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I. Introduction. The problem of minimizing a performance criterion of a

dynamical system with respect to the forcing function u(t) of the nonlinear

differential equation is well known in optimization theory. Theoritical

answers to this problem are given by the Maximum Principle of Pontryagin

[5] or methods of Variational Calculus [4].

Another optimization problem is that of selecting the best charac

teristic of a device to be used within a dynamical system. For example

consider a device whose input is cx(t), a linear combination of the state

variables at time t, and whose output is N(cx(t)) where N(«) maps R into

R. The problem is, given some suitable restrictions on N(-) and a per

formance criterion, find the characteristic N*(0 which minimizes the

criterion. With respect to the problem mentioned in the previous para

graph the present problem is equivalent to finding the optimal single-

loop feedback law - not necessarily linear - which realizes the input

u(t) by state feedback, namely u(t) = N(cx(t)).

The problem posed above is of considerable practical importance. Some

possible applications are given below.

A. Stability. A numerical investigation of the stability of nonlinear

feedback systems requires the computation of the nonlinearity in the feedback

loop that makes the system most and least stable on a time interval chosen

large enough to detect the behaviour of the system. A knowledge of the shape

of the nonlinearity that makes a system, which is on the boundary of stability,

unstable may give better insight in forming new stability criteria.

B. Design. The field of system design is full of such applications.



For example in circuits it is often a desirable objective to know the

characteristics of a nonlinear resistor or amplifier that optimizes an

index such as efficiency or power output. It may be cheaper and easier to

build a nonlinear resistor or amplifier of a given characteristics than to

apply a signal u(t) to optimize the system.

C. Sensitivity. In most systems the characteristics of the non-

linearities vary slowly with time, therefore it is important to know the

sensitivity of the performance of the system with respect to certain para

meters of the nonlinearity such as its slope at a given point etc. The

techniques developed in this paper are helpful in determining such sensitivity

coefficients.

The problem of optimizing nonlinear characteristics has been a neglected

area of research. A simple case has been considered by Willems [8] in which

the system had no dynamics. He considered a single-input single-output non-

linearity subject to a fixed input on a fixed time interval. The objective

was to optimize an index that depended on the input output pair on the fixed
s

time interval. A more experimental approach was taken by Soudack [7] for

generating the sensitivity coefficients of a system with respect to the slopes

of a piecewise affine nonlinearity using an analog computer.

In this paper we derive necessary conditions of optimality for a single-

input single-output, memoryless, time-invariant nonlinearity in a very general

framework covering finite-dimensional dynamical systems. In section 2 the

problem is formulated. In section 3 the main result is stated as a theorem

and is proved. In section 4 it is shown that the hypothesis of Theorem 3.1
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is satisfied for time-invariant nonlinear feedback systems if the linear

time-invariant system in the forward loop has a completely observable

representation. In section 5 the results are generalized for nonlinearities

with sector constraints. In section 6 some extensions of the results are

pointed out and a similar version of Theorem 3.1 is given for discrete

dynamical systems.

2. Formulation of the Problem.

A. System Equations and Properties. The system to be considered is

described by the following non-linear differential equation.

(1) x(t) - f(x(t), N(cx(t)))

where x(t) = column n-vector for t £ [0,T], T > 0 fixed.

x(0) = x0, fixed

c = constant row n-vector

The function f(•»•), maps R x R into R , is continuously differentiable

and satisfies the following Lipschitz condition

3 constants K-, K~ such that

(2) |f(xr ut) - f(x2, u2)| :. K1|x1 - x2| + K2|Ul - u2|

VCxp u1), (x2,u2) G r" XR

The class of admissible nonlinearities (JvL > is described by the following

definition.
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Definition. J is afamily of functions, such that N^^R iff

[Dl] N : R + R

[D2] N(0) = 0

[D3] There is a constant S > 0, not depending on N, such that

|N(yi) -N(y2)| £ S|yi -y2| ,V yr y2 S R

~"™f is a piecewise continuous
dy

on R.

[D4] dN,(y) is apiecewise continuous* function defined almost everywhere

The definition of derivative from the right and the derivative from
V

the left of a real valued function g(') on R is given below.

(3a)
d+g(y) Allm N(y+y) -N(y)

Y>0 Y
Y+0

dy Y>0

(3b) fLsizi AUm H(y) -JUv-y)
Y>0
Y-K)

*y Y>o Y

The lemma below describes aproperty of<JllR which is used later on. The

proof is given in Appendix A.

LEMMA 2.1 If NeJU then ±%bl and <LMzi exist for all yin R
JR dy dy

and are bounded between -S and +S. ZJ
Remark. For each NGo\L there exists a unique solution ^(t) to (1) on

[0,T] ([1] Chapter 1). Furthermore x^') €c(1) by the definition of f
and^M .

+A function mapping R into R is said to be piecewise continuous iff on
each finite interval it has finite number of discontinuities and it is
regulated ([2] page 139).
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The following lemma introduces simplifications in formulating the

problem.

LEMMA 2.2 There exists constants a and b such that

(4) a < cx„(t) <b V te [0,T], V NG(Jl.X^t; < D V l ^ LUjlj, y jn ^(^vR

Lemma 2.2 follows directly from the finiteness of [0,T], the Lipschitz

condition (2), the slope condition [D3], [D2] and the Bellman-Gronwall

inequality.

