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Abstract—For the scalar system of Fig. 1, with G linear and time in

variant, and N nonlinear and memoryless, an easily applied sufficient

condition is derived which, for a periodic input, guarantees the exis

tence of a periodic output of the same period. Error bounds for an

approximate solution for the output are also derived.

I INTRODUCTION

Some ingenious techniques have been used to find approximate periodic

responses for the nonlinear system of Fig. 1. Of these the best known

among engineers is the describing function method [1] which has many

desirable features for synthesis as well as analysis. On the negative

side, this method, along with most other approximate methods, suffers

from a lack of precision; in general, error bounds are not available and

there is no assurance that the approximate results are even qualitatively

correct.

Some attempts have been made to refine and justify some of these
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approximate methods [2-5]. Of these the contributions of Sandberg [4]

and Holtzman [5] are particularly important because in some cases they

obtain error bounds for the approximate solutions, as well as a rigorous

justification.

Both Sandberg and Holtzman consider versions of Fig. 1 and use

contraction mapping fixed point theorems as their basic tool. Sandberg

invokes a global contraction condition on the space of periodic real

scalar functions of time which are square integrable over a period. His

contraction condition (for a time-invariant system), involves only the

slope of the nonlinear characteristic N, and the frequency response

function of G, and may be tested in a simple direct way.

Holtzman uses a contraction condition which assures a contraction

mapping on the space of continuous periodic vector functions of time

in a neighborhood of the approximate solution; the norm on this space

is the sup norm. The linear system may be, in the most general case, time-

varying and finite dimensional while the nonlinearity need only be dif-

ferentiable in a certain neighborhood of the origin. For this class of

systems Holtzman does not derive an explicit contraction condition compar

able with Sandberg*s. To test the condition requires considerable pre

liminary analysis tailored to the specific problem at hand. Holtzman

does suggest the possibility of simplifying the analysis in the case of

scalar time-invariant linear systems.

The purpose of the present analysis is to adapt some of the best

features of both analyses. In particular our system may be infinite

dimensional, although for simplicity we assume scalar valued functions

of time; otherwise our assumptions are like Holtzman1s. In this case a
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contraction condition is derived which may be tested in a straightforward

way. If further, like Sandberg, we restrict our linear system to be time-

invariant, the contraction condition may be tested, without further re

course to functional analysis, in terms of the frequency response func

tion of G and the slope of the nonlinearity.

II MATHEMATICAL BACKGROUND

We need the concepts of contraction mapping and Frgchet derivative

and their application in a particular way to Banach spaces. For the

convenience of the reader we include the familiar contraction mapping

theorem in metric spaces.

A more complete discussion of the following material can be found

in Kantorovich and Akilov [6].

Definition 1: Contraction Mapping

Given a complete metric space (X,d) and a closed set WC X, if the mapping

F:W -> W is such that d(Fx,Fy) < rd(x,y) for all x,y. in W and re(0,l),

then F is a contraction mapping on W.

Theorem 1. Contraction Theorem in a Metric Space

Given a complete metric space (X,d) and a closed set W C X, if

F:W -J- W is a contraction mapping on W, then

a. There exists a unique x* in W such that x* = Fx*.

b. For any x in W, x* = lim Fnx, where Fn = FF11"1 is the composition
n-*»

of F and Fn_1.

c. d(x,x*) < [ji^l d(Fx,x) for all xin W, where ris the con
traction constant for F on W.

Proof of Theorem 1 is in Kantorovich and Akilov [6] on page 627. The
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element x* is called a fixed point of F. There are several different

fixed point theorems. The contraction theorem is the only one which con

tains an inherent bound on the distance from any particular point in the

set to the fixed point. Notice that it also contains a constructive

method for finding the fixed point.

Definition 2: Fre*chet Derivative

Given the Banach spaces X and Y, and a mapping F:X -»- Y, the Fre"chet

derivative of F at x, written F1, is defined such that

r.? i., F[x + hz] - Fx _F'z = lim -*• r-J , for all z e X ,
X h-K) h

where the convergence is uniform in z for all z in X such that ||z|| < 1.

