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Abstract--For the scalar system of Fig. 1, with G linear and time in-
variant, and N1 nonlinear and memoryless, an easily applied sufficient
condition is derived which, for a periodic input, guarantees the exis-

tence of a periodic output of the same period. Error bounds for an

approximate solution for the output are also derived.

I INTRODUCTION

Some ingenious techniques have been used to find approximate periodic
responses for the nonlinear system of Fig., 1. Of these the best known
among engineers is the describing function method [1] which has many
desirable features for synthesis as well as analysis. On the negative
side, this method, along with most other approximate methods, suffers
from a lack of precision; in general, error bounds are not available and
there is no assurance that the approximate results are even qualitatively
correct.

Some attempts have been made to refine and justify some of these
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approximate methods [2-5]. Of these the contributions of Sandberg [4]
and Holtzman [5] are particularly important because in some cases they
obtain error bounds for the approximate solutions, as well as a rigorous
justification.

Both Sandberg and Holtzman consider versions of Fig. 1 and use
contraction mapping fixed point theorems as their basic tool. Sandberg
invokes a global contraction condition on the space of periodic real
scalar functions of time which are square integrable over a period. His
contraction condition (for a time-invariant system), involves only the
slope of the nonlinear characteristic N, and the frequency response
function of G, and may be tested in a simple direct way.

Holtzman uses a contraction condition which assures a contraction
mapping on the séace of continuous periodic vector functions of time
in a neighborhood of the approximate solution; the norm on this space
is the sup norm. The linear system may be, in the most general case, time-
varying and finite dimensional while the nonlinearity need only be dif-
ferentiable in a certain neighborhood of the origin. For this class of
systems Holtzman does not derive an explicit contraction condition compar-
able with Sandberg's. To test the condition requires considerable pre-
liminary analysis tailored to the specific problem at hand. Holtzman
does suggest the possibility of simplifying the analysis in the case of
scalar time-invariant linear systems.

The purpose of the present analysis is to adapt some of the best
features of both ahalyses. In particular our system may be infinite
dimensional, although for simplicity we assume scalar valued functions

of time; otherwise our assumptions are like Holtzman's. 1In this case a



contraction condition is derived which may be tested in a straightforward
way. If further, like Sandberg, we restrict our linear system to be time-
invariant, the contraction condition may be tested, without further re-
course to functional analysis, in terms of the frequency response func-

tion of G and the slope of the nonlinearity.

IT MATHEMATICAL BACKGROUND

We need the concepts of contraction mapping and Fréchet derivative
and their application in a particular way to Banach spaces. For the
convenience of the reader we include the familiar contraction mapping
theorem in metric spaces.

A more complete discussion of the following material can be found

in Kantorovich and Akilov [6].

Definition 1: Contraction Mapping

Given a complete metric space (X,d) and a closed set WCX, if the mapping
F:W > W is such that d(Fx,Fy) < rd(x,y) for all x,y in W and re(0,1),

then F is a contraction mapping on W.

Theorem 1. Contraction Thebrem in a Metric Space

Given a complete metric space (X,d) and a closed set W C X, if
F:W > W is a contraction mapping on W, then

a. There exists a unique x* in W such that x* = Fx*,

n-1

b. For any x in W, x* = 1im an, where F* = FF is the composition
n->o

of F and F' !,
c. d(x,x*) < lT%;I d(Fx,x) for all x in W, where r is the con-

traction constant for F on W.

Proof of Theorem 1 is in Kantorovich and Akilov [6] on page 627. The
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element x* is called a fixed point of F. There are several different
fixed point theorems. The contraction theorem is the only one which con-
tains an inherent bound on the distance from any particular point in the
set to the fixed point. Notice that it also contains a constructive

method for finding the fixed point.

Definition 2: Fréchet Derivative

Given the Banach spaces X and Y, and a mapping F:X - Y, the Fréchet

derivative of F at x, written F;, is defined such that

Flx + hz] - Fx
h ?

