x, tx, . (53)

It is evident that if P is any fuzzy partial ordering in X = fx,50005x 1,

the sets of undominated and undominating elements of X are non-empty.



Another related concept is that of a fuzzy upper-bound for a non-fuzzy
subset of X . Specifically, let A be a non-fuzzy subset of X . Then

the upper-bound for A is a fuzzy set denoted by U(A) end defined by

u(a) =N Py [x,] (54)

x; € A

i
For a non-fuzzy partial ordering, this reduces to the conventional defirition

of sn upper bourd. Note that if the least element of U(A) is defined as an

x. (if it exists) such that

i

"U(A)(xi)? 0 and uP(xi,xJ) >0 for all x in the support of U(A) (55)

then the least upper bound of A is the least element of U(A) anmi is

unique by virtue of the antisymmetry of P .

In a similar vein, one can reedily generalize to fuzzy orderings many of
the well-known concepts relating to other types of non-fuzzy orderings. Some

of these are briefly stated in the sequel.

Preorder
A fuzzy preordering R is a fuzzy relation in X which is reflexive and
transitive. As in the case of a fuzzy partial ordering, R sadmits of the

resolutioii

R=ZaR , O<caxgl (56)

where the -level-sets Ra' are non-fuzzy preorderings.
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For each « , the non-fuzzy preordering Ra imuces an equivalence

relation, E , in X and & partial ordering, Pa , on the quotient
o ,

X/E_ . Specifically,

. (xi,xj) cE &> ‘_*Ra (xi,xJ) \= uRa(xJ,xi) =1 (57)
- amd

( [xi] ’ [xJ] ) € Pae, ‘&Ra(xi’xj) = l 81’!3. uRd(xJ’xi) = 0 (58)

vhere [xi] and [xJ] are the equivalence classes of x, amd x re-

i 3’
spectively.

As an illustration, consider the fuzzy preordering characterized by the

relation matrix shown in Fig.5.

1 08 1 0.8 0.8 0.8
0.2 1 0.2 0.2 0.8 0.2
1 0.8 1 0.8 0.8 0.8
0.6 09 0.6 1 09 1

0.2 0.8 0.2 0.2 1 0.2

| 06 0.9 0.6 09 0.9 1

Fig.5. Relation matrix of a fuzzy preordering.

The corresponding relation matrices for RO.2’ RO.6’ R0.8’ RO.9’ and Rl re=d



0.2 0.6 0.8
111111 (101111 1) (101111 1]
111111 010010 ©10010
111111 111111 111111
111111 111111 010111
111111 ©10010 010010
111111 1111121 010111
. 7 - P
Ro.9 R,

(1 0100 0] (10100 0]

010000 010000

101000 101000

010111 000101

000010 0000010

010111 0000O01

L ) ; )

Fig.6. Relation matrices for the level sets of the preordering defined in

Fig.5.

The preordering in question may be represented in diagrammatic form as

shown in Fig.7

In this figure, the dotted lines in each level (identified by R )
represent the arcs (edges) of the Hasse diagram of the partial ordering Pa s
rotated clockwise by 90° . The nodes of this diagram are the equivalence
classes of the equivalence relation, Ea s induced by Ro: « 'Tus, the diagram

as a whole is the partition tree of the similarity relation
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S = 0.2E

02,+o.6 EO.6+0'8E0.8+0'9E +1E

0.9 1

with the blocks in each level of the tree forming the elements of a partial

ordering Pa which is represented by a rotated Hasse diagram.

Linear ordering

. A fuzzy linear ordering L is a fuzzy partial ordering in X in which

for every x #y in X either uL(x,y) >0 or uL(y,x) >0 . A fuzzy

linear ordering admits of the resolution

L = Lol , 0<ALI (59)
o o

which is a special case of (48) and in which the La are non-fuzzy linear

orderings.

A simple example of an irreflexive fuzzy linear ordering is the relation

y>>x in X=(-®, o ). If we define uL(x,y) by

mlxy) = (1 + (y-x)2)* for y-x >0

= 0 for y-x < O

then L is transitive (in virtue of (9)), antisymmetric, and p.L(x,y) >0

or uL(y,x)>0 forevery x#y in ( - o, © ). Hence L is a fuzzy

, linear ordering.

Weak ordering

)

If we remove the condition of antisymmetry, then a fuzzy linear ordering
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becomes a Weak ordering. Equivalently, a weak ordering, W , may be regarded
as a special case of a preordering in which for every x #y in X either

uw(x,y) >0 or qw(y,x) >0.

- Szpilrajn's theorem

A useful example of a well-known result which can readily be extended to
fuzzy orderings is provided by the Szpilrajn theorem,eh which may be stated

as follows.

