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ABSTRACT

This paper considers a nonlinear time-invariant network t^A) (of order

n + h + I) which contains, in addition to the usual elements, h stray

elements (stray capacitances and lead inductances) and I sluggish elements

(chokes and coupling capacitors). We prove that the asymptotic stability

of any equilibrium point of oA) is guaranteed once the simplified (i.e.

with stray and sluggish elements neglected) linearized network, and two

other linear networks S„ and S_ are asymptotically stable. The networks

S„ and S are obtained by both a physically intuitive argument and by a
H L

rigorous one. We also prove that if any one of the three linear networks

is exponentially unstable, then the equilibrium point of C_A) is unstable.

Thus our theory explains the commonly occurring fact that vJVI is unstable

even though the simplified linearized network is asymptotically stable.

An example illustrates the several possibilities. In the proof we obtain

the asymptotic behavior of the natural frequencies of v^AI (valid in a

neighborhood of the equilibrium point). In Appendix II, we show how the

natural modes of the three simple networks are related to those of the

given network cJVf.
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NETWORKS WITH VERY SMALL AND VERY LARGE PARASITICS: NATURAL

FREQUENCIES AND STABILITY

I. INTRODUCTION

This paper deals, in a circuit theoretic context, with a basic prob

lem of System Theory. It is usual that in a study of a given physical

system one considers several models depending on the problem considered.

For example, in amplifier design one uses low-frequency, mid-frequency,

and high-frequency models in the design for sinusoidal-steady state

specifications. For this problem, the relations between the models is

pretty straightforward. When other problems are considered (say, tran

sient behavior, stability, etc.), it is known that sometimes the simpli

fied model gives completely erroneous answers. In this paper we focus

our attention on the stability of equilibrium points and we obtain con

ditions under which the simplified model will give correct (or totally

erroneous) predictions. This paper extends by algebraic methods the

results of [1].

To be specific we consider a lumped network so that we benefit

from the established conceptual framework and terminology of circuit

theory [2]. Let this network consist of nonlinear time-invariant elements

and of no independent sources; therefore, it is usually described by an

autonomous system of differential equations. In addition to the usual

elements, we introduce in the analysis small elements such as stray ca

pacitances and lead inductances: we refer to these elements as stray

elements and assume that their values are proportional to a small pos-
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itive number e. This number e indicates the degree of smallness of the

stray elements. To neglect the stray elements in the analysis amounts

to setting e = 0. We know intuitively that the stray elements affect

mostly the "high frequency" behavior of the network. At the other end

of the scale, there are elements like chokes and coupling capacitors

that have very large values and affect mostly the "low frequency" be

havior of the network. We call them the sluggish elements and assume

that their values are proportional to a large positive number u. This

number u determines the degree of bigness of the sluggish elements. To

neglect these elements amounts to setting u = °°. Given any pair of

values for e and u, we denote the corresponding network bvoM . We call

(^Al the simplified network, i.e. the network obtained by neglecting the
QOO

stray and sluggish elements.

In this paper we investigate the relation between the behavior of

,h[ andu\L about equilibrium points when e « 1 and y » 1. We give

a complete description of the behavior of the natural frequencies of the

small-signal equivalent circuit S in terms of those of SQoo and of two

auxiliary linear networks S„ and S, . In particular, for small e and large

y, we partition the set of natural frequencies of S into three sets re-
cy

lated to the sets of natural frequencies of three simpler networks (S0oo,

S„, S_). We obtain also the asymptotic behavior of the natural frequencies
H L

of S in terms of those of these three networks. The first result states
ey

that for small e and for large y, S is asymptotically stable if all three
&y

simpler networks are asymptotically stable. The second result says that

if any of the three simpler networks is unstable so is the network S for
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small e and large y. The results are illustrated by a simple example

(see sec. IV) which illustrates the several possibilities. The reader

might find it helpful to use this example to illustrate step by step

the general discussion which follows.