We define C.AL ... by restricting the domain of each member ofo\L to
[a, bj k

the closed interval [a, b]. Then, in view of Lemma 2.2 equation (1) is well

defined for all N in (A|r ,,.
La, bj

B. The Minimization Problem. The functional P is defined as follows:

(5) P(N) ^ f h(xN(t))dt ,Neo\([aj
b]

where h : Rn + R, h(0 € C1

The basic problem is to minimize P(N) on^J, ,,:

(6) Min P(N)

[a, b]

By putting sup norm oncJvL ,, it becomes a subset of the Banach

Space Cr •> i([31). This construction enables us to talk about a local
v [a, b]

minimum since the set over which we minimize has a relative norm topology,

The norm oncjvlr .i is denoted by:
La, dJ
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(7)

Notation

|N| » max |N(y)
y € [a, b]

OI ^cAI
[a, b]

Ix(•) II = sup |x(t)
t e [0, T]

3. Main Result.

THEOREM 3.1* Suppose N* furnishes a local minimum for P for the basic

problem given by (6). Assume that

(8) JfMtS [0, T]; cx*(t) = 0}

is a finite set given by,

(9) K- {tj>?=l> tj € [0, T], j-i, ... , m

where x*(t) is the optimum trajectory of (1) corresponding to N*.

Under these conditions for all z (except possibly a finite set) in

[a, b] the following relations hold

(10a) For z > 0,
d^NftU)

dz
- S sgn

(10b) For z<0, d *?*(z) =+ Ssgn
— dz

-6-
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where,

(11a) I+(z) = {t e [0, T]; cx*(t) > z}

(lib) l"(z) = (t € [0, T]; cx*(t) < z}

(12) l3NjoptMl k af(x» u>
(x, u) - (x*(t), N*(cx*(t))

+

X*(t) solves the adjoint equation given by

T

(13) i.(t) ..["<'»£<«»] x*(t) .[^M.]
x=x*(t) x=x*(t)

with

(14) X*(T) = 0

Remark. Theorem 3.1 asserts that unless the argument of sgn function is

zero the slope of the optimum nonlinearity is on the boundary of the con

straint set; i.e. + S or - S. Therefore the result is analogous to bang-

bang type control problems. The only assumption that may look unreasonable

is the one given by (9). However in section 4 the existence of a large

class of feedback systems satisfying (9) is exhibited.

Preliminaries. We investigate the set I (z) given by (11a) in more detail.

To be definite we assume that (See Fig. 1)

In order for (13) to be well defined —j^l must be defined for
dy Iy=cx*(t)

almost all t in [0, T] which is insured by (9) and [D4].
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(15) i) z > 0

(16) ii) cx*(0) = cxQ < z, cx*(T) <z

The remaining seven cases are substantially the same, so they will not be

considered in detail. Choose z such that it satisfies (15) and (16).

Furthermore assume that z has the property that

(17) cx*(tj) * z, t € "K ,j= 1, ..., m

Clearly all except a finite number of z's in (a, b) satisfy (17).

Let

(18) S3 - {u>€[0, T]; cx*(w) - z}
z

We claim that SI is a finite set. For if it is not, then by compactness

of [0, T] ftz has a limit point w' in [0, T]. Furthermore by continuity of

cx*(*)> u>' €: n . So we have
z

cx*(oO 9* 0, and cx*(w') = z

So there is a neighbourhood of u>' such that cx*(w) ^ z for all a) in this

neighbourhood except u> = w*. This contradicts that u' is a limit point

of Q .
z

The set ft can therefore be written as
z

2&

(19) J2z = {a3i}
i=l
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The fact that ft has even number of elements is easily deduced from (16)
z

and (17). Now, from (11a) and (19)

(20) I (z) - U ((o2i_1, u2±)

where we have subscripted the elements of ft by the rule

(21) w > ta± iff j > i V i, j - 1, ..., 21

Since I (z) is a union of disjoint intervals we obtain

(22) f (X*(t))'
£ (0

[I] dt-2:/21a*(t»
Jopt , , J

i=l a)
2i-l

dt

opt

We now construct a perturbed nonlinearity as follows (See Fig. 2)
r

*e.k.«(,)

Note that

N*(y) , a <_ y <_ z

N*(z) + k(y-z), z < y < z + e

N*(y) + ke - (N*(z+e) - N*(z)) , z + e < y <_ b

(23) N . G JU , V e > 0 , Vz € [0, b] , V k 3 |k| £ S
e,k,z
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|N* - N , |
(24) £* '* °° < 2S V e > 0

For convenience we drop the subscripts of N , and use the following
c ,K.,z

notation

x(t) - xg(t)

y(t) » cx(t)

y*(t) = cx*(t)

The following lemmas will be repeatedly used in the proof of Theorem

3.1. The proofs of these lemmas are given in Appendix B.

LEMMA 3.1 For any B > 0 sufficiently small 3 e'(ft) > 0 with the

property that (See Fig. 1).

a) To each w«. [<*>„.,1 in fi there corresponds an open interval (s2., s2.)

^821-1* S2i-1^ SUch that

(25a) y^i-l* =y*(s2i} =Z" B

(25b) y*<s2i-l) = y*(s2i) = z + 6+ G'(B)

Furthermore

(26a) lim s = lim s~ = oi [lim s~ n= lim si. ,= oj0, J
B-K) z± 0->O Z± Z± 0+0 B-K) X 2i~1
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where

(26b) c21 6(«+1( ru) [o.^^ SU"^, b+^^J

V 1 = 1, ^*, ..., x»

The s.'s are ordered as follows.

(27) 0<s~ <s+ <s+ <s~ <s~ <... <s+u <s~n <T

b) For e < e'(0) the following relations hold

% + +
(28a) y(t) >z + e, V t € U (s21-r b2±)

i=l

SL-1

(28b) y(t) <z , V t€ [0, s~) U (s^, T] U {U (s^, s2W)}

where y(t) corresponds to N ,
E ,K.,Z

LEMMA 3.2 For all i = 1, ..., I

(29a) a) x*(s2i_^ -x^*^) =xMs"^) "*<82i-i> + o(e»B)

(29b) b) x*(s2i) - x(s2i) = x*(s21) - x(s2i) + o(e,B)

where o(e,B) has the property

(30) lim/lim-l-^^V 0
B+Ol e+0 G

\e>o

LEMMA 3.3 Suppose x*(t") is perturbed by fix' and N*(-) by
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Y , where t' £ [0, T) and y is a real number. Then the corresponding

trajectory for t £ [t', T], denoted by x(t), is given by

:(t) =x*(t) +*(t, t*)6x* +yf <J>(t,T)[||l dx
*L* L Jopt

(31)

where

(32) lim lo(
(|6x'|+|y|)->0

+ o(|fix'| + |y|, t)

6x'\ + r-ii.L
fix' +

uniformly in t € [t% T].

