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ABSTRACT

A study is made of the absolute stability of multi-variable, multi-

it

non-linear discrete time systems by generalizing the Kalman-Szego lemma.

In so doing, two restrictions — complete controllability and principality-

have been removed from the assumptions of the lemma.
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INTRODUCTION

For discrete time systems with one nonlinearity, the connection be

tween frequency domain stability criteria and corresponding Lyapunov func-

ii

tions is afforded by the Kalman-Szego lemma. In this paper this result is

generalized to cover systems with multiple inputs, multiple outputs, and

multiple nonlinearities. In addition, the requirements for complete con

trollability and principality are removed. The removal of the complete

controllability requirement from the Kalman-Yacubovich lemma for continuous

system had been effected by Meyer [3] and Popov [4].

The basic results are not entirely new, since they can be anticipated

from the work of Popov. However, the approach employed is of interest,

the results establish for discrete time systems the correspondence between

the frequency domain inequalities and certain Lyapunov functions without

restrictions on either side.
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1. Existence of Lyapunov function

Consider a system with the following state equation:

h=0,l,2,...

(n x 1) state vector

(n x n) matrix

(m x 1) input vector

(n x m) matrix

x(th+1)=AX(th)- Bu(th)

x

It is shown that in case (A,B) is not completely controllable, we can de

compose A,B and x by a linear transformation into the following form t

All A12 B = B x = X,

L 0 A
22

(A_.,B..) ; completely controllable pair

*11

22

B,

(n.x n-) matrix

(n2x n- ) matrix

(n..x m ) matrix

(n_x 1 ) controllable state vector

Theorem 1

If there exist

such that

,-1K ; (m x m) hermitian matrix

D ; (n x m) matrix

M ; (n x n) matrix

-1 -1,H(z)4 K"-1 + D (zI-A)"^ + B (z_1I-A )^h
(1)

tUnlike continuous case, the sampling period must be such that the system
is controllable.
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- B*(z"1I-A*) 1MM* (zI-A)"^

is a positive semi-definite matrix for all |z| =1 except when z is an

eigenvalue of A, then

there exist

such that

Assertion

(m x m) matrix

(n x m) matrix

(n x n) positive definite hermitian matrix

— 1 Je &
K = B NB + QQ

A NB = D+RQ

A NA - N = - MM -RR

(*) denotes the complex conjugate transpose.

(2)

(3)

(4)

1) H(z) depends only on the completely controllable part (A.-jB-) i.e.,

H(z) =K""1 +D* (^-A^)^ +B* (z"1I1-A*1)""1D1

-B* (^VA*/1 CM^ +M12M*2) (zI-A11)"1B1

2) If the whole system is described by

x (th+1) = Ax (th)-Bu (th)

y (th) = 2c' x (th) h=0,l,2,...

and D « c% M = 0, where y(0 is the output and all quantaties

are real, then

(1) becomes Tsypkin's inequality generalized to multiple-input and

multiple-output systems.
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I) We will show that the theorem holds for (A,-,^-) Part when it: is a

principal case. That is to say, there exist Q. R , and N.,., such that

K-1= B1 N11B1 +QQ (5)

All Nll Bl * Dl + R1Q (6)
* * * * (7)

A NA -N =-MM -MM -RR
All W11A11 Wll "11*11 12*12 *1*1

II) We will prove it when A has one eigenvalue at z = 1 i.e., when it

is a particular case.

Ill) We will extend it to the uncontrollable part.

i) Existence of Q matrix.

Since H(z) is a positvie semi-definite hermitian matrix

H(z) =H^z) H^z"1)
Define

Let

Q A lim H (z)
Tz {-*• °°

Ti (z)A H^z) - Q

ii) Existence of R- matrix

R. is defined as the solution of

* -1n(z) = R± (zl1 - An) B1

Expanding both sides into series in the region £2A ) z |z| >NA_ _HL

we get

n(z) = n,z~* + r\nz" + ... + n z~ 1 + ....
l / n_

R± (zI1-A11) B1 = R± (IB-z +A B1z" + ... +A£ z~nl +...)
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Let

Hence

BiiAiiBi: :Aii Bi]
Since (An,B.) is completely controllable part, S is of rank i^.

n,-l.

* ^ * , * -1Rx =(n s)(ss )x

iii) Proof of (7)

Nii =£ <A*u)k(MiiMn +̂ 2M*2 +RiV (Aii)k

The convergency of the infinite sume is justified by the principality and

since each term is at least positive semidefinite hermitian, N.- is positive

definite hermitian.

iv) Proof of (5) and (6)

Q and R- satisfy the following,

K-* +D;(zl1-A11)-1B1 +B1(z-1I1-A*1)-1D1

-B*(z-1I1-A*1)-1(M11M*1 +H^H.lj-A^-hj^

5(Q*-B*(z"1I1-A*1)"1R1)(Q-R*(zI1-A11)":lB1)

and (7) can be rewritten as follows.