F;z = lim
h~>0

for all z ¢ X ,

where the convergence is uniform in z for all z in X such that ||z| < 1.
Notice that the Fréchet derivative F;:X + Y is a linear operator
and its domain is all of X.
The application of Fréchet derivatives to contraction mappings is
a consequence of the following lemma which is proved in Dieudonne [7]

on page 155.

Lemma 1:

Given Banach spaces X and Y, a mapping F:X - Y, and X, and X,

define S = {x = Axl + (1 - A)x2|0 S A g 1}. If F; exists for all x in

e X,

some open set containing S, then ||Fxl - szu < ]Ix1 - x2” zgg "F;".
Notice that the set S is simply a line segment connecting X, and X,.
It is clear from lemma 1 that if F maps X into X and[IF;” <r<l1
for all x ¢ X, then F is a contraction on X. It is not necessary that

"F;" < 1 for all x ¢ X, as the next theorem shows.



Theorem 2: Contraction in a Banach Space (Holtzman)
Given a Banach space (X, |+]|]) and a mapping f£:X » X, if
a. F:X + X has a Frechet derivative F; for all x ¢ X
b. there exists an xo ¢ X and f:R+ -> R+, non-decreasing, such that
IEzl < £(lx - xl) for a11 x € x
c. there exists an r € [0,1) such that f (I%;) < r, where
k 2 "FxO - xO"
then there exists a unique x* ¢ Q such that x* = Fx* where Q =
k
{% € )(lllx - xon < 3:3;}'.
The proof follows Holtzman and is included as a convenience to the

reader.

Proof:

For all x e Q, ”F;" < f("x - xou)

f ()

fr<l

1A

A

For any x , x, ¢ 2, "Fx1 - Fx2" "xl - x2" :gg ”F;“

IA

T = - x|l

For any x e Q, [|Fx - xoﬂ < ||Fx - Fx, + Fx - x0”

7Y

B - x|+ [[Bx, = x|
srix- x|l + k

k
() +x

k_
1-r ‘

IA

A

Therefore Fx ¢ Q and hence F:Q + Q. Since ”Fx1 - Fx2” <r ”x1 - xzﬂ
for all xl, x2 € Q, F i8 a contraction on @, a closed set in a complete

metric space. Hence by Theorem 1 the result is immediate.



This theorem is important since it gives a method for finding the
set Q on which F is a contraction. Notice that the distance from the

to the fixed point is less than or equal to X .

given point x -1

0
Lemma 2:

Given Banach spaces X and Y, if F:X + Y is a bounded linear map,
then F; = F for all x ¢ X.

The proof follows from a straightforward application of the defi-

nition.

Lemma 3:
Given Banach spaces X, Y and Z, if F:X -+ Y is Fréchet differenti-
able at X, and G:Y > Z is Fréchet differentiable at Y, = Fxo, then

GF is Fréchet differentiable at x, and (GF); = G! F!

0 0o Yo %o

IITI APPLICATION TO A NONLINEAR SYSTEM

The system (S) to be considered is shown in Fig. 1 subject to the
following assumptions. Let Cw be the set of all continuous periodic
0
functions, R + R, with period T = 2n/w . Assume the norm | x| 8 sup |x(t)].
teR

With this norm, Cm is a Banach space.

0
Assumptions
S1. The inputs u, and u, € Cwo.
S2. G is a bounded linear operator mapping Cw into itself.
0
S3. N, is a map of Cw into itself such that yl(t) = p(t)n(el(t)),
0
where p(t) & Cm » and the function n:R > R is everywhere
0
differentiable.

Although it seems plausible, it does not necessarily follow from the



assumptions that the functions inside the loop, i.e., €15 €5 ;> and ¥,
belong to Cmo. The purpose of the following discussion i1s to find suffi-
cient conditions assuring that this is the case.

The starting point for the analysis is Theorem 2, the contraction
mapping theorem by Holtzman.

