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ABSTRACT

Part II considers input-output properties of nonlinear time-varying

discrete systems. Slightly generalized forms of the Small Gain and the

Passivity theorem are derived. Some results of Part I and these theorems

are used to derive stability criteria. The memoryless nonlinearities and

the multipliers are not required to be noninteracting.



I. Introduction

In Part I of this paper we have derived the best known results con

cerning the determinateness and the input-output properties of linear

discrete feedback systems. In this Part II we are concerned mostly with

nonlinear discrete systems. Two fundamental results in stability theory

of feedback systems are the Small Gain theorem and the Passivity theorem.

They are the two basic principles behind most of the stability criteria.

These two theorems are not new and they have been used either explicitly

or implicitly in many papers. Here we present them in a new, slightly

more general form. The corresponding Section IV is essentially tutorial

in nature. We hope that these two basic theorems will provide a more

unified approach to the stability problem. As applications and illustra

tions of the power of these two theorems, we present in Section V several

stability criteria for certain classes of nonlinear discrete systems.

Some features of this paper are as follows: 1) We take the advantage of

the simpler analytic properties of the discrete case to obtain simple

derivations. 2) We define the stability of feedback systems in terms of

their input-output properties. 3) In contrast to most previous results

in the multiple-input, multiple-output case we don't require the nonlin

earities to be of noninteracting type. 4) By the use of the results of

Part I, we are able to include a much broader class of linear subsystems.

5) Using the passivity criterion we obtain a simple derivation of the

Tsypkin criterion under less restrictive conditions. 6) The paper is

essentially self-contained.
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II. Notations

We use the same notations as in Part I. Some new terms are defined

below.

The symbol E and E denote the spaces of all sequences in TR

, mnxn ,.1 jir^Af T ^ _n, , „nxn A
and TR respectxvely; more precisely, E = {x : J -* IR } and E =

f\j +

{G : J^ ^TRnXn}. If n = 1, we simply write E.

Let x = {£,.}Z G En and let N G J,. The sequence x truncated at N
*v <\,x 0 + a *v

is denoted by x„ and is defined as
<\,N

5* " (|i» h* '" fohv br 2' S* "^

Let i*[l denote any norm on E subject to the condition that for all

x G En and all N G J^

l&l * »s«

All &p norms defined in Part I satisfy this condition. The space of all
'n

sequences in E that have finite norm is denoted by CB, i.e.

(8 &(xG En |[|x|| <oo)

2 A r i00Let x,y G £ . The scalar product of two real sequences x = i£./n

A r i°° n n
and y = (n.}n, denoted by <x,y> is the map of E x E into TR, defined

f\, ^x U <v <\, +

by
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*v*\ *-^ *vi a.<vi
i=0

where E, \ denotes the transpose of £.. Consequently
f\,x o»i

<x,x> = || x|| ^ Vx GA*

Considering truncations at N, we note that

Za*V " <£'&> = <^y>N

N

where we define <x,y >XT by YlS! n. •
N 0 'vA ^i

If z is a complex number, then "z denotes its complex conjugate. If

e is an n-tuple of complex numbers, then e* denotes its conjugate trans-
f\j r\j

pose.

III. System Description

We consider the system model shown in Fig. 1. The sequences u1,

u„; e-, e«; y- and y„ are in E . H-, H„ : E -*• E are operators which
^L f\jL <hl J\,i K*- f\,± <\,Z-

can be linear or/and nonlinear, time-invariant or/and time-varying. As

sume that the system ^/ is determinate. From Fig. 1 the system ^j is

described by the following system equations.

Si = Si-fc (1)



e0 = u + y- (2)

Zl ° Si Si (3)

fc = S2S2 (4)

Comment:

For simplicity, we consider H_ and H„ as operators. In fact H. and
f\,± f\jZ f\j±

H« can also be allowed to be relations [!]•

Definition 1

Let H : E -> E and let [I •II be any norm on E . The operator H is
f\, " —- r ^

said to have finite gain y. if there exists a nonnegative number y-i an<*

a constant 3-, (both independent of x) such that

W - YiW +6i VS e *"' VN 6 J+ (5)

where (Hx).T denotes the sequence Hx truncated at N.

Definition 2

Let H : E •*• E . The operator H is said to be passive if there is

a nonnegative function V : E x J ->- TR and a constant a such that

<x,Hx>._ > V(x,N) + a Vx G En, VN€JX (6)

-5-



In particular, if there is a positive number 6 such that

V<?»N> - sl$jl v*e *"• VNe j+

thus

<?'S5>ii " 6i^2 +° v?eEn» VNeJ+ <7)

then H is said to be strictly passive,

Comments:

1. The definition of gain defined in (5) is more appropriate and more

general than that defined by Zames [1] and used by Sandberg [3]. In fact

(5) does not require that HO = 0; this is useful, for example, if H re-

presents a relay or a hysteresis. As a special case when $1 = 0 and

Ixjj ^ 0, y. can be taken to be

A S<£>J
y1 = sup

^J+ l&l
xe e11

we are then brought back to the definition originally given by Zames [1]

2. The definition of passivity is slightly more general than those used

by Zames [1] and Sandberg [3]. Ours is inspired from circuit theory.