Notice that the Fre*chet derivative Ff:X ->- Y is a linear operator

and its domain is all of X.

The application of Fr^chet derivatives to contraction mappings is

a consequence of the following lemma which is proved in Dieudonne [7]

on page 155.

Lemma 1:

Given Banach spaces X and Y, a mapping F:X •* Y, and x and x e X,

define S={x = \*1 + (1 - X)x2|0 <X$ l}. If Fx exists for all x in

some open set containing S, then ||Fx - Fx || < ||x - x || sup ||F! |f.
12 12 xeS x

Notice that the set S is simply a line segment connecting x and x

It is clear from lemma 1 that if F maps X into X and |[Ff || < r < 1

for all x e X, then F is a contraction on X. It is not necessary that

llFxll K1 for a11 x e X, as the next theorem shows.
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Theorem 2: Contraction in a Banach Space (Holtzman)

Given a Banach space (X, ||«||) and a mapping f:X •+ X, if

a. F:X •+ X has a Frechet derivative Ff for all x e X
x

+ +
b. there exists anx e X and f:R -* R , non-decreasing, such that

||r|| <£ f(||x- xQ||) for all x eX
c. there exists an re [0,1) such that fI-—) <r, where

k£||Fx0 -xj

then there exists a unique x* £ ft such that x* = Fx* where ft =

{xeX| Hx-xJU^}.
The proof follows Holtzman and is included as a convenience to the

reader.

Proof:

For allx e ft, ||f;|| * f(||x-x0||)
< f

< r < 1

For any ^, x£ e ft, flF^ - Fxg || <||Xi - ^ || sup ||F^|

* r K " X2II
For any x e ft, ||Fx - xQ || <||Fx - Fx + Fx - x ||

*||Fx- Fx0|| +||Fxo - x0||

^ r ||x - xj| + k

(&)
k

0

< r [•—-) + k

•* 1-r "

Therefore Fx e ft and hence F:ft •+ ft. Since ||Fx - Fx || < r ||x - x

for all x , x eft, F is a contraction on ft, a closed set in a complete

metric space. Hence by Theorem 1 the result is immediate.
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This theorem is important since it gives a method for finding the

set ft on which F is a contraction. Notice that the distance from the

given point x to the fixed point is less than or equal to rr^— .

Lemma 2 z

Given Banach spaces X and Y, if F:X •*• Y is a bounded linear map,

then Ff = F for all x e X.
x

The proof follows from a straightforward application of the defi

nition.

Lemma 3;

Given Banach spaces X, Y and Z, if F:X -* Y is FrSchet differenti-

able at x and G:Y -»• Z is Frgchet differentiable at y = Fx , then

GF is Frechet differentiable at xA and (GF)' = G1 F1 .
0 xo y0 X0

III APPLICATION TO A NONLINEAR SYSTEM

The system (S) to be considered is shown in Fig. 1 subject to the

following assumptions. Let C be the set of all continuous periodic

functions, R -»• R, with period T = 2-n/m , Assume the norm ||x|| = sup |x(t)
teR

With this norm, C is a Banach space.
w0

Assumptions

51. The inputs u, and un e C .1 2 Uo

52. G is a bounded linear operator mapping C into itself.
w0

53. Nx is a map of C into itself such that y,(t) = p(t)n(e (t))

where p(t) e C , and the function n:R ->- R is everywhere
w0

differentiable.

Although it seems plausible, it does not necessarily follow from the
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assumptions that the functions inside the loop, i.e., e., e_, y , and y.

belong to C . The purpose of the following discussion is to find suffi-

cient conditions assuring that this is the case.

The starting point for the analysis is Theorem 2, the contraction

mapping theorem by Holtzman.