*(•»•) is the state transition matrix of the variational equation

given by

(33)
v(t) =rdf(«t N»(q0)i v(t)

1 dx Jx=x*(t)

Proof of Theorem 3.1 The proof is by contradiction so we assume that (10a)

is not satisfied and z satisfies (15), (16) and (17).

Consider the augmented system

(34) x " f(x, N(cx))

(35a) where f(x, N(cx))
[f(x, N(cx))l
U(x) J

(35b) c = [c 0], constant row (n+l)-vector

Y denotes the function in C[a, b] which is identically equal to a constant.
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(35c) x(t) , column (n+1)-vector for t£ [0, T]
|-x(t)-|
U°(t)J

CI(35d) x(0) «

It follows by the definitions above that

(36) x°(T) = P(N)

It can easily be shown that the results of Lemma 3.1 to Lemma 3.3 also

hold for the augmented system.

We now prove the following relations

(37a) x(s2±) x*(s2i) +e<k---5-*-A)£i
r U)

r<< * m
2j-l

(37b) ,(.;1+1) -i*(s-i+1

i = 1, ...., 9.

)+ (k-^M)E
J-l

U)

I 2j-l

2j. _

dx , + o(e,B)
opt

,+ o(e,0)

i = 1, ..., I - 1

where, o(e,B) has the property defined by (30) and $(•,•) is the state

transition matrix of the variational equation of (34) around the optimal

trajectory x*(t). e is chosen small enough to satisfy conditions of
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Lemma 3.1 to Lemma 3.3 whenever they are applied.

We first prove (37a) and (37b) for i = 1. Using Lemma 3.1 b)

y(t) = cx(t) < z for t € [0, s~)

So using definition of N we have

x*(s~) = x(s~)

By Lemma 3.2 a)

(38) x(s+) = x*(s*) + o(e,B)

Again using Lemma 3.1 b)

(39) y(t) >z+e, for tE(s+, s2)

Using definition of N we apply Lemma 3.3 with

t' » s.^ fix' = o(e,B), y = ks - (N*(z+e) - N*(z))

(40) x(s2) =x*(s2) + $(s2, s+)o(e,B)

+

82
+(kc-(N*(z+E) - N*(Z))) f l{s\9 x)[f£] dx +o(|fix'MY|, s+)

J + *• -loot l
Sl

By continuity of the integral with respect to its end points, using

Lemma 3.1 a), and Lemma 2.1 (40) reduces to (37a) for i = 1.

Again using Lemma 3.2 b) and then Lemma 3.3 with

-14-



^

s2 , «x" '<* *&* f* '<:*$] *x +o(..B).-r-
J L JOpt

w,

x - ~ A d N*(41) x(s3) =x*(s3) + $(s3, s2) £(k- ^~^) / *<s^ *)[§] dx +o(e.B)
J L Jopt

By using continuity arguments and Lemma 3.1 a) it can be shown that

the remainder terms after replacing *(s3, s2)*(s2, x) by <Ks3, x) are of

o(e,B) type therefore (41) reduces to (37b) for i = 1.

A routine induction procedure proves (37a) and (37b). Setting i = £

in (37a) and using Lemma 3.2 b), Lemma 3.1 b) and Lemma 3.3 we obtain the

following equation.

(42) x(T) =x*(T) +E(k- ^f^1)^
j-l

to

2J .

-f, opt
'2j-l

+ o(e,B)

We now let X*(t) be the solution of the augmented adjoint equation

given by

(43)

where

(44)

X*(t)
£*(t) «-|"dr(x, N*(£x))l

1 dx
x=x*(t)

X*(T) =

mi:] •
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Then by standard results in optimization [5] we obtain the following

relation

(45) X*(t) = X*(t)

. 1 •

, v t e fo, t]

where X*(t) is given by (13) and (14). Using (36), (44) and (45) we obtain

(46) (X*(T))T(x(T) - x*(T)) - x°(T) - x°*(T) = P(N) - P(N*)

(47) (X*(T))T*(T, x) - (X*(x))T

(48) (X*(T))Tr||l - (X*(t))'
l3NJopt i—Jopt

T—1

Taking inner product of both sides of (42) with X*(T) and using

(46), (47), (48) and (22)

(49) P(N) - P(N*) « e(k (X*(x))
i+N*(zK r
dz ; J+

I (z)

For e and 0 small enough we have that

dx + o(e,B)
opt

(50) sgn[P(N) - P(N*)] » sgn

L I+(z) °^ J

Since k is an arbitrary number between + S and - S if (10a) is not satisfied

we obtain
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(51) sgn [P(N) - P(N*)] < 0

which contradicts optimality of N*

This completes the proof of Theorem 3.1.

4. Application.

In this section we specialize to the nonlinear feedback-system given

by Fig. 3.

G is a linear dynamical system described by the following equations.

(52a) x • Ax + be

(52b) y = ex

where A = constant n x n matrix

b = constant column n-vector

c = constant row n-vector

N is an element of cJVI, as defined in section 2.

The equations describing the dynamics of the overall feedback system

can be written as

(53a) x • Ax - bN(cx)

(53b) y a ex

The problem is the basic problem given by (6) where (1) is specialized

to the equation (53a). It is easily seen that right hand side of (53a)
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satisfies the conditions on f given in section 2.

We now state the main result of this section.

THEOREM 4.1. Suppose N* furnishes a local minimum for P with N* £<J\|.

