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I. Introduction. The problem of minimizing a performance criterion of a

dynamical system with respect to the forcing funcﬁion u(t) of the nonlinear
differential equation is well known in optimization theory. Theoritical
answers to this problem are given by the Maximum Principle of Pontryagin
[5] or methods of Variational Calculus [4].

Another optimization problem is that of selecting the best charac-
teristic of a device to be used within a dynamical system. For example
consider a device whose input is cx(t), a linear combination of the state
variables at time t, and whose output is N(cx(t)) where N(:) maps R into
R. The problem is, given some suitable restrictions on N(-) and a per-
formance criterion, find the characteristic N*(.) which minimizes the
criterion. With respect to the problem mentioned in the previous para-
graph the present problem is equivalent to finding the optimal single-
loop feedback law - not necessarily linear - which realizes the input
u(t)‘by*ffgﬁgﬂﬁgedback, namely u(t) = N(Cfﬁﬁy)l_,.

The problem posed above is of considerable practical importance. Some

possible applications are given below.

A. Stability. A numerical investigation of the stability of nonlinear
feedback systems requires the computation of the nonlinearity in the feedback
loop that makes the system most and least stable on a time interval chosen
large enough to detect the behaviour of the system. A knowledge of the shape
of the nonlinearity that makes a system, which is on the boundary of stability,

unstable may give better insight in forming new stability criteria.

B. Design. The field of system design is full of such applications.



For example in circuits it is often a desirable objective to know the
characteristics Qf a nonlinear resistor or amplifier that optimizes an
index such as efficiency or power output. It may be cheaper and easier to
build a nonlinear resistor or amplifier of a given characteristics than to

apply a signal u(t) to optimize the system.

C. Sensitivity. In most systems the characteristics of the non-
linearities vary slowly with time, therefore it is important to know the
sensitivity of the performance of the system with respect to certain para-
meters of the nonlinearity such as its slope at a given point etc. The
techniques developed in this paper are helpful in determining such sensitivity
coefficients.

The problem of optimizing nonlinear characteristics has been a neglected
area of research. A simple case has been considered by Willems [8] in which
the system had no dynamics. He considered a single-input single-output non-
linearity subject to a fixed input on a fixed time interval. The objective
was to optimize an index that depended on the input output pair on the fixed

)
time interval. A more experimental approach was taken by Soudack [7] for
generating the sensitivity coefficients of a system with respect to the slopes
of a piécewise affine nonlinearity using an analog computer.

In this paper we derive necessary conditions of optimality for a single~
input single-output, memoryless, time-invariant nonlinearity in a very general
framework covering finite-dimensional dynamical systems. In section 2 the

problem is formulated. In section 3 the main result is stated as a theorem

and is proved. In section 4 it is shown that the hypothesis of Theorem 3.1
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is satisfied for time-invariant nonlinear feedback systems if the linear
time-invariant system in the forward loop has a completely observable
representation. In section 5 the results are generalized for nonlinearities
with sector constraints. In section 6 some extensions of the results are
pointed out and a similar version of Theorem 3.1 is given for discrete

dynamical systems.

2. Formulation of the Problem.

A. System Equations and Properties. The system to be considered is

described by the following non-linear differential equation.

) x(t) = f(x(t), N(ex(t)))

where x(t) = column n-vector for t € [0,T], T > 0 fixed.
x(0) = Xy» fixed
c = constant row n-vector

The function f£(-,:), maps R" x R into Rn, is continuously differentiable

and satisfies the following Lipschitz condition

1’ K2 such that

3 constants K
(2) - |f(x1, up) - flx,, u) | o< Kllxl - x2| + Ky lup = u, |
V(x5 u), (x55u,) € R" x R
The class of admissible nonlinearitiesLJU » is described by the following

definition.
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Definition. (NR is a family of functions, such that N GLNR iff
[D1] N : R-=*R
[D2] N(0) = 0O
[D3] There is a constant S > 0, not depending on N, such that
NGy - Nl < 8lyy =3yl 5 ¥ v, 7, €R
[D4] %ﬁ is a piec_:ewise cont:inuous.r function defined almost everywhere
on R,

The definition of derivative from the right and the derivative from

the left of a real valued function g(*) on R 1is given below.

+
(3a) d dg(z) A g NOHY) = NGy)
y >0 Y
N y->0
(3b) d_gi}'lé 1y N - NG-y)
y >0 Y
v+0

The lemma below describes a property of(ﬂiR which is used later on. The

proof is given in Appendix A.

+ -
LEMMA 2.1 If N GLNR then d I;}(’Y) and d I;}EY) exist for all y in R

and are bounded between ~S and +5. E:j

Remark. For each N EWR there exists a unique solution xN(t) to (1) on

[0,T] ([1] Chapter 1). Furthermore xN(') € C(l) by the definition of f

andJ[R.

+A function mapping R into R is said to be piecewise continuous iff on
each finite interval it has finite number of discontinuities and it is
regulated ([2] page 139).
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The following lemma introduces simplifications in formulating the

problem.

