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Introduction. The study of instability differs from the study of

stability by the fact that it suffices that one input gives an unbounded

or oscillatory output for the system to be instable. Since the Lyapunov

approach is well adapted to that type of condition it was used by Brockett

and Lee [2] to derive a converse to the circle criterion. The functional

analysis approach was used by Willems [1] to reach a similar result. An

interesting aspect of both results is the importance of the violation of

the encirclement condition. The main limitation of both results is the

requirement that the nonlinearity stays in the instable sector. It can be

observed experimentally that this is not a necessary condition, and that a

nonlinearity which penetrates locally in the instability sector is often

instable. In this paper it will be shown that if the slopes of the non-

linearity lie in a certain interval and if the system satisfies a few

additional conditions instability will follow. This paper is the general

ization of a result of Willems [1]. The method used is the extension to

instability criteria of an approach used by Lecoq and Hopkin [3]. The

stability considered here requires that error and output functions go to

a limit as time increases. In addition their derivatives must go to zero

For instance a system which is L« stable may be instable according to that

requirement.
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Some definitions will be necessary

A relation N with domain and range in X is a subset of the product

space XXX.

If (x,y) is a pair belonging to the relation N, y will be said to be

an image of x under N.

A mapping M of X into X is a relation with domain and range in X which

is such that no two members have the same first coordinate, i.e.

V x e Do(M) if (x,y) € M and (x,z) G M then y = z.

The system S.l (Fig. 1) which is going to be studied is of a classical

type. It has a linear time invariant element H and another element N which

behavior is only known through an input-output relationship. This element

N can be multivalued, time varying and nonlinear. A great number of

practical systems can be modeled in this way.

The equations defining the system S.l are:
r

C.l.a

C.l.b

C.l.c

C.l.d

v*.

e1(t) = U;L(t) - y2(t)

e2(t) = u2(t) + y1(t)

(e1,y1) e n

y2(t) = (He2) (t)

where N is a relation with domain and range in X. And H is a linear

mapping with domain and range in X.

Assumption 1. Let H be a linear mapping of X into X such that there

exists h € x and a countable set I such that

r

h(t) =0 V t < 0

(0.3)

^

h(t) = ha(t) +Y^ hi6(t -t±) Vt>0
i e I
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and

ha(t) eL;L[o,~), ^2 \\\ <
i e i

defining H in the following way

t

(0.4) (Hx) (t) =(h*x) (t) = I h(t-T) x(T) dx Vx€Do(H)

in addition let there exists two positive real constants a and 3»

0 < a < 8 < °° such that the Nyquist locus of H encircles in the clockwise

n •!• ft ft — tt
direction the circle of center r^jp and of radius 2qg .

If h(t) has 6-functions then either t- f 0 or in the case when t. - 0 h~

does not lie in to the interval la,3]

Assumption 2. Let the nonlinear element N be defined by a linear time

varying gain k(t), and let there exists two positive real constants a, 3

such that

(i) a < k(t) < 3

(ii) k(t) is integrable in the sense of Lebesgue over every finite

interval

Assumption 3. Let the nonlinear element N be such that there exists

two positive real constants a, 3 such that

ax2(t) <x(t) y(t) <3x2(t) Vte [0,oo)

y - 0 whenever x = 0

V images y of x under N, V x G Do(N) and having a derivative belonging

to L2e[0,»)
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Assumption 4. Let the nonlinear element N be such that there exists

four real constants a, 3, D, E with 0<a<3, D<E

such that

a x2(t) <x(t) y(t) <3x2(t) V te {t |D<x(t) < E}

y = 0 whenever x = 0

V images y of x under N, V x £ Do(N) and having a derivative belonging

to L2e[0,»)

The following lemma is a result of J. C. Willems [1] (theorem 8.1)

Lemma 1. let the system S.l be such that there exists two positive

real constants a and 3» ot < B with which

N satisfies assumption 2

H satisfies assumption 1

Then the system is instable

Corollary 2

Let the system S.l be such that there exists two positive real

constants a and 8, a < $ with which

N satisfies assumption 3

H satisfies assumption 1

Then the system is instable.

In other words if the slopes of the nonlinearity stay inside the

interval (a,6) the system is instable.

