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ABSTRACT

A number of extensions are made to the usual one-dimensional sheet

model for a plasma. The sheets, which lie in the y-z plane, are allowed

to move in the x-y directions, passing freely through one another. The

motion in the x direction produces the usual electrostatic field E , while

the motion in the y direction produces retarded radiation fields E and B
y z

which are included in the calculation. A static external magnetic field in

the z direction is included, and the smoothed-out stationary neutralizing

backround charge density varies with x.

Physical properties of this model are discussed. Expressions are

derived for the synchrotron radiation from a gyrating sheet and the thermal

radiation on the discrete space-time grid (used in the computer code).

Dispersion properties of electromagnetic waves in the hot magnetized slab

are discussed. Some peculiar aspects of the retarded radiation fields in

one dimension are reconciled with the retarded fields from an extended body

in three dimensions. The coupling of oscillations of the bounded slab to

the field outside is discussed.

A computer code has been written to follow the model in time from

some initial state. Measurements are presented and discussed of sheet drag

and of the spectrum of emitted radiation when the model is near equilibrium.
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I. Introduction

A great deal of information about the detailed kinetics of high temp

erature plasmas has been obtained in the last few years from simplified

models of plasmas which can be solved numerically on large digital computers.

Most of this has been done with one-dimensional models of bounded or periodic

plasmas, with no magnetic field. We would like to be able to extend these

useful techniques to study radiation processes and kinetic theory of

bounded magnetized plasmas. A model has been proposed (1,2) which includes

these effects for a simple geometry without losing too much of the

computational simplicity of the electrostatic sheet model. This work will

develop some of the basic properties of this model, and will discuss some

results of the calculations for near-equilibrium cases.
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II. Description and Basic Properties of the Model

V/e begin by describing the model in some detail.

11.1 The Geometry. The Electrostatic Fields.

V/e have a fixed smooth backround charge distribution -«-nQ(x). This

may be an arbitrary function, but in the work to be described here,

n„(x) = 0 for )x| >R
0 II.1.1

= n constant for |x|$ R

Charge sheets are placed in this system, with their faces normal to the x

axis. The quantities «• and m are the surface charge and mass densities

for a sheet. The sheets move in the x-y plane, passing freely through each

other and through or outside the backround charge. No collisional effects

of the type used in (3) are added at crossings. The electrostatic field

may be obtained from Poisson's equation

V£* r Hire f»(*/e) - »•(*>/ II.1.2

i

If the sheets are displaced from their electrostatic equilibrium positions

but remain inside the slab, each sheet experiences a restoring acceleration

-O? t (X-X.)
p p

where co = ^jtn^ar 7m and x^ is the equilibrium position for the sheet. Thus
p 0 0

the cold (noncrossing) oscillations consist of independent vibrations at

the local plasma frequency co . So far we have not departed from the usual
ST

sheet model, except perhaps for the boundedness. These sheet models have

been analyzed by several authors (*i-,5>6).

11.2 Addition of Static Magnetic Field.

We now add a static magnetic field, B , which lies in the plane of

the slab. In this work, this magnetic field will be uniform. For cold
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(noncrossing) electrostatic oscillations inside the slab we have

i , -Ul (*-*.)+ 4/c/ n 21a

y - - Uc X II.2.lb

where go =0*B„/(mc).
c 0

There is an immediate first integral of the sheet equations of motion

in the electrostatic case. We find that the y component of the sheet

canonical momentum m(y-ko x) is conserved. Alternatively, we can say that

the x component of the guiding center x =3c-Jy/o) is a constant. Note this
gc c

is also true in a hot plasma because 11.2.1b still holds during a crossing,

and is approximately true when radiation is included. Thus all sheets remain

within two or three Larmor radii of their original positions, since y

I 2*will not change by more than two or three times v = Jav v . This turns out

to be important in several connections later.

A solution of eqns. II.2.1 is

X U) ? X4 + •< «** tok-t -f ?'*C»tJk't

y(t) _ ym + ffS /_ * <*C» CJkt + P**» **y II.2.2

2 2 2
where ai = oj + a> and Ct, p, x and y depend on the initial conditions:

y* ryM- £$ x(*) -e £ (xA-x.)t

we can also write the position as

x =*«-•£ (y-9«)
y r y« + <*l X
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which shows that x and y are the non-oscillating parts of x and y.
a a

Thus the sheet motion is a constant "EXB" drift in the y direction

due to the average electrostatic force, superimposed on an elliptical

oscillation at the hybrid frequency ox , whose ratio of x and y axes is

Vv
Consider a uniform hot sheet plasma in which orbit phases are

randomly distributed and there are many crossings per oscillation period.

The electrostatic force remains small compared to the vxRs force, and is

no longer strongly correlated with sheet position. Therefore the average

sheet motion is nearly in circles at the cyclotron frequency. However let

us consider nQL sheets whose guiding centers lie in an interval of length

L, with center of mass at (x,y). This group exerts no net force on itself

through the electrostatic field. The acceleration of its center of mass due

to the backround charge and the magnetic field is -<*V~(x - ~n). The force

due to the electrostatic field of sheets not included in the group changes

2
by kit* every time an "outside" sheet crosses one of our group; the number

of sheets involved is *vn R = n v /cu and the average depth of inter-

penetration is *~Rr, so this acceleration of the center of mass is

op 7*0
~ (nJR_) tat<r~/(rV)Ijni) = Rt(D /L. If L is large, this latter acceleration is

unimportant and the center of mass moves in the same way as did a single

sheet in non-crossing motion. The amplitude of the center of mass oscillation

is small compared to R in this picture but can be significant if a long

wavelength wave is excited.

The dielectric function for an infinite uniform Vlasov plasma with a

Maxwellian velocity distribution and with fields varying as exp(i k»x - i a)t),

where k is perpendicular toL, is (the calculation is almost identical to

those in ref. 7 and 8 for point particle plasmas)
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x* )

The solutions of K =0 are sometimes called the Bernstein modes. Plots of

these solutions appear several times in the literature, see for example

ref. 9»
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II.3 The Model With Radiation

The radiation fields, like everything else, depend only on x and t.

The quantities v , E and B will remain zero if set so initially. Such

is the case in all these calculations. The complete set of equations to

be solved is then

f:+ c»' s"^J' ii3is
lit * 7* II.3-lbTx

jy(xJ*) = <r £ y,U) S(x-xtM) II#3>

fiy z. C £y - **' ^*
-X

£/ ' r <r ( ** +*o ) CPx+ *xcx) a

o

11.3.3a

11.3.3b

11.3.3c

together with II.1.1-2.

It is convenient to rewrite the radiation equationsII.3.1 in this

physically appealing manner:

e* s ±( e, + Bt) 11.3.5where

En and ET are the electric fields associated with right and left going

energy. We integrate these equations along their characteristics to get

the retarded solutions

x

F« -. I *S { 4*' 0, (x't -b-1 l*-*'0

from which we get

Er(xi) * - *Z \\d*'it' Ui-t'-l-lx-x'l) J,(x',i')
II.3-6
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For a single sheet J (x',f) =<r ya(t') J" (x'-x^t')) and these give

where t-t'=^ |x-x(t')| •We can understand this physically more easily
by considering a sheet of fjnite but small thickness A. According to 11.3-^

the rate of change of the radiation field E as it moves to the right is

2Er = -pjtj . The time taken for the radiation to cross the sheet is a/(c-v )
dt ""' y A

and the current inside the sheet is «-ty/A. Thus the change in ER is

--;Tt(flrvr/A )( A/(c-vr)) in agreement with II.3.7.

Consider a sheet with x «0. Then E =-2*Ay (t—|x-xs|)/c.The radiation

dmc on the sheet is «-E =--;Mr'"y /c leading to a velocity decay with
0 y R

e-folding time f =mc/(2rt«r ). This will be long compared to a plasma

period (<i> T = Xnk «/(v. ./c) . Note that co r -»e» as we go to the Vlasov
v N p r D th p r

limit nX^^ o« ).

Note that the radiation fields and the drag are proportional to the

velocity instead of the acceleration as is the case for a point particle

in 3-d. Perhaps a simple example will relieve the suspicion with which

this result is usually received. Consider a spherical shell of radius R

and total charge q=UitR ~«" . Let its center oscillate about the origin with

velocity v(t)^V sin cot. To first order in v/c the vector potential outside

the sphere is in the Lorentz gauge

- * * «• KR r

k= cj/c

from which
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In the limit R-»0 with <j constant we have the point particle result.

Now consider the magnetic field as R-»c* holding <f and r-R constant,

which approaches the case of an infinite sheet with an observer nearby.

P(X*) Z- VtT <T ?*£lt'>» ft* Jtn/cf / St'« (k*-Q*') ^kr*ffk*-**'))
* c *-»°° k* I k> 7 /

c

i'-. *- ^

The radiation field is proportional to the retarded velocity V sin cut*

and is the same as we get for an infinite sheet with normal r and at a

position r(r-R) from a point on its surface.

Also consider the radiation field energy as co-»oo .

-. -LJa,r<r ?*X.3.f
-r

again indicating velocity-proportional (oc V rather than cccoV) fields

when the shell is many wavelengths across.

B„ is the Biot-Savart field with retardation,
z
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II,4 The Dielectric Tensor and Wave Propagation

The cold fluid plasma dielectric tensor is

M?