(«-1I1-41)Hu(«I-411) +(Z_1I1-A*1)NnA11 +A*1N11(zI1-An)

=MnM*1 +M12M*2 +RlR*

By means of some algebraic manipulation,

K̂ N^-QQ* =Cy |(A*1NUB1 -D^Q)(zI-A)^J
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where

CJf {x} A(x+x*)

It can be shown that from complete controllability and principality

Let

AiiNnBrDrRiQ = °

K""1"Bi NnVQQ* =°
v) A-_ has one eigenvalue at z = 1.

11

An°
0 1

MM + M M
"ll 11 12M12

Ri =

N
11

Ri
R«

N N
21 22

All ; (n.,-1 x n--l) matrix

Mll M12
M21 M22

Ri =

M j (n.-l x n--l) matrix

(n^-1 x m) matrix

N11 ' (nj-l x ^-i) matrix

Consider the following when z -*• 1

H(z) =K"1 +D* (zI1-Anr1B1 +B* (z"1I1-A*1)"1D1

* / -1 * -1.
- Bi (z V^ (MnMn+ Mi2Mi2^ZIrAn) Bi

and

H(z) =(Q -Bx (z"1I1-A11)"1R1)(Q-R1 (zI-L-^'hj
where

H(z) >_ 0 for all |z| = It except z=l
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It is necessary that

M12 = ° M21 " ° M22 " °

R2 -.0 N12=0 H21-0

to satisfy the above two equations, since otherwise H(z) may become

negative. Now, we only have to show that N99 is a positive

number such that N_2 B2 = D2

where Bi =
h

B2 = (n-1 x m) matrix

D, D = (n-1 x m) matrix

The stability-in-the-limit (see Appendix) gurantees that B2D« is a positive

number.

Remark

The above generalization shows that the Lyapunov function for the parti

cular cases can be of the form

= x'Hx + 3fV(x) = x'Hx + 3 | <Ks)ds

In [6] Szego and Pearson made use of V(x) = x"Hx + yp2y2 +6I(J)(s)ds

where x is (n-1) dimensional vector which leads to a more complicated AV.

vi) Proof for the uncontrollable part

It suffices to show that the following three equations have unique
solution R2,N12 and N2r
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A12N11B11 + A22N12B1 = D2 + R2" <8>

A11N11A12 + A11N12N22 " N12 = - <M11M21 + M12M22 + R1R2> (9)

A12N11N12 + A22N12A12 + A12N12A22 + A22N22A22"N22

="(M21M*1 +M22M22 +R2R2> <10>
Consider the first two homogeneous equations

A*2 Hu Bx =R2Q

All N12 A22 " N12 = " R1R2

From the known equation we start

(z" 1^) N12 (Zl2+A22) =-(A*1N12A22-N12)

+Z_1 N12A22-AUN12Z

premultiplying by (z I -A*)-1

postmultiplying by (zI.+A,,) ,

and substituting AiiNi2A22~N12 =-RR*

we get

N12 "(z-llrAH>"lRlR2 <zI2 +A22)_:l
+(z"1I1-A*1)"1z"1N12A22(zI2 +A22)-1

-(«"1I1-AU)"1^1H12^«I2 +A22)_1
We will follow the same process as we did before

A) A.. - has no zero eigenvalue

The coefficient equation of z is
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but

Hence

"R1R2 +(All) N12 A22 +N12 "°

R1R2 +(*ll) H12 A22 -H =0

if A99 = 0, then R2 = 0 and N-2 = 0 is trivial

if A99 ^ 0 from the above two equations, R2 = 0 and N12 - 0«

B) A.- has zero eigenvalues

Equating the coefficients of z and constant terms of both sides gives the

same result.

(10) has a unique solution since A-« is a principal case and stable
the-limit.

Hence (4) is satisfied, N =
Nll N12

N12 N22
is a positive definite matrix.

This completes the proof of the whole theorem.

2. Application

Consider the following multi-nonlinear system in Fig. 1.

$ : R -> R is a time-invariant memoryless nonlinearity which satisfies

the following

$(0) = 0

Assume

k.. = k,.

The system is represented by the following difference equation

"h+i •A x h-*^

h n h=0,l,2
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o*^ represents the value o* at t = h, not a compontent of a.

