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ABSTRACT

Part I of this paper presents the best results concerning the

existence, uniqueness and stability of linear discrete feedback systems.

Both the multiple-input, multiple-output and the single-input single-output

cases are considered. The results presented extend previously known results

and they constitute key tools for the study of nonlinear time-invariant

and/or time-varying systems. The simplicity of the analytic methods used

in the derivations is worth noting.



I. Introduction

Part 1 of this paper considers linear systems. Part IT. will con

sider nonlinear systems. The purpose of Part I is to present the best

results concerning the existence, uniqueness and stability of linear dis

crete feedback systems. All results and derivations concern the multiple-

input multiple-output case. The specialized and often sharper results of

the single-input single-output case are stated in the corollaries which

follow each theorem. Our results generalize well established facts found

in the literature (1,2,3,4,6). We need not survey previous results since
*\j f\, 'Xj tX, f\j

this has been done in a paper by Tsypkin and Jury (5).
a.

Our first theorem gives necessary and sufficient conditions under

which a class of linear time-varying discrete systems is determinate.

This theorem when coupled with Mason's signal flow graph theory leads to

conditions under which any interconnection of linear time-invariant dis

crete systems and time-varying gains is determinate. Our second and

third theorems consider linear time-invariant systems and give stability

results in the form of input-output properties. Conditions under which

zero position error is achieved are emphasized. Our last theorem con

siders a linear time-invariant subsystem and a time-varying gain. It shows

that if the time-varying gain may be written as a constant plus an I

sequence the stability properties are qualitatively unchanged. This re

sult corresponds to Chen's result for the single-input single-output con

tinuous-time case (7).

The results presented in Part I are important not only as far as

linear systems are concerned but also because they constitute key tools
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V

for the study of nonlinear, time-invariant or time-varying systems. For

the convenience of the render we first settle some notations, and define

terras. After describing the system under consideration, we state under

the section Main Results eacli theorem and corrollary which we follow by

commentaries. All proofs are relegated to the Appendix.

II. Notations

In the following, J, denotes the set of all nonnegative integers;
T

R(R ) the set of all (nonnegative) real numbers; TR the set of all n-

vectors with real elements and IR X the set of all nxn matrices with real

elements. We use boldface for vectors and matrices. Matrices are dis-

tinguished by capitals. The symbol |*| denotes the absolute value of a

real (or complex) number, the norm of a vector in TR or the correspond

ing induced norm of a matrix in TR (viz. |z|, |e|, |a|). Since all

norms in lRn are equivalent, our results hold for any norm in IR provided

the corresponding induced norm is used for IR x . The symbol II •II is used

to denote norms in sequence spaces. The number zero, the zero vector in

IR and the zero matrix in TR are denoted by 0, 0 and 0, respectively.

III. Basic Terms

n A °" n
1) Let p G [l,"*). A sequence in IR , g = fg.}n : J, ->• TR , is said to

^ *\,i u +
00

be inin £p if J3 |g. | < °°; the corresponding £ -norm is defined by
n i=0 n

lgl0 A

-3-

U/P

i=0 *x" J



Similarly, g:J +1Rn is said to be in £~ if sup |g |<»; the corres-
Z + n iGJ *

ponding & -norm is defined by

A 1
sup |g.
i^T ^

+

Tf n = 1 (scalar case), we write V for r (1 < p < "0. It is easy to

show that rL C %2 c. «,'"
n n n

2. Asequence in tRnxn, G= {G,}" : J -*-IRnXn, is said to be in «,
00

if V* |g.I < °°; the corresponding norm is defined by
i=0

HGH = £ |G±| .
~ -1 i=0 ^1

Note that IgJ is the induced norm of the nxn matrix G. corresponding to
'^i' • ^i

the norm selected for the vectors in IR .

3. Given a sequence in IRn, g = (g.C> the z-transform of the sequence
% <\,1 u

is the function of the complex variable z defined by

'W \ A v^ -i
g(z) = 2-r g, Z
^ i=0 ~

It is well known that g(*) is analytic for |z| > lim sup |g,|

4. Let G : J, -»• TRnxn and f : J, -*• R . The convolution of the sequence
i\, + i/ +

f by G, denoted as G * f, is the sequence which maps J -*• TR and whose mth

term is

A
m

(G * f) = Y, G . f, .