(See Kuh-Rohrer [2].)
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IV. Main Results

In the stability studies of feedback systems in terms of input-

output properties, there are two major results, namely, the Small Gain

theorem and the Passivity theorem. The Small Gain theorem is appli

cable to any norm on E , but with the more restricting condition of re

quiring that the product of gains of two subsystems be less than 1;

2
while the Passivity theorem is applicable only to & -norm. It has the

advantage that, for the linear time-invariant case, the passivity condi

tion has a frequency domain interpretation. These results have been

developed mostly for the continuous systems and are available explicitly

or implicitly elsewhere [1, 3, 5, 14, 16]. Here we are concerned only with

discrete systems and these two results are generalized and stated in

their most general forms.

Theorem 1 (Small Gain Theorem)

Consider the system, ^f (Fig. 1) described by (l)-(4), where H-,

H0 : E -»• E . Let ||*| be any norm on E and let there be some nonnega-
r\,Z

tive numbers y_, y„ and some constants v1, v„ such that

»(SiSV * "ii&i+vi vseE"' Vn£J+ <8>

and

Kfesgi * m^»+u2 wse*n' VlJeJ+ <9>

Under these conditions, if
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U = M^ < 1 (10)

then, for all N G J ,

?2Na - rh [i&hI +"iistwi +vi+ v2] <n>

Furthermore, if u., u„ G UJ, then e-, e0, y. and y_ are in (B.
Ill fhl 1,1 f\,l r^l r^l

Theorem 2 (Passivity Theorem)

Consider the system^/ (Fig. 1) described by (l)-(4), where Hn,
f\i *\/X

H„ : E •> E . Let H- satisfy the following conditions:

(i) For some nonnegative number y. and some constant B-

K&5M2 <- ^«2 +6l ViJ *^ V» eJ+ <12>

(ii) For some constants 6.. and a..

<^> h " hWl +ai v? e ^ VN e J+ (13)

Let H„ be such that for some constants e« and an
^l 2 2

<x,H x> > eJ (H9x)J9 + a9 Vx G En, VN G J (14)

Under these conditions, if

X = (61 + e2) > 0 (15)
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2 2then u,, u0 G £ implies that y„ G £ and consequently lim y0. = Q.
i*l i*2 n i,z n i-h» i,zx **

The same results also hold for e,, e0 and yn.
id 1*Z 1,1

Comments:

1. In contrast to the continuous case the two preceding theorems need

no special assumption concerning the possibility of finite escape time.

The assumption of determinateness implies that, for the nonanticipative

case, the equations for the successive components of e.. and e^ have a

unique solution. In the linear case explicit conditions can be given

for this to be the case (see Theorem 1, Part I).

2. Many forms of these theorems have appeared in the literature. The

best recent ones are due to Zames [1] and to Sandberg [3]. It is inter

esting to note that our more inclusive definitions do not alter the es

sential conclusion.

3. With respect to the Passivity theorem, (a) we do not require ^ to

be passive and H„ to be strictly passive, we need only have 6^ + z^ > °*

This fact has already been observed by Stern [15] and Cho-Narendra [14].

O as

(b) If x G £ , then x G Jl and x, -*• 0 as i -> «>. Therefore the conclusion
i, n i, n i,i i,

00

of the theorem implies that e., e0, yn and y„ G £ and -*• 0 as i -»• ».
r 1,1 i*2 i>l i*2 n i*

2
(c) If u, = 0, the assumption (12) is not required in proving y2» e^ G £n«

In other words, if u, = 0 and if we are only interested in showing y0,
1,1 i, i*z

2
e, G £ , then we don't need the assumption (12), namely, that H- has fi-
1,1 n ^•L

nite gain. However, if we want to have same results for y- and e2, then

the assumption (12) is essential.

4. The Passivity theorem and its applications (given in the next section)
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can be extended in that, instead of considering only inputs with finite

energy, viz.

V = {V±}1 With \%\\ = £ IvJ2 < co
i=0

one may also consider inputs with finite average power, i.e.

r i00 1 $ I l2
v = **.},. with lim sup — ) v. <
* ^i 0 n-*» N -£b i

Under the conditions stated, such finite average power inputs produce

finite average power outputs.

The usefulness of Theorem 2 can be greatly enhanced by modifying

the system ^fusing the multiplier technique. Let M be a linear map

from En onto En and suppose that its inverse, M~ ,maps En into En. The

modified system is denoted by d and is shown in Fig. 2. It is easy to

verify that u^, u2, e_, e2, y_, y2 satisfy the system equations of jy

(i.e. (1) to (4)) if and only if u-, u0, e-, e0, y. and y. satisfy the
1*1 1*Z 1,1 <\,Z ^,1 ry/Z

system equations of -**/ . Furthermore sv is determinate if and only if
i*M i, J

J,M is determinate.
i,M

Theorem 2M below is obtained by transcribing Theorem 2 to the sys

tem *J and using e0 = Me0 and tL = Mu0.
i*M ° ~2 'w2 *>2 /v*v2

Theorem 2M (Passivity Theorem for the System with Multiplier)

Consider the system *J shown in Fig. 2, where H, , Hn, M : En -»- En.
1,M i*l 1,2 i*

Let MH.. satisfy the following conditions:
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(i) for some nonnegative constant y^ and some constant 3^

i«Ni2 * *»2+ *! n e *"• VN e J+ (12,)

(ii) for some constants 6' and a!

