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ABSTRACT

This paper considers the design of linear time-varying networks and

of nonlinear time-invariant networks, the latter being operated in the

small signal mode. In the first part, the design example considered is

a network whose time-delay is a prescribed function of time. A quadratic

performance criterion is formulated and the design is obtained iteratively by

steepest descent. The second part of the paper considers the design of anonlin

ear time-invariant network with variable bias sources whose small signal

equivalent network is identical with a given linear time-varying network.

Explicit conditions are given under which this can be done.

I. INTRODUCTION

There are a number of technical applications where networks with de

lays that vary with time would be very useful [1]. A number of authors
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-1-



have suggested ways to design networks whose delays are discretely adjust

able [1,2]. For these reasons we used as a design objective a network

whose time delay must approximate a given function of time. Such networks

might also find applications in FM and in systems with transportation lag.

One approach might be to attempt to design a nonlinear time-invariant

network to be operated in the small-signal mode: by varying the operating

point, the characteristics of the small-signal equivalent network about

that operating point would vary and provide the desired variable delay.

Such an approach was suggested in a previous paper [3]. From a design

point of view, however, it raises many questions and poses problems yet

unsolved. This approach, however, is based on the concept of a linear

time-varying network supplying a prescribed time delay. For this reason

we consider in the next three sections of this paper the problem of de

signing such a linear time-varying network. Since there are no known

analytic definitions of delay for such time-varying networks, we define

it in the time domain as is commonly done for pulse circuits (see Fig. 1).

We use the speed of the computer to carry out an optimization using the

steepest descent method and thus obtain an optimum linear time-varying

network.

In Section V we consider the design of a nonlinear time-invariant

network to be operated in the small-signal mode. We show that by using

a single universal nonlinear characteristic for the nonlinear energy stor

ing elements, we can choose the bias waveform so that the resulting small-

signal equivalent network has state equations identical with those of the

prescribed linear time-varying network. We note with interest that in
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the case of slowly varying bias only one bias source is required.

II. PROBLEM OF DESIGNING FOR PRESCRIBED TIME-DELAY
USING LINEAR TIME-VARYING NETWORKS

1. Description of the Network

We consider linear time-varying networks with a single input u and

single output v that are described by equations of the form

x(t) = a(t)Ax(t) + bu(t) , x(0)

v(t) = fa(t)x(t)
cl 1

(1)

where the state x(t) E 3Rn; A is a real constant nxn matrix whose eigen

values are in the open left half plane; b is a constant column vector and

a. is a positive constant. The function &(-): ]R+-*-IR specifies the instan

taneous characteristics of the network; clearly a(t) > 0 for all t. (1R+

denotes the set of all nonnegative real numbers.) An example of a linear

time-varying network described by equations such as (1) is a low-pass LC

ladder terminated at both ends by time-invariant resistors (e.g. the network

shown in Fig. 4). The components of x are capacitor charges and inductor fluxes.

The scalar factor a(t) indicates that all reactive elements vary proportion

ately to one another.

We want to adjust the function a(*) so that the network has a pre

scribed time-delay characteristic. Typically we would have a(») varying

periodically. Consequently we propose to define the time-delay at time tf

of the network described by (1) as follows: Consider the zero-state re

sponse to a unit step applied at time tf, namely the function t h» v(t;tf,0,l ,).
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The second and third arguments, namely, "t'.e", indicate that the network

starts from the zero-state at time t1. The fourth argument denotes the

input which is 1 ,, the unit step applied at time t1. This response will

have the shape shown in Fig. 1: because the network is time-varying,

the "steady state" oscillates between v and v . . The delay at time
J max min

tf, denoted by T,(tf), is defined by

Tlt'Wjft')! f, 9, II = ilVmax +Vmint • (2)

2. Statement of the Problem

The topology and the element values of the network o\l under consider

ation have been selected by elementary considerations (e.g. a max. flat

delay characteristic); thus, A, b, Ci are given. We are also given a

desired time-delay characteristic T(«)» typically a periodic function.

The problem is to choose a(«) so that Ti(0, the time-delay characteris

tic of o\), is as close as possible to T(-). For this purpose we propose

the performance criterion

J(a) = J [T(t') -Tj(f)] dt1 (3)
0

where T includes one or more periods of the periodic variations of T(-)»

3. Method of Solution

Clearly there is no hope to obtain a closed form solution; an iterative
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technique is proposed. Roughly it goes as follows:

(i) Pick a reasonable a(-) and use (1) and (2) to calculate the

functions x(-), v(-), t,j(*) and the cost function J(a) by (3).