For the present problem we let X = Cm0 and use the sup norm. We
next identify the map F. Referring to Fig. 1 and Assumption S3, note

that

e, () = u,(®) +p®afs (®) - y,®) . w

Considering y, as an input, and e, as an output, define an operator N

2
such that e, = Nyz. N is specified by (1) and from Assumptions S1 and

S3 it may be seen that N maps Cw into itself.
0

The composition of operators GN also maps Cm0 into itself, by vir-
tue of Assumption S2, and, referring again to Fig. 1, y, = GNyz. By asso-
ciating y2~with X, and GN with F, it is apparent the theorem is relevant
to the question of whether y2 € Cwo; if so, it follows that e Yo and
e, are also elements of Cwo.

While one may attempt to satisfy Holtzman's conditions for each
particular system considered, it is the goal of the present analysis to
find an equivalent condition which may be used without further recourse
to functional analysis.

To apply Theorem 2 to the case at hand, the Fréchet derivative of

GN is needed. By lemmas 2 and 3,(GN); = GN;. Consider then the follow-

ing lemma concerning N;, the Fréchet derivative of N evaluated at x.



Lemma 4:
Given the operator N:e, = Ny,, as defined by Eq. (1) and subject

to Assumption S3, then for all x C Cw
0

Il = max lpen' (s (o) - x(0))|

dn(¢)
dg

where n'(§) =

Proof of Lemma 4:
By definition, the Fréchet derivative at x is the linear map with

the property that for all z

(N' 2 (t) = lim(N[x + hz] - N") (t)
X h+0 h

where the convergence is uniform in z for ||z|| < 1. Using the definition

of N given in (1)

' 1 N - - - -
(Nx z)(t) Lin h[uz(t)-l-p(t)n(ul(t) x(t) hz(t)) u, (£) p(t)n(ul(t) x(t))]

n(ul(t) - x(t) - hz(t}) - n(ul(t) - x(t))
hz(t)

= 1lim p(t) z(t)
h~+0

= p(t) n'(ul(t) - x(t)) z(t) .

By Assumption S3, n' exists and therefore the convergence is uniform

in z for ||z|| < 1. Now by definition



"N;” sup max I(N; z)(t)l

lzlF1 ter

= sup max |[p(t)n"(u,(t) - x(t))z(t)]
llzF1 ter (% )

= max |[p(t)n'(u (t) - x(t))]| .
teR ( ! )

This completes the proof of lemma 4.

We are now in a position to state and prove Theorem 3, which is

the main result of the paper.
Theorem 3:

Let X, € Cw be an approximate solution for x = GNx. Assume there

0
exist constants y and k, y 2 max [pCt)] - Jle]l, and k 2 lenx, - x,|. If there
te
exists an r ¢ [0,1) such that
crvew @l s+l & o

then there exists a unique function x* ¢ Q such that x* = GNx*, where

k
Q = ;x € CNO:"x - x0" 2 15 ; .

In the theorem, ]Gl refers to the operator norm of the linear operator

G on the space C .
Yo

Proof of Theorem 3:

By lemmas 2 and 3,Athe mapping GN, of Cw into itself, has a Fréchet
0
derivative equal to GN; for all x C Cw . Let
0



£(z) = vy max {In'(p)l:lpl < "ul” + ”x0||+ z}
+ + . .
then f maps R into R and is nondecreasing. Also,
lone |l < el fne

= lle]l max lp(en’ (u, (&) - x(t))l (2)

IA

llell max |p(e)| max {In"@):lo] < flu I + 1x]I}

A

Y max {In'(o)|:|p| < luy I + ”xou +lx - xoll} 3)

]

(llx - x, 1)

Here, in line (2) use was made of lemma 4, and in line (3) the identity x =
X - X + X, and the triangle inequality was used.

Now, according to (I) of Theorem 3

Then according to Theorem 2 there exists a unique x* ¢ Q such that
x* = GNx* and ”xo - x| < I§; . This completes the proof of Theorem 3.
The following points are to be noted regarding Theorem 3.
1. Since x* ¢ @, which is the set of all points within a k/(1-r) radius

of X,» an error bound on the approximate solution is provided if the

theorem is satisfied.
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2. If y|n'(p)| is less than 1 for all p,then inequality (I) is globally

satisfied and X, may be chosen arbitrarily with the assurance that the

iterative procedure, x = Gan, converges to a fixed point x*. There

n+l

is therefore one and only one solution of (S) in Cw
0
3. If (I) is not satisfied globally, it is important to pick a good