<5- «bJ5>M * «2 +ai v?e2;n' VNeJ+ (13,)

Let H0, M be such that for some constants el and a'
i*2 i* *• *•

Under these conditions, if

X' £ (61 +ej) > 0 (15')

2 2
then for all un, u0 with u. G £ and Mu9 G £ , we have

1,1 i,Z i*l n i/\*z n

(a) Zl> &• £l ^ fc in £
(b) If, in addition, either (i) U± has a finite gain

or (ii) M"1 : £2 -»• £2
i* n n

. «2
then y, xs also xn £ .

i,l n

2
(c) In (b), if (ii) holds, then e2 is also in l^.

Comment:

It is important to note that in Theorem 2M, we don't require the
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2 2
multiplier M to be a map of £ into £ (a similar comment applies to

the continuous case).

V. Applications

We use the theorems above to obtain several stability criteria for

some classes of nonlinear discrete time-varying systems. Theorem 1A (be

low) applies to system y& (Fig. 1): H- is linear time-invariant and spe-
i* i*i

i*

cified by its z-transfer function G(z); it is assumed (ineq. (18)) that
i,

^ is stable under constant linear feedback with gain K. Suppose now
i* i*

that the feedback becomes nonlinear and time-varying; then we use the

Small Gain theorem (see (13) below) to ascertain how far it can deviate

from the linear gain K (see (17)). This is essentially a perturbational
i*

result. A little thought will show that if (17) is violated only for a

finite number of values of m, the boundedness conclusions still hold.

Theorem 1A (Application of Small Gain Theorem)

Consider the system d (Fig. 1) with H = G being a linear, time-
i» i* i,

invariant, nonanticipative subsystem and H„ = $. being a time-varying
i»z 1*t

memoryless nonlinearity. Let the input-output relation of the linear

subsystem G be defined in terms of its impulse response G by the convol-
i* i*

ution

&. = s*si (16)

Let the open-loop z-transfer function of G be of the form
i*
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£(.) -»(l -z-1)"1 +t IS* =$(l -'"'J"1 +l™ <"«>

where R is an nxn constant matrix and G^ = (G^/q - ^ *®i^z'* G anxn*

Let the time-varying memoryless nonlinearity $ be described by a non

linear function J : En xJ -• En, which satisfies the condition that for

some constant matrix K, some nonnegative number y2 and some constant v2

U (a,m) - Kal < pjol + v0 Va G En, Vm G J (17)
'i»t *\* 'w*1 2'i*' z 1* +

Under these conditions, if

(a) inf Idetfl + G(z)K) I > 0 (18)
|z|>l ' ^ * ^

and if either R = 0 or RK is nonsingular,
1* 1* 1A»

(b) «HJlM2 < 1 (19)

then for any fixed pG [1,«] u^ u2 in £^ implies that e^, e2> y± and y£

are also in £ .
n

Corollary 1A

Consider the single-input, single-output system sQ (Fig. 1) with

H, = G being a linear time-invariant, nonanticipative subsystem and H2 = $fc

-13-



being a time-varying memoryless nonlinearity. Let the input-output re

lation of the linear subsystem G be defined in terms of its impulse res

ponse g by the convolution

yl = S* el ^16?^

Let the. open-loop z-transfer function of G be of the form

2k«) =r^-r1) +£glZ_i =*(i-«_1)~ +s*<z> <16a'>

where r is a constant and g = {g.}Q = ^ {g£(zH E *- • Let tne time-

varying, memoryless nonlinearity be described by a nonlinear function

if; : E x j -> E, which satisfies the condition that for some constants k,

v' and some nonnegative number y'

> (a,m) - ka| £ y* |a| + v^ Va G E, Vm G J+ (17')

Under these conditions, if

(a) inf |l+kg(z)| > 0 (18')
|z|>l

and if r = 0 or rk ^ 0,

(b) Ih||lP' < 1 (19')

-14-



where h={h^ =^"1{g(z)/l +hg(z)}, then for any fixed pe [l,oo], u^

u ^ £p implies that e,e2, y and y2 are also in £P.