LEMMA 2.2 There exists constants a and b such that

(4) a < cxN(t) <b ¥t €[0,T], ¥ N GU\IR [:::l

Lemma 2.2 follows directly from the finiteness of [0,T], the Lipschitz

condition (2), the slope condition [D3], [D2] and the Bellman-Gronwall

inequality.
We define LN[a b] by restricting the domain of each member off\AfR to
b

the closed interval [a, b]. Then, in view of Lemma 2.2 equation (1) is well

defined for all N in Jl[a b]"

B. The Minimization Problem. The functional P is defined as follows:

T
®  rw [ onegene, veN,
0

where h : R® -+ R, h(+) € ¢t

The basic problem is to minimize P(N) on LN[a b]:
?
(6) Min(%N)
N €
[a, b]
By putting sup norm on LN[a b] it becomes a subset of the Banach
?
Space C[a b]([3])' This construction enables us to talk about a local
H]
minimum since the set over which we minimize has a relative norm topology.

The norm on LN[a b] is denoted by:
’
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@ N[, 2 max |NG
y € [a, b]

Notation

N &N

[a, b]

Ix()l = sup  |x(t)]
t € [0, T]

3. Main Result.

THEOREM 3.1. Suppose N* furnishes a local minimum for P for the basic

problem given by (6). Assume that
(8) 32 (¢t € [0, T); cx*(t) = 0}

is a finite set given by,

9) = (¢t }‘j“zl, ty €10, 71, 3 = 1, ...

where x*(t) is the optimum trajectory of (1) corresponding to N¥*.
Under these conditions for all z (except possibly a finite set) in

[a, b] the following relations hold

+
*
(10a) For z > O, _d_l;]z(_z)_ = - S sgn f (X*(t))T[%] dt

LI+(z) opt

.

(10b) For z < O, % =+ S sgn f O‘*(t))Tl'g_lg]opt:dt
_I—(z)
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where,

(11a) () & (£ € [0, T]; cx*(t) > 2}
(11b) I (z) & {t €10, T]; ex*(t) < 2}
of A Bf(# u)
[aNJWt du (x, u) = (x*(t), N*(cx*(t))

A*(t) solves the adjoint equation+ given by

T T
N

x=x* (t) x=x* (t)
with
(14) A%(T) = 0

Remark. Theorem 3.1 asserts that unless the argument of sgn function is
zero the slope of the optimum nonlinearity is on the boundary of the con-
straint set; i.e. + S or - S. Therefore the result is analogous to bang-
bang type control problems. The only assumption that may look unreasonable
is the one given by (9). However in section 4 the existence of a large

class of feedback systems satisfying (9) is exhibited.

' +
Preliminaries. We investigate the set I (z) given by (1la) in more detail.

To be definite we assume that (See Fig. 1)

*
+In order for (13) to be well defined de( ) must be defined for
y=cx*(t)
almost all t in [0, T] which is insured by (9) and [D4].
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(15) 1) z>0

(16) 1i) ex*(0) = cx, < z, cx*(T) < z

0
The remaining seven cases are substantially the same, so they will not be
considered in detail. Choose z such that it satisfies (15) and (16).

Furthermore assume that z has the property that

a7) cx*(tj) $#2z, t.€ H,3=1, ..., m

3

Clearly all except a finite number of z's in (a, b) satisfy (17).

Let

18) 8, £ (€0, 115 exk(w) = 2}

We claim that Qz is a finite set. For if it is not, then by compactness
of [0, T] Qz has a limit point w” in [0, T]. Furthermore by continuity of

cx*(*), w® € Qz. So we have
cx*(w”) # 0, and cx*(w”) = z

So there is a neighbourhood of w” such that cx*(w) # z for all w in this

neighbourhood except w = w”. This contradicts that w” is a limit point
of @ .
z

The set Qz can therefore be written as
2%

(19) Q, = {uy}
i=1
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The fact that Qz has even number of elements is easily deduced from (16)

and (17). Now, from (1la) and (19)

2
+
(20) I(2z) = i:a (wyy_p» NZi)

where we have subscripted the elements of Qz by the rule

(21) wj > wy iff j > 1 ¥i, j=1, ..., 22

Since I+(z) is a union of disjoint intervals we obtain

2 wZi
(22) oxeNT|E]  ae = jf oareNT[LE] 4
‘{;(z) t [BN] opt - g' wZi—l ¢ [aN] OPt -

We now construct a perturbed nonlinearity as follows (See Fig. 2)
f

~ A
- *
R, O N*(y) , a<y <z
N*(z) + k(y-2z), z <y <z +¢

N*(y) + ke - (N*(z+e) - N*¥(2)) , z+ e <y <b

.