II. ANALYSIS

We assume that the equations of (_AI can be written in the form:

x = f^x, y, z)

ey = f2^x' y' z^ ^

yz = f3(x, y, z)

where x(t) e1Rn, y(t) G 1^ , z(t) G IR ; e and y are positive numbers,

typically e << 1 and u » 1. General conditions under which such equa

tions can be written are given in the literature, see for example the

review paper [3]. We assume that f-jf-.f- are defined and twice continu-

ously differentiable on an appropriate open set of "R x R x 1R . The

components of x(t) are the state variables associated with the simplified

network^AI , those of y(t) (z(t), resp.) are associated with the stray
\JQO

(sluggish, resp.) elements.

TK\ may have one or more equilibrium points, let P = (0,0,0) be

one of them. Then except for critical cases the stability of^Af about
ty

this equilibrium point P can be completely decided on the basis of the

linearized equations [4]
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•

X = Au A1H A1L

ey *H1 ^SiH ^L

yz Si h* *1LJL J

(2.1)

(2.2)

(2.3)

where, in particular, A...., A^ and A^T are constant square matrices of

dimension n, h and &, respectively. These (linearized) equations repre

sent the network equations of the small-signal equivalent circuit (about

equilibrium point P) which we denote by S . It is a well known fact

that if all natural frequencies of S are in the open left half-plane

then the equilibrium point P of^J\j is asymptotically stable. Further-
ty

more if any one or more of the natural frequencies of S is in the open

right half-plane, then the equilibrium point P^ of is unstable [4].
Ey

The set of natural frequencies of S is precisely the set of zeros of

the polynomial A(X,e,y ) defined by

A(X,e,l/y) = det All "XI A1H

^1

Al

-eXl

y^LH

1L

V

Kl"xi

(3)

A is a polynomial in X of degree n+h+£ and whose coefficients are poly

nomials in e and 1/y. In particular, the leading term is (-1) e X

It is well known that as long as the polynomial A has n+h+£ distinct X-roots,

then each root is locally a holomorphic function of e and of 1/y [5,6]. In
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the general case, when for a fixed e and 1/y, say, eQ and l/y0> A has a

k-multiple X-root, say X. then, given any r > 0, there exists an e > 0

and ay < » such that le - ert| < e and I I < — imply thatr ' 01 r 'y y0' yr
A(X,e,l/y) has k zeros counting multiplicities in the disc |x - X_| < r.

[9, p. 13-14; also 6, Theor. 9.17.4 and Probl. 4 p. 245].

Consider now the simplified network S.. in which both the sluggish

and the stray elements are neglected. First, let y •*• «> in Eq. (3). The

last row of the determinant becomes [0 ; 0 i - XI]. Second, as e -*• 0, h

zeros of A go to infinity, since the degree of the polynomial A drops from

n+h+Jl to n+A [7]. Thus, the set of natural frequencies of SQa) is the set

of zeros of the polynomial AM(X):

-£AM(X) = lim lim (-x)~* A(X,e,l/u) = det
AirAI aih

^1 Affl

(4)

This shows in particular that S0oo is a network of order n.

The physical interpretation of this reduction is the following: as

y -*• », the magnitude of the natural frequencies associated with the slug

gish elements get smaller and smaller; in the limit, the corresponding

modes become constant; hence they do not affect the natural frequencies

of S , and, a fortiori, those of Sn . As E -»• 0, the natural frequencies
£00 vjoo

associated with the strays get larger and larger; if all eigenvalues of

A^ are in the open left half-plane, then, as e •* 0, the solution of

c* = *m x+ W'

expressed in terms of x(»)> namely,
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t

y(t) = Texp A^ te"1] y(0) + / [exp ^xe"1] AR1 x(t-T)e"1dT
*• o

can easily be shown to tend to -AJL A^ x(t) on (o,00) [8]. Thus provided

that A^ has all its eigenvalues in the open left half-plane, the re

lation between y(t) and x(t) is obtained by setting ey to zero in (2.2).

Physically, this means setting to zero all the currents through the stray

capacitors and all the voltages across the stray inductors. Thus we are

again led to the conclusion that X is a natural frequency of SQoo if and

only if AM(X) = 0.