For the present problem we let X = C and use the sup norm. We

next identify the map F. Referring to Fig. 1 and Assumption S3, note

that

e2(t) = u2(t) +p(t)n(u1(t) -y2(t)) . (1)

Considering y as an input, and e as an output, define an operator N

such that e2 = Ny2» N is specified by (1) and from Assumptions SI and

S3 it may be seen that N maps C into itself.
0

The composition of operators GN also maps C into itself, by vir-

tue of Assumption S2, and, referring again to Fig. 1, y = GNy . By asso

ciating y with x, and GN with F, it is apparent the theorem is relevant

to the question of whether y^ e C ; if so, it follows that e, , y,, and
2 a) 1 1

e are also elements of C

2 "o
While one may attempt to satisfy Holtzman1s conditions for each

particular system considered, it is the goal of the present analysis to

find an equivalent condition which may be used without further recourse

to functional analysis.

To apply Theorem 2 to the case at hand, the Frgchet derivative of

GN is needed. By lemmas 2 and 3, (GN)* = GNf. Consider then the follow-

ing lemma concerning Nf, the Fre"chet derivative of N evaluated at x.
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Lemma 4:

Given the operator N:e2 = Ny2, as defined by Eq. (1) and subject

to Assumption S3, then for all x C C

||Nx|| = max |p(t)n'(Ul(t) -x(t))

where n' (?) = ^ifl .

Proof of Lemma 4:

By definition, the Fr6chet derivative at x is the linear map with

the property that for all z

(N'z(t) = lim(Ntx +hz] -Nx\
v x b+0 V h /

where the convergence is uniform in z for ||z|| < 1. Using the definition

of N given in (1)

(Nx Z)(t) =j£m h[U2(t) +P(t>n(u1(t) -x(t) -hz(t)) -u2(t) -p(t)n(Ul(t) -x(t))|
n(Ul(t) -x(t) -hz(t)j -n(Ul(t) -x(t))

hz(t)

lim p(t)
h-K)

= p(t) n»u,(t) - x(t) z(t) .n^Ul(t) -x(t))

z(t)

By Assumption S3, n' exists and therefore the convergence is uniform

in z for || z|| < 1. Now by definition
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llN'H = sup max |(n'z)(t)|
X z =1 teR V X 7

sup max |p(t)nl(u1(t) - x(t))z(t)
z||=l t£R v '

|p(t)n'(Ul(t) -x(t))| .max

teR

This completes the proof of lemma 4.

We are now in a position to state and prove Theorem 3, which is

the main result of the paper.

Theorem 3;

Let xQ e C be an approximate solution for x = GNx. Assume there
0

exist constants y and k, y = max |p(t)| •||g||, and k * |GNxn - xJ . If there
teR ° 0'

exists an r e [0,1) such that

r SYsup j|n'(p)|>|p| SHuJ +flxj + £[ (I)

then there exists a unique function x* e ft such that x* = GNx*, where

0 =JxeC^llx-xJs £j .

In the theorem, |g| refers to the operator norm of the linear operator

G on the space C
0

Proof of Theorem 3:

By lemmas 2 and 3, the mapping GN, of C into itself, has a Frgchet
(0
0

derivative equal to GN1 for all x C C . Let
X 0)

0
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f(z) = ymax {|n»(p)|:|p| <HUJI +IIXJI+ z}

+ +
then f maps R into R and is nondecreasing. Also,

gnx||<||g||||n;|

=||G|| max |p(t)n»(u1(t) - x(t)) | (2)

<||G||max |p(t)| max{|n'(p)|:|p| <||u. || + ||x||}
teR ^

<Y»x{|n'(P)|:|p| <flu, || +||xj +||x - xQ ||} (3)

-f(||x-x0||)

Here, in line (2) use was made of lemma 4, and in line (3) the identity x =

x - x + x and the triangle inequality was used.

Now, according to (I) of Theorem 3

r > f (A)

Then according to Theorem 2 there exists a unique x* e ft such that

x* =GNx* and ||xo - x*|| < j^ . This completes the proof of Theorem 3.

The following points are to be noted regarding Theorem 3.