Note that

(23) o, €N, Ye>0, ¥2€[0,b], ¥k3|k <s
3
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(24) £2%,2 2 ¢ 25 ¥ eg>0

For convenience we drop the subscripts of ﬁc K.z and use the following
E A g

notation

Xﬁ(t)

1>

x(t)

~ A ~
y(t) = cx(t)
% 8 ok
y*(t) = cx*(t)
The following lemmas will be repeatedly used in the proof of Theorem
3.1. The proofs of these lemmas are given in Appendix B.

LEMMA 3.1 For any B > O sufficiently small 3 €°(B) > O with the

property that (See Fig. 1).

+ -
a) To each wZi[NZi—ll in Qz there corresponds an open interval (821’ 821)

[(s, , s+ )] such that
2i-1 21i-1

*(g = yvk(s_ ) = z -
(25a) y (821_1) y (321) z - B
+ + .
(25b) y*(854_1) = ¥*(syy) =z + 8 + e7(B)
Furthermore
+ - - +
26a 11 = 14 = 11 = =
(26a) B+g S21 B+g S21 7 Y21 [B+g $21-1 éig $33-1 = Wpy_q]

-10-
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where

+ +

- c (-
(26b) 21> So4) [wpy 1 € (8yy 15 895

Woy € (s )]

¥i=1, 2, «evy &

The s,'s are ordered as follows.

i
- +  + - - + -

27) 0<51<31<82<52<S3<"‘ <8y, <8y < T
b) For e < £°(B) the following relations hold

- Loy +
(28a) y(t) > z+e¢€, ¥t € U(sy; 15 8yy)

i=1
2-1

N e - - U a" -

(28b) y(t) <z, ¥t € [0, s;) Vs, TIV {1=1(821’ $,4-1)7

where y(t) corresponds to Ne,k,z [:::::::]

LEMMA 3.2 For all i =1, ..., %

+
2i-1

(29a) a) x*(s 2i-1

) - i(s;i_l) = x*(s ) - ;(s;i_l) + o(e,B)

(29b)  b) wh(s3,) - X(s5,) = xk(sh,) - K(sp,) + oe,B)

where o(e,B) has the property

(30) 1im /Tom 128\ o
g>+0] >0 €
e>0

LEMMA 3.3 Suppose x*(t”) is perturbed by éx” and N*(:) by

-11-
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Y*, where t° € [0, T) and y is a real number. Then the corresponding

trajectory for t € [t”, T], denoted by x(t), is given by

t
;(t) = x*x(t) + o(t, t7)éx" + Xjr ®(t,r)[§§] dt
s opt
(31
+ o(|sx”| + |y|, t)
where
(32) 1im lo(]6x"]

+ |y|, t)|= 0
(lox”|+|v])»0  [sx"| + [v]

uniformly in t € [t”, T].
¢(+,+) is the state transition matrix of the variational equation

given by

(33) o(e) = [df(x, N*(cx)ﬂ v (t)

dx x=x* (t)

Proof of Theorem 3.1 The proof is by contradiction so we assume that (10a)

is not satisfied and z satisfies (15), (16) and (17).

Consider the augmented system
(34) x = £(x, N(cx))

(35a) where £(x, N(¢x)) = [igi; N(cx))]

(35b) ¢ = [c 0], constant row (n+l)-vector

+y denotes the function in C[a, b] which is identically equal to a constant.

-12-
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(35¢) x(t) = [xgt)]’ column (n+l)-vector for t € [0, T]
x (t)

R X
(35d) x(0) =[ °]
0

It follows by the definitions above that

(36) x°(T) = P(N)

It can easily be shown that the results of Lemma 3.1 to Lemma 3.3 also
hold for the augmented system.

We now prove the following relations

i w
N +, 2j ¢
2o+ A, _ d N*(z) A + of
(37a) X(SZ:L) = x*(SZi) + e(k iz )Zf @(321, 1) [BN]opth + o(e,B)

3=11%25-1

X - » d N*(z) .
(376) x(s,,) = x*(sy, ) + (k- ):E:_’- OV T)[au]opth * °(€’B?
5=11*25-1

i=l, 000,2-1

where, o(e,B) has the property defined by (30) and 8(-,-) is the state
transition matrix of the variational equation of (34) around the optimal

trajectory x*(t). ¢ is chosen small enough to satisfy conditions of

-13-
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Lemma 3.1 to Lemma 3.3 whenever they are applied.

We first prove (37a) and (37b) for i = 1. Using Lemma 3.1 b)

) & ck(t) <z fort € [0, SI)

So using definition of ﬁ we have
ﬁ*(sI) = ﬁ(si)
By Lemma 3.2 a)
(38)  x(s]) = 2D + ole,B)
Again using Lemma 3.1 b)
(39) y(&) > z+¢c, fort€ (s}, ;;)
Using definition of N we apply Lemma 3.3 with

t* = SI, 6x” = o(e,B), v = ke - (N*(z+e) - N¥(z))

(40) (s7) = &*(s]) + 45}, sD)o(e, )

8+
2 -

+ (ke-(N*(z+e) - N*(z)))J{. &(s+, T) Af dt + o(]sx”|+|y], s+)
<+ 2 [BN]opt 2 .