first approximation x_, both in order to satisfy the inequality (I) and

0°
to insure a small error bound. In this case although there is a unique
fixed point in 9 there may be other solutions to (S) in Cé\ 2, the
complement of R2. ’
4, Once the approximate solution X has been selected, GNx0 can be
calculated. Then k is simply a bound for |(GNxo)(t) - xo(t)l.
5. If YIn'(O)I 2 1 inequality (I) cannot possibly be satisfied.
6. There is a simple graphical method to determine if there is an r
which satisfies inequality (I) and if so to find its best (minimum) val-
ue. Fig. 2 shows two curves plotted in an r - p half-plane. For a
given system, plot y|n'(p)| v.s. p and

p = % [“u1"'+ "xo" + -I§; v.s. r20
As shown in Fig. 2, draw the lowest horizontal segment between the walls
of the "potential-well" such that the y|n'(p)| curve lies on or below the
segment; this specifies the minimum r, which satisfies the inequality (I).
r. also satisfies inequality (I), but will give a larger error bound than

2

). Neither r, or r, satisfy inequality (D.
7. This paper deals with the scalar case for ease of exposition. The

arguments carry over to the case of vector valued functions with essentially
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no change. If the norm

Izl = max sup |xi(t)|
i=l...n ¢t
is used, the graphical interpretation of the resulting inequality in Theorem

3 is only slightly changed.

IV TWO CLASSES OF LINEAR SYSTEMS

In Theorem 3, the only restrictions on G were that it be linear and
map Cw into itself. We now restrict our attention to linear time in-

0
variant systems. Such systems have an input-output relation of the form

c0

x(t) = z(t) +f g(t - t)e(r)dr , V¥Vt =20 (4)
0
where e[o’w) is the input, x[O’w) is the output, z[o’w) is the zero input
response and g(_°° ) is the impulse response.
’

The two sided Laplace transform of g is

0

G(s) =f g(t)e 3t at (5)
Notice that the symbol G is used for the mapping and G(s) for the Laplace
transform of g.
Since we are interested only in inputs and outputs in Cw » we shall
0
henceforth consider all functions to be defined on (-w,).

We shall be interested in systems which have an initial state such

that G maps Cw into itself. We want G defined such that if e and x are
0

-12-



in Cw and have Fourier coefficients En and Xn respectively, then Ge = x
0 .
implies X = EnG(jnwo). Therefore we shall consider only systems which
can be represented by the input-output relation
T
x(t) = %f g*x(t - t)e(t)dr , VteR (6)
0

where g*:R + R satisfies the following assumptions:
Gl. g*eL}o,T]
G2. g* has period T
G3. The nth Fourier coefficient of g* is G(jnwo).
Under these conditions it is shown in Theorem Al of Appendix A that
1. G maps Cw into itself

0
2. If e and x are in Cw and have Fourier coefficients En and Xn’

0
then Xn = EnG(jnwo)
1 (T
3 del = 3 [ lero]ae

Convolutions of the form (6) are discussed in detail in Kaplan [8] for the
case when both g* and e are periodic and piecewise continuous.
We now consider two common cases in which such a periodic response

function g* can be defined.

Case 1

This is the class considered by Sandberg [4], except that he used
the L2 norm.

Assume

1. geLi

2. x = Ge means

-13-



©

x(t) = / g(t - ©)e(t)dr , VteR 7

-00

Comparison of (7) with (4) shows that we are considering the system

to be in a state at t = 0 such that

0
z(t) = f g(t - 1)e(r)dr , Vt=>20 (8)

-0

Under these conditions it is shown in lemma Al of Appendix A that

the convolution in (6) is equivalent to the convolution in (7) when

[+

T E g(t + nT) , VteR (9)

n=-—ow

ne>

g*(t)

Theorem A2 of Appendix A establishes that g* defined by (9) has the

required properties Gl, G2, and G3 and

o

lel < / e [t (10)

00

Case 2

It is well known that even if the impulse response g does not belong.
to Lé periodic responses to periodic inputs are possible. For example
consider the unstable linear system described by y(t) - y(t) = cos wt; the
particular integral is defined and is of the form A cos(wt + 6). From a
mathematical point of view there is no difficulty in picking an initial

state such that the transient is suppressed and hence, for this well

-14-



chosen initial state, G maps a periodic input (i.e. cos wt) into a periodic
output.