Assume that G is completely observable, then either the assumption

given by (9) of Theorem 3.1 is satisfied or x*(t) is a trivial trajectory

of (53a), in other words,

(54a) x*(t) = x , V t 6 [0, T]
o

and

(54b) Ax - bN*(cx ) » 0
o o

Remark. Theorem 4.1 shows that there exists a large class of systems with

great practical importance for which the crucial assumption given by (9)

of Theorem 3.1 is satisfied.

Proof of Theorem 4.1 Suppose (9) is not satisfied. Then by compactness

of the interval [0, T] the set K given by (8) has a limit point t in [0, T].

It follows from continuity of cx*(0 that 5C is a closed set, so we necessar

ily have t in 3C; or equivalently

(55) cx*(t) = 0

Let

(56) x = x*(tT)

We construct a solution for (53a) in a neighbourhood of t with an

initial condition x using Picard's successive approximations. By uniqueness

this solution coincides with x*(t) in this neighbourhood, say, (t - £, t + £)
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The Picard iteration is given by

(57a) xQ(t) = x ,

(57b) x (t) - x+ /"[Ax (x) +bN(cxp_1(x))]dx

p » 1, 2 ... , V t e (t-C, t+O

The error between the p iteration and the actual solution is given

as follows ([1] p. 13). 3 a constant M such that for all positive integers

p and all t G (t-£, t+O

(58) |x*(t) -x (t)| <.M(|t-t|)P+1/(p+l)!

Differentiating (57b) with respect to t and using Lipschitz properties of

N it can be shown that 3 a constant M' such that for all positive integers

p and all t G ("t-£, t+O

(59) |cx*(t) - ex (t)| <.M' (|t-t|)p/p!

Using (55) and (53a) we obtain

(60) c[Ax + bN(cx)] = 0

Using (57b) with p = 1

-19-



xx(t) «x+ f [Ax -bN(cx)]dx

(61) xx(t) » x + (t-t) [Ax - bN(cx)]

Observe that using (60) in (61) we have that

(62) cx1(t) « ex V t€ (t-C, t+P,)

Substituting (61) and (62) into (57b) with p = 2 we obtain the

following equation

(63) x2(t) = Ax + (t-t)A[Ax - bN(cx)] - bN(cx).

Again using (60) in (63)

(64) cx2(t) = (t-t)cA[Ax - bN(cx)]

Using (64) the following relation is obtained

(65) cx*(t) = (t-t)cA[Ax - bN(cx)] + (cx*(t) - cx2(t))

Dividing (65) by (t-t)

cx*(t) - - (cX*(t) " cx2(t))(66) cx Vt; mcA[Ax _ bN(cx)] + __£
(t-t) (t-t)

Since in view of (59) the second term in the right hand side of (66)

can be made arbitrarily small for It - tl small it follows that
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(67) cA[Ax - bN(cx)] = 0

Otherwise we can find a neighbourhood of t such that cx*(t) ^ 0 for all

t in this neighbourhood except at t = t. This contradicts t being a limit

point of '7C,

It can easily be seen that proceeding in this way the following

relation will be obtained

(68) cAi(Ax"- bN(cx)) =0, V i = 0, 1 ... n-1

But by the assumption of observability we have that the set of vectors

c, cA, ... cAn" span R ([9] p. 502). So we must have

(69) Ax - bN(cx) = 0

or using (53a)

(70) x*(t) = 0

which proves that x was an equilibrium point of (53a). Hence the theorem

is proved.

5. Sector Conditions.

In this section we restrict the set cjv) by putting on it sector

constraints. More specifically we define a new set of nonlinearities

^\)K as follows

Definition N G^L iff
———__ £
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1] NGJK

2] For a given constant K > 0,

(71) - Kz < N(z) < Kz Vz € [a, b]

Note that for K >_ Sthe sets <JW andcJUK coincide. So in order to

restrict o\( we let K to be smaller than S. It is assumed thato\(K nas

the same topology as (JV1 given by (7).

We investigate the same problem as formulated in section 2 except

that ^Al is replaced byc_AL» The necessary conditions of optimality for

this problem is given by the following theorem.

THEOREM 5.1. Suppose N* furnishes a local minimum for P oncAl.

Suppose that the assumption given by (9) of Theorem 3.1 is satisfied.

Under these conditions N* satisfies the following relations for all z

(except possibly a finite set) in [a, b].

Case I z > 0

i) if N*(z) ^ - Kz,

(72) d N*<z> =
dz

- S sgn

ii) if N*(z) = + Kz,

I
I(z, z+(z))

ni\ d N*(z) .K+S.(73) —Tz = - <—) sgn /

opt

(X*(x))

I(z, z+(z))

where

(74) I(z, v) = (t 6 [0, t]; cx*(t) € (z, v)}

-22-
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iii) if N*(z) » - Kz,

(75)

where

d N*(z)
dz (~2~") s8n / (X*(.))T[f] d,

L JoptI(z, z+(z))
-(^)

z+(z) = Min {y € [z, b]; N*(y) = Ky or N*(y) = - Ky,

(76a)

and 3 y' € (z, y)3 N*(y') ^ - Ky'}

In case the set on the right hand side of (76a) is empty we take

(76b) Z, (z) « b

To help visualize z (z), note that if ,

N* restricted to (z, z (z)) is interior to the sector

Case II z < 0

d+N*(z)
< K, then the graph of

(77)

i) if N*(z) ^ - Kz,

d~N*(z) m s
dz

sgn / (X*(x))

Kz (z), z)
KLPtdT

ii) if N*(z) - + Kz

(78) £N*M = (WS,
dz z

iii) if N*(z) = - Kz,

/ a*(T))T[fJdx
I(z (z), z)

-23-

+ (*=*>



(79) £^=(¥)agny (AMT))T[i]
Kz (z), z) °^

dr - (^)

where

z_(z) = Max {y G [a, z]; N*(y) = + Ky or N*(y) = - Ky,

(80a)

and 3 y' ^ (y, z) 3 N*(y') = ± Ky'}

If again the set on the right hand side of (80a) is empty we take

(80b) z_(z) = a

All the other symbols are as given in Theorem 3.1.