81

By continuity of the integral with respect to its end points, using

Lemma 3.1 a), and Lemma 2.1 (40) reduces to (37a) for i = 1.

Again using Lemma 3.2 b) and then Lemma 3.3 with

14—
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t° = S; , 5x” = C(k N*(Z)) f ‘D(S;, T)[’g{]‘]optd‘l‘ + O(EQB), Y = 0

(41) () = R*(s3) + b(s3, 57) eCk- 4 N*‘”) f 5(s, r) 8N]optdr + o(e,B)

By using continuity arguments and Lemma 3.1 a) it can be shown that
the remainder terms after replacing &(s;, s;)a(s;, T) by a(s;, 1) are of
o(e,B) type therefore (41) reduces to (37b) for 1 = 1.

A routine induction procedure proves (37a) and (37b). Setting i =

in (37a) and using Lemma 3.2 b), Lemma 3.1 b) and Lemma 3.3 we obtain the

following equation.

(42) %(T) = %*(T) + e (k- d'x (Z))Z f 8 (T, T)[%] dtl + o(e,B)
opt

3718251

We now let A*(t) be the solution of the augmented adjoint equation

given by
x A . T
(43) AR (L) = - [df(x, T*(cx))] Sx(t)
o x=x* (t)
where
(44) A% (T) =

NN

-15-
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Then by standard results in optimization [5] we obtain the following

relation

(45) A% (t) = [x*(c)] , ¥t€J[0, T]
1

where A*(t) is given by (13) and (14). Using (36), (44) and (45) we obtain

(46) Gr N T - 7*(T)) = x°(T) - x°%(T) = P(¥) - P(N*)
(47) Grem)To(T, 1) = GrenT

ey T2E] - T[ 3£
48 G [BN]opt (A (1)) [BN]opt

Taking inner product of both sides of (42) with X*(T) and using

(46), (47), (48) and (22)

. )
(49) P(N) - P(N*) = e(k - 9—%:}2— f O (1)) [BN] dr + o(e,B)
I (Z) Opt

For e and B small enough we have that

(50) sgn[P(N) - P(W*)] = sgn[( a" N <Z)) f (A% (1)) [af] dt]
| I (z) opt

Since k is an arbitrary number between + S and - S if (10a) is not satisfied

we obtain

-16-



(51) sgn [P(N) - P(N%)] < O

which contradicts optimality of N*

This completes the proof of Theorem 3.1. [::::::::]

4. Application.

In this section we specialize ‘to the nonlinear feedback-system given
by Fig. 3.

G 1s a linear dynamical system described by the following equations.

(52a) x = Ax + be

(52b) y = ¢cx

where A = constant n x n matrix
b = constant column n-vector
¢ = constant row n-vector

N is an element of(JAL as defined in section 2.

The equations describing the dynamics of the overall feedback system

can be written as
(53a) x = Ax - bN(cx)
(53b) y = ¢x

The problem is the basic problem given by (6) where (1) is specialized

to the equation (53a). It is easily seen that right hand side of (53a)

-17-



satisfies the conditions on f given in section 2.

We now state the main result of this section.

THEOREM 4.1. Suppose N* furnishes a local minimum for P with N¥ GQJM.

Assume that G is completely observable, then either the assumption
given by (9) of Theorem 3.1 is satisfied or x*(t) is a trivial trajectory

of (53a), in other words,

(54a) x*(t) = X, s ¥t €[0, T]

and

(54b) Axo - bN*(cxo) =0 [::::::::]

Remark. Theorem 4.1 shows that there exists a large class of systems with
great practical importance for which the crucial assumption given by (9)

of Theorem 3.1 is satisfied.

Proof of Theorem 4.1 Suppose (9) is not satisfied. Then by compactness

of the interval [0, T] the set ¥ given by (8) has a limit point t in [0, T].
It follows from continuity of cx*(+) that ¥ is a closed set, so we necessar-

ily have t in ¥; or equivalently

(55) cx*(t) = 0
Let
(56) 2 x®

We construct a solution for (53a) in a neighbourhood of t with an
initial condition E'using Picard's successive approximations. By uniqueness

this solution coincides with x*(t) in this neighbourhood, say, (t - &, t+ £)

~-18-



The Picard iteration is given by

(57a) x (t) = x ,

t
(576)  x () =%+ f[Axp_l('r) + BN (ex_, (1)) ]de

t

p=1,2 ... , ¥t€ (t-£, t+E)

The error between the pth iteration and the actual solution is given
as follows ([1] p. 13). 23 a constant M such that for all positive integers

p and all t € (t-£, t+E)

(58) EIORENCY < M(|e=tHP/ )

Differentiating (57b) with respect to t and using Lipschitz properties of

N it can be shown that 3 a constant M” such that for all positive integers

p and all t € (t-g, t+£)

(59) |ex*(t) - c;cp(t)l <M (Je=t])P/p!