More generally, if the input is an element of Cw ,» with Fourier com-
0

ponents En the particular integral for the linear system is in the form

-]

jnwot
E G(jnwo)En e

n=—~

and the condition

-]
E |G(jnm0)| < ®

=—00

is sufficient to insure its existence. Again, in the usual case, there
is no difficulty in finding an initial condition which suppresses the
transient.

Assuming

E l6(inw)| < = (11)

£ 00

and defining

©0

jnwot
E G(jnwo) e , VteR (12)

n=-—

g*(t)

it is shown in Theorem A3 of Appendix A that g* has the required properties

and
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lell < _zo; |6 (inwy) | (13)

Kaplan [8] provides a table for the easy computation of g* when
G(s) is rational. A few entries from the
table are given in Appendix B. Due to a slight difference in definition,
our table differs from Kaplan's by a factor T.

It is useful to know that when G satisfies the assumption of both
cases 1 and 2, the two convolution operators are identical; i.e. for

almost all teR

- - jnwot
g*(t) = E g(t + nT) = E G(jnwo) e . (14)
N=-=00 n=—w

In this case g* may be computed from either expression.

V EXAMPLE

Consider the system in Fig. 3, where u(t) = cos 2t, y(t) = be3(t),

and G is the map satisfying
X+5x =y (15)

The corresponding impulse response g is sinusoidal so it is not an
element of Lé. Therefore the conditions of Case 1 are not satisfied.

Asgociated with the differential equation (15) is the transfer function

1

G(s ——
(8) s2 + 5

-16-



so (11) is satisfied. Therefore the periodic response function g% can be

defined by (12) in Case 2. To calculate g* we use the table in Appendix B.

T sinV5 t - sinV5 (t - w)

g*(t) =
2vV5 1 - cosV5
= 2.04 sin (/5 t + 1.20) (16)
By direct calculation
T
lell = -,},-] lg*(t)]de = 1.54 (7)
0

so let y = 1.54 in Theorem 3.
We next find an approximate solution, x03 for the system in Fig. 3.
Try a solution in the form xo(t) = A cos 2t, and use the method of har-

monic balance to find A.

io + 5x° = -—4A cos 2t + 5A cos 2t
= A cos 2t
(Nxo)(t) = beg(t) = b[cos 2t - A cos 2t]3

= b(l - A)3 cos3 2t

- %b(l - 8)3(3 cos 2t + cos 6t)  (18)

-17-



Balancing the fundamental requires
3 3
A = Z-b(l - A)° . : (19)

Note that there is always a unique real solution for A. If b is positive
there is a solution in (0,1). If b is negativé, there is a solution in
(1,=).

We next calculate k = "GNxo - xoﬂ. Nx is given in (18) and GNx  may
be most easily found by using the property regarding Fourier components

under the map G. We find.

GNxo = %-A (3 cos 2t - é%- cos 6t) . (20)
hence
GNx - x = - ;L-A cos 6t , (21)
o o 93 ‘
and

o< dal (22)

93 °

Next the question of the existence of an r € [0,1) is investigated
by using the graphical test illustrated by Fig. 2.

Since n'(p) in the present case is 3bp2, the graph of y|n'(p)| is a
parabola and for b sufficiently small the required r may certainly
be found.

As a specific numerical example let b = 0.08. Then A = 0.0510, k =

5.43 x 10~%, and r = 0.352 is approximately the smallest value of r

-18-



satisfying inequality (I). By Theorem 3, there is a function x* ¢ Cw
.0
satisfying x* = GNx* and

k
1-1r

= - x Il < = 8.40 x 107" (23)
The maximum instantaneous error between the approximate and true solution
is 8.40 x 107" which is only 1.65% of the amplitude of X .