IV. System Description

In this paper we consider the multiple-input, multiple-output, lin

ear, discrete system S shown in Fig. 1, where u, e and y : J+ •*• TR , G :
A 1°°

J -> IRnxn and K : J, + IRnXn. The sequences of n-vectors u = fu^Q.

e = le }" and y = fyX., are t1ic inPut» the error ancl the output, res-

peotively. The sequence of nxn matrices G = {C^lg specifies the impulse

response matrix which characterizes the linear dynamical subsystem. The

sequence of nxn matrices K = {iO™ specifies a memoryless time-varying

gain. In contrast to a number of previous papers, we do not assume that

the K 's are diagonal, or symmetric. The system S is described by the

following system equations:

y = G * (K e) (1)

e = u - G * (K e) (2)

Equivalently, (2) can be written as

m

e =u- J2 G . K, e.
^m *un ~L arm-i ^1 *vi

•fc GJ+ (3)

For the scalar case (n = 1) ,u = {u^q, e = 'ej/o* y = *yi'0» g " *gi'0'

k = {k }*, are the sequences which map J+ -*• TR and the system equations

which describe the single-input, single-output, linear time-varying dis

crete system S become

y = g * (k e) (la)
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e = u - g * (k e) (2a)

Similarly, we can rewrite (2a) as

m

e = um " E 8m i ki e-i » Vm G J+ (3a)m m flTn ni-i i i t

As a special case, if the gain block is time-Invariant, then K = KGK

is an nxn constant matrix and k = k (= IR is a constant. Consequently (3)

and (3a) become respectively

m _

e = u - £ G .K e. (3)'

m

e su-k]Pg.e. (3a) *m m Mj &m-i i

Remarks:

1. Note that for the time-invariant scalar case the order of g and k

in (3a)' is immaterial, in contrast to (3)' where the order of G and K is

important. However, in the time-varying case, the order of K (k) and

G (g) is important both in (3) and (3a).

2. There is no loss of generality in assuming that K 's and G 's are

square nxn matrices: indeed if it were not so we could make them square

by adding rows (or columns) of zeros. Therefore the theory described here

applies also to the case where the number of inputs is different from

the number of outputs, a common occurrence in practice.

•()-



V. Main Results

Theorem 1. specifies completely the conditions under which the lin

ear lime-varying system S is determinate (13, p. 96).

Theorem 1

For any input sequence u : J -*• TR , the system equation (2) has a

unique solution e : J, -»• IR if and only if the matrices I + G K. are non-
»\, + % ^o 1,1

singular for all i G J , i.e.,
"t*

det (I + G K.) ^ 0 ViGJx . (4)
0» liO 1*1 +

For the time-invariant gain, K. = K, Vi G J , (4) reduces to the single

condition

det (I + G K) * 0 (4)'
t\, I/O *\,

Corollary 1

For any input sequence u : J -*» TR, the system equation (2a) has a

unique solution e : J -*• TR if and only if 1 + kg ^ 0, Vi G J . In par

ticular, if the gain k is constant, i.e. k = k, Vi G J , then the above

conditions become the single condition 1 + kg ^ 0.
o

Comment:

These results are important because they specify the necessary and

sufficient conditions for an arbitrary interconnection of multiple-input,
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multiple-output, linear, discrete systems to be determinate: indeed

it is well known that any such arbitrary interconnection can by Mason's

signal flow graph theorem be reduced to a single feedback loop model, to

which our theorem applies.

Theorem 2 below gives a stability criterion Tor the: linear time-

Invariant discrete system S shown In Fig. 1

Theorem 2

Consider the multiple-input, multiple-output, linear, time-invari

ant discrete system S shown in Fig. 1 which is characterized by the sys-
r\i'

tem equations (1) and (2) with K = K GTR x being a constant gain matrix.

Let the open-loop z-transfer function of the linear subsystem G be of

the form

G(z) = Rfl -z"1) + £ G.z_I * R(l -z"1)"1 +6,(«) (5)

where R is an nxn constant matrix and G = {G.}n = $ {G (z)> G £ .

