Copyright © 1969, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

# A COMPUTER PROGRAM FOR SIMULATION OF TAPERED DISPERSIONLESS LOSSY <br> TRANSMISSION LINES 

by

S. R. P. Teixeira and R. A. Rohrer

## Memorandum No. ERL-M265 10 October 1969

ELECTRONICSRESEARCHLABORATORY
College of Engineering
University of California, Berkeley 94720

The FORTRAN IV subroutine LINE listed in the last section of this report compute the approximate response of a doubly loaded loss transmission line. The approximations employed are those which arise from representing the tapered line as a finite cascade of uniform lines and representing time only at equally spaced discrete points. Neither of these approximations need incur serious error since the user may trade granularity for computation time by increasing appropriate dimensions in the subroutine. where:
$x_{1}$ is an integer constant or variable specifying the number of sections (it cannot be greater than 20 in value unless the subroutine is modified).
$x_{2}$ is a real constant or variable specifying the time step size for calculation. (As indicated above, this quantity must be smaller than the propagation time in any section ( $\mathrm{x}_{9}$ ), otherwise an error message, 'TIME STEP TOO LARGE', will be printed and execution stopped. For good precision $x_{2}$ should be as small as possible.)
$x_{3}$ is an integer constant or variable specifying the number of time steps ( $x_{2}$ ) necessary to cover the total time interval of the solution (it cannot be greater than 30 unless the subroutine is modified; an $x_{3}$ greater than 30 causes the printing of an error message, 'TIME INTERVAL TOO LARGE' and stops execution).
$x_{4}$ is a real vector such that its ith element gives the value of the

Research sponsored by the Air Force Office of Scientific Research under Grant AF-AFOSR-1219-67 and the National Science Foundation under Grant GK-716.
voltage $e_{0}(t)$ for $t=(i-1) x_{2}$.
$x_{5}$ is identical to $x_{4}$, but for $e_{\lambda}(t)$.
$x_{6}$ is a real constant or variable specifying the load resistance at the beginning of the line.
$x_{7}$ is a real constant or variable specifying the load resistance at the end of the line.
$x_{8}$ is a real vector such that its $i$ th element is equal to $\sqrt{R_{i} G_{i}} \cdot \ell_{i}$, where $R_{i}$ is the series resistance and $G_{i}$ is the shunt conductance per unit length, respectively, and $\ell_{i}$ is the length of the $\underline{i t h}$ line section.
$x_{9}$ is a real vector such that its $\underline{i t h}$ element is equal to $\sqrt{L_{i} C_{i}} \cdot \ell_{i}$, where $L_{i}$ is the series inductance and $C_{i}$ is the shunt capacitance per unit length, respectively, and $\ell_{i}$ is the length of the $\underline{i}$ th line section.
$x_{10}$ is a real vector such that its ith element is $\sqrt{L_{i} / C_{i}}$, the characteristic impedance of the $i$ th section.

For consistency with the subroutine LINE as it stands, in the calling program, $x_{4}$ and $x_{5}$ must have dimensions 31 and $x_{8}, x_{9}$, and $x_{10}$ must have dimensions 20.

The output of the subroutine LINE is the matrix $x$, where $x$ is any real identifier, and the calling program must have the statement
COMMON/SLINE/x (2, 21, 31).
$x(i, j, k)$ indicates a voltage if $i=1$ or a current if $i=2$ at the boundary point $j$ (there are $x_{1}+1$ of these points) at time $t=(k-1) \cdot x_{2}$.

If a number of sections $x_{1}$ or a number of time steps $x_{3}$ greater than the limits already stated are to be used, the 4 th, $\underline{5}$ th, and 6 th cards
and the statement number 1 of the subroutine LINE must be modified by changing all 20's to the dimension of $x_{1}$, all 21's to the dimension of $x_{1}+1$, all 30 's to the dimension of $x_{3}$, and all 31's to the dimension of $x_{3}+1$. The same rules must, of course, be applied to the COMMON/SLINE/ statement and to the DIMENSIONS of the appropriate vectors in the calling program.