IlA.l

The resulting dispersion relation is

II.4.2

The dielectric tensor for an infinite uniform Vlasov gas of sheets

with a Maxwellian distribution of velocities is (again following ref. 7

or 8) ,.

II.h.3

with K and X given by II.2.3. The dispersion relation is

0 =
K** K xy

Figures II.5-10 are solutions of this dispersion relation. There are

three cases shown, in which o> < 2cd , ai < 2a> <a> and co < 2co < oi .

These solutions have real co for real k for the same reason as in the

electrostatic case. The solutions are considerably more complicated and

numerous (there are normally 2 between adjacent cyclotron harmonics)

than those of the electrostatic relation and bear little resemblance to
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them except of course for the Bernstein modes which are almost

longitudinal at large k. The number of modes can be "explained":

involving J as well as J doubles the number of degrees of freedom
y x

and hence the number of modes. Then two more modes are added corresponding

to the transverse degrees of freedom.

One interesting feature in common with the electrostatic case is that

no solution ever crosses any harmonic of the cyclotron frequency, including

the first (fundamental). This leads to interesting behavior at a harmonic

which the solution of the cold plasma dispersion relation does cross. The

hot solution comes very close to the harmonic and then turns sharply off

to k=0 on one side of the harmonic and k=«* on the other, keeping very

close to the harmonic (frequencies closer than .OOlo) to a harmonic are

not shown in figures II.3*8. See figures II.9-10). These waves are

circularly polarized and interact strongly with the plasma because the

frequency is so near an exact resonance of the particle motion.

The dispersion relation has also been solved when a relaxation term

-yf_ has been added to the Vlasov equation (Appendix I). The results

are unsurprising. Two new modes near a>=0 are added. For real k the modes

near harmonics are damped at nearly the relaxation rate v> due to the

wave energy being mostly in the particles. The spatial damping rate is

very large for these modes, as may be inferred from the argument that a

wave packet is temporally damped at the rate Im a> while moving with the

(very small) group velocity. Another argument is that if k=kQ, co=m.-iV

is a solution of the dispersion relation then so is ks*kn+i^/(^ej/ik)j

ci>=<d0.
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II.5 Single Sheet Synchrotron Radiation

Let us calculate the radiation from a single gyrating sheet, with

ys - - V S/» (Jc*
The corresponding current density is

The resulting radiation electric field is from II.3.6

£,(*,*) r2w* £ frx'tfSfc-t'^lx-x'l)**

c ) c */«

We now place the observer outside the sheet's orbit, i.e. Jx/>/v/cd |,

whence

£y (x «) .- 2ir<rgj«' S(*-UiL -*'*£*•" WxiV. «*«'; /«» «*.«'
In terms of frequency

£y (xcj) I )dt e Ey (*,*)

Using the identity e*M (i*H**) * <L ^^ c we get

£r(x,u) z (?ir)*i<rZ. £ «*/,f </. &«.<£j Jpfr{«.»)tf*'-*««>)n.5.i
or

£y f*,t) ~- ^£ I Jf fr^W)''»>"« ft- (*>) II.5.2

This derivation is simple mathematically and contains no approximation

but it obscures the physics somewhat. To see the two effects which

contribute equally to the 2nd harmonic emission, we go back to eqn. 11.3*7•



-12-

Consider the case x>/v/co_L for which sgn(x-x )sl
C' s

r U>c (t -*-) +* *<»["<(*-*) +%•""" u* *']

Now we can write

z 2ir<r * s,'»CJc (*-*-) [i +£ car 6/< ft-^jj*^ &(£P

One of the brackets is due to the oscillating phase in y , the other is
s

from the denominator in II.3.7* We see both make the same contribution

to this approximation. We get

fy (x,*) r27T<r £j"/,;, CJC (t -Z) -*• £ XiV, 2UC (t -£)1 + 0(g)*
which is consistent with II.5.2.

The time averaged Poynting flux is

K(*,*> =£ V s,*U> -- **-*c[(?)\ (£)«]
The terms are associated with frequencies cd and 2a> respectively,

higher harmonics are neglected. The total radiation rate, after averaging

over aMaxwellian velocity distribution, is W^ s2wtf**c/ (&)\y (—k) 1

orX }& zlJ-^l 1+ ** (-k)X ) ^is expression also holds for a group

of sheets radiating incoherently.

-/
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II.6 Thermal Equilibrium of the Radiation Field

Let us consider first the continuum case. If we take a vacuum of

length L with perfectly conducting walls, there will be independent

standing waves with wavelength X-^ and frequency f^.

\ - ?± - £-

In unit frequency interval there are 2L/c modes. Associated with each

mode and our one polarization, there is an energy 0 divided between

the electric and magnetic fields. We find for the energy density U

dU= — df f>0

The net flux in one direction at some point is 0df since half goes

each way.

This classical result suffers from the usual "ultraviolet

catastrophe" due to the infinite number of degrees of freedom of the

continuum. We will see that classical statistics works fine for our

discrete system with its finite number of degrees of freedom.

The fields K. and E are given at N discrete points in space,

separated by Ax=l/n. The energy in the radiation field is

sir o (. J

•fir o

We see immediately that we have 2N degrees of freedom and that in thermal

equilibrium

*£ El ' £- y5 ^:i

This says nothing about the frequency and wavelength properties of the

radiation. It is convenient to define



-14-

With perfectly conducting walls at both ends, the radiation evolves

according to

with k defined modulo 2N. We now define

whence

which separates the fields into independent modes sinusoidal in space

and time. The frequency of mode 1 is lc/(2L) and the wavelength is 2L/l.

Only half the HL are independent; since E. is real, E, = Ep„ ... The

radiation energy may be rewritten

W

iation energy may be rewritten

so the energies in the various frequencies are

0 for f- 0 a*d f* rfi

The spectrum of the radiation is, for large L

do . 1* <ff o <: f < —
c 2AX

r o otktruAst
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2AX

The total energy density is Idf ^ = — as we found earlier.
0

The physical meaning of the Nyquist frequency c/(2Ax) = l/(2At)

is that any frequency above the Nyquist frequency is indistinguishable

from some frequency below the Nyquist frequency. In all the computer

runs a^At/^jt) < .008.
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II.7 Remaining Theoretical Problems

In this section we relate some difficulties encountered in attempting

a theoretical description of the kinetic theory of this system.

A powerful tool in the kinetic theory of plasmas is the dressed test-

particle picture; see e.g. reference 9 for many applications. Let us see

what happens when one tries to do such a calculation for this system. One

begins by finding the current density due to uncorrelated unscreened sheets

moving in the unperturbed fields. If we consider a system without boundaries

these unperturbed orbits are circles described at the cyclotron frequency.

Because we have no space variation parallel to the imposed magnetic field,

there can be no Doppler shift even if the sheets do move parallel to this

field, and thus the only frequencies present in the current density of the

unscreened test sheets are the cyclotron frequency and its harmonics. One

then goes on to calculate the linear response of a Vlasov gas to this

current density which, because of the linearity, will also only contain

frequencies which are the cyclotron frequency and its harmonics. This will

be true for all quantities derived by such methods, such as the spectrum

of electrostatic field fluctuations.

For comparison let us calculate the spectrum using the fluctuation-

dissipation theorem, which gives (ref. 9, eqn. h.jk)

tic * J"r *r*
P 1

where 0=mv~ . The quantity Im K~ (with K given by 1.2.3) appears at
*un xx xx

first glance to be zero for real k and o>, but it can have terms S(to- Oi(k))

* -1
at the roots of K =0, which are real , and will still satisfy K K =1.

XX XX XX

The correct result, obtained by the causality requirement that K~ be
XX
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analytic in the upper half (a plane (or by adding a little damping) is

* u-i ,t > / , • i _ r S(cj-*jj(k))

The fluctuation energy is therefore

toj)

summed over the Bernstein modes (both positive and negative frequencies).

Thus we find the spectrum is large for any k and cd which satisfy the

electrostatic dispersion relation, as we would expect after seeing that

the center of mass of a large group of sheets oscillates at the hybrid

frequency. We do not now fully understand the difficulty in this geometry

with the test particle picture.

Another interesting feature of the model is that a gyrating sheet

comes into contact with mostly the same other sheets (because x is nearly
gc

constant). Any disturbance it causes in the motion of another sheet it will

see again and again as it rapidly re-crosses this sheet. This contrasts with

a 3-d point-particle plasma in which charges move along the magnetic field

encountering new particles all the time. Thus the Markovian character of

particle interactions in a real plasma is absent here, posing additional

statistical difficulties.

•x- •*•
We can see from the form of K that for real k if to is a root then co is

xx

also a root. Unless a> is real we have a growing mode which is impossible

with our Maxwellian velocity distribution. The damping of an initial

disturbance when cd is small is due to phase mixing of the Bernstein modes

(10) similiar to the phase mixing of the Van Kampen undamped electrostatic

modes of an unmagnetized plasma (ll).
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III. Remarks on the Numerical Solution

The equations II.3.1 for E and B are awkward to integrate by the
y z

usual finite difference methods, because J is not a smooth function and
v

E is needed at least as accurately near the radiating sheet as far from
y

it. However it is easy to integrate accurately the equations 11.3-^ for

Er and ER. If we set up a grid in x-t space such that Ax =cAt, then at

each time step (for J =0) we simply move the ER field values one unit to
v

the right and the Er values one unit to the left. Where the field values

cross a sheet they jump in value by

" I +xfc in.i

In the work to be described here, the equations are solved in a

nonrelativistic approximation. This enables one to remove those effects

whose mechanisms require relativity from the ones currently under study,

and is somewhat faster computationally (but a fully relativistic solution

is no great complication). Specifically, Newton's equations were used in

nonrelativistic form, and the radiation magnetic field was not included

in the Lorentz force. Note that the latter force has little net effect

(in that VX&t'r^so) for adistribution isotropic in (vx>vy) and witn
v =0.
z

However the denominator in III.l is included, although its contribution

to the field is of order (v/c) compared to that of E . This is because

we wish the relative error in a quantity to be small compared to v/c.