Under these conditions, if

inf Idet[I + G(z) K]| > 0 (6)
Z £1

and if either R = 0 or R K' is nonsingular, then

(a) the closed-loop z-transfer function (relating y to u)

H(x.) = [T. + C(z) K]"1 G(z) K (7)
<o 'V> '\, '\> '\j '»/
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is analytic outside the unit disk |z| < 1, and the closed loop impulse

response

H & (H.ir = 3_1f"<«»e *L (8)«\, n.i 0 *x< nxn

(b) For any fixed pt |1,"1, u<• £[j implies that yG £J\

(c) u G £ and lim u =0 implies that y G £ and lim y = 0.
•X, n i,m /\, *\, n ^^ %m ^

(d) If, in particular, RK is nonsingular, then uG £~ and lim um = u^

(a constant vector in TRn) implies that lim e = 0 and lim y = u .

Corollary 2

Consider the single-input, single-output, linear, time-invariant,

discrete system S shown in Fig. 1, which is described by the system equa

tions (la) and (2a) with k = k G TR being a constant gain. Let the open-

loop z-transfer function of the linear subsystem G be of the form

S(.) - rfl-T1)-1* Z g^ = rtl-z-1)"1-^ (.) (5a)
i=0 X

where ris areal constant and g =(g^Q = °d ~ ^^z^ e *- • Under these

conditions, if

inf |l + k g(z)| > 0 (6a)
zUl

and if either r = 0 or rk / 0, then

(a) the closed-loop z-transfer function (between y and u)

-9-



k *(z) , ,
h(z) = —— (7a)

1 + k g(z)

/

is analytic for |z| > 1 and the closed loop impulse response

h = (h >£ - ^ -1

— ^

k g(z)

1 + k g(z)
G SL1 (8a)

(b) for any fixed pG [1,°°], uG £p implies that yG £P.

(c) u G £* and lim u =0 implies that y G £ and lim y = 0.
x •' in m

m >«» m-*°°

€X> -

(d) If, in particular, rk ^ 0, then u G £ and lim u = uw (a constant
m-H»

scalar) implies that lim e = 0 and lim y^ = u^.
m-vw m*00

Comments:

1. The map zf-^G(z) is analytic outside the unit disk |z| < 1, conse-

quently det[I + G(z) K] is analytic for |z| > 1 (10, Chap. IX).

2. Since det[I + G(z) K] is analytic for |z| > 1, note that z real
'Xt Of 'Xi

and z-*» in (6) implies that det[I + G K] ^ 0, therefore there is a unique
% ^o «\/

nxn , .
sequence M : J -*• TR such that

M = V - G * (K M)
% 'X, 'Vi 'V, 'Xj

'Xj °V/ — —1
with V = I, CL 0, ... . Furthermore, M(z) = [I + G(z) K] . By Lemma

f\j >X, >Xj 'Xt Or % % 'Xt

2 in the Appendix, it follows that under the conditions of Theorem 2,

M£{*,>;;= y-tu +Zw w1}*^ n.
»v, fxii 0 " I ^ 'x, a, J nxn

3. In case R = 0, if we plot on the complex plane the graph of
f\j <Xj

-10-



d. H>dct[l + Cke^1') K] for <|» increasing from 0 to 2n , then the number of

clockwise encirclements of the origin is equal to the number of zeros of

det[I + G(z) K] in the set {z' | |z| > 1}. In case R f 0, the usual in-
iXt 'Xt *Xt u

dentation about the point z = (1,0) must be used.

4. Part (d) of Theorem 2 states that provided that RKis nonsingular

and lim u = u (a constant vector in TR°) , the system has a zero steady-

state error i.e. lim e = 0. Therefore the system S behaves as a posi
ng %in 'v' ^

tion servo should! Note that the zero-steady state error lim ^ = 0 means

zero steady-state error at the sample points only.

5. If in all the statements of the multiple-input, multiple-output case,

the matrices GK.RR and Gq K are changed to K G, K R and K Gq respec

tively, then all the results in the paper also hold for the system model

5, shown in Fig. 2 with K = K GTRn. In this connection, note that for
f\,l 'Xt *\*

any nxn matrices A, B, det[I + A B] - det[I + B A]. This will be used
J <\, *\, 'X, >Xt 'Xt f\j 'Xt 'Xj

below.