Using (55) and (53a) we obtain
(60) c[Ax + bN(cx)] = 0

Using (57b) with p = 1

-19-



t
x, () = §+f [AX - bN(cx)]dt

t

(61) x, (t) =X + (t-t) [Ax - bN(cx)]

Observe that using (60) in (61) we have that

(62) ex, (t) = cx ¥ t € (t-£, t+£)

Substituting (61) and (62) into (57b) with p = 2 we obtain the

following equation

(63) ;:z(t) = Ax + (t-t)A[AX - bN(cx)] - bN(cx).

Again using (60) in (63)

(64) cx,(t) = (t-t)cA[Ax - bN(cx)]

Using (64) the following relation is obtained

(65) cx*(t) = (t-T)cA[AX - BN(c)] + (ex*(t) - ex,(t))

Dividing (65) by (t-t)

. (ex*(t) - ex.,(t))
(66) 23345; = cA[Ax - bN(cx)] + — 2
(t-t) (t-t)

Since in view of (59) the second term in the right hand side of (66)

can be made arbitrarily small for |t - 21 small it follows that

~-20-



(67) cA[AX - bN(cx)] = 0

Otherwise we can find a neighbourhood of t such that cx*(t) # 0 for all

t in this neighbourhood except at t = t. This contradicts t being a limit

point of (.

It can easily be seen that proceeding in this way the following

relation will be obtalned
(68) calaX - bN(e®)) =0, ¥1=0,1 ... n-1

But by the assumption of observability we have that the set of vectors

c, cA, ... cAn.-1 span rR® ([9] p. 502). So we must have

]
o

(69) Ax - bN(cx)
or using (53a)

\
(70) x*(t) = 0

which proves that X was an equilibrium point of (53a). Hence the theorem

is proved. :

5. Sector Conditions.

In this section we restrict the set ngy putting on it sector
constraints. More specifically we define a new set of nonlinearities

bMK as follows

Definition N EJ‘K 1ff

-21-



1] neN

2] For a given constant K > 0,
(71) - Kz < N(z) < Kz ¥z € [a, b]

Note that for K > S the setSQJK‘andL)UK coincide. So in order to
restrictc,A[we let K to be smaller than S. It is assumed thatL)UK has
the same topology asL)U given by (7).

We investigate the same problem as formulated in section 2 except
that\{A’is replaced by(JUK. The necessary conditions of optimality for

this problem is given by the following theorem.

THEOREM 5.1. Suppose N* furnishes a local minimum for P onLJUK.
Suppose that the assumption given by (9) of Theorem 3.1 is satisfied.
Under these conditions N* gatisfies the following relations for all z
(except possibly a finite set) in [a, b].

Case I =z >0

1) 1f N*(z) # ¥ ke,

+
72) 4 o 5 g f (A* (1)) 2—;‘;] dt
I(z, z,(2)) opt

i1) if N*(z) = + Kz,

+
d'N*(z) _ _ K+S « T[af
73) az -~ ) sen f @ (r)) [aN] arf+ &3
I(z, z,(2)) opt
where
(74) I(z, v) & {t €10, T); cx*(t) € (z, v}

-22-



1i1i) if N*(z) = - Kz,

(75) __N_:_(_g)_ - K+S) sgn f (A*(T))T[%] dt|- (5'2'—8)
I(z, z,(2)) opt
where
Z+(2) é Min {y e [z’ b]; N*(y) = Ky or N*(y) = - Ky’
(76a)
and 3y € (z, y) I N (") # L xy?)

In case the set on the right hand side of (76a) is empty we take

(76b) z+(z) = b

d+N*(z)
dz

N* restricted to (z, z+(z)) is interior to the sector.

To help visualize z+(z), note that if < K, then the graph of

Case IT z <0

1) if N*(z) # p Kz,

an ﬂ%‘%(ﬂu S sgn f (A\*(1)) [aN] dt

1(z_(z), 2) opt

i1) if N*(z) = + Kz

(78) d N*(z) K+S A-o
W (z) o (KES) gen J{' (% (1)) [ Jd + &5
1(z_(2), 2)
iii) if N*(z) = - Kz,

-2



(79) d g:(“ = &) sgn f (A*(T))T[%] ar - &8

1(z_(z), 2) ort i
where
z_(z) = Max {y € [a, z]; N*(y) = + Ky or N*(y) = - Ky,
(80a)
and Ty € (y, 2) D NG = T ry’)

If again the set on the right hand side of (80a) is empty we take
(80b) z (z) = a
All the other symbols are as given in Theorem 3.1. [::::::::]

Remark. Theorem 5.1 is a generalization of Theorem 3.1l. It asserts that
unless the argument of sgn function is zero, the slope of the optimum non-
linearity is + S or - S at the points interior to the sector; on the
boundaries of the sector, + S is replaced by + K or - S is replaced by

- K so that sector conditions are not violated.

Proof of Theorem 5.1 The theorem will only be proved for case I ii).