Remark. Theorem 5.1 is a generalization of Theorem 3.1. It asserts that

unless the argument of sgn function is zero, the slope of the optimum non-

linearity is + S or - S at the points interior to the sector; on the

boundaries of the sector, + S is replaced by + K or - S is replaced by

- K so that sector conditions are not violated.

Proof of Theorem 5.1 The theorem will only be proved for case I ii).

For the other cases the proof only requires simple changes. Consider

t
the case where z,(z) < b and

(81) f (A*(,:))T[!nJ dT *°
Kz, z+(z)) OP*

If z (z) = b the proof reduces to that of theorem 3.1 by taking k of

N. between + K and - S.
k,e, z
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then by continuity of cx*(') and assumption given by (9) there exists an

open interval (z (z) - p, z (z) + p) such that

/ <^»T(!f] _dt
Ll(zja) .I(z, z+(z))

(82) sgn

opt

sgn dt

opt

V a G (z+(z) - p, z+(z) + p)

(76a) implies that

(83) N*(z+(z)) = + Kz+(z)

or

(84) N*(z+(z)) = - Kz+(z)

First assume that (83) holds then there exists a z. in (z (z) - p, z (z))
J- t *r

(see (82)) such that

a) N* (z_) > - S and N* is continuous at z

b) cx*(t) ^ z1 V te ,7C, Kis given by (8)

Also there exists a z« in (z,(z), z (z) + p) such that
z + +

a') N* (z„) < + S and N* is continuous at z«

b') cx*(t) t z2 VtGK

If (84) holds then > and - S are replaced by < and + S, respectively, in a)

and vice-versa in a'). We assume from here on that (83) holds. The
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modifications for the other case is straightforward.

Let L. and L2 be straight lines in R x R defined by the following

equations

(85a) L1: G^v) = N*^) + B^v-z^ VvG R

(85b) L2: 02(v) = N*(z2) + B2(v-z2) V ve R

where B_ and B2 are any constants that satisfy the relations

(86a) - S < B1 < N* (z )

(86b) N* (z2) < B2 <+ S

The next result is a direct consequence of the Implicit Function

Theorem. There exists numbers y-i > 0 and y? < 0 such that for each £ in

(0, y..) there is a unique number g(£) in (y„, 0) such that

(87) N*(zx + g(O) - N*(Z]L) = B2 g(£) - 5

Similarly there exists numbers y' < 0 and yX < 0 such that for each £* in

(y-", 0) there is a unique number g(£') in (y', 0) such that

(88) N*(z2 + g"(r,')) - N*(z2) « B2 g(0 -V

To apply the Implicit Function Theorem for obtaining (87) we define the

following function

(89) F<£,4>) = N*(Z;L + i|>) - N*(Z;L) - B1 ty + £
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Observe that F maps R x r into R and is continuously differentiable at

(0, 0) satisfying the following relations.

(90) F(0, 0) - 0

(91) D2 F(0, 0) =N* (Z;L) -B1 +

Using (86a)

(92) D2 F(0, 0) > 0

So hypothesis of the Implicit Function Theorem is satisfied by above

relations and (87) follows. The reason for g(£) to be negative (for £ > 0)

is that the Implicit Function Theorem requires

(93) ^f^" =-(N*(z.) -B.)"1 <0
dS iCo0 X X

The equation (88) is proved similarly.

We now construct a perturbed nonlinearity N , as follows (See Fig. 4)

If k6<^^- ,+«.then

f
D2 stands for partial derivative of F with respect to its second

argument.
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VcW s
r

N*(y) , a <_ y <_ z

N*(z) + k(y-z) , z < y <_ z + e

N*(y) + ke - (N*(z+e) - N*(z)),

z + e<y£z1 + g[ke - (N*(z+e) - N*(z))]

N* (zx) + B1(y-z1), zx + g[kc - (N*(z+e) -N*(z))] <y£z]L

N*(y), zx < y <_ b

d N*If k e [- S, 2-£- ), then

Ve,z(y) S

dz

/"

<

N*(y), a _< y £ z

N*(z) + k(y-z), z < y < z + e

N*(y) + ke - (N*(z+e) - N*(z)),

z + e<y<_z2 + g[ke - (N*(z+e) - N*(z))]

N* (z2) + B2(y-z2), z2 + g[ke - (N*(z+e) - N*(z))] <y < z£

N*(y), z2 < y <_ b

where £ is small enough to guarantee that
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i) |ke - (N*(z+e) -N*(z))| <min(y1, \y'±\)

ii) k£ - (N*(z+e) - N*(z)) >0 if k>d*|*(z)
dz

ke - (N*(z+e) - N*(z)) <0 if k <d^*(z)
dz

iii) - Ky < N, (y) < Ky V y G [a, b]
K.,e ,z

The justification of existence of such an upper bound for e is straight

forward, so that if the conditions stated above are satisfied

(94) sk.c.«6A

We remark here that the perturbation of N* constructed above is similar

to that of Theorem 3.1 except that the perturbed nonlinearity meets N* at

z.^ (or z depending on k) and follows N* for y > z ,where meeting N* at

zx is done through the straight line L± (or i, depending again on k). The

points z., z0 and the straight lines L, and L. are chosen such that N ,
l I 12 E,k,z

remains inwAi_, for small £ and the contribution of the portions of N ,
K r e,k,z

on (z, z+e) and on the line L. to the perturbed trajectory are of second

order in £.