1. Since x* e ft, which is the set of all points within a k/(l-r) radius

of x , an error bound on the approximate solution is provided if the

theorem is satisfied.
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2. If yI^'(P)| is less than 1 for all p,then inequality (I) is globally

satisfied and x may be chosen arbitrarily with the assurance that the

iterative procedure, x . = GNx , converges to a fixed point x*. There

is therefore one and only one solution of (S) in C
0

3. If (I) is not satisfied globally, it is important to pick a good

first approximation x , both in order to satisfy the inequality (I) and

to insure a small error bound. In this case although there is a unique

fixed point in ft there may be other solutions to (S) in C \ ft, the

complement of ft.

4. Once the approximate solution xQ has been selected, GNx can be

calculated. Then k is simply a bound for |(GNx )(t) - xQ(t)|.

5. If Y|nl(0)| = 1 inequality (I) cannot possibly be satisfied.

6. There is a simple graphical method to determine if there is an r

which satisfies inequality (I) and if so to find its best (minimum) val

ue. Fig. 2 shows two curves plotted in an r - p half-plane. For a

given system, plot Y|n'(p)| v.s. p and

=*[ki+ki+ £] v.s. r £. 0

As shown in Fig. 2, draw the lowest horizontal segment between the walls

of the "potential-well" such that the Y|nf(p)| curve lies on or below the

segment; this specifies the minimum r which satisfies the inequality (I),

r also satisfies inequality (I), but will give a larger error bound than

r.. Neither r or r satisfy inequality (I).

7. This paper deals with the scalar case for ease of exposition. The

arguments carry over to the case of vector valued functions with essentially
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no change. If the norm

max sup x.(t)
i=l...n t i

is used, the graphical interpretation of the resulting inequality in Theorem

3 is only slightly changed.

IV TWO CLASSES OF LINEAR SYSTEMS

In Theorem 3, the only restrictions on G were that it be linear and

map C into itself. We now restrict our attention to linear time in-
0

variant systems. Such systems have an input-output relation of the form

a

Ix(t) = z(t) + I g(t - x)e(T)dx , Vt > 0 (4)

0

where erQ «,) is the input, x,Q . is the output, z,Q . is the zero input

response and g, ^ ^ is the impulse response.

The two sided Laplace transform of g is

/G(s) = I g(t)e"St dt (5)

Notice that the symbol G is used for the mapping and G(s) for the Laplace

transform of g.

Since we are interested only in inputs and outputs in C , we shall

henceforth consider all functions to be defined on (-«>,«>).

We shall be interested in systems which have an initial state such

that G maps C into itself. We want G defined such that if e and x are
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in C and have Fourier coefficients E and X respectively, then Ge = x
wQ n n

implies X = E G(jna>n). Therefore we shall consider only systems which
n n u J

can be represented by the input-output relation

x(t) = •= I g*(t - x)e(x)dT , VteR (6)Tl
where g*:R -*• R satisfies the following assumptions:

Gl. S*eL|0)T]
G2. g* has period T

G3. The nth Fourier coefficient of g* is G(jnu) ).

Under these conditions it is shown in Theorem Al of Appendix A that

1. G maps C into itself

2. If e and x are in C and have Fourier coefficients E and X .
Wq n n'

then Xn = EnG(jno)0)

3- I|G||= \ £ |g*(t)|dt
Convolutions of the form (6) are discussed in detail in Kaplan [8] for the

case when both g* and e are periodic and piecewise continuous.

We now consider two common cases in which such a periodic response

function g* can be defined.

Case 1

This is the class considered by Sandberg [4], except that he used

the L2 norm.

Assume

1. gel^

2. x = Ge means
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o

/x(t) = / g(t - x)e(x)dx , VteR (7)
—00

Comparison of (7) with (4) shows that we are considering the system

to be in a state at t = 0 such that

,0

z(t) = / g(t - x)e(x)dx , Vt > 0 (8)/

Under these conditions it is shown in lemma Al of Appendix A that

the convolution in (6) is equivalent to the convolution in (7) when

g*(t) = T > g(t + nT) , VteR (9)E
n=

Theorem A2 of Appendix A establishes that g* defined by (9) has the

required properties Gl, G2, and G3 and

oo

||G|| < J |g(t)|dt (10)

Case 2

It is well known that even if the impulse response g does not belong •

to L* periodic responses to periodic inputs are possible. For example

consider the unstable linear system described by y(t) - y(t) = cos ait; the

particular integral is defined and is of the form A cos (tot + 0). From a

mathematical point of view there is no difficulty in picking an initial

state such that the transient is suppressed and hence, for this well
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chosen initial state, G maps a periodic input (i.e. cos ait) into a periodic

output.