(ii) Introduce a small perturbation 6a; calculate <5x, 6v, 6T^ and

6J. Use this analysis to obtain ot('), the direction of steepest

descent of J.

(iii) Calculate the optimum u so that J(a - poO) is minimum as a

function of y. Then 6a = - ycC.

(iv) Obtain the new steepest descent direction at the new point, etc.

III. ANALYSIS

1. Assumptions

For reference purposes it is convenient to list all assumptions here,

although the reason for some of them will be clear only later.

Al a(«) is C (continuous derivative); a(«) is positive and bounded

away from zero.

A2 6a(«) is C . To express the condition that 6a is "small" we use

the following norm:

||6a| = sup |6a(t)| + sup |6a(t)| (4)
w t>0 t>0

A3 a(«) and 6a(-) are constrained so that the map tw- t+ T^(t) = T^(t)

is strictly monotonically increasing. (Therefore it has an inverse.)
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It is intuitively clear that if a(-) varies very slowly in compari

son to the impulse response of uW then A3 will be automatically satisfied.

2. Perturbation Calculations

If we change a(-) to a(-) + 6a(.), the resulting trajectory is la

belled x + 6x and, from (1),

6x(t) = a(t)A6x(t) -I 6a(t)Ax(t) + 6a(t)A6x(t) (5)

Since A is stable, a(t) > 0 for all t and bounded away from zero, and

since the state transition matrix of (1) is

<Kt,i) = exp[A I a(t')dt'] , (6)
i

it is easy to prove that the last term of (5) is of second order in

6al = sup |6a(t)| . (7)
t>0

Therefore the variational equation is

6x(t) = a(t)A6x(t) + 6a(t)Ax(t) (8)

with

6x(0) = 0
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A similar reasoning shows that within second order terms in

6v(t) = -^ [a(t)6Xl(t) +6a(t)Xl(t)j (9)

Where x.. (t) denotes the first component of the vector x(t).

The perturbation 6a(-) causes a perturbation in the output, 6v(*)J and

hence in the delay, <$Td(-). Referring to Fig. 2 we have

v(T;(f) +ajit')) +«v(tyf)+«Tj(f)) -• i(vmax +vm.n) (10)

Since a(-) and Xj(-) e C1, it follows by (1) that v(-) G C1, hence by

Taylor expansion we obtain from (10) after discarding higher order terms

6v(TUt'))
5T,(t') = -—. ^ > (11)
* ;(ToL(t,)) +6Vi(t,))

Now from (8), as l^aj^ ->• 0, 16x1 and 86x|| ^ -> 0; consequently from (9),

as ||6a|| -> 0, l^vl^ •* 0. Hence in the denominator of (11), the term ^v^T* (t1))

is of higher order than the term v(T\(t')); consequently, within first

order terms in 6a, we have

Remarks

6v(rl(t'))
7[T^)6Tct(tf) = -—7— J- (12)

I. To be completely unambiguous, we should use the notation of (2)
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to rewrite the numerator of (12) as

6v(rt(f); t\ 8, lt.)

and the denominator as

v(T^(t»); tf, 6, lt,)

II. From (9) and (8), as (fiaj^ -+ 0, ]6v|oo •> 0. From (1) we see that

v does not depend on 6a. Hence as |6a|| ->• 0 (and, a fortiori, as ||6a||TT -> 0)

we have I^T^^ 0.

From (3), we obtain immediately (within first order terms)

Let

w

,T

6J

'0

= -2 I ItU') -T^(t')] 6Tct(t,)dt' (13)

MTi(t,))ci
(14)

hence using (9) and (12)

J

6J =

"0

J p(T^(f), t') a^t'^x^TjO:')) +6a(^(t' ))X](^(t' ))Jdt'

(15)
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Again if the argument of 6x. and x. were written out in detail, it would

Tbe "TUt'); t', 0, ltt"- Let e: denote the row vector (1, 0, ..., 0).