Using the same procedure as in the proof of Theorem 3.1, that is,

making a similar construction around the point z. (or z„ depending on

value of k) as well as z the following relations can be obtained.
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T/_\LJODt
Kz,«)-°P'

Vk6(d+f(Z),+K] dz

(96)

I(z,z2)

*k6[-S.%^)

wherewehaveusedthefactthat

(97)limP?[k-(N*(z+e)-N*(z))3<
E+0C

(98)limR[ke-(M*(»+e)-H*(«?)]<
G+0£

whichfollowsfrom(93)andthecorrespondingrelationforg,

Theinequalities(97)and(98)areusedtoshowthat

In.-n*|
(99)lim?£?<«

e+0G
F.>0

andtoshowthattheremaindertermsareofo(e)type.

Using(82)andthechoiceofz-andz2>(95)and(96)reducestothe

followingrelationforsmallenoughesothato(e)termsmaybeomitted.
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»*n (PCMeiki«) - P(N*))« sgn (k -
d+N*

dz
fei)/ (x*(t)>Tlll dtL^NJ

(100)

which implies that we have

P(Ne,k,z) <P(N*}

I(z, z+(z))

v k e [- s, + k] k * d*N*(z)
dz

unless (73) is satisfied, which contradicts optimality of N*.

This completes proof of Theorem 5.1.

6. Extensions.

In this section we point out some simple extensions of the theory

developed previously and we state, without proof, a theorem for discrete

dynamical systems.

I. If the right hand side of the nonlinear differential equation (1) is

of the form f(x, N(cx), t), then we add x" = t as a new state variable and

consider the augmented system

(101)
f(x, N(cx), x-)

1

opt

If for each x and N, f(x, N(cx), .) is continuously differentiable on

[0, T] and f is Lipschitz in x and N(') (uniformly in t <= [0, T]) it can

be shown that the right hand side of (101) satisfies the conditions stated

in section 2, so that the results obtained previously are also valid for
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such time-varying dynamical systems.

t
II. If the performance index is of the form

T

(102) P(N) = J h(x(t), N(cx(t)))dt

then, all the previous results are valid if we replace the integrand

(X*(t))T[||] by (X*(t))T[||] + [|£] ,where it is assumed that9N opt 9N opt 9N opt

h is continuously differentiable with respect to its second argument as

well as first.

III. A careful investigation of proof of Theorem 5.1 suggests that con

straints more general than sector constraints can be considered for which

a similar form of Theorem 5.1 will hold. One such example of practical

value is the saturation constraint. Namely we definecJV) as
JLi

n(-) eJM iff
Li

i) ngJU-

ii) |N(y)| £ L V y G R

where L is a given constant.

The result analogous to Theorem 5.1, roughly asserts that the optimal

nonlinearity uses either full slope or follows the saturation line with

zero derivative, depending on the argument of a sgn function.

f
Such forms may occur as a result of introducing penalty functions to

insure that N*(*) is near enough to a given nonlinearity.
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IV. Consider a discrete dynamical system described by the following

nonlinear difference equation

Xi+1 ~ x± " f(xi> N(cx±)>

(103)

i = 0, 1, ..., I

where f(*,*) is assumed to be continuously differentiable on R x R and

x is a fixed vector in R .
o

The constraint set L/v for the nonlinearities is defined as follows

N €JU iff

(104) i) Ne C(1)

(105) ii) - Ky <_ N(y) <_ + Ky , VyGR

We define a performance criterion as

I

(106) P(N) =^ h<xi}
i=0

where x*? is the trajectory of (103) corresponding to Ne<-A)D and h^C

The minimization problem can be stated as

(107) Min P(N)

We assume that the topology on lAI is the one induced by the sup norm as

given by (7). The following theorem gives the necessary conditions of
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optimality.

THEOREM 6.1. Suppose N* eo\L furnishes a local minimum for P then

the following relations hold

i e J(«m)

(108)

where

(109) {a }M = (y e R; 3 jG (0, 1, ..., I) ex* = y)

V m = 1, ..., M

(110) J(om) - (j S (0, 1, ..., I); ex* = am)

{X*.} solves the adjoint equation given by
i i=0

df(x*, N*(cx*))

xi - x?+i •[—ts ] X?+l

(111)

with X* = 0

dh(x*)
+ r —i1 dx* J
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APPENDIXA

ProofofLemma2.1Weclaimthat

(Al)f-^-=limN'(z)
Jz->y^

Therighthandsideof(Al)isdefinedforallybypiecewisecontinuity

ofN'(z)soitisenoughtoprove(Al).

SinceN"(z)ispiecewisecontinuousthereisanopeninterval(y,y')

onwhichN'(»)isuniformlycontinuous.So

Ve/4>03£(e)>0

(A2)|N'(x)-N'(v)|<e/4Vx,vG(y,y')3|x-v|<£(e)

Weclaimthatforanye>0

(A3)|H(y*Y>-N(y)_N.(y+)|<eVye(Q,KU))

where

(A4)N'(y+)=limN'(z)
z-^y+

Itisclearthat(A3)implies(Al),sowenowprove(A3).

LetyG(o,£(e))andchoosezin(y,y')withthefollowing

properties:

1]|z-y|<n(Y»G)>wheren(y»e)hasthepropertythat

|N(x)-N(v)|<p-,Vx,v9|x-v|<n(Y,e)
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ThisispossiblebyuniformcontinuityofN(«)

2]z+ye(y,y*)

3]|N'(z)-N*(y)|<e/4

Rewrlte|N(yfT)-N(y)_N.(+)
Y

as

(A5)N(y+Y)-N(y)_N(z+Y)-N(z)+^M_N..(z)+N^(z)_N^(y+)

whereaG(z,z+y)asdictatedbymeanvaluetheorem.