More generally, if the input is an element of C , with Fourier com-

ponents E the particular integral for the linear system is in the form

and the condition

00

jn«i)0t
G(jno)0)En e

n=-»

00

/ J |G(jno)0)| < »
n=—oo

is sufficient to insure its existence. Again, in the usual case, there

is no difficulty in finding an initial condition which suppresses the

transient.

Assuming

and defining

00

/] |G(jnu)0)| < » (11)
n=-°°

g*(t) = > G(jno)n) e , VteR (12)
(T

n=-°°

it is shown in Theorem A3 of Appendix A that g* has the required properties

and
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l|G|| < 2|G(jnW())| (13)

Kaplan [8] provides a table for the easy computation of g* when

G(s) is rational. A few entries from the

table are given in Appendix B. Due to a slight difference in definition,

our table differs from Kaplan's by a factor T.

It is useful to know that when G satisfies the assumption of both

cases 1 and 2, the two convolution operators are identical; i.e. for

almost all teR

g*(t) = J* 8(t + nT) = 7. G(jna>0) e • (14)
n=-oo n=-°°

In this case g* may be computed from either expression.

V EXAMPLE

Consider the system in Fig. 3, where u(t) = cos 2t, y(t) = be3(t),

and G is the map satisfying

x + 5x = y (15)

The corresponding impulse response g is sinusoidal so it is not an

element of Li. Therefore the conditions of Case 1 are not satisfied.

Associated with the differential equation (15) is the transfer function

6(8) = 1
s2 + 5
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so (11) is satisfied. Therefore the periodic response function g* can be

defined by (12) in Case 2. To calculate g* we use the table in Appendix B.

7r sinVB" t - sin\/5" (t - it)
g*(t) =

2\/5 1 - cosVF TT

= 2.04 sin (VTt + 1.20) (16)

By direct calculation

T

||G|| =± f |g*(t)|dt =1.54 (17)
0

so let y = 1.54 in Theorem 3.

We next find an approximate solution, x , for the system in Fig. 3.

Try a solution in the form x (t) = A cos 2t, and use the method of har-
J o

monic balance to find A.

x + 5x = -4A cos 2t + 5A cos 2t
o o

= A cos 2t

(Nx )(t) = be3(t) = b[cos 2t - A cos 2t]3

= b(l - A)3 cos3 2t

= j b(l - A)3(3 cos 2t + cos 6t) (18)
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Balancing the fundamental requires

3A - |b(l -A)3 . (19)

Note that there is always a unique real solution for A. If b is positive

there is a solution in (0,1). If b is negative, there is a solution in

(1,-).

We next calculate k = II GNx - x ||. Nx^ is given in (18) and GNx may
" o o o u

be most easily found by using the property regarding Fourier components

under the map G. We find

hence

and

GNx
o
=|A(3 cos 2t - -jj- cos 6t\ , (20)

GNx - x = --^ A cos 6t , (21)
00 93

k - M . (22)

Next the question of the existence of an r e [0,1) is investigated

by using the graphical test illustrated by Fig. 2.

Since nf(p) in the present case is 3bp2, the graph of Y|nf(p)| is a

parabola and for b sufficiently small the required r may certainly

be found.