The nonlinear time-invariant network(JVI (described by (1)) is approxi-
ty

mately represented, about its equilibrium point P, by a linear network S (de-
ey

scribed by (2)). Call Sfl the high-frequency approximation to S : phys

ically it is obvious that it is obtained from S by open-circuiting all

inductors except the stray inductors and by short-circuiting all capaci

tors except the stray capacitors. S„ is a network of order h. Since,
n.

with respect to the short time-constant modes of S , the other state
n

variables (x and z) are essentially constant, the natural frequencies

of S are completely determined by A___. This can also be seen mathema

tically by the following change of variables: t = ex. The t scale is a

stretched-out time-scale which emphasizes the high frequencies. After

the change of variables we have

/-

dx
dT = £A11X + eA1Hy + 6a1lZ

dT= AR1x + W + ^L2

dz e .

17 = v \ix + M*!# +Klz

<
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Now as e •> 0, the first and last equation show that, in the limit, x and

z are constants. Therefore, the second equation shows that, in the T-

scale, the natural frequencies of S are the eigenvalues of A^.

Call S the low-frequency approximation to S : physically it is
Li £(J

obvious that it will be obtained from S by short-circuiting all in

ductors except the sluggish inductors and open-circuiting all capacitors

except the sluggish capacitors. Thus S is a network of order I whose
Jli

equations are obtained by deleting x and y from the equations (2). In

deed x and y represent the currents (the voltages, resp.) through the non

sluggish capacitors (across the non sluggish inductors, respj. Math

ematically this can be checked by changing the time scale according to

t = yt1: since u is large, this will emphasize the large time-constants

i.e. the low frequencies. After the change of variables we have

1 dx

y dt*d? = hi* +AlHy +A1LZ

£ dy_
y dtf

dz

dt'

V + W + ^L2

As y •* °°, we see that the derivatives of x and y drop out and, therefore,

the natural frequencies of S (in the new time scale) are the zeros of
Li

*l<»> = det
11

^1

AL1

"1H *1L

^H ^SlL
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In summary, we state the following:

S- , which can be thought of as the mid frequency approximation to

S and which is obtained by neglecting all stray and sluggish elements,
Ey

is characterized by

0»

x — A_ -X + A-„y

(6)

0 = V + ^

Sjj is the high-frequency approximation to S , it is obtained by

neglecting all normal and sluggish energy-storing elements, the equation

of S„ is
n.

SH: £y=AHHy (7)

S_ is the low frequency approximation to S ; it is obtained by

neglecting all normal and sluggish energy-storing elements; the equations

of S are

SL<

0 = Anx + A1Hy + A^z

0 = AHlX + AHHy + AHLZ
yz =^x + Ajjjy + AllZ

III. MAIN RESULTS

(8)

It turns out that the asymptotic stability of the equilibrium point

P of(JvL' can be ascertained by checking the asymptotic stability of Snoo,

S and S . Also P may be unstable even though S-. is asymptotically stable!
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This is made precise in the following two theorems.

Theorem I.

Suppose that the equations of <J\J . can be put in normal form
• Ey

valid for a neighborhood of the equilibrium point P, as in (1). If the

three linear networks SQoo, S„ and S_ (of respective order n, h and £) are

asymptotically stable, then there is an efl > 0 and a yfi > 0 such that the

equilibrium point P of the autonomous nonlinear network V-A) is asympto-
ey

tically stable for any e£ [0,eQ] and any y € [y-,*].

Theorem II.

Suppose that the equations of ^J\) can be put in normal form valid
Ey

for a neighborhood of the equilibrium point P, as in (1). If one or

more of the three linear networks Srt , S„ and S_ has one or more natural
0°° H L

frequencies in the open right half-plane then there is an en > 0 and a

yQ >0 such that the equilibrium point P of o\f is unstable for any

Q] and any_ y€ [yQ!
ey

e £ [0,en] and any_ y € [y ,«>].

Theorem I says that for small e and large y, the asymptotic stabil

ity of S (which is of order n+h+£) is guaranteed once it is shown that
Ey

S0a>* ^H an<* ^L fa*1*0*1 are °f order n, h, A, respectively) are asymptoti

cally stable. Theorem II says that if any one of the three is exponentially

unstable so is S for small e and large y. The theorems are proved in
Ey

Appendix I. The asymptotic behavior of the natural frequencies of S are

given in the proof. In Appendix II, we exhibit the relation between the

natural modes of Srt , S,, S„ and the corresponding ones of S
0" L H ey
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IV. EXAMPLE

Instabilities due to stray elements (high-frequency singing) and

due to sluggish elements (mororboating) are a frequent experience to

circuit designers. Examples of this sort are usually complicated and to

make them intelligible require lots of detailed explanations. So, to

avoid burdening the reader with a complicated example we present a very

simple example which illustrates all the features we wish to exhibit.