Notethat,|a-z|<y<S(e),soby(A2)

|N'(cO-N'(z)|<e/4

(A5)couldbewrittenas

N(v+y)-N(z+T)j+^N(zl^JlM)+ftr(a)_N'(z)

(A6)
+,

+N(z)-N(y)

Eachofthetermsin(A6)issmaller,inabsolutevalue,thane/4soresult

(A3)follows.

d~N(y)
Theproofforexistenceof—,Jissimilar.
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APPENDIX B

In order to prove Lemma 3.1 to Lemma 3.3 we need the following auxil

iary Lemmas.

Lemma Bl a) lim IIx - x*U = 0
e-+0

b) lim Hx - x*H = 0
e-*0

Lemma B2 a) y*(w2i-l^ > °» i = 1' *' %

b) y*(w2i) < 0, i = 1, .. I

Lemma B3

Consider the nonlinear differential equation

(Bl) w = g(w, t)

where g is Lipschitz in w (uniformly in t) and for any continuous function

w(t), g(w(t), t) is locally integrable in t.

Let w. (t) and w?(t) be approximate solutions to (Bl) on the

interval [t , t2] in the sense that

(B2a) |wx(t) - g(wx(t), t)| <El(t)

(B2b) |w2(t) - g(w2(t), t)| <e2(t)

for almost all t in [t^ t2] with w1(t]L) = w2(t]L). Then
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|w]L(t) - w2(t)| < f (Cl(T)+e2(T))dT exp L(t2-t1)

(B3)

V tG [tr t2]

where L is the Lipschitz constant of g.

Lemma B3 follows from a slightly modified form of 10.5.1 p. 282 [2]

Proof of Lemma Bl Substituting x(t) and x*(t) into (1)

(B4) x(t) - x*(t) = f(x(t), N(cx(t)) - f(x*(t), N*(cx*(t))

Integrating both sides of (B4), taking norms and using Lipschitzness

of f we obtain

t t

(B5) |x(t) -x*(t)| <T Kjid) -x*(x)|dx + f K2|(N(cx(t)) -N*(cx*(x)) |dx
0 0

Adding and subtracting N(cx*(t)) inside the absolute value in the

second integral and then using properties of lA/ we have

t t

|x(t) -x*(t)| < f Kjxd) -x*(x)|dT + J K2S|c||(x(t) -x*(x)|dx

(B6)

(B7)

0

+ J K2|N(cx*(x)) - N*(cx*(x))|dx
0

|x(t) -x*(t)| <j (K1+K2S|c|)|x(x) -x*(x)|dx +K2 t|n -N*

-39-



ApplyingtheBellman-Gronwa.llinequality

(B8)Hx-x*U<_K2T|N-N*^expO^+^slc^T

Byusing(24)parta)follows.Toprovepartb)wesubstitute(B8)

into(B4)anduseassumptionsonfand<-^toobtain

(B9)Hx*-xll<_K2|N*-N|w[TC^+KjSlchexpd^+KjSlcIn+1]

ProofofLemmaB2Weshowthatparta)andpartb)ofLemmaB2holdfor

i=1.By(17)yMu).,)^0.Sosupposey*^)<0.Then

gt'<uj13y*(t')>y*^)==z

Butby(16)

cxQ=y*(0)<z

Sobycontinuityofy*(0

gt"G(0,t')y*(t")oz

whichcontradicts(21).Sowemusthave

y*^)>0

Similarlysupposey*(<0>0.Then

3t'<u>9y*(t')<y*(u)9)=z
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By part a)

3 t" >Ul ^ y*(t") >y*(a)1) = z

Again by continuity of y*(*)

3 t"' G (t'f t") ^ y*(t"') = z

which again contradicts (21). So we have

y*(u>2) < 0

The result follows by induction.

Proof of Lemma 3.1 We first make the following definition

(BIO) n = min |z - cx*(t.)|
j=l, ... m

where t G Kt j = 1, ... m and Wis as defined by (8). It follows by

assumption given by (17) that n is a positive number, so the hypothesis

of the Inverse Function Theorem is satisfied by continuous differentiability

of y*('). So for each w. there exists an interval I. containing z and a

continuously differentiable function T (•) such that

T± : I± - H±

(Bll) T±(y*(w)) - w ,' V a) G N±

where N. is an interval containing co. such that
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(B12)y*(N±)=I±,N±nNj-♦,Vi,j=l2£

(B13)sgny*((o)=sgny*(wi),VwGn±

Wepickthenumber3satisfyingthefollowingconditions

(B14)0<3<n/2

U

(B15)[z-3,z+23]COi
i=l1

wherenisgivenby(BIO).

ByLemmaBlfor3/2>0,thereexistsane"suchthat

(B16)Hy(0-y*(-)U<3/2,Ve<e"

Choosee'(3)suchthat

(B17)e'(3)=min(e",3)

Thenby(B14)andB15)weobtainthefollowingrelations

(B18)3+e'(3)<n

%

(B19)[z-3,z+e'(3)+3]cnI,
i=lx

Wenowmakethefollowingdefinitionsforeachi=1,...,21

(B20)s+=Ti(z+e'(3)+3)

(B21)s~=T^z-3)
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It is easy to show by using (B12) and (B18) that

(B22a) y*(s) = z+ e'(3) + 3 iff s = s+. for some jG (1, ..., 2£)

and

(B22b) y*(s) = z - 3 iff s = sT for some j€ (1, ..., 21)

The continuity of each T. proves (25a). The order on s.'s given by

(27) follows from Lemma B2, (B13) and the following property of each T..

dT (v)
(B23) -£ =[yM^Cv))] \ VvGi±

In order to prove part b), by using (B16) and (B17) we observe that

(B24) y(t) - 3/2 < y*(t) < y(t) + 3/2, V t .G [0, T], V e <e'(fi).

By inequality (B24) it is enough to prove the following relations.