Neglecting the denominator would reduce the intensity of the 2nd harmonic

emission from a gyrating sheet by a factor of k (see II.5). Also, this

form conserves the total magnetic flux JBrdx, which is not true if the
* Cm

denominator is omitted.
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Thus the equations to solved numerically are

x, -• £ e* + «* 9s

together with II.1.1-2, 11.3*2 and 11.3-^-5. These equations conserve

total system energy but not momentum (the radiation pressure on the sheets

is incomplete).

This set of equations issolved as an initial-value problem, starting

near thermal equilibirum in most cases (the sheets are in electrostatic

equilibrium, the velocity distribution is Maxwellian, while y =0,
s

Er=EL=0). This is not quite equilibrium (for instance sheet correlations

are incorrect) and there are a couple of periods of chaos while things

settle down. Normally the boundary conditions on the radiation fields are

such that radiation freely leaves through the ends of the system and none

enters.

Several quantities including the various energies are monitored

during a computer run. The total energy shows a slow drift downv/ard of less

than .Jjo in a run of 200 plasma periods.

The sheet coordinates and velocities, radiation fields, etc. are

recorded on tape about 10 times per plasma period during a run. Then the

run may be reexamined at leisure without recomputing.

The model simulation program was written in Algol 60 (ALCOR implemention)

and machine code for the IBM 709*1- and 'JOkk at Princeton University.
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IV. Drag On a Sheet

The drag on a sheet is an important quantity to measure, especially

since it was not estimated theoretically (due to difficulties with the

test sheet picture) for the magnetized case, and the results for the

unmagnetized case (3,5) indicate a high damping rate; for a typical case

in which n\9 =3.8 a slow sheet velocity e-folding time is about 3f and a

fast sheet loses speed by an amount v in a time 1.2 f (where "fast"
XtlL P

and "slow" are relative to about 2.5v ). The same drag on a sheet in a

magnetic field would give about twice this damping time due to the added

energy associated with the motion in the y direction. However this is

still a high damping rate.

Dawson's experimental measure of drag (3) may easily be generalized

to the magnetized case as follows: We wish to know the motion in some

averaged sense at times t +r of a sheet for which v(tQ)=vv. Since it

will turn out that the motion is very nearly at the cyclotron frequency,

and that therefore the motion is very nearly circular, we will be satisfied

with not knowing the directions of v(tQ) and v(tQ+r) separately, but only

the difference in direction. This may be expressed conveniently by defining

for each sheet a complex velocity v = v + i v . We form
x y

c(r) =<v*(t0)v(t0+r)/|v(t0)|?>
where the average is taken over times t such that v(t0)*v and over all

sheets. (This is what the usual autocorrelation for a complex quantity will

become if we restrict its ensemble average.)

This average was measured in two representative model runs differing

only in the magnetic fi-ild. The parameters in the first run were

f « 1.12 f
P c

T = 338 f"1 so that radiation damping is not being seen here



-21-

nA0 =3.8

Plots of the phase and modulus of C(T )for vQ=.3v h (figures IV.1-2)

show the modulus decreasing roughly linearly and the phase changing very

linearly. C (T)= C(-f) as befits an almost reversible system (the only

irreversibility is due to radiation leaving the system while none enters).

The wiggle in these quantities is at about the cyclotron frequency and

is probably due to the small linear drift in the y direction superimposed

on the circular motion, which has been observed. The rotation rate of C

is within 1 or 2$ of the cyclotron frequency. This means that as expected

the single sheet motion is very nearly circular, since the additional forces

needed to flatten the circle into an ellipse would also increase the

frequency. Measurements at other values of v show the same behavior. For

three different speeds v we find

vo/vth fp|rj/(i-c(<r))

.5 h.5

1.4 5-5

2.0 8.0

V/e see that the damping time is roughly constant for low v , increasing

as we get up past v.. . This is like the unmagnetized drag, modified for the

y motion as mentioned above.

In another run, the same as this except that f =.6f , again showed

sheets rotate at frequency fm and therefore move in circles. However

now|c(T)| decreases with \t\ somewhat more rapidly for small W\ than

large. The damping rate is the same within available accuracy as in the

other case.
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The physical meaning of the decay of |C("?^)f for v0s*vtn is as follows:

The average of the magnitudes of the velocities would be expected to increase

or decrease toward roughly the thermal speed. Therefore a decay in |c| for

slow sheets must be due primarily to a diffusion of gyration phases

superimposed on the mean rotation at frequency u> .
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V. The Observed Radiation Spectrum

One of the most interesting quantities to measure in the model numerical

solutions is the frequency of the Poynting flux. Because there is often

confusion about the relation of measurements made on discretized finite-

length records to the "true" spectrum of a stationary process, we will

spend a moment on an unusually simple formulation of the problem which is

helpful when reading the time series literature.

V.l The Statistical Problem

a The ensemble spectrum

We will use the Fourier transform conventions common in these

discussions: ^ jb»

X(i)= \dt e(-f«) X(t\ X(t) *\di eCf*) XV)
~«> -*> v.i.i

where e(x) = exp(2itix).

Transforming E (t) and B (t) (the x dependence will be omitted
y z

hereafter) and averaging over an ensemble

•e(C-F-riz)< £y«) K(f)>

If the ensemble is stationary in time this must be independent of t,

i.e. the derivative with respect to t of the above is zero, which requires

o- (*•**') < iy(f) sm(-e')>
whose solution is of the form

< iy w h (r) > = & r* m su* +')
V.l.2

This gives

c(r) r £- <£y(-t*Z) «. (i-Z)> * fdf e«r) K(f)
v.l.3
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from which follows

AV (*i - f<<* «(-^r-> CO)
J v.i.4

Equation V.l.2 together with the case T*=0 of V.l.3 suggest the

interpretation of P (f) as the frequency decomposition of the Poynting

flux. Further examination of its properties shows that indeed Re P (f)

= Re P (-f) is power in the usual sense, while Im P (f) = - Im P (-f) is
X XX

a "reactive" power such as is found in a standing wave in one dimension,

b A spectral estimator

We wish to estimate P (f) from a finite discrete sampling, i.e.

for one realization from the ensemble. We could use

UK* M~UI J V.1.5
in which 0 i j<N-1 for 1$ 0 and 1$j<N for 1<0. The function L(r ),

called the "lag window", controls the frequency resolution and reliability

of the spectral estimates, as will be discussed below. To see the connection

i t

of P with P we ensemble average P :
XX X

< r*«)> r a* Ze(--fAt) l(j**) c(ja*)
M

We may write the sum as being over all 1 if we require

L(t>so «A>*. /r/£ T < UAt V.l.6

Then we can manipulate this expression into the form

<rj(*>> -. (if P,(f) J IU+X-*') v.i.7
If Px(f)=0 for |f/>l/(2At) and if the "spectral window" L(f) is

peaked about f=0 with width Jf«l/(2At), then

for ui s -K - r*
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We choose L to be an even function with L(0)=1, so that L is real

and (df L(f)=l. From this expression we see that L(f) is like the frequency

response of a laboratory receiver or spectrum analyser and ff is the

passband width or resolution.

By making further assumptions about the ensemble, we can investigate
t

the sampling variance of P (f) to see what affects its reliability. For

instance, if the ensemble is Gaussian, we may express its tai moments in

terms of its 2nd moments and get an explicit expression for the covariance

of P in terms of P and L (see 12 or 13 for more details). The variance
x x

turns out to be inversely proportional to the resolution $f where Px varies

sufficiently slowly. If no window is used, the resolution is its smallest

(«l/(NAt)) but the sampling variance of P is as large as P itself. This
X X

is intuitively reasonable when one remembers that a finite-length sample of

a band-limited signal contains only a finite amount of information about

P . This amount of information is not increased by sampling more often

(decreasing At), or even continuously, if the maximum frequency of the signal

is already less than the Nyquist frequency l/(At) as we have earlier

assumed.

A compromise must be made between resolution, sampling variance, the

absence of "side lobes" in the spectral window, and the requirement of eqn.

V.l.6. A convenient window is £Tl'f"*0Tfy) , usually called the Parzen

window, which has small side lobes and is positive. This window is used in

all the spectra shown here.

New methods have been developed recently for rapid computation of

spectrum estimators for discrete time-series (Ik). These methods rely on

the fast digital Fourier transform algorithm suggested by Tukey (15) and

developed by the author and other*(16, 17, 18).
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V.2 Experimental Measurements

We will want to measure the Poynting flux spectrum inside the slab as

well as outside. There might be some question about its measurement inside

the orbit of a sheet. Every time the sheet crosses the measuring point

the sign of B changes abruptly. Thus one might expect to see strong
z

harmonics inside the slab just because we are inside the orbits of many

sheets. However the main change in the 2nd harmonic content of B is out of
Zi

phase with the 2nd harmonic content of E . Also the harmonic content of E
* y y

is not much different inside the orbit than outside. These effects weaken

the change in P (2f ).