Using (6) and (8) we can split 6J as

where

T

6J
i

"0

and

6J = 6J] + 6J2 , (16)

j= I P^t'), t^x^T^t'^a^t'^dt* (17)

T fTA(t'>
6J2 = j p(T^(tf), t'ja^t')) I ei*(TA(t,)» a)Ax(a)6a(a)dudt'

•'o "V
(18)

3. Calculation of 6J1 and 6Jg

By definition, Tj(-) maps [0,T] onto [TWO), TUT) ] (see Fig. 3); by

A3, Tj(*) is strictly monotonically increasing. Consequently its inverse,

R, maps [T\(0), T\(T)] onto [0,T]. Hence let

TVt') = t , consequently t* = R(t) (19)

and (17) becomes

,T^(T)
6Jj= I p(x, Rd^Xjjt; R(t), 0, lR(r))R(i)6a(T)dT (20)
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where the lower limit of the integral is zero (instead of TWO)) because

we extend the definition of R so that

R (t) = 0 and R(t) = 0 Vt G [0, Tf,(0) ] (21)

6J is given by (18) as an integral over the area shown in Fig. 3; (18)

carries out the integration by vertical strips. Doing the integration by

horizontal strips gives

6J2 = Ida Idt'p (Tj(t'), t,)a(Tj(t,))e'J#(T^(t,)> a)Ax(a)6a(a) (22)
0 ^R(a)

Since a in (22) and t in (20) are dummy variables we may write 6J as

where

6J =

^0

,TJ(T)
I aL,(x)6a(T)di (23)

S£(t) = aP^x) +^2(t) (24-a)

and SLjd) and §l2(t) are

S£x(t) = P(x, R(t))Xi(t)R(t) (24-b)

S£2(t) =J p(Ti(t'), t')a(T^(t'))xT(T; T^(t'), e]f o)ax(t; t', e, lt,)df
R(t)

(24-c)
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In the expression for y,2(T) we set

^(t1), r)Tei = x(t; t', 0, lt,) (25)

i.e. X(«) is the solution of z = -a(t)A z subject to A(T\(t')) = ej.

4. Conclusion

These perturbation formulas allow us to calculate how to improve on

the chosen a(*)« We pick 6a(r) to be proportional to !xL(T):

6a(i) = -pS£(i) (26)

where jj > 0 and is small in order that the perturbation calculations be

valid. It will be immediately recognized that this choice of 6a(«) amounts

to minimizing J(a + 6a) subject to the constraint

fTi(T) r i2
dr = small constant.

With 6a given by (26) the iterative method sketched in Sec. II.3 above can

be applied to minimize J.

IV. DESIGN EXAMPLE

The topology and the relative size of the elements are those of the

seventh order max. flat delay network [4, p. 628] shown in Fig. 4 and whose
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transfer function is

135135

6(s) =
135135 + 135135s + 62370s2 + 17325s3 + 3150s4 + 378s5 + 28s6 + s7

(27)

The corresponding zero frequency delay is 1 sec. and the 3 db bandwidth is

2.95 rad/sec. The state equations are
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If we now let the elements be time-varying in the following manner

C.

C.(t) = —— i = 1, 2, 3, 4

a(t)

L,(t) = —±- i = 5, 6, 7
a(t)

(29)

then the equations will have the form (1), with A given in (28).

For the design example, we pick for the desired time delay

T(t) = 1 + 0.5 sin(O.lTrt) (30)

and the quadratic performance criterion (3) is calculated over [0, 20].

The time delay T,(t') is calculated by (2) with 0.25 being the value as

signed to the right hand side. The function T.(-) is obtained by calcul

ating step responses at 0, 0.5, 1, 1.5, ..., 20; at intermediate values

T ,(t) is obtained by interpolation. To start the calculation we put

-1(t) = [l +0.5 sin(O.liTt)

The corresponding value of J is J(aQ) = 0.2122. Choosing vij = 0.1 and

y2 = 0.4 in (26) we obtained (calling cj£() the corresponding value of <st)

J(ao "^o) " 0'162 • J(ao-^o)= °'132

Quadratic interpolation through these three points gives for the minimizing
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U the value 0.3 (see Fig. 5) and

J(ao -%t^o) = °-126

At the end of three successive iterations we obtain

J = 0.0937

At the point reached after the third iteration the gradient was found

to be very small; this was interpreted to indicate that further iterations

on a(') will not reduce J appreciably (Fig. 6). The graph of a(») corres

ponding to J = 0.0937 is plot:ed in Fig. 7. tj(*) resulting from this

choice of a(t) is shown in Fig. 8; the desired delay T(*) is also plotted

in the same figure for comparison. To observe the step response of the

resulting network we applied unit steps at t' =0, 2, 4, ..., 18. The

corresponding step responses are shown in Fig. 9. This figure shows clear

ly how the delay T/(t) depends on t, the time of the application of the

unit step.

