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Abstract

The method of small-signal analysis of nonlinear time-invariant networks

about a fixed operating point is well known. Desoer and Wong have suggested

the use of a time-varying bias so that, as far as the small signal response

is concerned, the network looks like a linear time-varying network [1]. In

the present work, we show how calculations can be greatly simplified when the

bias is slowly varying. Making use of recent results of stability theory,

we show that small-signal analysis about the frozen operating point is correct

within higher order terms in the small signal provided a correction term is

inserted in the equation. An important feature of the theory is that its

assumptions can often be checked by inspection because it involves only the

properties of the frozen network. Section I gives a formal description of

the method. In Section II, the method is rigorously analyzed and the results

are stated in the form of two assertions.

Research sponsored by the Joint Services Electronics Program under Grant
AFOSR-68-1488.
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I. The Method

In this section we describe the procedure for writing out the equations

for the small signal analysis about the "frozen operating point."

Suppose we have a nonlinear network or system described by

x = f(x,u) x(0) - 0 (1)

where x(t) £lRn, u(t) G IRm and f: IRn xlRm -»-lRn. A circumstance often encountered

in practice is that where the input u can be written as

u = u + u

where u is a "slowly varying" bias and u is "small signal." In the absence

of the small signal u, we may use (1) to calculate (as in Ref. 1) the variable

operating point x by solving

•

x = f(x,u) x(0) =0 (2)

For simplicity, we assume throughout that the network starts from zero initial

conditions. The solution of (1) is then written as

x = x + £ (3)

where x is presumably "slowly varing" and £ is presumably "small." Sub

stituting (3) in (1) and using (2) gives, after Taylor expansion,

*-<V>(x,u) «+ »2f) (x,u) u+««•».«> <4>

where D.f denotes the derivative of the vector-valued function f with respect

to its i argument. Given suitable restrictions on f, g is of second order

in £ and u, hence by neglecting it, we obtain the linearized equations
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*0 • (Dlf)(x,u) «0 + (D2f)(x,u) u V°> "° (5)

In Ref. 1, conditions were obtained under which, for sufficiently small u,

£n the solution of the approximate linear equations (5) was arbitrarily close

the £ the solution of the exact nonlinear equations (4). Equation (5) can

be described as the linearized small-signal equations about the moving operating

point (x,u).

Let us sketch out another small-signal analysis which makes explicit

use of the slowly varying character of u. For each t, calculate the frozen

operating point xQ(t) by solving

f(xQ(t), u(t)) = 0 (6)

For simplicity, we constrain u(0) to be such that xn(0) = 0. Physically,

Xg(t) is the operating point that would exist if the bias were constant and

had the value u(t). In many applications, the frozen operating point is easy

to calculate. Indeed, in contrast to the differential equation (2), to solve

equation (6) for xQ(t) is a d.c. calculation, i.e. the inductors are replaced

by short circuits and the capacitors are replaced by open circuits. For

example, the circuit of Fig. 1, because of its nonlinear inductors and capacitors,

is an adjustable low-pass filter when operated in the small signal mode. Clearly,

whatever the value of the bias voltage u(t) is, the frozen operating point

Xg(t) is characterized by equal inductor currents and equal capacitor voltages

which are easy to calculate by inspection. In contrast, the calculation of

x(t) requires the solution of a system of nonlinear differential equations

of order 7.

Differentiating (6) with respect to t and using the chain rule, we

obtain
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(D,f),„ TA *„ + (D,«^ T7^ u = ° (7)

hence

'lf>Cx0,u)*0+<V><x0,u)

*0--«Dl«'(i0.u)<D2f>(^.ia;;^<t> <8)
This last equation defines v(t). To perform our small-signal analysis about

the frozen operating point x~(t), we write

x«xQ +n (9)

Substituting (9) in (1), using (6) and (8) we obtain by Taylor expansion

*•(Dif)(x0,u) "+(D2f>(x0,u) u"v(t) +Y(n.».t) do)

where y represents the higher order terms. Neglecting y9 we obtain the

(linearized) equation

V<Dif)(x0,»>no+(I>2f)(v»>u~v (11)
Note that from (1), (6) and (8), n as well as ru have zero initial conditions

This formal derivation leaves open two questions. Under what assump

tions on the nonlinear circuit will the frozen operating point trajectory

xn(») and the operating point trajectory x(») be close to one another?

Similarly, what is the relation between the small signal £(•) calculated by

(4) and n0(*) calculated by (11)? The next section is devoted to a careful

analysis whose conclusions are in the form of two assertions which answer

these two questions.
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II. Analysis

Let |*| be used to denote the absolute value of a number, a norm of

a vector in JRn (selected once and for all), the corresponding induced norm

of amatrix in/RnXn. All functions of time are defined on R+ = {t|t>0>.

For such functions taking values in?R, Rn or IRn n, we use the sup. norm:

||x|| = sup |x(t)|.
t>0

Assumptions.

Al. The function f in equation (1) has continuous second derivatives of all

n mm
its arguments throughout 1R x JR .

A2. Let (D.f), -v = A(t), (D.f) ( -v = B(t). We assume that
^ 0 * 0

(a) ||A|| <* and ||b|| <~ 0-2>

(b) for each t ^JR all eigenvalues of A(t) are in the left half

plane and are bounded away from the ja)-axis: more precisely, there is a

On > 0 such that

Re[X±(t)] < 2aQ <0 Vt>0,Vi (13)

A direct consequence of this assumption is that for all tG R+, A(t) is invertible

and

-1Ma"1!! <« (w

A3. The second derivatives of f ^x gx— (i,k,^ = l,2,..,n) and

•=—~- (i,k = l,2,...,n; j = 1,2 m) are bounded along the frozen operating
dxt 3u,

k j

point trajectory (xQ(t),u(t)).