0001

0002
0003
0004
c 005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047

SUBROUTINE LINE(NSC.DEL,NI,VO.VL•RO.RL,A,V,Z)
$C$ SUBROUTINE FOR ANALYSIS OF TRANSMISSION LINES MADE UP OF A
C FINITE NUMBER OF CONSTANT, DISPERSIONLESS LINE SECTIONS
DIMENSION VO(31), VL(31), A(20), V(20), Z(20), R(2,20.31). IT(20)
COMMON/SLINE/RF(2.21.31)
IF(NSC.LE.20)GOTO 1
PRINT 2
2 FORMAT(* NUMBER OF SECTICNS TOO LARGE*)
STOP
1 IF(NI-LE.30)GOTO 3
PRINT 4
4 FORMAT(" TIME INTERVAL TOO LARGE')
STOP
3 DO 5 I=1.NSC
IF(DEL•GE.V(I))GOTO 6
5 CONTINUE
GO TO 7
6 PRINT 8
8 FORMAT(: TIME STEP TOO LARGE')
STOP
7 NII=NItI
NSCM1 $=$ NSC -1
DO 9 I=1.NSC
9 IT(I) $=V(I) / D E L$
DO $101=1$.NII
$I I=I-I T(1)-1$
IF(II)11.12.13
$11 x=0$.
GO 1015
$12 x=0$.
GOTO 14
$13 X=R(2,1, I I)$
$14 x=(R(2,1,(1+1)-X) *(D E L *\{(T(1)+1)-V(1)) / D E L+X$
$15 \mathrm{YR}=(\mathrm{VO}(1)+(R 0 / Z(1)-1 \cdot) * X) /(R O / Z(1)+1-)$
$R F(1,1, I)=Y R+X$
$\operatorname{RF}(2,1 \cdot I)=(Y R-X) / Z(1)$
$R(1,1 \cdot I)=Y R$
IF(NSC.EQ.1)GOTO 16
DO $17 \mathrm{~J}=1$.NSCM1
$I I=I-I T(J+1)-1$
IF(II) 18.19 .20
$18 x=0$.
GO TO 22
$19 \quad x=0$.
GO TO 21
$20 x=R(2, J+1, I I)$
$21 x=(R(2, J+1, I I+1)-X) *(\operatorname{DEL} *(I T(J+1)+1)-V(J+1)) / D E L+X$
22 II=I-IT(J)-1
IF(II)23.24.25

0048
0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076
$23 \quad Y=0$.
GOTO 27
$24 Y=0$.
GO TO 26
$25 Y=R(1, J, I I)$
$26 Y=(R(1, J, I I+1)-Y) *((I T(J)+1) * D E L-V(J)) / D E L+Y$
$27 E=E X P(-A(J))$
$R(2 \cdot J, I)=(2 \cdot * Z(J) * X+(Z(J+1)-Z(J)) * Y * E) * E /(Z(J+1)+Z(J))$
$Y R=(2 \cdot * Z(J+1) * Y * E+(Z(J)-Z(J+1)) * X) /(Z(J)+Z(J+1))$
$R F(1, J+1, I)=Y R+X$
$R F(2 \cdot J+1, I)=(Y R-X) / Z(J+1)$
$17 R(1 \cdot J+1 \cdot I)=Y R$
16 II=I-IT(NSC)-1
IF(II)28.29.30
$28 \quad Y=0$.
$60 \quad 1032$
$29 Y=0$.
GOTO 31
$30 Y=R(1, N S C . I I)$
$31 Y=(R(1, N S C, I I+1)-Y) *((I T(N S C)+1) * D E L-V(N S C)) / D E L+Y$
32 E=EXP(-A(NSC))
$X R=(V L(1)+(R L / Z(N S C)-1 \bullet) * E * Y) * E /(1 \bullet+R L / Z(N S C))$
R(2.NSC.I) $=X R$
$Y=Y$ * $E$
$X R=X R / E$
RF $(1, N S C+I, I)=X R+Y$
10 RF(2.NSC+1,I)=(Y-XR)/Z(NSC)
RETURN
END