6. The results that are closest in spirit to our Theorem 2 are those

of Sandberg (6).
'Xt

Theorem 3 below allows G(z), the z-transfer function of the linear

subsystem, to have poles outside the unit disk |z| < 1.

Theorem 3

Consider a multiple-input, multiple-output, linear, time-invariant

discrete system such as shown in Fig. 1 and described by equations (1)

and (2) with K = K G lRnxn being a time-invariant gain matrix.

-11-



If

(i) det[I + G K] i 0
•Xj '\,0 '\,

A •» °°
(ii) the open-loop impulse response sequence G = {G±Jq is

exponentially bounded,

(iii) the closed-loop z-transfer function between u and y

H(z) = [I + G(z) K]"1 G(z) K (9)
*Xt 'X, 'X, 'X, 'Xt 'Xt

is analytic for |z| > p where p < 1,

then the closed-loop impulse response sequence H = (H^q = 0 ^z^ is

bounded by a decaying exponential; more precisely, for any 3G (p,l) there

is a finite number b such that

in. I < bB1 Vi € J. do)

Corollary 3

Consider a single-input, single-output, linear, time-invariant dis

crete system such as shown in Fig. 1 and described by equations (la) and

(2a) with k = k <. B< being a constant gain. If

(i) 1 + k gQ * 0
A oo

(ii) the open-loop impulse response sequence g = {g^Q is

exponentially bounded,

(iii) the closed-loop z-transfer function between u and y

-12-



k s<z>
h(z) = zr- (9a)

1 + k g(z)

is analytic for |z| > p.^ where p1 < 1,

-irythen the closed-loop impulse response sequence h= ^h±^0 = ^ (h(z)} is

bounded by a decaying exponential; more precisely, for any (^ G (pisi),

there is a finite number b, such that

|h±l * bi4 vi eJ+ (10a)

Comment:

A 100
The assumptions on the open-loop impulse response sequence G = {G±iQ

'Xt

are less restrictive than in the previous theorem: indeed G(z) may have

poles outside the unit disk |z| £ 1. This is compensated by the require

ment (iii) on H(z). The conclusion is much stronger than previously:
'Xt

indeed {HJ}!! is not only in £ but decays exponentially.
*V/i 0 nxn

Theorem 4 below gives a stability criterion for a class of multiple-

input, multiple-output, linear, time-varying discrete systems.

Theorem 4

Consider the multiple-input, multiple-output, linear, time-varying,

discrete system S, shown in Fig. 2. Let G be the linear subsystem whose

z-transfer function is given by

S(.) = R(l -z-1)"1 + ± G± z"1 A R(l -z"1)-1 +G£(z) (11)

-13-



where R is an nxn constant matrix and G& = (G^q - $ ^§£^Z^ C ^nxn

Let K : J, -> Rn be the memoryless, time-varying gain which is defined by
'Xt +

K^k+k = k+ dU~ (12)
>X, r\j <X, fXt 1<i U

^Af^-i00-!-.
where K is an nxn constant matrix and K = {K.in G £ . Let

n 'Xj 'XjI 0 nxn

det11 + (R + O )K + (R + G )K.l ^ 0 Vi G J
'\. '\j '\,0 '\, >\, '\,0 f\,l t

Under these conditions, if

(13)

G(z) K]
iX, f\j «v

inf |det[I + G(z) K]| > 0 (14)
zUl

and if either R = 0 or R K is nonsingular, then

(a) u G £ implies that w G £
v ' <\, n v 'x, n

(b) u G £ implies that w G £ , consequently lim w = 0.
«\, n *\/ n ^ ,xM 'Xj

The same results also hold for e and y.