Theorem IB

Consider the system s€ (Fig. 1) with H- = G being a linear, time-
1* 1*1 'V*

invariant, nonanticipative subsystem which is described by (16) and (16a)

and H0 = K being a linear, time-varying gain K which is specified by a
i*z i* *\*

sequence of nxn matrices {K.)n, where |K |< «> Vi G J . Let the system

S& be determinate, i.e. by Theorem 1, Part I,

det [I + (G + R)K_J $ 0 Vi G J.
1, 1,0 1, 1,1 T

Under these conditions, if there is a constant matrix K such that K. + K
1, i*x 1*

as i -> °° and furthermore

inf Idet [I + G(z)K] I > 0 (18a)
zUl ^ ^ *

then for any fixed p G [l,00], un, u0 in $S implies that e-, e0, y. and
1,1 i*z n 1,1 i*z t\j±.

y« are also in £ .
1,2 n

Roughly speaking Theorem IB asserts that if a given linear discrete

system with time-varying gain tends towards a stable (see (18a)) linear

time-invariant system, then the given system is also stable. This result

is sharper than that of C. T. Chen [19] in that we do not require that

V IK. - Kl < « .
*r* 'i*x *»'
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Theorem 2A below is an application of the Passivity theorem. It

uses a combination of techniques: some results of Part I of this paper,

the multiplier idea and some inequalities of Willems-Brockett [7], It

is worth noting that Theorem 2A applies to the multiple-input multiple-

output case and memoryless nonlinearity need not be uncoupled, as was

the case, for example, in Refs. [6], and [11].

Theorem 2A (Application of Passivity Theorem)

Consider the same system .^7as in Theorem 1A, where the linear
i*

time-invariant nonanticipative subsystem G is described by (16) and (16a);

the memoryless, time-varying nonlinearity $ is described by a nonlinear
i*t

function J : En xJ -> En which has the following properties:

Nl. for some constant nxn matrix K
i*

ki ~y [ttkv") ' ttki*™)] - ki ~&)'iki "&)

V°i> *2e*n> VmGJ+ (20)

N2. ik(-o,m) = -i/>„fa,m) ^o G En, Vm g J, (21)
1,t V 1, J 1*t V1, ' 1* T

Let M be a multiplier whose z-transfer function is of the form
i*

M(z) = Y1 M.z"1 (22)
i, Z-/ 1,1

i=0

and satisfies the following conditions:
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Ml. M- {M,}" =^_1{M(z)} G £*
i, i,i U v i* n

M2. inf Idet M(z)I > 0 (23)

M3. for all i G J,, all elements of M. are such that
+ 1,1

(nj >it IK) J and K)«e -£ l(miU (24)act grj 1 a3 * pp JTJ x <*p
3^a a?«3

Under these conditions, if

(i) for the constant matrix K defined in (20)
i»

inf Idet [I+G(z)K]| > 0 (25)
|«|>1 " " "1* 1* 1*

and if R = 0 or RK is nonsingular,
i* i* i/\*

(ii) for some number 6 > 0,

inf x[m(z)[I + G(z)K] ^(z) +G'^tl + K'G'(zl]_IM'(zO} * 6 > 0 (26)
I -I Li* 1*1*1*1* i* i*i»i* 'x* J

z =1

where X{W} denotes the least eigenvalue of the matrix W , then for all u.,
i, 1* 'Vl

2 2
u0 in £ , e-, e0, yn and y0 are in £ .
i*z n 1*1 i*z 1,1 i,z n

Corollary 2A

Consider the same system ^Sas in Corollary 1A, where the linear,

time-invariant, nonanticipative subsystem G is described by (16') and
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(16a') and the memoryless, time-varying nonlinearity * is described by

a nonlinear function \\> : E x J, -»• E which has the following properties:

Nl. for some constant k

[*t(a1>n) -^(a2,m)](a1 -oj *k^ -oj2 Va^ a2 GE, Vm GJ+ (20')

N2. tyt(-a,m) = -ij/t(a,m) Va GE, Vm GJ+ (21')

Let M be a multiplier whose z-transfer function is of the form

m(z) = 2 V"1 (22,)
i=0

and satisfies the following conditions:

Ml. m£{m±}Q =$ 1{m(z)} GI1.

M2. inf |m(z)| > 0 (23')
lz >1

M3. m. > 0 Vi e J^ (24')
x +

Under these conditions, if

(i) for the constant k defined in (20')

inf |l + kg(z)| > 0 (25')
z|kl
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and if r = 0 or rk ^ 0

(ii) for some number 6' > 0

fi* s<z> 1
inf Re<m(z) — } > 6' > 0 (26')
z|=l I l+k1(z) J

2 2
then u.. , u„ G £ implies that e-, e„, y_, y« G £ .

Theorem 2A is simply an application of usualPassivity theorem [1,3],

a special case of Theorem 2, in which one subsystem is passive and the

other subsystem is strictly passive and has finite gain. In order to il

lustrate the application of generalized passivity theorem given in The

orem 2, we present the following theorem.