A4. The input signal u and the first derivative of the bias u (i.e. u) must be

regulated functions on /R [2].
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Assumption Al is required to justify the Taylor expansions [2].

Assumption A2 is quite natural if one has in mind the design of adjustable

filters and equalizers [3]; A2 requires that for all times, the frozen

small-signal equivalent circuit (about the frozen operating point) be stable.

Assumptions A3 and A4 are required to control the behavior of A(t) as a function

of time. In contrast to the assumptions made in [1] (Theorem I and Corollary

III, in particular), the present assumptions are easy to test: they do not

require knowledge of state transition matrices of time-varying networks, but only

the knowledge of A(t) for each t. For example, if, in the network shown in

Fig. 1, the small-signal inductances and capacitances belong, for all operating

points, to the interval [a,b], with 0 < a < b < «>, then the assumptions A2

are satisfied.

Let

<5x(t) =x(t) -xQ(t) Vt>0 (15)

•

Assertion 1. Suppose that Al, A2, A3 and A4 hold and that ||u| | is small,

then ||6x|| is also small and of the same order as ||u||. To show that

we differentiate (15), use (8), (6) and Taylor's expansion:

6x(t) = A(t)6x(t) - v(t) + g(6x,t) (16)

where g represents second order terms. If ||u|| is small, then by eq. (8),

(12) and (14) of A2, so is ||*0lh indeed

IMI - Mioll < IK1!! •||B|| •||u-|| (17)

This implies that the elements of A(») are slowly varying: indeed

a (t) = Of./dx.), -v and
ij 1' j (x0»u)
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n ^2f m 32f
KaM = r TEHST" *m + y* ^r^r- u0 (18)'ij(t) " Zj 3x,3x, *0k + 2_ 3x.3u0 u£

k=l J K £=1 J *

From (17), (18) and A3, we conclude that A(») is slowly varying in the sense

that by taking ||u|| sufficiently small we can make ||A| | arbitrarily small.

Now using a continuity argument, Rosenbrock [4] has shown and Desoer has

given explicit bounds on ||a|| [5] to prove the fact that if ||A| | is small

then, under the assumptions A2 (a) and (b) and A4, the state transition

matrix of x = A(t)x is uniformly exponentially bounded; more precisely for some

positive constants m and a_,

-a (t-T)
|*(t,T)| <bG * \/t>T, T >_ 0 (19)

This fact together with Theorem I of [1] establishes that if we throw away

the second order terms of (16), and define <Sxn by

6xQ = A(t) 6xQ(t) - v(t) (20)

we have

Il«x-&0M
•*• 0 as||u||+0 (21)

Furthermore, from (17), (19) and (20), it follows immediately that

||u||-• 0 implies that ||6xQ||+0 (22)

Assertion 1 follows directly from (21) and (22).

Thus under the smoothness conditions stated by Al to A4, provided the

bias uvaries sufficiently slowly, first (17) shows that xQ, the velocity

of the frozen operating point, is small; second, 6x(t) the difference between
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the operating point x(t) and the frozen operating point x_(t) is uniformly

small on JR .

Assertion 2. Suppose that Al, A2, A3 and A4 hold, arid that ||u| | and

||u|| are small. Let C be defined by

C = A(t)C + B(t)u C(0) = 0 (23)

Then £, the (exact) small-signal response about the operating point x

(see eq. (4)), and C just defined are related by

S = C + o(||u|| + ||u||) (24)

i.e. £ and £ are equal except for higher order terms in ||u|| + ||u||.

To establish this fact is easy: from (3), (9) and (15)

C = n - 6x (25)

From (21), we may replace 6x by 6xQ at the cost of a term o(||u||). In view

of assumptions Al, A2, A3 and A4 and the results of [1], we may replace r\ by

TIq at the cost of a term o(||u||). Thus

£= n0 - 6x0+o(||u|| + ||u||)

Comparing the differential equations (11) and (20), we see that if we put

C= n0 - 6xQ (26)

then C satisfies eq. (23). Therefore Assertion 2 is established.

Conclusion

To calculate the (exact) response x (defined by (1)) we have two methods,

First, the conventional method of small-signal analysis: we write x = x + £,

solve the differential equation (2) for the motion of the operating point x,
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calculate £~ by the linear equations (5). The smallness of ||u|| guarantees

that the error caused by calculating £_ instead of £ is of higher order in

||vi ||• Provided both ||u|| and ||u|| are small, then £ can be calculated

approximately (see eq. (24)) by solving Eq. (23) for £: the equation for C is the

linearized equation about the frozem operating point. The second method, the

frozen operating point method, is as follows: write x = xn + ri, calculate by

(6) the motion of the "frozen operating point" xn, calculate nn by the linear

equation (11). Again, the error caused by calculating ti_ instead of r\ is of

higher order in ||u||. Note that (11) includes a correction term -v which is

due to the fact that the expansion has been done about the frozen operating

point. Inequality (17) gives a way to estimate when this correction term may

be dropped.
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Fig. 1.

WZ7.

In the time-invariant network shown above, the four inductors arid
the three capacitors are nonlinear. If the resistors R, and Ro
are equal, the "frozen" operating point corresponds to an equal
current flowing through the four inductors and an equal voltage
across the three capacitors. Clearly the frozen operating point
XQ(t) can be obtained by inspection.
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