Corollary 4

Consider the single-input, single-output, linear, time-varying, dis

crete system S- shown in Fig. 2. Let G be the linear subsystem whose z-

transfer function is given by

£(.) = r(l -z"1)"1 + £ g.z"1 A r(l -z"1)"1 +J(.) (11a)
i=0 *

14-



where ris aconstant and g^ = (g.lJJ =°j~ ^(z)} G£. Let k:J+ +TR

be the memoryless time-varying gain which is defined by

k = k +k = k+ {£ >JJ (12a)

* A r^ -i00 1where k is a constant and k = {k }Q G £ . Let

1 + (r + gQ)k + (r + gQ)ki t 0

Under these conditions, if

Vi G J+ (13a)

inf |l + k g(z)| > 0 (14a)
z|>l

and if either r = 0 or kr ^ 0, then

(a) u G £ implies that w G £

(b) u G £ implies that w G £ , consequently, lim wm = 0.

The same results also hold for e and y.

Comment:

m
m-x*»

* A * oo I
The condition on the time-varying gain that K = (K^q G £nxn

(ic = {k.}" G £ ) corresponds to a similar result of Chen's (7) for the
i 0 f\j

single-input, single-output, continuous-time case.

-15-



Conclusion

The four theorems of Part I of this paper specify the input-output

properties of large classes of multiple-input multiple-output linear dis

crete systems. Each one of them extends previously known results. We

wish to draw attention to the simplicity of the analytical methods used

in the derivations.
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Appendix

To clarify the proofs of theorems, we state two lemmas whose proofs

are straightforward and hence omitted.

Lemma I

Let p be a fixed number in [1,«»], let GG £ and feij and let
v fxt nxn ^ n

h = G * f; then h G £p.
'Xt 'Xt % 'Xt n

This lemma can easily be proved by the use of Holder inequality ap

plied to sequences (8).

Lemma 2

Let A(z) be the z-transform of a sequence A = {A.}n which maps
r\, tXj ^,1 U

J^ -v TRnxn and is in £1 . If
+ nxn

inf |det A(z)| > 0 (15)

then ^ J[A(z)] iis a sequence mapping J, •> IR and it is in £ .
v L 'Xj J • + nxn

For n = 1, this lemma follows from the observation that the inverse

00

of a sequence a = {a }_ with a ^ 0 (as a consequence of the assumption)

is also a one-sided sequence mapping J -*• TR; furthermore, by Wiener's

theorem (9), if aG£ and a(z) ^0, V|z| =1, its inverse ^~ |[a(z)] j
is also in £ . For n > 1, the result follows by using Cramer's rule and

the same reasoning.

Proof of Theorem 1

We shall prove it only for the time-varying case. The time-invariant

-17-



case follows directly from the fact K = K (a constant matrix) for all

i G J+.

First we prove the existence of a solution of (2). The sufficiency

is proved by direct calculation. From (3) we have successively

u = (I + Gn K ) ert
i\jO 'X, I/O *\X) 'XtO

u, = Gn K e + (I + G K-) e1 (16)
fXtl 'Xtl 'XjO *VO 'Xt 'XtO 'XtL 'Xtl

ki =%^-x-s $j Hi +(i +So h? Si
•

By assumption, matrices (I + G K±) are nonsingular for all iG J+, hence,

starting from the top, each equation in (16) can be solved (uniquely) for

e ,e19 ..., e. Therefore, det(J + G K ) 1 0, Vi G J , implies
>XtO 'Xtl 'Xtl fXt 'XtO 'Xtl T

that (2) has, for any^ u, at least one solution e : J+ •* TR .

Necessity is proved by contradiction. Suppose det(I + Gq K/) = 0

for some i G J., say m, then (I + G K ) has a nontrivial null space JO
+ J fXt 'XtO 'XJBl

and its range R has a dimension < n. If u is such that
m txjuk

f = (u - Y, G' , K, e.
fxm X'x.m ~Q 'un-l-j ^J ^3i

but f & 6i , then there is no vector e G TR which satisfies the mth
%m m 'xjn

equation in the family of equations in (16), i.e.

m-1

e (17)u = y G , . K. e. + (I + G K )
f\,m r^x 'vm—1—i *V] *Vj 'Xj 'XjO %m

J=0

-18-
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Therefore, in order that for any given input sequence u, the equation

e = u - G * (K e) has a sequence e : J. -»- TR as a solution, it is nec-
>Xt 'Xt 'Xt 'Xt 'Xt 'Xt +

essary that det[I + G K.] 4 0, Vi G J,.
J <Xt 'XjO 'Xtl +

Next we show that the solution e of (2) is unique. Suppose e and
'Xt ^

e are two solutions of (2); then, by subtraction, we have
'Xi

(e - e) = -G * [K (e - e)] (18)
fXj 'Xj *V> 'Xt 'Xj 'Xj

But referring to (16), it is seen that (18) can have a nontrivial solu

tion only if det(I + G K.) = 0 for some i G JL; this is ruled out by
•Vi 'XtO >Xtl +

assumption. Therefore uniqueness follows.