Let the small-signal equivalent circuit about the equilibrium point P

be the third order circuit S shown in Fig. 1(a). The simplified circuit
c.y

S , the high-frequency approximate circuit S and the low-frequency

approximate circuit S are shown in Fig. 1(b), (c) and (d). A little

calculation shows that the equations of S are
n ey

r • _ JL. + JL
X " R+l X " y R+l Z

ey = x - - y (9)

1 1
yz = - R+l x " R+l z

The equations for S are: (see Fig. lb)

R

X = "iflX"y

0 = x - - y
r

The equation for S is (see Fig. lc)
n

(10)

ey --\ y (ID

-10-



The equations for S are: (see Fig. Id)

0 =

0 =

yz =

R+l

R+l

x - y

x - - y

R+l

(12)

R+l

Observe that (10), (11), (12) can be obtained directly from (9) by respec

tively, (a) setting z = 0 and e = 0, (b) setting x = 0 and z = 0, (c)

setting x = 0 and z = 0. This corresponds precisely to the physical

approximations done in Sec. II above.

The table below exhibits three sets of values of r and R for which

S is unstable even though the simplified network S ^ is stable in

each case. The instability is due to high frequency instability or to

low frequency instability or to both.

r R S
ey

S SH SL

-.5 2 unstable stable unstable stable

-.5 -2 unstable stable unstable unstable

.5 -2 unstable stable stable unstable

CONCLUSION

From a practical point of view, Theorem II is probably more useful

than Theorem I: because once it is determined that either S„ or S_ is
H Li
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exponentially unstable, then no matter how small the parasitics can be

made,^! •will be unstable; therefore a design change is required. In

some cases S„ or S have purely imaginary natural frequencies, it is
H L

possible that suitable refinements of our theory may lead to some useful

conclusions for the designer. Extensions to the time-varying case are

possible using Desoer's results [10].
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APPENDIX I

Proof of Theorem I.

It is well-known that if all the natural frequencies of S are in
Ey

the open left half-plane, then the equilibrium point P of cAI is asymp

totically stable [4]. To prove that all natural frequencies of S are

in the open left half-plane we establish three assertions.

Assertion I: for e small and y large, n natural frequencies of S are

close to those of SQm. Let X^ be any natural frequency of SQoo, so

ReX^ < 0 since Sftoo is asymptotically stable. Also L is a zero of the

polynomial \,M and of the polynomial A(X,0,0). By the continuity re

sult referred to above, if k is the multiplicity of ^ as a zero of

A(X,0,0), then for any r >0with r < [ReX^I, there exist an eM >0 and

a ]l >0 such that e£ f0^] and VG f1JM,°°^ iraply that A(X,e,l/y) has

k zeros (counting multiplicities) in the disc centered at XM and of radius

r. Note also that for the allowed values of e and y, all these k natural

frequencies of S are in the open left half plane. By applying successively

this reasoning to all natural frequencies of SQm we prove that Assertion I

is true.

Assertion II: for e small and y large, h natural frequencies of S_ are

close to X./e, where X.. denotes any natural frequency of S^ with e set

equal to one. More precisely, if XR is any eigenvalue of A^ which is of

multiplicity k as a zero of det [XI - A^]} then, for e small and y large

S has k natural frequencies (counting multiplicities) close to XR/e.