I

(B25a) y*(t) > z+ e'(B) + 3, V tG U (s+ ,s+ )
i=l

9.-1

(B25b) y*(t) <z- 3, V tG [0, sj U (s2£,T] U {U (s2i, s^^)>
i=l

This is proved by contradiction as follows: Suppose there exists t in

+ +(s2,_1, s2.) such that

(B26) y*(t) <_ z + e'(3) + 3

Using Lemma B2 and (B13) we have that

(B27) y(s2i-l} > °

-43-



So 3t* s+±-1 <t* <t< s+±

and y*(t') > z + e'(3) + 3

By the Intermediate Value Theorem there exist a t" such that

(B28) t" G (t% s]

(B29) y(t") = z + r.'(3) + 3

(B29) contradicts (B22a), so (B26) cannot be true. This proves (B25a)

The proof of (B25b) is similar.

Proof of Lemma 3.2 It is enough to show that

+

S2i-1
(B30) f (x*(x) - x(x))dx = o(e,3)

s2i-l

S2i
(B31) f (x*(r) - x(x))dx = o(r,,3)

S2i

Using (B9), (24) and (26a) the result follows

Proof of Lemma 3.3 If N*(«) were continuously differentiable the result

would be a well known property of differential equations. By definition

ofv>l/, N* has a derivative with finite number of discontinuities on [a, b]
V

denoted by {a,}
1 i=l

We define the inverse image of a. for each i as follows
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(B32)A±=(tG[0,T];y*(t)=a.)

By(9)A.isafinitesetforeachi,sowehave

K

(B33)u(UA.)=0
i=l1

where\iistheLebesquemeasureonrealline.

Wenowdefineforeachiasequenceofdecreasingsetsasfollows

h{=(t;y*(t)G(oj-l/j,a±+l/.i))
(B34)

j=1,2...

Byawellknownresultinmeasuretheory([6]p.61)

KK

(B35)limy(UA^)=m(HUA^)=0
j-h»i=lj=li=l

Define5x(t)as

(B36)<5x(t)=x(t)-x*(t)

Usingequation(1)weobtainthefollowingrelation

Sx(t)=f(x*(t)+6x(t),N*(c(x*(t)+6x(t)))+y)-f(x*(t),N*(cx*(t)))

(B37)

VtG[t',T],Sx(t')=6x'

ByusingtheLipschitzconditionsonfandN*itcanbeshownthat
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3constantsC-andC_3

(B38a)Il6xll<C(|6x'|+|y|)+

(B38h)116x11<C2(|fix'|+|y|)

By(B38)foreach\/2)•0,japositiveinteger,thereisanumber

6(.j)>0

(B39)Ilc6xll<1./2JV(|6x'|+|Y|)<6(.1)

K

Ift£UA",thenusingdefinitiongivenby(B34)
i=lX

K

(B40)y*(t)£U(a.-l/j,a+l/j)
i=l

sothatusing(B39)wehave

K

y*(t)+ciSx(t)£U(u-1/2j,a-4-1/2.1)
1=1

(B41)

V(|«x'|+|y|)<6(.i),Vtg[t;T]-UA']t+
i=lX

dN*(y)
Bycontinuityandcompactness—,Jisuniformlycontinuousonthe

K

set[a,b]U(a.-l/j,a.+l/j).Sothatwemayexpand(B37)aroundthe
i=l1X

K.

optimaltrajectoryfort^UA.asfollows
i=l1

HereII•IIiscomputedbytakingsupremumovertheinterval[t%T].

t
denotesdifferenceolLwosets.
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6x(t) =
df(x, N*(cx))

dx
6x(t) +

8f(x,u)

- x=x*(t)

+ o(|5x(t)|+|y|, t)

(1J42) V t G [f, T| ~ U A , (|6x'|+|y|) - A(j)
1= 1

Using (B38a) we can write (B42) as follows

(x,u)=(x*(t, N*(cx*(t)))

(B43) 6x(t) = df(x>/*(cx))
dx

x=x*(t)
«x(t> +^> I

1(x,u) = (x*(t), N*(cx*(t)))

+ o(|6x'|+|y|, t)

K

V tG [t ,T] - U AJ , (|6x'|+|y|) < 6(i)
i=l

where uniform continuity of ^ insures that o(|6x"|+]y|, t) is uniform in t.

We now consider the linear differential equation given below

(B44) v(t) =
df(x, N*(cx)) 1

dx Jx=x*(t)V

where v(t') = fix', t G [t% T]

It can easily be shown that

"^ constants CT and CX
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(B45a)Hvll<CJ(|6x'|+|Y|)

(B45h)Hvll<C*<|«Sx^|+|vI>

ComparingequalIons(31)and(33)with(K43)weobservethatitis

enoughtoprovethefollowingrelation

(B46)lim
6x-vl

|6x'|+|Y|>oIiSxT+TyT
=o

LetIr..xandI...betheindicatorfunctionsofthesetsT(j)

andT_(j)where

K

(B47)I\(j)=UA^
i=l

(B48)r2(j)=[t',T]-^(.1)

NowapplyLemmaB3withg(w,t)definedas

g(w,t)=
df(x,N*(cx))

dx*(Ir(i))w x=x*(t)12K3)

(B49)+"af(x,-u)|
-au-l(x,u)=(x*(t),

•Ir(j)'Y
N*(cx*(t)))r2

whereweconsider6x(t)andv(t)astheapproximatesolutionsof(B49)

on[t',T],Consequentlywehave
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(B50)

where

(B51)

6x-vll<[f(|'6x(t)Ir(j)|+|o(|6x'|+|y|,t)Ir(j)|

M*

+|v(t)Ir(.}|)dt)exp(M(T-tO)

"df(x,N*(cx))"[|
c,xJx=x*(t)

Usinguniformityofo(|6x'|+|YI>t)intandrelations(B38b)and(B45b),

(B50)canbewrittenas

6x-vll<((c+c2).(|6x'|+|y|)y(rx(j))
(B52)

+o(|6x'|+|y|)JexpM(T-t')

(B46)thenfollowsbyusing(B35)and(B47)in(B52)whichprovesthe

lemma.
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