In the plots the logarithm of P (f) when it is positive (right-going

power) is shown as a solid line, and the logarithm of minus P when it is

negative (left-going power) is shown as a broken line. The power ratio from

from the top of the plot to the bottom is 10,000 to 1. The power is

normalized to the black-body level (section II.6) (the spectrum of radiation

from a black body at the temperature of the slab would be plotted as unity

for all frequencies). The frequency scale is in cycles per time step; full

scale is .0025 At" in fig. V.l, and .002 At" thereafter.

It should be kept in mind that neither the black-body radiation

spectrum nor the measured spectrum of the actual radiation is affected by

the discrete space-time grid for frequencies below the Nyquist frequency

(section II.6) which is always 0.5 At" here.

Several runs were made with the model and spectra measured. It was

found that the spectra in the early runs were rather amorphous. It is

believed that this is due to the very low number of sheets per Debye length

used at that time (nA=3.8) which leads to the very large collision rate,

as discussed in the last section. The damping washes out detail in the

spectrum. The second case discussed below is a rerun of the most interesting
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case with a slightly smaller damping rate (nA D°^«9) and more plasma periods

giving somewhat improved results.

In the first case (Figs V.l) the physical parameters are

n0=1.67Ax_1 R=60AX v^.07 Ax At"1 (c=l)

Jj = .005 At""1" ~ = .0029At"x

The spectrum is shown at a number of points inside and outside of the slab.

The spectral window is <S"ooa*\*m So°to**\#Outside the slab the spectrum

shows a strong peak approaching black body level (80$ on the left side, 65$

on the right) at the hybrid frequency, which is also the 2nd harmonic of

the cyclotron frequency. There are easily identifiable peaks at the third

and fourth harmonics. The character of the spectrum outside the slab persists

roughly as we enter a few Larmor radii into the slab. Thus the bulk of the

radiation at each frequency is from the interior, (in looking at the spectra

well inside the slab one should keep in mind that one is looking at the

small difference of the much larger right and left going fluxes and not take

too seriously the structure that appears.)

Although the spectrum does not reach black-body level at any frequency,

the total radiation is only about bfy of what would be expected from cyclotron

radiation from uncorrelated sheets (see II.5). The plasma arranges itself to

keep the radiation down even below the black-body limit imposed by re-

absorption .

A run with larger magnetic field yielded a very different spectrum.

The parameters were

n S1.67AX"1 R=60Ax v.. =.1 Ax At"1
0 ' th

J3=.005 At"1 ^c=.005 At"1
2jc 2jt
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In Figs. V.2 and V.3 the Poynting spectrum at various points is shown,

first with spectral window I97S i— -J , then with a window half

as wide. Outside the slab we find the intensity between cyclotron and

hybrid frequencies is about as before, but now there is a strong peak at

2d , and more prominent peaks at ya and ka> . The peak at 2^ accounts for

most of the radiated energy and would be even stronger if some of it were

not being reabsorbed while crossing the slab (the outgoing flux reaches

black-body levelwell within the slab and increases no further). The spectra

inside the slab show that the harmonic radiation comes from the whole slab,

not just the edges. It is a little difficult to estimate the rate of

radiation at 3d because P includes the flux moving into the slab from the
C X

edges as well as that going out, and large energy fluxes are depleted by

absorption, but the energy in the 2nd harmonic is about what one would

expect from synchrotron radiation at this temperature (corresponding to

about 2.5 kev. for an electron plasma).

A clue as to why the radiation at So is so much stronger in the 2nd

case than the 1st is that the 2nd harmonic propagates, according to the cold

dispersion relation, and does so for all lower a> . Whereas, in the 1st case,

2to is at the edge of a non-propagating band of frequencies, and enters this

band when cd decreases.
P

It remains very interesting that the mechanism which keeps down the

radiation near cu. does not seem to apply to 2b . A part of this question

is the role of the radiation field in establishing the sheet correlations

which produce this radiation. If it turned out that the radiation fields

play no important role, the theoretical problem would be easier. A model run

was made, identical to the 2nd case above except that after 10 plasma periods

SL £y was not included in integrating the sheet orbits. Thus radiation is
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emitted by sheets but not reabsorbed, and there is no radiation drag. The

resulting spectra are shown in Pigs. V.4. Su , 3o> etc. are about as

before but o> is much stronger and ai is very strong. Evidently the

radiation fields do have an important effect on the sheet correlations in

this frequency range which characterizes the sheet motion. It may be that

these low frequency modes radiate so well because of coherence (Appendix

II) that energy cannot enter them fast enough to keep them at their

thermal level. In that case we are not looking at a thermal plasma, and

perhaps need a much larger system. But again, why does this not apply to

3bo ? Perhaps the wavelengths associated with 2u are shorter and thus more

effectively fed energy by the particles. Another possibility is that

radiation at ax is always weak because it must tunnel through a cutoff

region on its way out. This is less convincing since the cutoff region

here is very small with our sharp-sided backround density.
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VI. Summary and Conclusions

We have described a new computer sheet model for a magnetized plasma

slab and the complete electromagnetic field. All gradients are perp

endicular to the imposed magnetic field. Only the quasi-transverse

extraordinary modes are excited.

First we develop the basic properties of the model, beginning with

the electrostatic fields and their action on the sheet orbits when no

crossing occurs. The mean motion of a group of sheets is found to be

the same even if many sheet crossings occur as in the hot case, although

on the average individual sheets move as though there were no electro

static field if their gyration phases are random.

Some peculiar aspects resulting fromB0'V=0 are mentioned. The fact

that no average sheet motion is possible in the wave direction while all

sheets oscillate across the waves with the same average frequency introduces

a considerable difficulty into test-particle calculations and other kinetic

theory problems. This is relieved if relativistic corrections are made to

the particle orbits. Also the normal Markovian nature of particle inter

action is lost since the sheets cannot get away from their neighbors. This

feature raises novel unsolved problems in statistical mechanics.

Next the radiation fields are separated into left-going and right-going

components. Surprisingly, the radiation from a sheet is found to be

proportional to velocity instead of acceleration as is the case for 3-d

point particles. However in an example of an oscillating charged spherical

shell this velocity dependence is seen to be normal when the radiation

wavelength is much smaller than the shell radius.

Solutions are presented of the dispersion relation for electromagnetic

wave propagation in the nonrelativistic Vlasov limit. For the densities
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(o) ss^ ) an^ temperatures (around 2.5 kev. ) of interest the hot
P c

quasistatic and cold electromagnetic approximations commonly used are

found quite inadequate.

Returning to the single sheet we calculate exactly its synchrotron

radiation. This has the usual harmonic structure. In an approximate

evaluation of this radiation from a gyrating sheet we find that two

effects contribute equally to the amplitude of the 2nd harmonic emission:

the oscillation of the retarded time and the "beaming" effect due to the

term (l - v/c)" • One must therefore resist the temptation to neglect

the latter term in the numerical solution. The approximate intensity of

incoherent emission at the 1st and 2nd harmonics from sheets with a

Maxwellian velocity distribution is evaluated for later comparison with

measured emission.

In thermal equilibrium the one dimensional radiation fields have a

2 0
uniform energy density spectrum dU = df. We also examined the thermal

radiation in the numerical model which uses a space-time grid. We find

that the energy density spectrum is the same as in the continuum for all

wavelengths (those >2 Ax) and frequencies (those <l/(2At) ) which

can be represented on the space-time grid. This upper limit on the

frequency is well above any to which the plasma can respond.

The system of equations for sheets and fields is solved numerically

in a weakly relativistic approximation. The sheet motion is considered

nonrelativistic but the retarded fields are fully relativistic in order

that the harmonic radiation be accurate, as discussed above. Normally

radiation leaving the slab is lost. The sheets were started with a

Maxwellian velocity distribution and the fields were zero.

The average change in v during a time Y is measured for different
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initial|v|. This change consists of a rotation at very nearly the

cyclotron frequency and a decay in magnitude which is believed due

primarily to diffusion of gyration phase among the sheets (the decay

is too fast to be radiation drag).

We begin the discussion of the frequency spectrum of the Poynting

flux of emitted radiation by setting up an unusually clean formulation

of the statistical problem. This formulation readily allows discussion

of the meaning and reliability of various measurements made on a finite

subset of the ensemble over a finite time. We use a common estimator for

the spectrum, calculated with the aid of the fast Fourier transform and

employing the Parzen spectral window. The Poynting spectrum can be measured

inside as well as outside the plasma slab.

Spectrum measurements are presented for two cases having different a> .

In the first (av=2a) ) emission is strongest at ax with weak peaks at

3o> and 4o> .The total emission power is only about k$ of what would be
c c

expected from incoherent cyclotron radiation, although no part of the

spectrum is at the black-body level.

In the second case (a> =a> ) the principal change in the spectrum is a
P c

strong peak at^i> which accounts for most of the emission power. This

peak is about what would be expected from incoherent synchrotron radiation

and would be slightly higher if not for reabsorption. It was found that

the effect of the radiation fields on the sheet motion is such as to reduce

the emission at ox , but not at 2o> , to well below the black-body limit.

In both cases there is evidence that no spectral component of the

radiation originates in a localized region of the slab, such as the edge.