-13-



Note that ReX„ < 0 by asymptotic stability.
H

Let X = £/e in the right hand side of (3) and multiply the first and last

block of rows by e, then we conclude from (3) that X is a natural fre

quency of S if and only if

P(£,e,-) = det

For e = 0, we have

eAn"CI EA1H

*H1 Affif51

V*L1 v ha

£A1L

e

%^L"51

n+Jlp(C,0,0) = (-£) det (A^j-a)

= o

(Al)

(Ala)

Any X„ is a zero of p(£,0,0); suppose that the X„ we consider is of

multiplicity k. Since p(£,e,e/y) is a holomorphic function of C, e and

e/y, we apply again the quoted result to assert that for any r > 0 with

r< |ReX„|, there exist an e >0and yH >0 such that e^ [0,er] and

y € [y„,«] imply that p(€,e,e/y) has k zeros (counting multiplicities)

in a disc of radius r centered on X . Equivalently, A(X,e,l/y) has k

zeros satisfying |x-(X /e)| < r/e. Considering successively all eigen

values of A^, Assertion II is proved. Note that all these h natural

frequencies are in the open left half-plane, provided e and — are small,

indeed the asymptotic stability of SH implies that all the Xfl are in the

open left half-plane.
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Assertion III; for z small and y large, il natural frequencies of S^y are

close to X /y, where X is any natural frequency of SL with y set equal

to one. More precisely, if X is any natural frequency of SL» which is a

zero of mulitplicity k of A^(X), then S has k natural frequencies which

are close to X_/y. Note that ReX < 0 by asymptotic stability.
L Li

Let n = yX in the right hand side of (3) and multiply the last row

of blocks by y, then from (3) we conclude that X is a natural frequency

of S if and only if
ey

i—

q(n,—,—) =det
n ]X \1 Air

i

u
m A1H A1L

ha hCnI

= o

(A2)

From (5) and (A2) we note that the set of X fs is equal to the set of

zeros of q(n,0,0). Consider any specific X and let k be its multiplicity,

1 eAgain q is a holomorphic function of n, - , - . Hence we can assert that

for any given r >0 with r < |ReX |, there exist e >0 and yL >0 such
1 zthat e£ [°»eL] and y€ [y ,«>] imply that k zeros of q(n, — ,—) are in a

disc centered on X and of radius r. Equivalently, A(X,e,l/y) has k zeros
Li

satisfying |x-(X /y)| < r/y. Considering successively all zeros of A^X),

Assertion III follows. Note that all these I natural frequencies are in

the open left half-plane provided z is small and y is large, indeed the

assumed asymptotic stability of ST implies that all the X *s are in the
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» ^

open left half-plane.

Now observe that the three assertions describe a partition of the

natural frequencies of S in three sets of respective size n, h and &.

For z small and y large, these three sets are disjoint since the first

one is bounded and bounded away from zero, the second one recedes to

infinity and the third one tends to zero. Therefore all n+h+£ natural

frequencies of S are accounted for and the assumptions on S~ , S„ and

S-, imply the asymptotic stability of the equilibrium point P of o\l •
ti £y

Q.E.D.

Proof of Theorem II.

It is well known that if one or more natural frequency of S is in

the open right half-plane, then the equilibrium point P of the nonlinear

network^) is unstable [4]. Theorem II follows from this fact and the

three assertions above.
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APPENDIX II: NATURAL MODES

Intuitively one would expect that the natural modes of SQoo, Sfl and

S are closely related to those of S for z small and y large. We pro-
L ^ V

pose to exhibit this relationship for the case where SQoo, SH and SL have,

respectively, n, h and SL distinct natural frequencies. In fact .we shall

calculate the leading term of the asymptotic expansion of the modes of

S
ey

•r N £Z m n+h+£ fcWe say that the (constant) vector (x,y,z) <= <C represents a

natural mode of S with natural frequency X iff the function
— ey -

t^ (x,y,z)T exp(Xt) is a solution of eq. (2) (superscript T denotes

"transpose", and C denotes the complex plane). With suitable modifica

tions, this concept applies to S-, SH> S^.

I. Mid-frequency modes. Let Xfl be any natural frequency of SQo() and
m

let (xM,yM) be the corresponding natural mode; thus

A^-X^I A
11

^1

L

1H

yM
(A3)

Let XA be the zero of A(X,e,l/y) close to X^. By the implicit function

theorem [9, p. 14; 6, Theor. 10.2.4] we have

XjJ - XM + v(e,l/y) (A4)

where v is holomorphic in a neighborhood of (0,0), v(0,0) = 0, and

v(e,l/y) - 0(e,l/y). The leading term of the expansion of the natural mode of

-17-



* >

S corresponding to XA is given by (x^y™*2^ exP ^Ki t^ where

\ =yXjJ (AL1 *M +^H yM} (A5)