V. IMPLEMENTATION BY NONLINEAR TIME-INVARIANT NETWORKS

1. Theory

We show below how by using a nonlinear time-invariant RLC network and

operating it in the small signal mode [3], we can obtain by appropriate

selection of bias-sources many desired time-varying networks. We assume

-14-



for simplicity that (i) there are no loops of capacitors only, and no cut

sets of inductors only; (ii) the resistors are linear; (iii) the inductors

and capacitors are nonlinear and time-invariant with characteristics

Iv. = f.(q.)and i, = fl-OJOl such that f. G C (twice continuously dif-

ferentiable), f"(a) ^ 0 Va, and f. (•) is strictly monotonically increas

ing; (iv) the sources are either voltage sources in series with inductors

or current sources in parallel with capacitors. Note that the character

istics given above imply that the inductors and the capacitors are un

coupled.

The equations of the nonlinear network are of the form

x = Af(x) + G (31)

where x has capacitor charges and inductor fluxes as its components; the

column vector u specifies the sources and the input; f(x) is a column

vector whose ith element is f.(x.) for i = 1, 2, ..., n. Using Kuh and
— ii

Rohrer's notation [7], the matrix A is of the well-known form

A is the hybrid matrix representing the resistive network which intercon

nects the inductors and capacitors.

Let u consist of a time-varying bias TT and a small signal u (i.e.

|u[| = sup|u(t)| is a small number),
tiO
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u = u + u (32)

The operating point x, generated by u, is defined by

x = Af(x") + u (33)

with the initial condition x"(0) specified below.

Write the solution of (31) as

x = x + C (34)

where x is the solution of (33) and £ is the exact small-signal response.

By throwing away second order terms, the approximate small-signal response

£0 about the operating point x(t) is given by

\0 = AJf(x(OJU0 +u (35)

where the Jacobian Jf(x(t)j is the diagonal matrix whose ith diagonal ele

ment is f!(x.(t)). Conditions under which the approximate CQ is close to

the exact £ are known [3]; of particular interest to circuit theorists are

the results pertaining to the "slowly varying" case [5,6].

Suppose now that we are given a "desired" linear time-varying network

d£ described by

X: n = AD(t)n + u (36)
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where A is the same matrix as in (31); D(t) is a diagonal matrix whose

diagonal elements, d (t), are known positive functions of time. Now ask

the question: can we design a nonlinear network J\\ (say, given by (31))

such that its (approximate) small-signal behavior (given by (35)) is iden

tical with the behavior of the prescribed network §L (given by (36))?

The answer is yes. More precisely, we have the

Theorem. Let the nonlinear time-invariant network (_A) be described by (31)

and satisfy assumptions (i) to (iv) above. Let A be nonsingular. Let the

linear time-varying network 9- be given by (36). Under these conditions,

the prescribed network of- is identical with the (approximate) small-signal

equivalent network (_AI.. described by (35) with jJx(O)) =D(0) if and only

if the bias of UVI is given by

u(t) =£fJ^dO:))! -Af fj^(d(t))J Vt >0 (37)

where d(t) = colfd^t), ..., d (t)].

Proof. =£> Since (35) and (36) are identical by assumption and since A is non-

singular, we have, for all t > 0,

D(t) = Jf(x(t)) (38)

or, equivalently

d.(t) = fi(x.(t)) (39)
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where d(t) is defined above; since f! has an inverse, (39) becomes

x.(t) = ff^d.U)) i=1, 2, ..., n (40)

Eq. (37) follows immediately upon substituting (40) in (33).

<^ 'If we define y(t) by

y(t) = JfX(d(t)) (41)

then substituting y(t) for x(t) in (33) shows that if u is given by (37)

y(t) is a solution of (33). In other words, if u is given by (37), the

solution of (33) subject to Jf(x(0)j =D(0) is given by (39) (or, equival

ent^, (41)). Now if (39) holds, so does (38), and upon multiplication

on the left by A we have

AD(t) = AJf(x(t)) (42)

Hence (35) and (36) are identical when the bias is given by (37).

Comment. If A is singular, then u given by (37) still gives an ^A\. iden

tical with the prescribed sC. However, u is not unique in this case.