The spectra suffer from a broadening of their features probably due to

there being too few sheets per Debye length.
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VII. Future Work

In all this work the slab has been near thermal equilibrium. Thus the

whole rich field of non-thermal and unstable plasma effects remains

untouched, though not for long. Even without the radiation field, the loss-

cone velocity distribution yields a natural elaboration of the two-stream

instability work. With the radiation field one could look for the greatly

enhanced high-harmonic emission sometimes seen in laboratory plasmas.

Before more work is done, the simulation code needs rewriting. In

particular, the accurate handling of the discontinuous electrostatic

field of thin sheets should be abandoned, probably in favor of the cloud-

in-cell method as refined by Birdsall (19). This greatly reduces high

frequency and short wavelength noise and allows larger time steps in the

integration of the sheet motion. It will probably be necessary to keep the

time steps for the radiation field small.

In future runs with such a code, one would use a much larger number

of sheets per Debye cloud. Amongst other things, this result in lower

collisional dissipation and may thereby allow closer and more realistic

examination of the radiation spectra.

Phenomena involving relativistic effects, such as the shift of the

cyclotron frequency, pose no difficulty. The radiation fields are already

relativistically correct; the sheet equations need only the radiation Bz

and the relativistic mass corrections. Unfortunately our simple and accurate

one-dimensional method does not generalize to more dimensions. One can fore

see difficulties in integrating the time dependent Maxwell equations. The

delta-function nature of J can give trouble with finite-difference schemes,

especially since the force on a particle due to its own field must be

especially accurate in order to avoid gross self-acceleration errors. Again
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smearing out the charge into a cloud is promising. Because it is so large,

the longitudinal electric field must be quite accurate. Such accuracy

may not be convenient or possible using the VXB equation to advance the

whole E field in time. Instead it might be advisable to separate E into

its longitudinal and transverse components, and solve accurately for the

longitudinal component at each time step as in present codes. For the

transverse E and B fields one might profitably solve for the potential A

in the Coulomb guage.

Much theoretical analysis is lacking, particularly for those matters

usually answered by dressed test-particle calculations: excitation by

particles of longitudinal and transverse fields, and velocity space

diffusion and drag. Also interesting are the fairly simple yet exact

integral equations for the fields in a Vlasov gas having an arbitrary

density profile, which are attractive for numerical solution.

Authors of computer simulation theses usually offer a paean to the

computers of the future. Since there were usually much more powerful

computers available elsewhere, the paean should properly have been directed

to the computers in the author's personal future. For most of us progress in

simulation is retarded more by lack of access to computers than by the

state of the art in computer hardware. The work presented here was done

on two antiquated machines without inconveniencing the many other users.

Although the model code can be made faster, a thorough study of this model

will require an order of magnitude more computation. This author also looks

forward to the day when computation cost vs. knowledge gained will be

judged on the same scale as for experimental programs.
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APFENDEC I

The Dielectric Tensor With Dissipation

Here we explore the change in the dielectric tensor and dispersion

relation when the simple relaxation term —vff is added to the
perturbed Vlasov equation. The only change in the Fourier-analyzed

equations is that a> in the Vlasov equation is changed to oj + iy

but cj. in the Maxwell equations is unchanged. We denote by subscripts

y arid q quantities derived with and without the term — y Tt.

In finding the conductivity CT, Faraday's law is used to eliminate

the perturbed magnetic field B, in favor of E^. However in our case

thu terms involving B-j_ are zero. Therefore <&(£, *») s $•(k,L> +i»).
In the Maxwell-Ampere Law we replace _£S J]_ -ii£ E, by -i ~ K-E, ,

which defines IC as J -I- -^i q" . So in our cose

£„{*,») * I* H±£!(x.(ktu*i»)-l}
Let us see what this does to the electrostatic dispersion relation.

If fc(^J^(«># is real i>or iE real) and Ky(k, CJ0 +fto)sO and y is small
enough,

*/. |£ -/

*«*

AI.2

- ~ t y V/ave energy in particles

Total wave energy

This last expression has a simple explanation. The relaxation term transfers

particles from f, to the backround at a rate -yf, , eliminating their

contribution to the v/ave energy at a rate y times the wave energy in the

particles. From this physical argument one might conjecture eqn. AI.2 to

be more general than for just the electrostatic waves, if the appropriate

wave energies are used and y t£ «. K •

When the wave energy in the particles is >0, the -yf_ contribution

to the time damping rate is always less than V, approaching y when most

of the wave energy is in the particles.

Note that, if 0<(Joi!L<lf we have $£/» >O indicating growth. Now we have

;i Lohs of negative wave energy, i.e. a gain of wave energy. Since the total

AI.1
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wavc energy is still >0, the wave is growing.

It is interesting to notice that the charge continuity equation in

perturbed quantities is now

so that the Poisson equation in perturbed quantities becomes

&(*-&*'*)*"'*
This is what one must use to derive the electrostatic dispersion relation

after solving the Vlasov equation for /»/ instead of J. . The other Maxwell

equations for perturbed quantities are unchanged. The physical explanation

is that the relaxation term, in removing particles from f., destroys their

contribution to J., but not their contribution to EL .
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APPENDIX II

Radiating Normal Modes of a Cold Slab

We have calculated the incoherent radiation from sheets moving

independently of each other. The in-phase motion of N sheets radiates

at a rate 1J times faster than the incoherent rate, if kN/n0« 1. The
resulting radiation damping rate for in-phase motion can be quite

comparable to the oscillation frequency. We therefore expect electrostatic

standing wave oscillations in a thick slab to be strongly coupled to the

radiation field outside.

In this connection it is interesting to consider the radiating normal

modes of a cold system of sheets, i.e. we look for exponential time

dependence of the fields and sheet velocities when the radiation field

is the retarded solution for nonrelativistic motion, and the sheets do

not cross. The governing equations are then

with Y*z 2ir**/(t»<). This yields

If wc write this system as a homogeneous matrix equation we can see a

way to reduce the matrix to tridiagonal form. The rows in the tridiagonal

matrix are formed from the corresponding rows in the original by multiplying

the row by -2cosAt and adding the rows immediately above and below. A

similiar linear combination is made of the first and last pairs of rows to

get the new first and last rows. The result is

I A -C

-G 8 -C

~& S

-C B -c

A

All.?
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in which <? r^ TV *»- ^\ B* 2(«» «** «• *<•* ***)

A - B - G **h *****

The physics behind the reduction and behind this form is as follows:

Consider any three sheets moving in the combined fields generated by each

other, the sheets to the left and the sheets to the right. From their

equations of motion we eliminate the latter two fields. To eliminate two

independent quantities we need three equations, which is why we consider

three sheets and why we finish with a second order difference equation. The

mathematical operation of elimination is exactly the same as the reduction

performed above, which eliminated the other elements on a row corresponding

to the left and right-going fields from the other sheets. At the outermost

sheets there is only one field to eliminate (since there is no incoming

radiation) so we consider only two sheets.

The solutions to this system are sinusoidal symmetric and antisym

metric. For 2N+1 sheets numbered -N to N we get the dispersion relation

£ cms k+X s If* A*** +Cftr» £ja*

or ( wT~J s ( 7ZTJ~ * Ztts[ *>** /
and the boundary conditions

A 6« kv~ * e c, h(*-.)** y k4ui
for ' *

AS>'» k"A* - * •"» ktM-*) *•* for ^r//"^/

As kAx^O the difference equations become

Utx- V?

and the boundary conditions are

yY-/0 : -ti/ Y(-*)
C AII.1+

Y'L*) * OL Y(*)
where 2R is the thickness of the slab. In this limit eqn. AII.l becomes the

simple integral equation

3c-u ru> *g> cx-»l [**' r(xO ***(<% **-*'>) ah.5

which is of course equivalent to the dispersion relation and boundary
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conditions.

For simplicity let us look at the case cocO. The dispersion relation

is then e*V'• tox- £j£. Putting the expression for a> from the boundary
conditions into this givies after rearranging

All. 6

The solutions of this equation are grouped symmetrically in the h quadrants

of the complex k plane -if k is a solution then so are -k, k , and -k . If

we look for a symmetric mode with kR«l we find kafiao /c, cDs-icuT^/c. This
It It

is the mode in which the sheets move together coupled to radiation with

spatial scale >>R. We might well expect this to be the most strongly

radiation damped mode, but this is not so. If we rewrite the equation as

A/*

and look for solutions along the imaginary k axis we can see, by graphing

both sides, that for R small enough (o>R/c$.66) there are two solutions,
Jtr

the smallest being this one. The other is more strongly damped than this,

and the damping increases as R-*0. What is happening physically is this:

in this mode cjo.R/c is so large that a sheet is slowed by the retarded fields

from other sheets when they were moving much more rapidly than now. Thus the

damping is enhanced. The thinner the slab, the faster must be the damping

rate to make this work. This works better for the sheets on the sides than

in the middle where they are closer to the rest of the sheets. Since the

velocity exponential decay rate is the same for all, this means the sheets

in the middle have lower velocities. This is the meaning of the large

imaginary k.

As a) R/c is increased toward about .66 the two imaginary roots come
P

together, and above .66 (a>/a) ssl.5i) move away from the imaginary axis
P ^

symmetrically, approaching ±k/(2R). The other roots have k=(n+^)g. for
symmetric modes and k,*nit/R for antisymmetric modes. Linearizing eqn. AH.6

about these values gives k.# +ck /(co R).