A is ( n x n) real matrix whose eigenvalues lie inside the unite circle

except possibly one.

B and C are (n x m) real matrices. Assume that (A,C) is completely

observable, G.^ (z) is stable-in-the-limit and the system is asymtotieally

stable for all linear matrix gain M such that

0 <m±j <k±j for i,j = 1,2,...m

Theorem 2

If there exists K symmetric matrix with K~ +i ^f ^G(z) >> 0,

V |z|»l then the system is absolutely stable for the matrix gain K.

Proof

By the theorem 1, there exist R, Q and a positive definite N such that

A'NA - N = - RR'

A'NB = C + RQ

K"1 - B'NB = Q0/

Let the Lyapunov function

v=xh'Nxh
then

Av =-(Q^-R^^Q^-R-^r-^^a-K 1<J)) (11)
The asymptotic stability for the linear gain and complete observability

ensure V > 0 and A V < 0

Corollary

If every element of K is'positive, then the system is absolutely

stable for the matrix gain K = |k
ij
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Proof

(11) becomes

AV<- (0/<f> -R^rW-Rx^-^a- K"1^)

The above corollary is more applicable to practical use than the theorem 2

since we now can talk about the individual sector in which the nonlinear

lies. This will be illustrated by an example.

Further restrictions on the non-linearities result the following

theorem. Let $ be represented by a matrix [¥..(•)] where input to ¥..(•)

is o*. and output (j).

^(0) =0

V (•) =0 if i * j

0<o\ Y.,(a.) c K,, a 2

--< -^— i^ii
for i>j = 1,2,.. ,m.

Theorem 3

If there exists a (m x m) diagonal matrix $ = [$..] such that

^ +2̂ {tt +e(z-D)G(z)|
-| |z-l|2 G*(z)uje|G(z)>0 ^|z|=l (12)

then the system is absolutely stabe for the matrix gain K.

u is a (m x m) diagonal matrix with u...
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Proof

Let the Lypunov function

v-jti:fch+£,jufih*1(o1)do1
1=1 Jo

then AV becomes

AV = Vl NXh+l -*n Nxh +£ 3ii f±h+1 Wda:
i-1 J

a.

xh

Let y = /2 (A-I)'C

d=-(2 sgn3 B'Cu -I) C'(A-I)

£ = C'B-B'C sgn3 pC'B

AV =x^ (a'na-n +yu|3|y") \

-2(J>"(ah)(B'NA-C'-3d) ^

-<J)"(ah)^B'NB-K_:L +23?)<()(ah)

-^(ah)(ah-K-^(ah))

The equation (12) can be rewritten as follows

K"1 + 23£ + ^{(C +3d)(Iz-A)"1BJ

B' (Iz-A)~M YMlaldz-A)"^ *|z|-l
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By the theorem 1 there exist R and Q such that

A'NA-N + Yv|$|y' = **'

B'NA-C'-3d = 0

K"1-B^NB-QQ" = 0

Hence

-1v <(R^xh-Qcj)(ah))^(R'xh - Q(|)(ah))-(|)'(an)(ah-K A<J)(ah))

The complete observability and the asymtotic stability for the linear gain

ensure V > 0 and A V < 0.

Example

The transfer function and K are given by Fig. 2

Let

G(z) =

If

-1
K

0. 368z + 0.264

<«

1

0.368)

z-1

_3
10
J

then K"1 +\ ^U |g(z)| >0

-13-

0.4

z-1

z-1

0.1



Hence

K =

15

10

5

2

5_
2

15

2

is a stable gain matrix.

Now let <J>12(0 = 0 , cf)21(.) = 0,

d*ll(ai>
da. < P

d<J>22(a2)
11 and da. < P

22

We are to obtain K~ and 3 such that

K '1 +|W{<I +3(Z-l)G(z)J-.\ |z-11
Manual calculation is almost impossible. However, the problem is well

within the capacity of computers available nowadays.

2G*(z)uG(z)>0 V-|z|=1

Appendix

Stability-in-the-limit

Definition

In the system is shown in Fig. 3 if there exist

60>0 such that for any 6e{&'\0<6'<60j, the linearized
system with Y(y(th)) = ty^) is asymtotieally stable, we call the system

to be stable-in-the-limit.

Theorem 3

x(th+1) = A x (th) -Bu(th) (13)

y(th) = 2C' x(th) h = 0,1,2,...
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The system (13) is stable-in-the-limit if and only if there exists a con

stant 6 >0 such that A - 26 BC* is a stable matrix..

Theorem 4

If G(z) has only one pole on the unit circle at z=l, the system is

stable-in-the-limit and only if the residue of G(z) is positive at z=l.
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