Proof of Theorem 2

(a) By the definition of z-transform and the system equations (1)

and (2) with K - K G TR being a constant gain matrix, we obtain imme-
>Xj 'Xj

diately the closed-loop z-transfer function between u and y:
'Xt r\,

H(z) = [I + G(z) K]"1 G(z) K (19)
'Xj IX, >\j *Xj *Xj 'Xt

'\> . . 'X, —

Since G(z) is analytic for Izl > 1 and hence det[I + G(z) K] is also ana-
ix, ' ' ix, fX, 'Xt

lytic for |z| > 1, by (6), H(z) in (19) is analytic for |z| > 1. To show
A oo n —1 *^ 1

that H = {H.}rt = 1 {H(z)} G £ , we consider two different cases.
'Xt M. 0 u >xt nxn

'Xt fXj

Case 1: R = 0. In this case G(z) = GA(z). Thus (19) becomes
*xj 'x, 'x, 'x.S.

H(z) = [I +G0(z) K]"1 G0(z) K (20)
fXt 'X, %Z fXt 'XtZ >Xj

-19-



By assumption, C^ Cl*^, dearly ^(G^*) K) G*nxtl and ^-1{[I +
G (z) K]j G £ . It follows from assumption (6) and Lemma 2 that
•xX »\, J nxn

yl{% +&<*> F1} G*ixn- consequently H&{&]" =̂ (HOO) £*nx„
because

is the convolution of two £ sequences, hence by Lemma 1 it is a £
nxn ux.li

sequence.

'X,

Case 2: R ^ 0 and R K is nonsingular. For this case G(z) =
i\, >x, '\» n, "Xt

Rfl - y~l) + G (z). Now we introduce the factor (l - z ) [T - z ")
'\,v ' '\/£

in (19) and rewrite H(z) as

H(z) = til - z ^[I +G(z) K]}~ \{1 - z"1) G(z) k]
•X, LV ' 'Xt 'X, 'X, J Lv *\» *v*J

= f(l +RK- z"1 I) +(1 - z"1) 6. (z) k!" [R K+ (1 - z"1) G(z) k]
lV\, >Xt 'Xj 'Xt K ' 'XjSL TiJ U -V V J 'Xtl 'Xt-i

- [^(z)]"1 |2(z, (2D

'Xj 'X,

where E,(z) and E_(z) represent respectively the two expressions in the
'\(1 m,2

brackets of (21). By assumption G G £ ;therefore ^ (E-U)} G £

and i"1{E0(z)} C £* . The desired conclusion that H = ^ {H(z)} G £
v <x,L nxn % 'o nxn

will follow if we show that °?}~ {[E.(z)]~ "I G £ ;by Lemma 2, we need
l <v»x j nxn

. 'Xt .

only show that inf det E-(z) > 0. Now
laltl °-

det E,(z) = detifl - z"1)[I + G(z) K]}
ry,l L 1> 'Xj 'Xt J

-20-
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_Kn ^
= (l - z ) det[I + G(z) K]

V ' % 'X, 'Xj
(22)

'Xj

In view of assumption (6), the only possible difficulty is that det ^(z)

might vanish at z = 1. To check its behavior at z = 1, we note from (21)
<x, _ _ ^

that E,(1) = R K. By assumption R K is nonsingular, hence det E (1) =
<\,1 iXt 'Xt 'Xt 'Xt ^'-L

— I ^ I
det RKiO. Therefore inf det E. (z) > 0. This completes the proof for

part (a).