For the other cases the proof only requires simple changes. Consider

the case where z+(z) < b+ and

(81) f ox(enT 2L ]
I(z, z+(2))

+If z+(z) = b the proof reduces to that of theorem 3.1 by taking k of

k between + K and - S.
'€y Z
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then by continuity of cx*(+) and assumption given by (9) there exists an

open interval (z+(z) - p, z+(z) + p) such that

T T
T
(82) sgn| f (A*(t))T[%g‘ t:dt = sgn f (O (1)) [%%Joptdt
1(z4a) °p I(z, z,(2))

¥o€(z(2) -0, 2,(2) +p)

(76a) implies that

(83) N*(z+(2)) = + Kz+(z)
or
(84) N*(z+(2)) = - Kz (2)

First assume that (83) holds then there exists a z, in (z+(z) - D, z+(z))
(see (82)) such that
a) N*’(zl) > - S and N*‘ is continuous at z,
b) ex*(t) # zy ¥ t €I H is given by (8)
Also there exists a z, in (z+(z), z+(z) + p} such that

- -

a’) N#* (zz) < 4+ S and N* is continuous at z,
b”) cx*(t) # z, ¥tEXK

If (84) holds then > and - S are replaced by < and + S, respectively, in a)

‘and vice-versa in a“). We assume from here on that (83) holds. The
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modifications for the other case is straightforward.

Let Ll and L2 be straight lines in R x R defined by the following

equations
(85a) le el(v) = N*(zl) + Bl(v—zl) ¥vER
(85b) L2: 62(v) = N*(zz) + Bz(v-zz) ¥vER

where B1 and B2 are any constants that satisfy the relations

»

(86a) -8 < B1 < N* (zl)

(86b) N* (z2) < B2 <+ S

The next result is a direct consequence of the Implicit Function
Theorem. There exists numbers Y1 > 0 and Yo < 0 such that for each £ in

(o, Yl) there is a unique number g(£) in (72, 0) such that

87)  N*(z; + g(£)) - N*(z)) = B, g(E) - &

Similarly there exists numbers yi < 0 and yé < 0 such that for each £° in

(Yi, 0) there is a unique number g(£°) in (Yé’ 0) such that
(88) N¥(z, + g(£7)) - N¥(z,) =B, g(E") - £~

To apply the Implicit Function Theorem for obtaining (87) we define the

following funétion

(89)  F(g,) B Nx(z; + ) - W(z)) - B ¥+ £
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Observe that F maps R x R into R and is continuously differentiable at

(0, 0) satisfying the following relations.
(90) F(0, 0) =0

(91) D, F(0, 0) = N*‘(zl) -5 "
Using (86a)

(92) D2 F(0, 0) > O

So hypothesis of the Implicit Function Theorem is satisfied by above
relations and (87) follows. The reason for g(£) to be negative (for £ > 0)

is that the Implicit Function Theorem requires

dg(e) = - - )L
(93) el B (N*(z;) - B <0

The equation (88) is proved similarly.

We now construct a perturbed nonlinearity ﬁe as follows (See Fig. 4)

’k’z

+
1f k€ N (=)

1 , + K] , then

*Dz stands for partial derivative of F with respect to its second

argument.



~ A 6
N (y) = | M*(@y) , a<y=<z

N*(z) + k(y-2z) , z<y<z+z¢

N%(y) + ke - (N*(z+e) - N*(z)),

‘ z+ e <y<az +glke - (W(zte) - N*(2))]
N*(z)) + B, (y-z;), z; + glke - (N*(z+e) - N%(z))] <y < z;
N*(y), z; <y <b
.
If k € [- S, fﬂi‘_ ), then

dz

A
k’E,z(y) = rN*(y), a<y<z
‘N*(z) + k(y-z), 2z <y <z +c¢

N*(y) + ke - (N*(z+e) - N*(z)),

z+e<y <zt glke - (N*(z+e) - N*(z))]

N*(z,) + B,(y-2,), z, + glke = (W*(z+e) - N*(2))] <y < z,

N*(y), z, <y <D
~

where € is small enough to guarantee that
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1) ke - (W (z+e) - N*(2))] < minCyy, |v7;])

dTN% (2)

11) ke - (N*(z+e) - N*(z)) > 0 if k > e

L AN (2)

ke - (N%(z+e) - N*(z)) < O if k iz

111) - Ky < N (y) < Ky ¥y € [a, b]

k,e,z

The justification of existence of such an upper bound for € is straight-

forward, so that if the conditions stated above are satisfied

(94) Nk,e,z ekA‘K

We remark here that the perturbation of N* constructed above is similar
to that of Theorem 3.1 except that the perturbed nonlinearity meets N* at
2 (or Zys depending on k) and follows N* for y > zq5 where meeting N#* at
z, is done through the straight line L1 (or L2’ depending again on k). The
points z1y 2, and the straight lines Ll and L2 are chosen such that ﬁe,k,z
remains in~JUK for small e and the contribution of the portions of ﬁe,k,z

on (z, z+e¢) and on the line L1 to the perturbed trajectory are of second
order in €.