Introduction of the static magnetic field couples the electrostatic

oscillations of the slab to the radiation field. This creates a new branch

in the solutions of the dispersion relation and a new set of modes.

In table AII.l we have the first few modes for an example of a thin

slab with a> R/c=tn r/c=.3. The upper branch modes are very little different

from the case with no magnetic field. We can see the two pure imaginary
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modes identified above; the other upper branch modes are electrostaic oscil

lations weakly coupled to the radiation field. Theyare characterized by

co a* ax and RdY/dx*<Y.

Table All.2 shows the lowest modes when to R/c =« R/c -2, approximately

the values for the model runs. The movement of the upper branch modes

toward their asymptotic limit can be seen, and they are less strongly

damped. As to R/c is increased from its former small value the phase velocity

of the lower branch modes first approaches c (where they are best coupled

to the radiation field and hence most strongly damped) and then exceeds c

(where a>-*a)_). This process can be seen in 2 modes in this example.

As R increases further all the lower-order modes on both branches

become weakly damped.

In conclusion, a cold plasma slab of the size used in the model

simulation has all its upper branch modes strongly damped, while all but

the first few lower branch modes are nearly electrostatic oscillations

weakly coupled to the radiation field. The slab would seem to fit roughly

the small slab description and is far from the large limit.
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Table AII.l Radiating normal modes of cold slab with co R/c=oj R/c

o^R/c = ,k3k, wJR/c = .185, o)+R/c = .485.

Upper branch:

Mode Symmetry kR -ouR/c

la s .22i .047i

lb s 3.00i 2.98i

2 a 2.15+3-26i 2.l6+3.25i

3 s 3.98+3.571 3.99+3.571

k a 5.69+3.821 5.70+3.82i

5 s 7.35+4.02i 7.36+4.02i

6 a 8.99+4.191 8.99+4.19i

Lower branch:

Mode Symmetry kR -oiR/c

0 s .48+.44i .43+.0231

1 a 1.6l+.26i .42+.001i

p s 3.15+.l4i .42+.00008i

3 a 4.71+.090i .42+.00002i

k s 6.28+.067i ,42+.00001i

5 a 7.85+.054i .42+.00000i

6 s 9.42+.045i .42+.00000i

= •3,
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Table All.2 Radiating normal modes of cold slab with cd r/c = co R/c =

o^R/c =2.83, oj.r/c =1.24, o)+R/c = 3.24.

Upper branch:

Mode Symmetry kR -coR/c

1 s 1.42+.45i 3-32+.071

2 a 2.78+.97i 3.62+. 521

3 s 4.35+1.491 4.80+1.291

4 a 5-97+1.8li 6.30+1.701

5 s 7.58+2.05i 7.84+1.971

6 a 9.18+2.24i 9.39+2.l8i

Lower branch:

Mode Symmetry kR -oiR/c

0 s •98+.76i 1.4l+.38i

1 a 2.20+l.lOi 2.22+.57i

2 s 3.40+.86i 2.57+.171

3 a 4.80+.62i 2.69+.0411

4 s 6.32+.461 2.75+-0131

5 a 7.87+.371 2.78+.00491

6 s 9.44+. 31i 2.80+.00?3i
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APPENDIX III

Reflection and Transmission of Radiation

One would like to calculate theoretically what the spectrum of emitted

radiation should be, and compare this with what is observed. Because of the

difficulty with the test-sheet picture mentioned before, we turn first to

Kirchoff's law. Part of the calculation of the reflection and transmission

coefficients for the slab appears in the literature (20, 21, 22). These

papers expand the linearized Vlasov equation in powers of £4 i- ,going
far enough to include the resonance at the 2nd harmonic of the cyclotron

frequency. Bernstein and Weenink then go on to calculate the reflection

and transmission coefficients for a slab like ours. Unfortunately the

expression they use for the current in terms of the fields and their

derivatives appears to suffer from cumulative algebraic indiscretions. One

could substitute Pearson's result here and carry the calculation through

again. Kuehl (23) has done this for a thin slab.

In these calculations for the uniform slab (21,23) all incident

radiation is either reflected or transmitted. This is due to the lack of

wave dissipation noted before. Kirchoffs law is thus not usable with their

results. In the absence of wave-particle resonance, the usual dissipation

mechanism in these calculations, one must presumably make use of collisions.

Since no adequate kinetic theory exist for sheet plasmas in a magnetic field,

we might resort to a simple relaxation term (Appendix I) in the linearized

Vlasov equation. This calculation has not yet been carried through, although

it would be interesting to do so.

For a slab with slowly varying density probably a better approach

would be a WKBJ-type approximation which would not break down when wave

lengths are small (collisionless absorption could occur at places in the

plasma where k-*»* . However the solutions of the exact dispersion relation

indicate such singularities do not occur).

Let us consider how we might measure the reflection and transmission

coefficients for the plasma model. Put another way, we want to measure the

linear response of the model to radiation incident from one side. This must

be done in the presence of the radiation emitted unbidden by the plasma. A

method for decreasing the interference from this noise ("One man's noise is

another man's signal." -W.B.Daniels) has been suggested by Y.W.Lee (24) and

developed theoretically by N. R. Goodman (13). Incoherent radiation is sent
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into the plasma from both sides. We estimate the crosscorrelations and cross-

spectra between incoming and outgoing radiation, which estimate the reflective

and transmissive impulse and frequency responses. We could also take the

crosscorrelation of the input radiation and the radiation at many points

inside the plasma and thus follow a pulse of radiation and its reflections

as they move through the slab. The crossspectra would display the wave

amplitude and phase for each frequency. This would be used to check the

dispersion relation and studywave boundary conditions. Such a project

requires a great deal of computation; fast Fourier (l4) techniques are

indicated.

There is a minor difficulty. Implicit in all this discussion has

been the assumption that the system is time invariant. However for runs

long enough to get good sampling variance the plasma changes appreciably

through loss of energy through radiation. A resolution of this difficulty

which fits neatly with the method of measuring the linear response may be

to make the input radiation equal to the one- dimensional thermal (black-

body) radiation over the range of frequencies the plasma is capable of

responding to. Thus the plasma finds itself in a radiation field at the

same temperature as itself, and so does not gain or lose energy on the

average. One would have to check that the response was still sufficiently

linear at such amplitudes.

In a trial of this idea, the impulse response of a single sheet was

measured. Averaging over 140 p iods and 1250 time steps, the "noise" was

about 10$ of the amplitude of the peak response. The measured response

was noise for negative times, and for positive times showed 6 oscillations

before fading into the noise. The decay is due to radiation damping. The

2 natural frequencies of noncrossing motion, 0 and ox , show clearly. With

a run of a few hundred periods the response of a many-sheet system should

be accurately measurable.
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Fig. II. 10 Same as II. 4, detail near co = 2 co

-56-



I e
n

-
J I

2
--

ft

«

o
r

-
v

e

x
r

+
v

e

»

a

0

a

OD

*

6 1

6

1
1

O v
_

O IC
\J

0
fp

k
F

ig
.

IV
.1

P
h

a
se

o
f

C
(t

)
fo

r
v

=
.

0
3

.



I o
o

<
xi

a

I.
O

h

8

0
.8

-

^
0

.6

o

0
.4

0
.2 0

o
t

-
v

e

x
t

+
v

e

(X

o x fp
|r

F
ig

.
IV

.
2

M
o

d
u

lu
s

o
f

C
(t

)
fo

r
v

=
.

03
.

•
«

o



LANGODN hB

: • , con»0!t» .<•••

61004 o-:r-'

FP=.005.FC =.Oei.88TfiPE 710?
/.= -*eq.x>> 1«J0LGG£. I2S0DATfi PDIHTS

1.0 -1 —

4 -

1.0 -2 —

' i ' I
" \' i
' i

' 1
• 1

V \
\

4

/

1

,.0 -,-'
\

\
a: '
u /
3 . -
a
a.

\

N -

*- \
_

i.o -r, l 1 1 1 1 1 1 1 1 1 1 I. 1 1 1 1 1 1 1 ' ••• i 1^

o

o

o o o o

o — — rt

FREQUENCY

*,

.NET FLUX SPECTRUM

(a) X = - 80

r.IHCEtDM UMJVC.SIt. C0X.UTEB CCMUB

LAHGD0H ftB 61004 0-27-SS 9-20 67 » 22

FP=f. 00S/FC=.0«388TfiPE 7109
;='-S5.0> 100LPGS,» 12S00RTR POINTS

1 I I

« f W .
'•o -*1 , II \

11 iiiiiiiiii{,%t>\ i.i iii

FREQUENCY

NET FLUX SPECTRUM

(c) X = - 55

LHHGDDH fiE r 61004 0-27-55 ?• 20 '67 « !:
FP=.005,FC =.0«2*38TRPE 710?