(b) Since

y = H * u (23)
iX, 0. «\»

and H G £ , (b) follows directly from Lemma 1.
i\, n*n

(c) u G £°° implies y G £ is a special case of (b) with p = ».
% n /y, n

Therefore we need only to show that lim u = 0 implies lim y = 0. Now

from (23), we have

^m i=0

m

y = y; H . u,
o,m t~*L 'XtVi-1 'Xtl

(24)

Since lim u = 0 (by assumption), for any e > 0 there is an integer N (e)
t\ 111 £\ _ "

m-H«
iXjVL <\i

such that m £ N (e) implies

|u | < e (25)

Recall that H G £ , hence for any e > 0, there is an integer N (e) such
n. nvn" J nfx, nxn

-21-



that for m £ NH(E)

E lHtl < * <26>
i=m

Therefore for any i • 0, m > N (i ) + N (i.)» we have

m-N., m

|y I * E |H J |u,| + E IH .1 |u. (27)

Note that in the first summation, the argument of H varies from Nfl to m

and in the second summation, the argument of u varies from m - N^ = Ny to
CO , 1

m, thus by (25), (26), (27) and the facts that u G £n and H G £nxn, we

have for m > N (e) + Nu(e)
U n

y | ± 'cflul + IH|J (28)
^m1 V%,"» "'Xj 1'

Since t > 0 can be arbitrarily small, this shows that lim y = 0.
rj& >Xj

m-H»

(d) Since e = u - y and lim u = u , to show that lim e = 0 it
ixja ix,m rja. jq^o 'vjn v» m+co ,un <v

suffices to show that lim y = u . Now let u = (u_ - u ) + u = u + u
nHKO ;ym v» 'un ixjol ixtm v° 'Viin 'x,00

By linearity of H and (23), we have
'Xt

y = (H * u) + (H * uJ
^m v% *\, m 'x, >Xjx* ro

' = E H i «, + £ H. u (29)

Since "u G £°° and lim u = 0, it has been shown in (c) that lim (H * u) = 0.
^ n ix$l ix, S, Vm %

m-*» m-*»
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Consequently, we have

lira y = lim (H * u J = Y. II. u = u (30)
m>.«. m>». i=0

ai

H. = H(l) = 1 as can be seen from (21)
. rt ^1 'Xj 'Xt
1=0

Proof of Theorem 3

>Xj

Assumption (ii) guarantees that G(z) is well defined and analytic
"Xj

outside some sufficiently large disk. Assumption (i) guarantees that the

closed-loop impulse response is uniquely defined. From (iii) and the

Laurent series expansion theorem applied to the matrix-valued function

'Xj
%H(z) (10), for any z such that |z| > p, H(z) is represented by
'Xj ^ ^

-iH(z) = £ H, z <31>
i=0 **

where the power series converges absolutely. Hence, for any $ G (p,l),

-iE |H.| 3"1 < - (32)
i=0 ^

Since each term of this series is positive, it follows from inequality

(32) that each term is smaller than some number b, and inequality (10)

follows.

Proof of Theorem 4

Transform the given system S.. (Fig. 2) into the system S, shown in

-23-



Fig. 3, where

H = {H<>n = ^"1{g(z)[I +G(z) K]"H (33)
'Xj 'X.IO U L'Xj 'Xt 'Xt 'Xt J

>Xt

K = {K.}~ = K - K (34)
'VL 0 % 'Xt

e = e + K w (35)
*X, 'V, i\j 'X,

y = y - K w (36)
'\, iX, 'Xt 'Xt

and u, w remain unchanged. It.is easy to see that system S.. and system
*X. iXt ^'-L

1L have the same input-output pairs (u,w). Hence the solution of the
'X/l 'x* *x>

system "S- is well defined if and only if the solution of the system S^

is well defined. Therefore by Theorem 1, assumption (13) implies that

det [I + H i] O, ViG J . Since K= {K.}" G £1 ,lim K =0 and
•x, %o 'vi + «u 'v.i 0 nxn £_*» 'Xtl 'x,

lim det[I + H K.] = 1. Hence inf |det[I + H K.]I > 0. Therefore there
i-^oo 'Xt 'X.O 'X/l iGJ. ^ ^o *x»i '