As a specific numerical example let b * 0.08. Then A = 0.0510, k =

5.43 x lO"**, and r = 0.352 is approximately the smallest value of r
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satisfying inequality (I). By Theorem 3, there is a function x* e C

satisfying x* = GNx* and
0

"x*" xo'l - r^T = 8-40 x 10"lf (23)

The maximum instantaneous error between the approximate and true solution

is 8.40 x 10""\ which is only 1.65% of the amplitude of x .
o

It may be noted that with r much smaller than 1 a grosser estimate

for r would not appreciably increase the error bound. It may be simpler,

then, to use

00

nss-oo

as an upper bound for y or even to find an upper bound for y'• If this

is done in the present case we find yt < 2.6 (rather than y = 1.54) and

correspondingly ||x - x*|| < 18.1 * 10"1*.

Comment 3 following the statement of Theorem 3 applies to this ex

ample. Thus the theory does not exclude other possible solutions which

satisfy ||x - xj| > 8.40 x lO"1*.

-19-



APPENDIX A

The purpose of this appendix is to establish the consequences of the

properties of. the periodic response function g* and to show that the func

tions defined in Cases 1 and 2 satisfy the assumptions Gl, G2 and G3 on g*

First we establish the consequences of the properties of g*.

Theorem Al.

Given g*:R -»- R satisfying

Gl. g*eI.l[0>T]

G2. g* has period T = 2tt/w0

G3. The nth Fourier coefficient of g* is G(jnoj ).

Define G such that Ge = x implies

T

x(t) = h I g*(t - x)e(x)dx*/
then

Proof:

1. G maps C into itself

2. If e and x are in C and have Fourier coefficients

En and X , then X = E G(jnwJ
n n' n n J 0

T

3- ||G|| = i f |g*(t)|dt

1. First notice that for e e C ,
<°0
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1

x(t) =y r g*(t - x)e(x)dx

t-T

- -*jf g*(S)e(t - £)d€

T

(S)e(t - C)d5

Now we show that e e C implies x is continuous.

x(t + 6) - x(t)| =

1

g*(x)e(t + 6 - x)dx

(24)

g*(x)e(t - x)dx

T

| g*(T)[e(t +6-x) -e(t -x)]dx

* Y| |g*(T)|dT max |e(t + 6
xe[0,T]

- x) - e(t - x)

(25)

The right hand side of (25) goes to zero as 6 goes to zero since e

is continuous. Therefore x is continuous.

Now we show that e e C implies x is periodic with period T. By (24),
W0

x(t +

°= n
g*(x)e(t + T - x)dx
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1

g*(x)e(t - x)dx

= x(t)

Therefore x e C and G maps C into itself,
a)

X
n •*r

'0 wo

2. By definition,

-jna)0t
x(t)e dt

t r

" ¥1 *JL g*(x)e(t - x)dx
-jnu)rtt

e dt

T T

H I
-jnw x -jnw (t-x)

g*(x)e e(t - x) e dxdt

0 "0

r

-jna,0x
g*(x)e

1

T

• if.
-jna)Qx

(x)e dx

G(jnU())En

-jnw (t-x)
e(t - x)e dt

n

dx (26)

(27)

The change of order of integration in (26) is justified by Fubini's
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theorem, since

ff
-jnw0x -jnw0(t-x)

g*(x)e e(t - x)e dxdt

ff |g*(x)e(t - x)|dxdt

< max |e(t)|
t ffJ0 JQ

g*(x)|dxdt

< 00

3. By definition,

IMI = |i fP sup b I

=1 t in
sup

II-h
eeC

0).

J'
P sup - I£ sup

II •"
eeC

Jo

|g*(x)|dx

g*(x)e(t - x)dx

g*<T)|dT • || 61|

(28)

To show that the reverse inequality also holds, pick any teR and let
00

fefc} be a sequence of functions in C with I! e^ II *= 1 for each n andI tJnssl M 0). " t"

such that for almost all x e [0,T]
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n

et (t " t) ~n*" sgn 8*(t) (29)

Then |e* (t -x) g*(x)| <|g*(x)| for each n, g*eL1ro -, and
e£ (t -x)g*(x) -^ |g*(x)| for almost all te[o,T], so by the Lebesque
dominated convergence theorem,

I n

J et (t - x)g*(x)dx *-/.* "•(x)|dx (30)

Now by definition,

G = sup

lie
eeC

(0

|i rp sup - I

=1 ' Jn
0

g*(x)e(t - x)dx

For any given t e R, e£ e C and ||e^|| =1, so

G > I*/I •'O

(x) en (t - x) dx

Comparing (31) and (30),

Comparing (28) and (32)

l|G|| > TF I |g*(x)|dx
0

J0

This completes the proof of Theorem Al.
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Before proving Theorem A2, a lemma is required.