::= -6S.1T. 100L&G.V. 12S0DRT0 POINTS

'l / "

1.0 -I- ,' V «

i U

Fi i i i l i i i i I i i i i I i i i i I i i i i I

FREQUENCY

.NET FLUX SPECTRUM

(b) X = - 65

.WhcC'Oh umiv£»',|T, COMPUTE. CCHt »

LRNG00N RB 61004 0-27- 55 9 20/67 » 29

FP=.005»FC=.0e^88TnPE 7109

::= -45.0/ IOOLRgIS/12S00RTR PDIHTS
1.0 -1- I '

1 1 >
1 '. 1

4 •» A; '
! !• V
• * ,»'1.0 -2— • 1,1

' ' » xi i '
4 -, ' '

,/ 1
t -\

' ' /<
1 /

1.0 -5— 1 / ,
*' 1

< - : •
*UJ |

• 1
a i.o -•"- , ,, />k/W-

U 1 | / V v
4 r, , , , i , , . . i , . . W' /• • 1 1 1 1 1 1 1

7 7

o o o o o o
5 5 © i. O tP

o o - - " ™

FREQUENCY

.MET FLUX SPECTRUM

i

(d) X = - 45

(continued next page)

-59-



PRINCETON UNIVERSITY COMPUTER CENTER

LRNGODN RB 61004 0-27-55 9/20/6? «

FP=.0p5»FC=.0^88TRPE 7109
X='-30"lp/ 100LflG,S» 1250DRTR POINTS

i. I I

' IV • ',
I'll '

i i ', '

I i i i i I i i i i I i i i i I i i I i | i i , i

FREQUENCY

.NET FLUX SPECTRUM

(e) X = - 30

PRINCETON UNIVERSITY COHRUTER CEN

LflNGDON AB 61004 0-27-55
IER

9/20/67 » 50

FP =

X=

1.0

005>FC=.Oa

iO.O, lOOLfc
-,-

jbeTAPE 7109
$%, 12S00ATA POINTS

1 *

1

1.0 -r ,;! lA
1 *

U i

' i i
.ii \L1.0

""/ii ! 1\\K
4 <! n Aa

3
o

°- I.O
i \ (\,

4 hi i i i. 1 • i • 1111 Mi. ••i/V-Vi

0.00

O.SO

§ o
O w

FREQUENCY

.NET FLUX SPECTRUM

- »

(g) X - 30

PRINCETON UNIVERSITY CO«uTER CTHTER

LflNGDON RB '61004 0-27-55 9/20 67 « •;

FP=.00S»FC=.00$38TAPE 7109
>:=•..o Oil!' 100LA££,12S0DATA POINTS

I »I ' i i
i/" ' •I

\i ii

. .•', i, .'.Wi, M^/v. ,tn

FREQUENCY

MET FLUX SPECTRUM

(0 x = o

PRINCETON UNIVERSITY COMPUTER CENTER

LflNGDON RB 61004 0-27-55 9/20/67 » 5;

FP = .005#FC = .0«?88TAPE 7109

X= 45.0. lOoLfefc's,12500ATA POINTS

4 ri i••i••iiiii,iii,1,/ii/A, ,,/i

FREQUENCY

.NET FLUX SPECTRUM

(h) X = 45

(continued next page)

-60-



PRINCETO

LflNGDON AB 61004 0-27-55 ?'20.'67 « 64

FP=#. 0CT5.FC=.0iJi88TAPE 7109
V,= 55.0- 100L*«3- 12500ATA POINTS

• iiMiiiMiiiiM i\m\A ' A' I

FREQUENCY

MET FLUX SPECTRUM

•

PRINCETO UNIVERSITY COMPUTER CENTER

LANGODN AB 61004 0 -27-55 9/20/6? « 7!

FP=4.005'F C= . 01133

ioolAge
8TAPE 7109

X= 65.0/ > 12500ATA POINTS

I.O -1 —

J
f \

\

"

A •

1.0 -3—/
V

£ \
\

I ' ( \
1.0 -.J

1 1 I n'll • i i i i.i (IIIV" ^

o
o

o s o o

o o - . - « l»

FREQUENCY

.NET FLUX SPECTRUM
- »

(j) X = 65

(i) X = 55

PRINCETON UNIVERSITY COMPUTER CENTER

LflNGDON AB 61004 0-27-55 9/20/6? • ?i

FPs. 00£-FC=.oA88TAPE 7109 j
•/.= 30.0, 10lQLftGB- 1250DATA POINTS

/ \ X

y 4 / \
a ^"\

1 i i i i 1 i i i i 1 i i i i 1 i i i ivTO^'i i £

o . © o • o 8 • Q
O U> O HI ' O U>

-o o - - n ri

' FREQUENCY

.NET FLUX SPECTRUM

(k) X = 80

Fig. V. 1. Poynting flux spectrum

-61-



LANGOON AB 60472 0-41-11

rJP=.005-FC=.005 TAPE 7144
X= -30.0- 100LA&S, lSOODATPl POINTS

« | \

PA ' '
; s j •

; i <- i '
; 1/ \ >

\ I «

I I I I I I I I I I I I I I I I I I I I

FREQUENCY

.NET FLUX SPECTRUM

(a) X = - 80

PRINCETON UNIVERSITY. COMPUTER CENTER

LAHGDON AB 60472 0-41-11 9/18/67

FV4.00^-FC=.005 TAPET14*
X= -55.0- 100LA&S-1800DATd POINTS .

4 - I .

; V

\ :\:• ;
• * i

1; » . n
i ' * •, ,
i < \ ' ,
n i » ,

id! i i i I i i r-i I i i i i • i i i i I

FREQUENCY

.NET FLUX SPECTRUM

(c) X - - 55

LftNGDDN AB 60472 0-41-11 9 IS -6? » l1

FV=.00?-FC=.00S TAPE 714.4
X= -65.0- 100LAGS- 1800DATfl\ PDIHTS

V /

I '

\ /

I I I I I I I I I I I I I I I I I I I I I

FREQUENCY

.NET FLUX SPECTRUM

(b) X = - 65

LANGOON AB 60472 0t41-11

FP=.005-FC=.00S TAPE ?lj\
X= -44S..P- 100LAGS- 18000AJA, PDIHTS

' ' '

' ' '
' ' '
i ' '

l> /'

l i i i i l i i i i I i i i i l • i i i l

FREQUENCY

.NET FLUX SPECTRUM

(d) X = - 45

(continued next page

-62-



PRINCETON UNIVERSITY COMPUTER CENTER

LANGOON AB 60472 0-41-11 9/18/6? « 3-:

FP=.005/FC=.005 TAPE 7\j\
X= -30.0/ 100LAGS-1800DA^A, POINTS

I 'l • I I I I I I I I I I I I I I I I I

FREQUENCY

NET FLUX SPECTRUM

(e) X = - 30

LANGOON AB 60472 0-41-11 9/18/6? » SO

FP=.005-FC=.00S TAPE 71

X= 30.0- 100LAGS,18000ArAlri t:

L i i i i I i i i i I i • i i I i i i Ii |

FREQUENCY

.MET FLUX SPECTRUM

PRIMCETDM UNfVERSITf COMPUTER CENTER

LANGOON AB 60472 0-41-11 9/18/6? « 4:

FP».005-FC=.005 TA$E 714H,
:;=,.,, 0,£i- 100LAGf»\ia/J00AT»A» POINTS

FREQUENCY

.NET FLUX SPECTRUM

(f) X = 0

PRINCETON UNIVERSITY COMPUTER CEN Et

LANGDDM AB 60472 0-41- 11 9 18 67 ". 5r

FP< 00S-FC=.0Q5 TAPE 71A
X= 45.0- 100LAGS-1800DArfl POINTS

''" h) A

' U : \ ^ i <

•A /.1.0 -J— 1 / '

s * - I !
3 ii i •
• u
0. 1 1

1 '
1 '
1 1

1 1 1 1 1 1 1 1 1 1 1 i •

• 1

f 1 1 1 1 1

8 2 o g 8-
6 6 - - n

FREQUENCY

.NET FLUX SPECTRUM

(g) X = 30 (h) X = 45

(continued next page)

-63-



-UNCETON UNIVERSITY COMPUTER CC'.'it

LANGOON AB 60472 0-41-11 9 18 6 ? o 64

FP>%. 00S-FC =.005 TAPE 714F4\
X= 55.0- 100LAGS-18000AtA\ POINTS

A / •

'- \d\ 'iiu/ \ AA
11/ \ /*'\

i.o -i\- ^ \ / \

1.0 -3- V \ /
a: \ /tU 4 - \
3 V
•
0.

1.0 -4 —

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

o o o o
o - w» o , m o

o 6 -' - ';

FREQUENCY

.NET FLUX SPECTRUM

(i) X = 55

PRINCETON UNIVERSITY COMPUTER CENTER

LANGOON AB 60472 0-41-11 9/18/67 «

FP=.005-FC=.005 TAPE 7I«A.
X= 465.0- lOOLAGS-lSOODATAlPOINTS

FP=,005--FC=-005 TAPE 71

X= •SO.'D- 100LAGS»1800DAfAl POINTS

I i i i i I i • i i I i i i i I

FREQUENCY

.MET FLUX SPECTRUM

(j) X = 65

FREQUENCY

.MET FLUX SPECTRUM

(k) X = 80

Fig. V. 2. Poynting flux spectrum

-64-



PRINCETON UNIVERSITY COMPUTER CENTER

LAHGOOH AB

F,F\5=. DOS- FC=. 005

60927 19-04-10

rAPE 714'H

9 19-'67 » £•

X='-30.0- 200LAGS lSOOOA?.. POINTS

4 - ,

1.0 -1— |

^ ! »

1 ' '
, ' 1

4 - 1

. ' 1

i ' »

I ' '
I »

.1.0 -J— /
I 1 1 ' .

I

1 j

v '/,
//'

ox

W 1.0 -3—

l'(

'»/
•
u.