Theorem 2B

Consider the single-input, single-output system s& (Fig. 1) with

K = G being a linear time-invariant, nonanticipative subsystem and

H9 = $ being a time-invariant memoryless nonlinearity. Let the open-loop

A «> 1impulse response sequence of G, g = {gj)0 be in £ and let the the input-

output relation of the linear subsystem G be defined in terms of g by

or equivalently

y1 = g * e^^ (27)

m

yim - (« *el)n • E gm-ieli (28)
i=0

-19-



Let $ be characterized by a nonlinear function ^ : E -»• E which satisfies

the following assumptions:

Nl. for some constants k.. and k_,

0 < kn * — $ k0 Vo-, o9 G E, a. ^ a« (29)
1 al"a2 l *

i//(a) = 0 if and only if O = 0

N2. *(-a) = -iKo) Va G E

Let M : E -»• E be a multiplier whose z-transfer function is of the

form

-im(z) = 2^ miz
i=0

where m={m }" =/^"1{m(z)} G £1. The input-output relation of the mul

tiplier M is defined by the convolution Mx = m * x.

Under these conditions, if

X& inf {Re[m-(z)£(z)]}+ ^ -^ ||mj > 0 (30)
|zl=l L J k2 1

2 . „2then u , u2 G £ implies that e^ e2, y1» y2 are in £ .

Comments:

1. Assumption Nl implies the following facts:

-20-



a. 0 < k^a2 < aij*(a) < k2a2 Va GE, a^0 (29a)

b. 0 < ~-^2(a) < oi|>(a) < ~^2(a) Va G E, a^O (29b)
k2 1

2. The assumptions Nl and N2 above specify an odd monotonically increas

ing nonlinearity in the sector [k-,k«].

3. If, in addition to Nl and N2 defined above, we have additional assump

tion on the slope of the nonlinearity, e.g. |di|/(a)/da| <k^ then a Jury-

Lee [10] type of criterion which is in the form of (30) can be obtained

easily as an application of Theorem 2.

To illustrate further the power of Theorem 2, we present below a

stability criterion which is similar to that of Tsypkin [9]. Our result

2
is more general in that we allow for inputs in £ and the conditions on

the nonlinearity are slightly less restrictive.

Theorem 2C

Consider the same system ^fas in Theorem 2B, where the linear,

time-invariant, nonanticipative subsystem G is described by (27) and (28)

and the memoryless, time-invariant nonlinearity $ is described by a non

linear function \\> : E -»• E which satisfies the condition that for some

constant k

0 < i £_ < k a a e E, o, J o0 (31)
o - a9 12 1 z

Let M be the multiplier whose z-transform is m(z) =l+q(l-z J with

-21-



q £ 0. Under these conditions, if

inf Re|[l +q(l -z"1)] £(z)} +£>0 (32)

2 2then for all ik, u2 in £ ,e^ e2, y^^ and y2 are also in £ ,

-22-



VI. Appendix

Proof of Theorem 1

From the system equations (1), (2), (3) and the assumptions (8)

and (9), we obtain (using the subscript N to indicate truncation at N),

|&h' * ^2n»+^in» + vi VN6J+ (33)

and

|e1Nl S Du1Nl| + P20e2ND + v2 «ej+ (34)

Now substituting (34) into (33), we obtain after some manipulations

fr-'WSa.l " [•&*• +»J%J +vi +V2] <35)

Since 1- y^ = (1 - y) > 0 by (10), inequality (35) yields

•«2hI *- rh [hiJ +»ikJ +vi+ v2] (36)

Now u1, u2 G ©, hence for all NGJ+, 1^1 <JuJ <-and Ru^I <Ij^l

<«and as aconsequence of (36), |ej| <«>, i.e. e2 G (B. From the sys

tem equations (l)-(4) and the assumptions (8) and (9), we can easily see

that en, yn and y. are also in (B.
i*l <,1 1,2

Before we prove Theorem 2, we present first a fundamental lemma

which is analogous to Tellegen's Theorem in circuit theory. This lemma
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is an immediate consequence of the system equations (l)-(4) and the lin

earity of the scalar product.

Lemma A

Let the system /& and J„ (Fig. 1 and Fig. 2) described by (l)-(4)
J i* i*M

be determinate. Then for all N G J , we have for -f
T 1*

<?1'«1?1>N + <?2>i?2?2>N = <Sr&£l>!i+ <&*&&> H (37)

and similarly for •*/ M
i*M

<Sl« HSjJS^H + <fe'^2>N • <Sl'?Rl«l>H + <^2'S2?2>N (38)

Proof of Theorem 2

By Lemma A, we have for any NG J+

<?!• &5l>H + (^^2>N = <Sl'&5l>H + <J!2'S2!C2>N (39)

Using the assumptions (12)-(14) and Schwarz's inequality, we obtain from (39)

MSlNlz +°1 +e2l ^l&jl +a2 £ 1<Sl&>Nl2ISuil2 +'^J2'SaJ 2
(40)

Recalling from the system equations that y2 = H2e2 and e^ = u^~y2» tnus

we have for any N G J ,
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ISwl2 z D^iNil2" By2N02 «* hmh * 1^2 + l3bHi2

Using these relations and (12) we obtain from (40)

* Ol(»!ilNl2 +l^2NU2) +»l] I&J2 +ll2»l2l»J2 (41)