It may be noted that with r much smaller than 1 a grosser estimate
for r would not appreciably increase the error bound. It may be simpler,

then, to use

as an upper bound for y or even to find an upper bound for y'. If this
is done in the present case we find y' < 2.6 (rather than y = 1.54) and
correspondingly |x - x*|| < 18.1 x 107%,

Comment 3 following the statement of Theorem 3 applies to this ex-
ample. Thus the theory does not exclude other possible solutions which

satisfy ||x - xOH > 8.40 x 107",
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APPENDIX A

The purpose of this appendix is to establish the consequences of the
properties of the periodic response function.g* and to show that the func-

tions defined in Cases 1 and 2 satisfy the assumptions Gl, G2 and G3 on g*.

First we establish the consequences of the properties of g*.

Theorem Al.

Given g*:R -+ R satisfying
1. g* e Ll
Gl & ¢ Lo,
G2. g* has period T = 2n/uw,

G3. The nth Fourier coefficient of g* is G(jnmo).

Define G such that Ge = x implies
T
x(t) = %f g*(t - 1)e(r)dr
0
then
1. G maps Cw into itself
0
2, If e and x are in Cw and have Fourier coefficients
0
En and X, then X = EnG(jnwo)
T
1
3. el = Tf |g*(t)|dt
0
Proof:

1. First notice that for e ¢ Cw R
0

-20-



T

x(t) f g¥(t - t)e(t)dr
0

]
=

t-T
- -%f g*(e)e(t - £)d
t
T
= %f g*(E)e(t - £)dg (24)
0

Now we show that e € Cm implies x is continuous.
0

T T

|x(t + 8) - x(t) | %f gt(t)e(t + 6 - 1)dr - %f g*(t)e(t - 1)dt
0 0

T
f g*(r)[e(t +6-1) - e(t - r)]dr
0

1
=

In

T
%f |g*(t)|dr +  max le(t + 6 - 1) - e(t - 1)
0 1¢[0,T]

(25)

The right hand side of (25) goes to zero as § goes to zero since e
is continuous. Therefore x is continuous.

Now we show that e ¢ Cw implies x is periodic with period T. By (24),
0

T
x(t +T) = -%—f g*(T)e(t + T - 1)dr
A .
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T

f g*(t)e(t - T)dt
0

= x(t)

1
3|

Therefore x € C  and G maps C_  into itself.
wg Wy

2. By definition,

:’N
1
=
c§""5
L]
”~~
[nd
N
o
e
g
~t
o
(a4

T T
-jnmot

= %f -%-f g*(t)e(t - 1)dt | e dt
0 0

1 T T ~Jnw T —jnw  (t-1)
= T—2f g*(’[)e e(t - T) e drdt
0 0
1 T —Jnw T T ~Jnw, (t-1)
= 71‘7[ g*(t)e f e(t - t)e dt]drt (26)
0 0
1 T -jnwor
= —,ff g*(t)e dr + E_ 27)
0
= G(jnwo)En

The change of order of integration in (26) is justified by Fubini's
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theorem, since

T T -jnw,T -jnw, (t-1)
g*(1t)e e(t - 1)e drdt
0 0
T T
= [ f lg*('r)e(t- T)ld‘tdt
0 0
T T
< max |e(t)|/ [ |g*(t) |drdt
t
0 0
< o
3. By definition,
T
lell = suwp suwp |z | g*(re(t - v)dr
lelfx ¢ |7,
esCm
0
T
< sup sup %—f lg* (1) |dT - |le]|
NN
ecC
Yo
T
=7 f |g*(0) |dr (28)
0

To show that the reverse inequality also holds, pick any teR and let
(-]
{en} be a sequence of functions in C_ with |leT|| = 1 for each n and
t n:l wo t

such that for almost all t ¢ [0,T]

-23-



ep (t - 1) —> sgn g*(1) (29)

Then Ie: (t - T).g*(r)l < Ig*(t)] for each n, g*eL%o T]? and
’
e: (t - 1)g*(1) -;rb-lg*(r)l for almost all t € [0,T], so by the Lebesque

dominated convergence theorem,

T T
f e: (t - t)g*(r)dr ?f |g* (1) |dr (30)
0 0
Now by definition,
T
fle|l = sup sup %f g*(t)e(t - 1)dt
"e“=l t 0
eeC
w