Lemma Al:

If v:R -*• C is a bounded periodic function with period T and

g:R -»- R is in jJL then

Proof:

L

L1. I lg(x)|dx = / 2j|g(x +nT)|dx
•'O n=-oo

g(x)v(t - x)dx = i: y^ g(x +nT)
n=-oo

1. First notice that

» -nT+T

g(x)v(t -x)dx = V^ I g(x)v(t -x)dx
n=-oo •'nT

00 T

v(t - x)dx

v(t - x - nT)dx• ^ / g(T +nT)
n=—oo Jq

oo T

n=-oo J o

g(x + nT)v(t - x)dx (33)

The fact that v has period T was used in (33). Proceeding similarly,

/'
oo X

|g(x)v(t - x)|dx = }a I |g(x + nT)v(t - x)|dx (34)
n=-oo •'O
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Now for any given teR, define f :[0,T] -*• R such that

N

Vt) = ]C '8(t +nT)v(t" t)' (35)
n=-N

Then |fNf is a monotonically increasing sequence of functions,

and fNeL|0 ,for each N.

Also

,T „T N

/ fN(x)dx = / ^ |g(x +nT)v(t - x)|dx
Jo '0 n=-N

N „T

|g(x + nT)v(t - x)|dx•2/n=-N J0

oo t

|g(x + nT)v(t - x)|dx
n=-oo Jq

/: |g(x)v(t - x)|dx

< - (36)

(34) was used to establish (36). By the monotone convergence theorem

for functions in Lrn , (see Williamson [9], page 62), f = lim f„ is in

Llo,T] and
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i.e.

,T x •

f VT>dT • f
J0 J0

lim / fM(x)dx = / f(x)dx

?] J ls<T +nT)v^ -T)|dx - / ^ |g(x +nT)v(t ~x)|dx
n=-oo ^o •'n n=_oo

Choosing v(x) = 1 for all x e R establishes Part 1,

2. For f defined above to be in l[ ,,

^ |g(t +nT)v(t -x)|
n=-oo

must be finite almost everywhere. Now for the same t used in the defini

tion of fN in (35), define h^fO.t] -* C such that

N

hN(x) » 2^ S<T +nT)v(t -x) (37)
n=-N

Now h^ el[0>t], \\M\ <f(x) for each Nand feLJ0 T], so by the
Lebesque dominated convergence theorem,

/ VT>dT =[
Jo Jo

J£/_ VT>dT = / ^VT>d'

i.e.

^ rT /-T •^ / g(x +nT)v(t - x)dx =1 ^ g(T +nT)v(t - x)dx
n=-oo «/o -/q n=-«

(38)
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Finally, using (33) in (38)

0

J
X

;(x)v(t -x)dx = f yj g(x +nX)v(t -x)dx
0 n=-»

This completes the proof of lemma Al.

We can now prove that g* defined in (9) in Case 1 has the required

properties.

Theorem A2:

If g e U and g* is defined by (9), then

G1- 8*sl|0>t]
G2. g* has period T

G3. The nth Fourier coefficient of g* is G(jna) )

and in addition

00

*• IIGII * j |g(t)|
Proof:

61. By definition,

dt

g*(t) = T^ g(t +nT)

so,

n=-oo

T x °°

j ig*(t>idt = r t ^2
n=-°

-28-
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X oo

<TI ^J |g(t +nT)|dt
0 n=-°°

= T I |g(t)|dt (39)/
< 00

Lemma Al was used in (39) to justify the interchanging of summation and

integration.