Let X = 61 + e? and use the assumptions u., u2 G £n; we obtain, after

some manipulations, from (41)

x«y2J2 * [>i +2*i)i;eil2 +l!j2B2]«S2N!2

+ [Crx +l«iDlSil2 +Bi>Sil2 "ai ~"a] (42)
or

Mfcjj * kJy2Ni2 +k2 VN£V ^2^" (43)

where

ki = [^i +25i)i)jia2 +is2i2]
and

k2 = (Y1+l«1l)l«1l2 + B1I»1l2-«1-«2

are constants independent of y2N and N. Since X > 0 (by assumption), (43)
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implies that y2 G£2. Since e± =u± -y£ and n± G£n, we have e± G£n-
2 2

It follows from (12) that yx G £n- Finally e2 G £q because §2 " El + i&L'

Proof of Theorem 1A

We shall prove the theorem by applying Theorem 1.
J

By a standard system transformation, we obtain from the system *&

(Fig. 1) the new transformed system d (Fig. 3), where the linear sub

system H in the forward path and the nonlinearity T in the feedback
r\j 1*t

path become respectively

H = (I + GK)"*^ (44)
i* i* i/\* i*

and

$ = $ - KI (45)
1*t 1*t 1A>

The variables yn, e„ and u„ are preserved in the system ^<0 and the new
^1' i*2 ^2 *v*

variables u\ , e\ and y„ are related to the old variables u.., e. and y9 by
1,1 i*l iJZ 'oi ^i i*z

Ul = un - Ku0 (46)
1,1 1*1 1/\*Z

en = e- + KVt W)
1,1 i*l iA*l

ll - 12-^.2 (48)

Since g is a constant matrix, it is clear from the above relations that

lv &• Zv It li and I2 are in ll if and only if that «i' "2' &' ^' &•
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and yn are in £P. Therefore the original system -4 and the transformed
i,2 __ n i*

system d are equivalent as far as stability is concerned.

Now by assumptions (16) and (18), it follows from (44) and Theorem

2 of Part I that

H = {H.}" = °h X{[I +G(z)K]"16(z)| G £*
i* i*x 0 v L i* i* i* i* J nnxn

consequently H has a finite norm denoted by ||H[L. Therefore for any

fixed p G [l,00]

This shows that condition (8) of Theorem 1 (Small Gain Theorem) is satis

fied with yn = ||H|L and \). = 0. Relation (45) and assumptions (17) and
1 i* 1 1

(19) show that conditions (9) and (10) of Theorem 1 are met. Thus it

follows from Theorem 1 that un, u0 G £P implies that e".., e0, yn and y9
i*l i*2 n i*l i*z ^1 n^Z

are in £p and by (46)-(48), e., y0 are also in £p.
n 1*1 i,z n

Proof of Theorem IB

Perform the system transformation as in the proof of Theorem 1A;

we obtain the system ~d with

and

H = (I + GK)""3^ (44a)
i* i* ia* i*

K = K - K (45a)
i* 1*1*
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From the proof of Theorem 4in Part Iand the fact that the system -^is

determinate, we see that the system s£ is also determinate. Furthermore
i*

because of (18a), JhIL < «. Now, by assumption, |K±| <» Vi G J+ and

K -> K as i -*• «>; thus for any e G (0,1) there exists an N(e) G J such
i*i i* "*"

that for all i > N(e), ||H |L|K. - k| £ 1 - e. Therefore the claimed re-
1* l i*l i*

suit of the theorem follows immediately from Theorem 1 applied to the

system ^£7 for i ^ N(e).
i*

Note that we have actually proved that if IjCj < °° Vi, and if for

some N, i > N implies that |K. - K| • |H|L £ 1 - e, then the conclusion
' * i*l i* ^ i

of Theorem IB still holds. In other words, it is not necessary for the

K to tend to K but only that they eventually get sufficiently close to
1)1 'V

K and remain there.

Proof of Theorem 2A

We shall prove the theorem by applying Theorem 2.

First we perform the system transformation as in the proof of The

orem 1A to obtain the system s$ (Fig. 3). We have noted that system *f

is stable if and only if system ~d is stable. Next we introduce the mul

tiplier Minto the system d to obtain the system ^J^ (*fM can be obtained
from Fig. 2by replacing i^. e^ ^, ^ and H2 with u^ e^ ^, Hand *t

respectively.) Now by assumptions (16) and (18) and the relation (44), it

follows from the same reasoning as in the proof of Theorem 1A that H has
i*

finite gain [|H[| 1 as is defined in (49), i.e., VN G J+

I^hIj * »«»ll?lN»2 (50)
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By assumption Ml and (50), we obtain

Bfe)J2 * WSU?in»2 vIiein> VNSJ+ (51)

This shows that condition (12') of Theorem 2M is satisfied with y^ =

HmLIIhU. and 6' = 0. Now by assumption (26) and Parseval's theorem, we
ii 1 i* 1 1

have

<Sr 8&> h = li <f tm™ [hz)(l +h^l^] lm(z) z'hz
|«|-1

|z|=l

+ [g*(z)(I +K'G*(z))_1M*(z)l)¥1M(z) z"1 dz
Ll* 1* 1* *\* 1* J J i*iw

^ <S||e.J|2 > 0 Ve. G En, VN GJ, (52)
11 i,lN" 2 i*l +

Thus the condition (43') of Theorem 2 is satisfied with 6' = 6 > 0 and

a' = 0. It remains to check the conditions of (14') and (15') of Theorem

2. The assumption Nl and the relation (45) give us

ki - °J' [&&•») - &&•-)] - ° *zv 12e in> Vm €J+ (53)