0

For any given t ¢ R, e: e C and Heﬁ” =1, so

T
lell > %f g*(1) ep (t - 1) dr (31)
0

Comparing (31) and (30),

T
lell = %f |g* (1) |dv (32)
0

Comparing (28) and (32)

T
1
el = T] |g*(e) |at
0

‘This completes the proof of Theorem Al.
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Before proving Theorem A2, a lemma is required.
Lemma Al:
If v:R + C is a bounded periodic function with period T and

g:R > R is in Li, then

o T K
1. [ |g(t)|dr = [ Zlg(r + nT) |dt
—oo 0

) T o .
2. f g(t)v(t - t)dt = f E g(t + nT)]v(t - 1)dt
- 0

n=—cw

Proof:

1. First notice that

2

© nT+T
f g(t)v(t - t)dr [ g(t)v(t - 1)dr
- n=-o Y nT

]

® T
= Z[ g(t + nT)v(t ~ T - nT)dr
n=-o Y0
© T
= Z[ g(t + nT)v(t - 1)dt (33)
n=-o Y0

The fact that v has period T was used in (33). Proceeding similarly,
[} © T

. f lg('r)v(t - 'r)ld'r = E f |g(-r + nT)v(t - T)Id't (34)

n=-» Y0
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Now for any given t ¢ R, define fN:[O,T] + R such that

N
£,(1) = E lgCc + aT)v(t - )] (35)

n=-N

Then {fN};_l is a monotonically increasing sequence of functions,
1
and fNEL[O,T] for each N.

Also

T

f fN(T)dT
70

N

T
[ E |g(r + nT)v(t - 1)|dT

n=-

2

0
N
= Z / |g(t + nT)v(t - 1)]|dr

=

=]
=z

© T
5' Z Ig(r + nT)v(t - T)Id't
n=—°)
= [ [g(T)v(t - 1)]dr
< ® (36)

(34) was used to establish (36). By the monotone convergence theorem
A
for functions in L[O,T] (see Williamson [9], page 62), f = %}iz fN is in

1
L[O,T] and
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T
lim fN(T)dT = [ f(t)dr
¥ Jo 0

© T T L
Z / |g(t + nT)v(t - 1)|dt = [ E [g(t + nT)v(t - 1) |dt
0 0

n=-o

=00

Choosing v(1) = 1 for all T € R establishes Part 1.

2. For f defined above to be in L! s
[0,T]

must be finite almost everywhere. Now for the same t used in the defini-

tion of fN in (35), define hN:[O,t] + C such that

N
hy() = ) glc+aDv(e - 1) @a7)

n=-N

1 1
Now hy € Lyg 195 |hy ()| < £(1) for each N and £ ¢ Lig,T]> S° by the

Lebesque dominated convergence theorem,

T

lim d
N+w./: hN(r) T

T

1lim d
J[ tim hN(r) T

i.e.
) T T )
Z [ g(t + nT)v(t - 7)dT = [ Z g(t + nT)v(t - 1)dr
n=-= JQ 0 n=—

(38)
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Finally, using (33) in (38)

00 T )
c f g(t)v(t - 1)dt = f Z g(t + nT)v(t - v)dr
-00 0 =0

This completes the proof of lemma Al.
We can now prove that g* defined in (9) in Case 1 has the required

properties.

Theorem A2:

If g e Lé and g* is defined by (9), then

Gl. g* ¢ L!
&% € “o,T1]

G2. g* has period T

G3. The nth Fourier coefficient of g* is G(jnwo)

and in addition

00

el < _f o) |at

=00

S~

Proof:

Gl. By definition,

gH(E) = T ) g(t +am)

n=~o

so,

T

f |g*(t)|dt
. , 0

T L
f TZg(t-i-nT) dt
0

n=-—o
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1A
-3
Iy
~~
[a;
+
=]
3
A
o
t

(39)

I
=

1]
~
aJ
A
.
ot

Lemma Al was used in (39) to justify the interchanging of summation and

integration.