Iet P be a partial ordering in X . ‘Then, there exist a linear ordering
L inaset Y, of the same cardinality as X , and a one-to-one mapping
o from X onto Y (called the Szpilrajn mapping) such that for all X,y
in X

(x,y) e P => (o(x), o(y)) eL.
In its extended form, the statement of the theorem becomes:

Theorem 8. let P be a fuzzy partial ordering in X . Then, there exist a
fuzzy linear ordering I in a set Y, of the.same cardinality as X , and

a one-to-one mapping ¢ from X -onto Y such that

up(%,¥) > 0 = wufo(x), o(y)) = wuylx,y), Ly eX  (60)

Proof. 'The theorem can readily be established by the following construction

for L amd o .

Assume that a fuzzy partial ordering P in X = {x ,...,xn} is character-
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-ized by its relation matrix, which for simplicity will also be referred to as

P . In what follows, the relation matrix shown in Fig.3 and the ﬁasse diagram
corresponding to it (Fig.4) will be used to illustrate the construction for

L and o .

First, we shall show that the antisymmetry and transitivity of P make
it possible to relabel the elements of X in such a way that the correspond-

ing relabeled relation matrix P is upper-triangular.

To this end, let Co denote the set of urdominating elements of X

(i.e., x, € C, <> colum corresponding to x, contains a single positive

i
element (unity) lying on the main diagonal) . The transitivity of P implies

that C, 1is non-empty. For the relation matrix of Fig.3 , C, = {x,} .

Referring to the Hasse diegram of P (Fig.lkt), it will be convenient to

associate with each x 3 in X a positive integer p(x J;Co) representing

the level of x., above C, . By definition

J

p(xJ; o) = Max d(xi,xj) (61)
x, ¢ Co

xianﬂ.;@c.j

in the Hasse diagram. For example, in Fig.h, Co; = {x,} amd da(x,,x,) =1,

vhere d(xi,xj) is the length of the longest upwerd path between

d(x',xs) =1, dx,x,) =1, dx,x;) =2, d(x,x,)=2.

Now, let cm »m=0,1, .coc, M, denote the subset of X consisting of

those elements whose level is m, that is
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c, = {xJ | p(xJ;c°) =m } , (62)

‘with the understanding that if x, is not reachable (via an upward path)

J
from some element in C, , then xy € Co, « Far the example of Fig.hk , we

have C, = fx,} , C, = {x ,x,,x}, C, = {x;,x,}, C, = © (empty set) « In

words,

xy ¢ G e=> (1) there exists an element of C, from which

x. 1s reachable via a path of length m , anmd

J
(11) there does not exist an element of C,

from which x, i1s reachable via a path of length

J
> mo ’ (63)

From (61) and (62) it follows that Co s ooes CM have the following pro-

perties:
(a) Every x, in X belongs to some C , m =0, ceoy Mo (6%4)

‘Reason Either x

J
Xy ¢ Co, » ©Or it is reachable from some x, in X, s&y X; - (i.e.,
)

is not reachable from any Xy in X, in which case

“P(xi,’x,j):'o . Now xy s like x5 s either is not reachable from any x,

in X, in which case Xy € C, and hence xJ
|

Xy is reachable from some xi. in X, say Xy e Continuing this argument
] : 2

and making use of the antisymmetry of P and the finiteness of X , we arrive

is reachable from C, , or

at the conclusion that the chain (x1k ) Xy 5 eeer Xy o xJ) must eventually
-1 i
originate at some xik in C ° ° Tis establishes that every x 3 in X which

is not in Co, is reacheble from C, and hence that p(xj;co) >0 and
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(v) C,» Cy » -+, Cy aredisjoint. Thus, (a) and (b) imply that the collec-

tion { C_, eeu, c\i } is a partition of X .

Reason Single-valuedness of P(x J;Co) implies that x 5 € C, and
xj ¢ Cp cennot both be true if k # € . Hence the disjointness of C_, ««+;, Cy -
(c) Xgs%, € c, =~ u.P(xi,xJ) = "‘P(xj’xi) =0 (65)

Reason Assume g% ¢C and "P(xi’x3)>0 . ‘Then

plxs3Cy) > plx,5C,)

vwhich comtradicts the assumption that x,,X, ¢ C . Similarly, uP(xJ,xi) >0

i3

contraedicts xi,x‘1 € Cm o

(a) . x,¢€C, and k< ¥ => x

1 in C

is reachable from some x

(4 i

J k

Reason If xJeCe,-thenthereexists apath T of length ¢ via

which x 3 is reachable from some x, in Co » and there does not exist a

longer path via which x 3

x, be the K*® node of T (counting in the direction of cp ), with k <C.

is reachable from any element of Co. Now let

Then x, e'Ck, since there exists a path of length k from x  to x, anmd

there does not exist a longer path via which x, 1s reachable from any element

i
of C, . (For , if such a path existed, then x, would be reachable via a
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path longer than é from some element of Co') Thus, :-:J is reachable from

some xi in Ck.