Using the same procedure as in the proof of Theorem 3.1, that is,
making a similar construction around the point 2y (or z, depending on

value of k) as well as z the following relations can be obtained.
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-~ +
s (PN, , ) - POW) = sga | - S5y f O[] ae

I(z, z, (2)) opt
(100)
| d'nx(z)
¥k €[-58, +K] k?"——d-z—-—
which implies that we have
P(Ne,k,z) < P(N*%) .

unless (73) is satisfied, which contradicts optimality of N*.

This completes proof of Theorem 5.1. [::::::::]

6. Extensions.

In this section we point out some simple extensions of the theory
developed previously and we state, without proof, a theorem for discrete

dynamical systems.

I. If the right hand side of the nonlinear differential equation (1) is

of the form f(x, N(cx), t), then we add x” 4 t as a new state variable and

consider the augmented system

X £(x, N(ex), x°)
(101)

xl |1

If for each x and N, f(x, N(ex), .) is continuously differentiable on
[0, T] and f is Lipschitz in x and N(*) (uniformly in t € [0, T]) it can
be shown that the right hand side of (101) satisfies the conditions stated

in section 2, so that the results obtained previously are also valid for
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such time-varying dynamical systems.

II. If the performance index is of the form*
T

(102) P(N) = Jf h(x(t), N(ecx(t)))dt
0

then, all the previous results are valid if we replace the integrand

OxeNTEY by 0xenTER 4

] , where it is assumed that
opt

opt

h is continuously differentiable with respect to its second argument as

well as first.

IITI. A careful investigation of proof of Theorem 5.1 suggests that con-
straints more general than sector constraints can be considered for which
a similar form of Theorem 5.1 will hold. One such example of practical

value is the saturation constraint. Namely we definei)Ui as

N(-) ELNL 1££
1) N e N-
i1) NG| <L wy€ER

where L is a given constant.
The result analogous to Theorem 5.1, roughly asserts that the optimal
nonlinearity uses either full slope or follows the saturation line with

zero derivative, depending on the argument of a sgn function.

fSuch forms may occur as a result of introducing penalty functions to
insure that N*(:) is near enough to a given nonlinearity.
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IV. Consider a discrete dynamical system described by the following

nonlinear difference equation

Xipp — % = f(xi, N(cxi))‘

(103)

i=0,1, ..., I

where £(*,*) is assumed to be continuously differentiable on Rk x R and

xo is a fixed vector in Rn.

The constraint settjus for the nonlinearities is defined as follows
ne N iff
D
1o4) 1) nec
(105) 41) - Ky < N(y) <+Ky , ¥y €ER

We define a performance criterion as

(106) P(N)

I
N
Z hxy)
i=0
where x? is the trajectory of (103) corresponding to N ELJUD and h € C(l)

The minimization problem can be stated as

(107) Min P(N)

NGJJD

We assume that the topology onLJUD is the one induced by the sup norm as

given by (7). The following theorem gives the necessary conditions of
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optimality.

THEOREM 6.1. Suppose N* EQJUD furnishes a local minimum for P then

the following relations hold

N*(am) = - K sgn( Z (AS’)T %{f (j)) @

j €3 opt
(108)
¥m=1, ..., M
where
(109) {am}:=1 A yer;Jj€ 0,1, ..., ) cxt = y)
110)  I(ap) 8 gec,1, ..., 1) ext = o)

{ 2% }I solves the adjoint equation given by

1" 1=0
df (x¥%, N*(cx¥*))
i i T
- = %
A - Afy = ax¥ "3
(111)
¥
. [dh(xi)]T

dxi

with A? =0 [:::::::]
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APPENDIX B

In order to prove Lemma 3.1 to Lemma 3.3 we need the following auxil-

iary Lemmas.

Lemma Bl a) 1lim “; -xxl =0
e+0
b) 1im Ix - x*l =0

e>0

Lemma B2 a) 9*(w21_1) >0,1i=1, .. %

§
’_.I
-
o
=

b) y*(w,) <0, 1=

Lemma B3

Consider the nonlinear differential equation
(31) w = gw, t)

where g is Lipschitz in w (uniformly in t) and for any continuous function
w(t), g(w(t), t) is locally integrable in t.
Let wl(t) and wz(t) be approximate solutions to (Bl) on the

interval [tl, t2] in the sense that

(B2a) v, (8) - gy (0), )] < e (e
(82b)  [w,(t) - g(w,(t), £)| < €y(E)

for almost all t in [tl, t2] with wl(tl) = W2(tl)' Then
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t

2
wy () = wy ()] < f ey (erbep()dr | exp Lieyt))
1
(B3)
(S
¥t [tl, t2]
where L is the Lipschitz constant of g. [:::::::]

Lemma B3 follows from a slightly modified form of 10.5.1 p. 282 [2].