«©

T E g(t + T + nT)

S e=00

G2. gk(t + T)

o

T Eg(t + naT)

]

(]

g*(t)

G3. By definition the nth Fourier coefficient of g*

1 T -jow,t
= T g*(t)e dt

0
T oo

1 -jnmot
= TJ' T E g(t + nT)e dt

0 n=-—co
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® —jnwot
f g(t)e dt (40)

]

G(jnwo) (41)

-jnw,t
Lemma Al was used in (40) with v(t) = e and (5) was used in (41).

4. By Theorem Al,

ol %f % (00|t
0

T ©
= %f T E g(t + nT) |dt (42)
0

n=-—o

A

T ©
f Z |g(t + nT) |dt
0

n=-—o

@

f |g(t) |at (43)

-0

0

The definition (9) of g* was used in (42) and lemma Al was used in
(43). This completes Theorem A2.
Now we prove that g* in Case 2 as defined in (12) has the required

properties.
Theorem A3:

If g* is defined by (12), and (11) is satisfied, then
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1
Gl. g* ¢ L[O,T]

G2. g* has period T

G3. The nth Fourier coefficient of g* is G(jnuw,)

and in addition

Proof:

Let fN:[O,T] + R be defined by

N

jnwot
fN(t) = E G(jnwo)e

=N

Then fN e C for each N. By (11),
@y

oo

E IG(jnmo)I

n=-o

is finite so'{fN};_l is a Cauchy sequence in the Banach space C, - There-
- 0

fore g* is in Cw s S0 g% has period T and is in L}O ] This proves both
0 ’

Gl and G2.

G3. By definition

o0

jnwot
g*(t) = E G(Inw de

n=-—o0o

and g* is in Lio T]° so its nth Fourier coefficient exists and is clearly
’

G(jnwo).
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4, By Theorem Al, and the definition of g* in (12)

T

%f lg*(t) |at

0

llell

T ©

-,}-,f Z IG(jnwo)ldt

0 n=-o

in

co

= ) loGnay)|

n=-w

This completes the proof-of Theorem A3.

Finally we establish that Cases 1 and 2 are consistent.

Corollary:

If g € Li and

-]

z IG(jnwo)l < ®

n:—oo
then
[+ ] o
jnwot
z g(t + nT) = Z G(jnwo)e
n=-o =00

for almost all t € R.

-32-
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‘Proof:

Let

£(t) = Z g(t + nT)

and

-]

jow t
ht) = Z Cinu tde

Se=00

By Theorem A2, the nth Fourier coefficient of f is G(jnmo). By Theorem
A3, the nth Fourier coefficient of h is G(jnwo). Therefore £ = h almost
everywhere.

This concludes the proof of the corollary.
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APPENDIX B

If G(s) is a rational function of s, it may be easy to find

> jonw t
g*(t) = Z G(jnwo)e 0

= -0

The technique is similar to that used in finding inverse Laplace trans-

forms,

First expand G(s) in partial fractions, then replace s with jnwo getting

v
m i
a

G(jnwy) = 2 E 12 7 (45)

i=1 g=1 (nwy - o)

Each term in (45) has an inverse transform of the form

a -1 a4 T
ig 3 e i
gik(t) = [ ]

T(g - 1)! aai'l

Finally,

m Vi
g () = 3 3 gk (o)

i=1 g=1

Notice that the assumptions on G require (jnm0 - ai) # 0 for all integers n.
. For convenience, some common special cases are given in Table 1. This

table is a partial reproduction of Table 4.4 in Kaplan [8]. Due to a

slight difference in definitions, he does not have the multiplicative fac-

tor T.
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Table 1

*
Gy (3nuy) g}, (t)
1 T ot
jow. - o oT
0 1 -
1 oot [ oT
R — T t+ T
(jnwo - a)2 1 - oT 1 - aT
! 8 £ 0 T eat[sin Bt - e®T sin B(t - T)]
2 2’ B 2aT aT
(Gouwy - @) + 8 1+e - 2¢ = cos BT
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