This coupled with assumption N2 implies that $ is an odd, monotonically
i*t
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nondecreasing nonlinearity. Since the assumption M3 implies that the

matrices M.'s are doubly dominant [7] for all i G J , it follows that
1*1 +

[Theorem 4 of Willems and Brockett]

<&' M"^2>N = (M^2' StS2>H

N

i=0

N

I
i=0

" E S<*2i>&-i&i * ° (54)

where we have used the assumptions Ml and M2 to guarantee the existence

of M in the above equation. (In fact Ml and M2 imply that M G £nxn;
i*

see proof of Theorem 2, Part I). (54) shows that condition (14') of

Theorem 2 is satisfied with e' = a^ = 0. Clearly condition (18') of The

orem 2is indeed satisfied because X' = (6^ + e^) =6> 0. Therefore we

have demonstrated that all conditions of Theorem 2 are satisfied. Now

2 — ~ 2 —
u,, u0 G £ implies that u_ and u. are in £ because un = u- - Ku0, u0 =
i*l 1*2 n r 1*1 1*2 n i*l i*l i/\*z i*z

Mu„, where K is an nxn constant matrix and M G £ . Therefore we con-
ia,2 i, i* nxn

elude from Theorem 2 that e., e„, y. and y0 are in £ . From Fig. 4, we
1*1 i*z o»i i» z n

2 -11
can easily see that yn and e0 are in £ because M and M are in £

J 1,1 i*z n i* i* nx"

which map £ into £ respectively. From the system equations (47) and

2
(48) we obtain easily that e., and y0 are in £ .

i*l i,z n

Before we prove Theorem 2B, we first quote a lemma [8, 17, 18] which
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we will use it in our proof later.

Lemma B

Let f : E -*• E satisfy the following conditions

(«! " »2)[fK) - f(°2)] - ° Vol' °2 e Z

Then for all j G J

N N

Ea. .f(o.) < Y" a.f(a.) Va. G E, VN G J
i-i i a-^ xx x +

i=0 J i=0

If, in addition, f (-a) = -f(a), then for all j 6 J

N N

£ a• _.f(a.) < Yi °±f(ai> Vai GE> VN GJ+
i=0 i=0

Proof of Theorem 2B

We prove the theorem by means of Theorem 2.

Since, by assumption, g and m are in £ , we have

||(MGe1)N«2 = ||(m*g*e1)N|2 = MJglJe^ ^±6 E, VN GJ+
(55)

This shows that (12*) of Theorem 2 is satisfied with y^ = flml^g^ and

3i = 0. Now by Parseval theorem, we get
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<e1,MGe1>N =£ <f %N(z) £(z) £(z) ^(z) z'1 dz
1*1=1

= ~k f Rel»<z> «(*>] e^N(z) e1N(z) z"1 dz
l.l-l

> <\*^\ (56)

A 1* 1*
where 6 = inf {Re[m(z) g(z)]} .

|z|=l

Clearly (56) is in the form of (13') of Theorem 2 with 6^ = 6 and

c^ = 0. Before we apply Theorem 2, we need only to check conditions (14')

and (15'). Now consider

<Me2, $e2>N - £ (X) V2<i-j))*(e2i)i=o \j=o J J7

N N / i-1 \

= E Boe2i*(e2i) + Xj ( £ »Je2(i-J)) *(e21>
i=0 i=l \ J=0 /

and using the assumption Nl, N2 and Lemma B, we obtain successively

m N N

<Me2> *e2>N " iq S^(e2i> " ?0 |mjl S Ie2<1-J>*(e2i>l

(57)

(cont.)
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2 fe X>2<e2i> - Hi 11 e2i*<e21>
2 i=0 1=1

> 1% _ ^n\. R2
k2

" E2^2N«2

where we have used (29b) and defined e„ by

A % «1
£2 " k2 " k,

(58)

So (58) is in the form of (14') of Theorem 2. By assumption, clear

ly condition (15') of Theorem 2 is satisfied. Therefore it follows from

2
Theorem 2 that e-, e2, y1 and y2 are in £ .

Proof of Theorem 2C

By identical arguments as in the proof of Theorem 2B, we obtain

<er MGe1>N > fijlej^ (59)

where 6\ & infRe{[l +q(l -z1)]g(z)}.
1 z =1

Next we consider

N

<Me ,<De > = E (m *e2)i,p(e2i) (60)
i=0
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Denote m(z) =1+ q(l - z~ )= (1 + q) - qz~ = mQ + n^z ,then mQ =1

+ q and m- = -q. Since

(m * e2). - moe21 + V2(i+1)

= (1 + q)e2i - q-2(1+1)

We obtain from (60)