Note that Hz il = 0(l/y). To check this natural mode substitute it into

(2) and obtain

hi'Ki1 hn hi

hi hsrzSiJ ha,

hi hn h-L^Si1

^

rM

»M

0(e,l/y) + 0(l/y)

e0(e,l/y) + 0(l/y)

0(l/y)

The right hand side consists of terms of first and higher order in e and

1/y. interpretation: when SQoo is changed to S , \. changes to X^

according to (A4), and the motion starts affecting the sluggish elements'

in the order 0(l/y) as specified by (A5).

II. High frequency modes. Let X be any natural frequency of S

with e set equal to one; X„ is an eigen value of A™, (see (7)); call

yM the corresponding (normalized) eigenvector of A„„. X is also a

simple zero of p(£,0,0), and the zero of p(£,e,l/y) close to XR is of

the form (see (Al))

X^ + <j)(e,e/y)

where <J> is holomorphic, <J>(0,0) = 0 and <|>(e,e/y) = 0(e,e/y). Denormalizing

the time (and frequency) scale we have

-18-



* ^

X^ =-^+ r(e,l/y)

ey

where r(e,l/y) is holomorphic but r(0,0) = 0(1), uniformly for y ^ 1.

We claim that the leading term of the expansion of the mode of S

Tcorresponding to X' is given by (x^,y ,z ) exp(X' t) where

Xjj =yr A1H yfl (hence, llx^l = 0(e))
H

"h^^'h (hence, 0yH0 =0(£/p))

By substituting into (2) we observe that

^l^H1 ^LH hh h

hi AHH_eXHI h, yH

hi ha hh-^i1 ZH

0(e) + 0(e/y)

0(e) + 0(e/y)

0(e) + 0(e/y)

Thus the right hand side -> 0 as e -* 0, uniformly in y for y >. 1. In

conclusion, when the normal elements and the sluggish elements are

brought into the analysis, the natural frequency shifts from *H/e to

(X /e) + r(e,l/y), and the motion affects the normal elements in the
H

order 0(e) and the sluggish ones in the order 0(e/y).

III. Low frequency modes. Let XL be any natural frequency of SL
Twith y set equal to one; X, is a zero of AL(x) and call (Xt^t*2^) tne

(normalized) solution of the homogeneous equations whose matrix is given

by (5) with X = X, . XT is also a zero of q(n>0,0) (see (A2)); so the
La JL
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1 "S

zero of q(n,l/y,e/y) close to X^ is of the form

XL + <Kl/y,e/y)

where ip is holomorphic, iK0,0) = 0 and i|;(l/y,e/y) = 0(l/y,e/y). Denor

malizing the time (and frequency) scale we have

X^ =^+ s(l/y,e/y)

where s is holomorphic but s(l/y,e/y) = 0(l/y ), uniformly for e <_ 1. We

claim that the leading term of the expansion of the mode of S corre-

Tsponding to X* is given by (x^,y ,z ) exp(X* t). Indeed, direct

substitution into (2) gives

«-•

—

hl'K1 ha ail h

*m ha-'h1 hi yL

hi ha hL-^l1 ZL

0(l/y)

0(e/y)

0(l/y)

In this case the leading terms of the components of the mode are not

affected.

As a final comment, it should be stressed that the only advantage

that accrued from the assumption of having distinct natural frequencies

is that the functions v, (J>, ty were holomorphic and that typically they

were 0(e) + 0(l/y), i.e. their leading terms are linear in e and 1/y.

In case of multiple natural frequencies these functions have usually

algebraic singularities and tend to zero as e -»• 0 and 1/y •* 0. However

the rate at which they do so may be much slower, e.g. they may behave

as /e .
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FIGURE CAPTIONS

All elements are in ohms, henrys and farads. Fig. (la) shows the

linear network S : the capacitor of e F is the stray capacitor and the
ey

capacitor y F is the sluggish one. Fig. (lb) shows S where both the

stray and sluggish elements have been neglected. Fig. (lc) shows S

where all but the stray elements have been neglected. Fig. (Id) shows

S where all but the sluggish elements have been neglected,
Li
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