Proof of Lemma Bl  Substituting x(t) and x*(t) into (1)

(B4) x(t) - x*(t) = E(R(t), N(ck(t)) - F(x*(t), N*(cx*(t))

Integrating both sides of (B4), taking norms and using Lipschitzness

of f we obtain
t t .

(B5) |x(t) - x*(t)] 1[ Kll;(('r) - x*(1)|dT + f K, /(N (cx (1)) - N*(cx* (1)) [dr
0 0

Adding and subtracting N(cx*(t)) inside the absolute value in the

second integral and then using properties of(,&lwe have

t t
|x(t) - x*(t)]| < f Kll;(r) - x*(1)|dt + f K,Se| [(x(1) - x*(x)|dr
0 0

(B6)
t

+ fKZII:I(cx*(-r)) - N*(cx*('r))ldT
0

t
(B7) |x(t) - x*(t)]| < f (K1+Kzs|c|)|{<(r) - x*(1)|dt + K, T|N - Nk .
0
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By part a)
"> wy 3 yx(t") > y*(wl) =z
Again by continuity of y*(-)
A" € (7, t") H y*(") =z
which again contradicts (21). So we have
&*(wz) <0
The result follows by induction. :

Proof of Lemma 3.1 We first make the following definition

fic>

(B10) n min |z - cx*(tj)l

j=l, see I

where tJ €EH, =1, ... m and H is as defined by (8). It follows by

assumption given by (17) that n is a positive number, so the hypothesis

of the Inverse Function Theorem is satisfied by continuous differentiability
of y*(*). So for each wy there exists an interval Ii containing z and a
continuously differentiable function Ti(-) such that

Ti:Ii-*Ni

(B11) Ti(y*(w)s =w , ¥w€ N,

where Ni is an interval containing w 1 such that

41~
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It is easy to show by using (Bl2) and (B18) that

(B22a) v¥*(s) z+ e’ (B) + 3 1iff s = s; for some j € (1, ..., 22)
and

(B22b) y*(s)

z -3 1iff s = s; for some j € (1, ..., 2%)

The continuity of each Ti proves (25a). The order on s,'s given by

i
(27) follows from Lemma B2, (B13) and the following property of each Ti'

dTi(v) . -1
®23) = e, wver

In order to prove part b), by using (B16) and (B17) we observe that
(B24) y(t) - B/2 < y*(t) < y(t) + B/2, ¥ £t € [0, T], ¥ e < e’ (B).

By inequality (B24) it is enough to prove the following relationms.

L
. + +
(B25a) y*(t) >z +e”(B) + 8, ¥t € iL-—Jl (85412 Sp4)
— . Q'—l — —
(B25b) y*(t) <z - B, ¥ t€IO, sl) U (SZQ,T] k’{igl(SZi, 32i+1)}

This is proved by contradiction as follows: Suppose there exists t in

+ +
(321_1, 921) such that

(B26) y*(t) <z + e"(B) + B

Using Lemma B2 and (B13) we have that

(B27) y(sy; ) > 0
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- + . +
So Tt Sp;q SETCE < sy

and y*(t°) >z +e”(B) + 8B

By the lntermediate Value Theorem there exist a t" such that

(B28) t" € (7, s]

(B29) y(") =z + ¢"(B) + 8

(B29) contradicts (B22a), so (B26) cannot be true.

The proof of (B25b) is similar.

Proof of Lemma 3.2 It is enough to show that

+

221-1 :
(B30) f (x*%(1) - %(1))dt = o(e,B)

(831) f (* (1) - %(1))dT = o(e,B)
+

$21

Using (B9), (24) and (26a) the result follows.

This proves (B25a).

]

[ ]

Proof of Lemma 3.3 I1f N*(+) were continuously differentiable the result

would be a well known property of differential equations.

By definition

Ongf, N* has a derivative with finite number of discontinuities on [a, b]

K
denoted by {a.} .
y i i=1

We define the inverse image of a, for each i as follows

-
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. df (x, N*(cx))
dx(t) = [ 2 }
dx x=x* (t)
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Using (B38a) we can write (B42) as follows

df (x, N*(cx))
dx

§x(t)
x=x*(t)

(B43) sx(t) =

+ o(|6x’|+|y|, t)

o + [

af (x,u)

¥
3u ](x,u)=(x*(t, N (ext (£)))

6(1)

of (x,u)
Ju Y
(x,u)= (x*(t), N*(cx*(t)))

+

K .
¥eE€le, 11" Vo], (Jexrl+y]D) < 6(h)
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: *
where uniform continuity of é§;£11

insures that o(|éx”|+|y|, t) is uniform in t.

We now consider the linear differential equation given below

(B44)

v(t) =‘[df(X,d§*(cx))

} x=x*(t)

where v(t”) = §x7, t € [t~, T]
that

It can easily be shown

23 constants Ci and Cé
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Perturbed trajectory cX(t) lies in this tube
\.  of vertical width B.
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Fig. 1. The plot of t vs cx*(t) relating the numbers 3. r (3), W :”.
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Fig. 2. The perturbed nonlinearity Zm
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