00

62. g*(t +T) = Ty g(t +T+nT)
n=-°°

00

= T > g(t + nT)

n=-«

= g*(t)

63. By definition the nth Fourier coefficient of g*

T -jnwQt
g*(t)e dt•*J[

X oo
-jnw t

dt=YI TTJ 8(t +nT)e
0 n=-°°
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c

J
-jnw0t

g(t)e dt

= C(jnw0)

(40)

(41)

-jnw0t
Lemma Al was used in (40) with v(t) = e and (5) was used in (41)

4. By Xheorem Al,

ugh =±r i8*(t)idt
''o

x

=YJ T^ g(t +nT)
0 n=-«

X oo

- I s '8(t +nT)ldt
0 n=-»

0

•/ g(t)ldt

dt (42)

(43)

The definition (9) of g* was used in (42) and lemma Al was used in

(43). This completes Theorem A2.

Now we prove that g* in Case 2 as defined in (12) has the required

properties.

Theorem A3:

If g* is defined by (12), and (11) is satisfied, then
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Gl. «*«l[1o.T]

62. g* has period T

63. The nth Fourier coefficient of g* is G(jnu)Q)

and in addition

4. ||61| <^2 lG^nwo}
n=-«

Proof:

Let fN:[0,T] + R be defined by

N A
G(jnu0)e

n=-N

Then f e C for each N. By (11),
^0

00

£
n=-oo

C(jna)0)

is finite so {fN)!!= is a Cauchy sequence in the Banach space C . Xhere-

fore g* is in C , so g* has period T and is in L* „,. This proves botho)0 [0,T] v
61 and 62.

63. By definition

Ejnw t
G(jn<o0)e

n=-oo

and g* is in L,Q T,, so its nth Fourier coefficient exists and is clearly

G(jna>0).
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4. By Xheorem Al, and the definition of g* in (12)

IIell =y f lg*Mdt
"'o

T ~

0 n=-»

jn(u0t
C(jna)0)e

X oo

«*J[ I 6(jno)n)|dt
0 n=-«=

•I 6(jnwn)

n=-<»

dt

This completes the proof of Theorem A3.

Finally we establish that Cases 1 and 2 are consistent

Corollary:

then

If g e Li and
R

£ |G(jnu)0)| <
n=-oo

jnw0t^ g(t +nT) = T^ G(jn(o0)e
n=-oo n=-oo

for almost all teR.

-32-
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Proof:

Let

and

f(t) = ^ g(t +nT)
n=-°°

h(t) = ^ 6(jn<o0t>
jncoyt

n=-oo

By Theorem A2, the nth Fourier coefficient of f is G(jna)0). By Theorem

A3, the nth Fourier coefficient of h is G(jna)Q). Therefore f = h almost

everywhere.

This concludes the proof of the corollary.
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APPENDIX B

If G(s) is a rational function of s, it may be easy to find

jnu>0t
g*(t) = ^ G(jna)0)e

n=-oo

The technique is similar to that used in finding inverse Laplace trans

forms.

First expand G(s) in partial fractions, then replace s with jncon getting

v.
m 1

i±is«*»o> - Z Z)
i=l A=l (jna)0 " ai>'

Each term in (45) has an inverse transform of the form

>t^
li* A-l

TU - D! act
A-l

,aiT

- oaiT1 - e

Finally,

m Vi

(45)

i-l 1=1

Notice that the assumptions on G require (jnwQ - a.) ^ 0 for all integers n.

For convenience, some common special cases are given in Table 1. This

table is a partial reproduction of Table 4.4 in Kaplan [8]. Due to a

slight difference in definitions, he does not have the multiplicative fac

tor T.
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6uCJn»0)

jna)Q - a

(jna)Q - a):

(jna)0 - a)2 + 32
, 3^0

Table 1

«!*<«

at

aT
1 - e

at aT

1 - e
aT

t + T

1 - e
aT

T eat[sin Bt - eaT sin 3(t - T)
3

-35-
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FIGURE CAPTIONS

Fig. 1. System (S)

Fig. 2. Testing Inequality (I)

Fig. 3. System of Example
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