2. Application to Time-Varying Delay Problem of Section II

For the desired linear time-varying network c£ we choose the linear

time-varying delay network discussed in Section IV. We write here its

state equations in a slightly different form than in (28), namely,
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where

and

D(t) = a(t)

x = AD(t)x + bu

1 0 0 0 1 0 0

0 0 0 0 -1 1 0

0 0 0 0 0 -1 1

0 0 0 -1 0 0 -1

1 1 0 0 0 0 0

0 -1 1 0 0 0 0

0 0 -1 1 0 0 0

<ll

X = , b

(43)

(44)

0

0

1

0

0

0

L J

(45)

For the nonlinear time-invariant network lA) we choose the one shown

in Fig. 10, where
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Vi = fi(qi} i = 1, 2, 3, 4 and iR = f^) k = 5, 6, 7;

W = Y © J - 1, 2, (46)

where y(*) is a function which satisfies the assumptions (i) to (iv) and

the numbers a. are related to the element values by
J

a. = <

J = 1, 2, 3, 4

^ J= 5, 6, 7

Writing the state equations of (.Jl1 in the form (31) we obtain

"

.

xl

.

x„

k3

X4

X5

X6

X7
_ _

-10 0 0 10 0

0 0 0 0-1

0 0 0 0 0-1

0 0-100-1

0 0 0 0 0

0 -1 0 0 0 0

0 0-1 0 0 0

The operating point x is defined by
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u?

"3

+ TT, +u
4

"5

"6

"7
_ _

(48)



= Af(x")+u Xi(0) = a.y' 1(di(0)) (49)

where A is given by (44) and f(#) by (46) and

l[uj, u2, ..., u7]u = CO (50)

The equation of the small-signal equivalent network J\i- about the

operating point x(t) is

£0 = AJf (^)CQ + bu

where

Jf(x) = diag a, Votj

and b is given by (45).

Comparing (43) and (51) we obtain

fi(V>) • a. a,, \ a.

Inverting y'» we 8et

xt(t)
= Y

,-1

hence by (46)

, ...,

a \ a
n \ n

n

i = 1, 2, ..., 7; t > 0

(.<t>)

(51)

(52)

(53)

.(x.(t))
x,(t)

Yoy' l °a)(t) i=1, 2, ..., 7and t>0
(54)
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where ° denotes the composition of functions.

Calculating the bias waveform by (37), we obtain

*i(t> - £fc(t)] • "i^h^Ml *- ^ 2- 3* 5> 6>7

and

\(t) = c^ ± [y,"1(a(t))j +2(y •Y* 1•a)(t)

(55)

(56)

Thus, if the nonlinear time-invariant network J\j (described by (48))

starts from state x(0) (obtained from (53)) and is driven by the bias

waveforms specified in (55) and (56), then the resulting small-signal

equivalent network lAL is identic al with the desired linear time-varying

network 3L specified by (43)-(45).

If the prescribedlinear time-varying network gL has sufficiently

slowly varying characteristics, then from (55) and (56) we see that we

need only one, bias source because

u.(t) i 0 i = 1, 2, 3, 5, 6, 7

u4(t) * 2(Y •Y* X°a)(t)

The same result can be arrived at by using the "frozen operating point"

method of analysis [8].
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v(t;t',0,l,<)

Vmax

|(Vm0x+Vmin)

0 t' Td(t')+1'

Fig. 1 Response of the linear time-varying network to a unit step

applied at time t*. The delay of this network, T^(t'), is

defined by the time required for the step response of the

network to reach to the halfway point of its steady state.



♦ V(t;f)

4(Vmax+ Vmirv

t' T'd(t') I
T'd(t')+8Td(f)

Fig. 2 Perturbation on the step response, <5v(«, t')9 caused by a

perturbation 6a(«) on the nominal function a(»). As a re

sult the delay at t', Tj^t'), is changed by 6T,(tt).
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Ii (0)

t'

Fig. 3 In order to calculate the perturbation 6J2, one has to carry
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Fig. 5 Quadratic approximation of J for finding the step size

that °lnlmlzes J alon8 each steepest descent direction.
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Fig. 6 Plot of the cost function J versus number of iterations.

Using the steepest descent method, it takes three iterations

to achieve the approximate minimum of J.
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Fig. 9 Responses of the actual time-varying network to unit steps

applied at t = 0, 2, ..., 13 . The dependence of the delay

T on time is quite visible.
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