is a positive number X such that

sup II [I + H K.] 1|| = A « - (37)
. J\ " 'x, 'x,o '\,i u

1 °°
From assumption (14) and Theorem 2, H G £ , hence H G £ , consequent-

* 'x, nxn 'v nxn

ly h = sup |H.| < <". Now from Fig. 3, we have the system equation

w = H * (u - K w) = v-H*(Kw) (38)
tX, iXj KfXt *X» 'XT 'Xj 'Xj ^'Xj 'X/

i€U+

or equivalently

-24-



w
'vm

m

v - Y H . K. w'xm f^L 'xm-i »x,i '\,i

where v = H * u. Rewrite (39) as
iXt 'Xj 'Xt

or

(i + H K ) w =v
v<Xi 'XiO ,xm/ 'xm ,xm

m-1

- E
i-0

H . K. w.
ixM—1 <\>1 0»1

m-1

w = (i + H K )
ixxa y,x, 'XtO 'xjn-'

-1 v - Y H . K. w.
ry/Si *^> 'XJI-I ^1 *Vl

(39)

(40)

(41)

Taking the norm of both sides of (41), using (37) and the fact that the

H 's are bounded by h_-, we obtain

m-1

wj <- MvJ+Ah^ Eq Ifcl |wj

From a Bellman-Gronwall lemma type result for the discrete case (11,
%

lemma 2), which is easily proven by induction, we have

m-1

1-xm' •̂m' £*

(42)

(43)

Now using the following inequality (Ref. 12), which follows immediately

from the power series expansion of the exponential,

mm

IT (i+ kl) - exp E l*±l
i=o x \i=0

we obtain

-25-
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I»J £ *k.l + E exp

"' j=0AhM g^1)]^'^1 'fc' ^
* A 1

By assumption K = (K,) G £ , thus the exponential term inside the brac-
J ' »v, -\,i nxn

ket in (44) is a finite number; call it a. Then (44) becomes

m—1

|w | < X|v | + A\a £ \*i\ lvJ (45)1'xjn' ,'xJml H *j^* ' «x,i' lfx,ll

Now we shall consider two different classes of inputs:

A ,„ . v „°° ,_, A(a) If u G £°°, then v = (H * u) G £°° ; consequently v = sup |v | < «>.
' 'x, n 'x, % fx, n M JCT '^i1

Therefore for any m G J , we have from (45)

iGJ+

|w | < XvM + A2hMavM E |K,| < °° (46)1'vm' M MM rfn ''XjI '

because K G £ . Clearly (46) implies that w G £ .
nxn 'Xt n

(b) If u G £ , then u G £°°. It follows immediately from (a) above
fXt n 'x* n

that w G £ . Now go back to (38), since K G £ and w G £ , hence
'v n *x, nxn 'x, n

1 1 1
(K w) G £ . Recall that H G £ and v = (H * u) G £ ; therefore both

f\j iXt n ^ nxn <\, *v< *\# n

terms on the right side of (38) are in £ . Consequently w G £ and
n 'Xj n

lim w = 0.
r\jRl iXt

m-*»

Finally, we shall show that e and y also have the same properties. Now
'Xt i\,

A 00 00

from Fig. 3 we have y = K w. It is easy to see that w G £ implies y G £
r\, 'x, fx, *\, n i\j n

1 _ 1 1 «>
and w G £ implies y G £ because K G £ n £ .We can conclude the

•x, n /y, n ix, nxn nxn

same results for y from (36) and for e from the relation e = u - y (Fig.
iX, 'Xj 'Xi 'X, r\,

2).
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U + e

K G
>r

k

Fig. 1 Linear discrete feedback system S under consideration.

G is a convolution-type linear time-invariant subsystem
*Xj

and K is a (memoryless) time-varying gain, u is the in-

put and y is the output.
♦X/



u +

—*?
e

G
W

j

y
K

Fig. 2 System S. differs from system S by the interchange in

the order of the subsystems G and K. u is the input and
<x# <v» *\*

w is the output. (u,y) is an input-output pair of S if
f\, *V» 'x* *\>

and only if (K u, y) is an input-output pair of S-.



9

+ e

H
w

i i_

y A

K

Fig* 3 ^1 is obtained from S^'by a standard loop transformation.

Si anc* Si ^ave tne same input-output pairs.
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