N N

<Me2, $e2>N = £ '(1 +q)e21«(e2±) - q E e2(i+l)*Ce2i) (61)
i=0 i=0

Applying Lemma B to (61) and noting that q £ 0

N N

<Me2, $e2>N > (1 +q) E .^i*^ " q X ^(i+D+^l*
i=0 i=0

N N

> (1 +q) E e2i^e2i) " q E e21*(e2i>
i=0 i=0

= Ee21*(e2.) > i I>2(e2i) = £fl*(e2i>N«2
i=0 i=0

• e2B*<e2i>/2

Assumption (32) implies that 6' + c? > 0. So we have shown that all con

ditions of Theorem 2 are satisfied, conseuqently we conclude from Theorem

2 22 that u.., u2 G £ implies that e_, e2, y1 and y2 are in £ .
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Conclusion

Using some results of Part I and slightly generalized versions of

the Small Gain and of the Passivity theorems we obtain in a unified man

ner several general stability criteria for multiple-input, multiple-

output discrete systems. We hope further work in this direction will

lead to a unified presentation of stability theory of nonlinear feedback

systems.

-35-



References

[1] G. Zames, "On the Input-Output Stability of Time-Varying Nonlinear

Feedback Systems," Pt. I, IEEE Trans., Vol AC-11, No. 2, pp. 228-

238, April 1966.

[2] E. S. Kuh and R. A. Rohrer, Theory of Linear Active Networks, San

Francisco: Holden-Day, 1967.

[3] I. W. Sandberg, "Some Results on the Theory of Physical Systems

Governed by Nonlinear Functional Equations," BSTJ, Vol. 44, pp.

871-898, May-June 1965.

[4] I. W. Sandberg, "Some Stability Results Related to Those of V. M.

Popov," BSTJ, pp. 2133-2148, November 1965.

[5] I. W. Sandberg, "On the L„-Boundedness of Solutions of Nonlinear

Functional Equations," BSTJ, Vol. 43, pp. 1581-1599, July 1964.

[6] I. W. Sandberg, "On the Boundedness of Solutions of Nonlinear In

tegral Equations," BSTJ, Vol. 44, pp. 439-453, March 1965.

[7] J. C. Willems and R. W. Brockett, "Some New Rearrangement Inequal

ities Having Application in Stability Analysis," IEEE Trans., Vol.

AC-13, No. 5, pp. 539-549, October 1968.

[8] R. P. O'Shea and M. I. Younis, "A Frequency-Time Domain Stability

Criterion for Sampled-Data Systems," IEEE Trans., Vol. AC-12, No.

6, pp. 719-724, December 1967.

[9] Y. Z. Tsypkin, "A Criterion for Absolute Stability of Automatic

Pulse Systems with Monotonic Characteristics of the Nonlinear Ele

ment," Dokl. Akad. Nauk (USSR), Vol. 155, pp. 1029-1032, April 1964.

-36-



[10] E. I. Jury and B. W. Lee, "On the Stability of a Certain Class of

Nonlinear Sampled-Data Systems," IEEE Trans., Vol. AC-9, pp. 51-61,

January 1964.

[11] E. I. Jury and B. W. Lee, "A Stability Theory for Multi-Nonlinear

Control Systems," Proc. 3rd IFAC Conference, London, June, 1966,

paper 28A.

[12] C. T. Chen, "On the Stability of Nonlinear Sampled-Data Feedback

Systems," J. Franklin Inst., Vol. 280, pp. 316-324, October 1965.

[13] C. A. Desoer and M. Y. Wu, "Input-Output Properties of Multiple-

Input, Multiple-Output Discrete Systems, Part I", to appear in

Journal of the Franklin Institute.

[14] Y. S. Cho and K. S. Narendra, "Stability of Nonlinear Time-Varying

Feedback Systems," Proc. 5th Allenton Conference, October 1967,

pp. 249-258.

[15] T. E. Stern, "The Network Analog as a Heuristic Tool for Generat

ing Stability Criteria," Proc. 4th Allenton Conference, October

1965, pp. 819-826.

[16] M. Y. Wu, "Stability of Nonlinear Feedback Systems," Ph.D. Disser

tation, University of California, Berkeley, July 1968.

[17] J. C. Willems, M. Bruber and R. P. O'Shea, "Comments on a Combined

Frequency-Time Domain Stability Criterion for Autonomous Continu

ous Systems," IEEE Trans., Vol. AC-12, pp. 217-219, April 1967.

[18] P. L. Falb and G. Zames, "On Cross-Correlation Bounds and the Posi-

tivity of Certain Nonlinear Operators," IEEE Trans., Vol. AC-12,

pp. 219-221, April, 1967.

-37-



[19] C. T. Chen, "Bounded-Input, Bounded-Output Stability of Linear

Time-Varying Feedback Systems," J. Franklin Inst., Vol. 286, No,

2, pp. 128-134, August 1968.

-38-



yi

Fig. 1. The system Jo under consideration
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u

Fig. 2. The system 0 which is the system SQ with the multiplier M.
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Fig. 3. The system &J which is obtained from the system g} by a standard
system transformation.
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