Proof:

Let the relation N* be defined as follows

(xf,y») € N' iff 3 (x,y) G N and x = x\ y = y'.
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Since N satisfies assumption 3, N* satisfies assumption 2.

Modeling the behavior of the system S.l with respect to the deriva

tives by a system S.2 of type S.l, where the nonlinear element is N',

the linear element H', the inputs, outputs and errors are the derivatives

of the inputs, outputs errors of S.l, it can be noted at once that H1 = H

since the derivative of a convolution is the convolution of- one of the

factors with the derivative of the other (L. Schwartz [4] Vol. 2, Chapt.

6, Thm. 9). i.e.

h*e2 = h*e«

It can then be seen that the system S.2 satisfies the hypothesis of

Lemma 1 hence that S.2 is instable. This implies that S.l is instable.

The concepts used in the proof of this corollary are delineated more

carefully in reference [3].

Theorem 3

Let the system S.l be such that

(i) H satisfies assumption 1

(ii) There exists two real constants D and E with which N satisfies

assumption 4

(iii) Denote by S.. the set of points:

SA = {x|x + h(0)y = A}

if there exists an A such that the intersection of N and S. belong to

the interval (D, E) i.e. there is no point in the intersection of N and

SA which is outside the interval (D, E).
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Then the system is instable.

Proof:

In order for e,(t) to have a limit e, as time increases the following

condition must be satisfied

given e >0 3 T_ >0 3 Vt>T£ |e1(t) - exJ <e

in addition e., must satisfy the following equation

ui« - fc<°>v>= ei~+ i(0)yi«,

consider the class of inputs

{(uru2)|uloo - h(0)u2a> =A}

Assume the system is stable for this class of inputs. The limit e.

must belong to (D, E) by hypothesis

hence 3 T >0 3 V t>T e^t) G (D, E)

but this implies that V t > T the slopes of the nonlinearity stay inside

the interval (a,8) and by application of corollary 2 the system is not

stable. A contradiction is reached. The system being instable for a

class of inputs is instable.

As a consequence of theorem 3 the instability criterion is general

ized to cases when the slopes of the nonlinearity do not stay in the

instability interval, as well as to cases when the nonlinearity does not

stay in an instability sector.

Example 1

Let N be a nonlinearity which stays in an instability sector with
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slopes in the same interval, around the origin (figure 2) then the system

is instable if h(0) > 0. To see this, it suffices to pick u^ u2 such

that u- = u0 =0 then e- + h(0)y. = 0 which implies e- = 0
j_oo 2°° l00 l00 i

a contradiction is reached.

Example 2

Let N satisfy the hypothesis of theorem 3 i.e. there exists an A

such that the line

A - e

y = ±fl intersect N in the interval (D, E) where the
h(0)

slopes belong to the instability interval (figure 3).

Remark

Considering the relation N* modeling the behavior of N with respect

to the derivatives of the functions in the system, a stability sector can

be obtained for N* [3]. The criterion developed here defines an instability

sector for N1. It should be noted that these two sectors are not adjacents.

As a consequence the fact that often a system is stable for a gain higher

than was computed does not contradict the instability criterion. By a

careful estimate of both sectors it is possible to obtain the region in

which the system becomes instable.

Since saturation plays an important role in the phenomenon of

hysteresis the slope is going to be in its highest range around the origin.

The hypothesis of theorem 3 will be satisfied and its conclusions will

apply. Interestingly enough it is possible to verify this experimentally.

It can be observed that with a gain insuring instability a step away from

-7-



the origin does not trigger oscillations while a step back to the origin

or through the origin triggers them.

Conclusion. The requirement that a system needs to stay in the

instability sector in order to prove instability can be weakened in two

ways. Either there must exist an interval around the origin where the

nonlinearity stays in the instability sector, or there must exist a re

gion in which the slopes of the nonlinearity stay in the interval

bounded by the slopes of the instability sector and, in addition, h(0)

must satisfy a certain condition.

The criterion for instability will, then, give an upper bound on the

limit gain. Used in conjunction with a stability criterion giving a lower

bound on the limit gain, it will define a region in which the limit gain

lies. This region can be used to obtain the adjustment range in the design

of a system.
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Figure 2
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Figure 3
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