An immediste consequence of (d) is that the C, may be defined recur-

sively by

0,1,...,M (66)

H
]

Coeg = Brjlplxyscy) =13,
with the understanding that C, # 6 and Cyay = ® . More explicitly,

x5 € Crox <> lLP(xi,xJ) >0 for some x;, in C , and
there does not exist an Xy

xk in X distinct from xi such that

p.P(xi,xk) >0 and "'P(xk’x,j) >0 .

in C and an
m

(e) . x,eC, am x,6Cp el k<l =» pp(x ) = O (67)

Reason Suppose p.P(xJ,xi) >0 . By (d), X, is reschable from some
element of C_ , s&y X e« If x =x , then u.P(xi,xJ) >0, which
contredicts the antisymmetry of P . If X, X » then by transitivity of
P, uP(xr,xi) >0, which contradicts (c) since X %, € Cy

(£) x, ¢ C, and x5 e Cp, and uP(xi,xJ)>O=> €>k (68)

Reason By negation of (e) amd (c) .
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The partition { co,...,cm } , which can be constructed from the rela-
tion matrix P or by inspection of the Hasse diagram of P , can be put to
use in various ways. In particular, it can be employed to obtain the Hasse
diagram of P from its relation mntrix in cases in which this is difficult to
dé) by inspection. Another applicetion, which motivated our discussion of
{ Co"“CM } , relates to the possibility of relabeling the elements of X
in such a way as to result in an upper~triangular relation matrix. By employ-
ing the properties of { Co""’CM ]} stated above, this can readily be

accomplished as follows.

Let n denote the number of elements in Cm’ m=0,00.,M . Iet the

elements of C0 be relabeled, in some arbitrary order, as Yy seees¥, >

c

then the elements of C, be relabeled as y then the elements

se00sy ’
n L n;n,

’yno+n‘+n1’ and so on, until all the

elements of X are relebeled in this mamer. If the new label for Xy is

of C, be relabeled as yna‘n.'*l""

yJ, we write

¥y = cr(xi) (69)

vhere ¢ is a one-to-one mapping from X = {x ,o..,xn} to Y={y yeeesy } o

Furthermore, we order the yj linearly by yJ >yi <> J>1, 1,) =1,eee,n.

The above relabeling transforms the relation matrix P into the relation

matrix P defined by

up (o(x,), O(xj)) = uP(xi,xJ) s x5 x5 € X (70)
b o
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To verify that P_ is upper-triangular, it is sufficient to note that
if “P(xi’xj) >0, for x, a*xj , then by (£) o(xJ) >a(xi) .
It is now a simple matter to coustruct a linear ordering L in Y which

satisfies (60) . Specifically, for Xy #x let

j H

n

ML(O‘(xi), O‘(XJ)) LLP(x'i,xJ) ifr “P(xi’x,j) >0

0 if uP(xi,xJ)=-o and uP(xJ,xi)>o .

£ if uP(xi,xj)=uP(xJ,xi)=O (i.e., Xy

and x4 belong to the same C_ class) and

a(xj) >0'(xi)

-0 if p.P(xi,xj) = "‘P(x,j’xi) =0 and
o(xj) <a(xi) . ‘ (71)

where £ 18 any positive constant which is smaller than or equal to the

smallest positive entry in the relation matrix P .

Note. It is helpful to observe that this construction of L may be visualized

as a projection of the Hasse dlagram of P on a slightly inclined vertical

line Y . (Fig.8) . "The purpose of the inclination is to avoid the possibility
~ that two or more nodes of the Hasse diagram msy be taken by the projection into

the same point of Y .

All that remains to be demonstrated at this stage is that L , as defined
by (71) , is treansitive. Tis is insured by our choice of £ , for so long

a8 £ 1s smaller than or equal to the smallest entry in P , the transitivits
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Fig. 8 Graphical construction of L and o.
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of P implies the transitivity of L , as is demonstrated by the following
lemma.

: 2
lemma 9. et Pr be an upper-triangular matrix such that Pr = Pr o let
Q denote an upper-triangular matrix all of whose elements are equal to € ,

vhere O <€ g smallest positive entry in Pr « 'Then
Bva =(pvey (72)

In other words, if Pr and Q are transitive, so is Prv Q.

Proof. We can rewrite (72) as

_pl
PrVQ—P

2
> ¥ B2Qv QB v Q (73)

2

Now Pr '--Pr and, since Q is upper-triangular, Q =Q2  Furthermore,

B o Q =QeP =Q . Hence (72).

To apply this lemma, we note that L , as defined by (71) , may be

expressed as

L=RvQ (%)

where - Pr and Q satisfy the conditions of the lemma. Consequently, L is
transitive and thus is a linear ordering satisfying (60) . This completes the

proof of our extension of Szpilrajn's theorem.



Com;lu.d:l_gg remark

As the foi'egoing analysis demonstrates, it is a relatively simple marl:ter
to extend some of the well-known results in the theory of relations to fuzzy
sets. It appears that such extensions may be of use in various applied areas,
particularly those in which fuzziness and/or rendomess play a significant

role in the enalysis or control of system behavior.
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