4 -

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L ' ' ' ' i

O l*"» o s s
o o - ~ " i

FREQUENCY

.NET FLUX SPECTRUM

(a) X = - 80

LANGOON AB

ETC* - : • DM II - CENTER

60927 19-04-10 9 1?-67 « 2.

FP=.005-FC=.0OS TAPE 714^1 j]
X='-55.0- 200LA6S- ISOODAT^I POINTS 1

4 i \

1.0 -1 —

11 i i

i ' * s

• - f :.* .
i.o -a -

- 1.0 -3- 1 ,,

l, • 1 1. ,»' '

11 *
4 -'l I ,

( I

1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 • 1 1 1

o 2 ? ?•" 5
FREQUENCY

.MET FLUX SPECTRUM

: • •

LfltibDDN flf :••:--: : 5 67 » lc.

:- . 005.-FC-.00S TAPE 714^
X='-65.0» 200LA6S- ISOODA'fi} POINTS

4 - ' >

1.0 -.- ' »' ' , l

1

1 '

i

1

•

l. 1*

"i.

"a~ • i •
\

l '

• t / v; S' \ ;•'
j i . -• j '

• V
» *

i i i i i i i i i i i i i i I i • i i i i

o : o
o.

6 6- - «•

FREQUENCY

.net flu:: spectrum

(b) X = - 65

1 !-:•. now UHlvmilT conrtiTCl center

LANGOON AB 6092? 19-04-10 9 19/67 « 29

F*«. 00J5-FC=. 005 TAPE 71A
-4E.0* 200LAGS-1800DAJ0 PDIHTS
4 - II

', 1 1
1 I'

A ' i i ''•o-i— / 1

1 1 '1

i , \ \ ,\",

*\ J'••' Wi I,
ui i.o -3-, ,,> -| i •• ;

1 1 1 1 1' 1 1 1 . I 1 1 1 1 1 1 1 1 1 1 I

§ 2 o 2 §
o 6 - - »!

FREQUENCY j
.MET FLUX SPECTRUM j

•

(c) X = - 55 (d) X = - 45

(continued next page)

-65-



• COMPUTER CENTER

60927 19-04-10 9 1? 67LAHGDOH AB

FP=.005.FC=.00S TAPE 71

:-:= -.30.JD- 200LAGS. 1300DA

FREQUENCY

.NET FLUX SPECTRUM

i i i i I i i i i I

(e) X = - 30

PRINCETO* UNIVERSITY COMPUTER CEN IfR

LANGOON AB 60927 19-04 10 9/19-67 « 50

FP=». 00S . FC=.005 TAPE 71'It
X= 30.0 - 200LAGS

1
»1800DA1 blPOlNTS

1.0 -1 —

1.0 -2 —

\1 ft A.

1

1.0 -3-41J Y
hi !

ft.J 4 J aA ' 1 j
l j 1'1:

S
1.0 -4—I

1
1

i i i i i i i i i i. • ' 11 1
| s

o
o

o o
16 O

FREQUENCY

.NET FLUX SPECTRUM

(g) X = 30

:.-'i'TER CENTER

LflNGDON AB 60927 19-04-10 9-- 19 6? « 4:

FP-.005pFC-.005 TflpE 7144
0.0. 200LAG3to li^OOOAT^
*'"" / i ' !'''

i (l

POINTS

1.0 -:• - I , ; v 'V

4

1.0 -J-

ct ' •
HI
3
a
0.

I.O -4-

1::
» i i
'i \>

» ' •'
i ' "

M \

l rt, ,
»|. "I .
•HI . "I i
v., A; '< i

say -'•Mi J i

ii I '
> i

'A '.i n, '
i iij '
i in,
1 ""i ^
i ii i ' i

4 L . . TI. 1 1 1 i • J_
• i 1 M 1

1

o y» o
o
1*

§
o o — - "»

FREQUENCY

.NET FLUX SPECTRUM

(f) X = 0

LAHGDON RB 60927 19-04-10

FP-.005pFC-.005 TAPE 7\\
:= *4S.0« 200LAGS. 18000ATA ;::

I • i i i I

FREQUENCY

SPECTRUM

(h) X = 45

(continued next page)

-66-



MUM i •::• UNIVERSITY COMPUTER EN1

LRHGOON AB 60927 19-04-10 9 : • - i « -

FP=.005-FC=.005 TAPE 71-^*.
:c= *S5.'D» 200LAGS-1800DaJa\ PDIHTS

1.0 -I— J i 11
* '1 / ^

i Al V lliV
1.0 -2 • r \ ft

ft

AA y-^AA \ f
1 \j

1

1 •• 1 V
10 T, , , , I i i i i i i i i i i i 1 1 1 J

? S • O v> s

o e - - <*

FREQUENCY

.NET FLUX SPECTRUM

(i) X = 55

PRINCETON UNIVERSITl COMPUTER CENTER

LflNGDON AB 60927 19-04-10 9 :

FP=.005-FC=.005 TAPE 714yA
X= 465.«- 200LAGS-lSOODATAl POINTS

PRINCETON UNIVERSITY' COMPUTER CENTER

LAHGOOH AB 60927 19-04-10 9-19-67

FP=.005»FC=.005 TAPE 714^
» 78

::- ,30.ri. 200LAGS- 1800DA Al PDIHTS

7 1

• j \ x M
1.0 -3— / \ A/ \
4 " J v \ \

a '-o -3- f
UJ r> V
a -* i\r

1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \-
O O

O IP
%

o o - - "

FREQUENCY

.NET FLUX SPECTRUM

i i i I i i i • I i i i i I i i i i I

FREQUENCY

.NET FLUX SPECTRUM

(j) X = 65 (k) X = 80

Fig. V. 3. Poynting flux spectrum

-67-



PRINCETON UNIVERSITY COMPUTER CENTER

LflNGDON AB 602 60221 0-41-10 9 17 67 «

HP^MC-.OOS EY=0 AfTER T=2000 TAPE 1965
X= -80.0- 100LAGS- li6|)0DATfl POINTS

1.0 -3— X I

I 1 \l /I . I

FREQUENCY

.'JET FLUX SPECTRUM

(a) X = - 80

• PRINCETON UNIVERSITY COMPUTER CENTER

LANGOON AB 602-60221 0-41-10 9 1? 67
4,

WPsWC-lOOS EY=0 AFffER T=2000 TAPE 1965

X= -55.0- 100LAGS-16000ATA POINTS
I • ,s

FREQUENCY

.MET FLUX SPECTRUM

(c) X = - 55

•. • • .
.

LflNGDON AB 602
• 0-4 1-10 9 17 67 • :•

HP=iHC=_005 EY-0 flftER
1|6{I00C

T=2000 TAPE 1965
-65.Op 100LAGS- TA POINTS

<\

1.0 —
' i
i |

1

1 ,
i |

X ' I

i

, 1

1.0 .-4 '
1 '

. /

i

V. A
» i

0. % 1 \,\ i

I * - . /
a , '
0. 1

i /

% /
1.0 -J —

1 • 1 1 1

i '

o • o

a 6 - - A

UENCY

.MET FLU:; SPEC!

LANGDON AB 602 60221 0-4 1-10 9/17 6

HP-HC-.OOS EY=0 A^EP T=2000 TAPE 1965
X= -45.0- 100LAGS-IpSOOOATp} POINTS

(b) X = -65

I" | I
II ,1

,' ' i I
III * il
I ' i i i
I ' l l
. [ I « i
I ' / •
I ' i »
i >'• \

1 vl
- i i i ,

I • i i i I i i i i I i i i i I

FREQUEHCY

NET FLUX SPECTRUM

(d) X = - 45

(continued next page)

-68-



PRINCETON UNIVERJIT. Cmpl'IER C.CMTCI

LflNGDON flB 602 60221 0-41-10 9 17 6? » :-•

UP-HC-.OOS EY=0 a/»TER T=2000 TAPE lo^c

X=?--30.V, lOOLAGS-IGpOOAT^ POINTS

1.0 -1- . 1 1

1 ' '

1

4 1 ' '
1 1

1 ' '

,0 -a- It

1

» / %

•-. i
» > .1 i
*/ V 1 X

\
\ !

^

uj •. Hi
1 , '\.
1 . '

3 |.o -3— ' II 1 /

1 /
0. . •

1/
4 - 1 1 »

i i !i .''./ i i i , i ^ • 1 1 1 1 1 1 1 1 1

§ s § s g
6 6 J. — -i

FREQUENCY
.NET FLUX SPECTRUM

'

(e) X = -30

•

LflNGDON AB 602 601;:

HP-MC-.OOS EY-O AFTEP T"«

i 17 6 7- 4 .

TAPE 1965
. - • • • ! tA : .. TS

1.0 1-f '
l '

4 J

i A1

H | /!;"' - ;••'•
_ \

i I ; •I'll
i -

' '•
i i

i * i

il *
M

II

' A

g • 4 - « 1 1 .

" '

1.0 -4|- , , |H , 11 , , , , | , , , • 1 i ' »!»*
g g o

e 6 - -

FREQUENC
.met flu:; spectrum

ffl X = 0

(g) X - 30 (h) X = 45

(continued next page)

-69-



tlNCETOM UNI.EPS IT . COMtuIIR CENTER

LflNGDON AB 602 60221 0-41-10 9 1? 67 « 64

WP=WC=.OOS EY-0 AArER T=2000 TAPE 196'

X= Q5S.O- 100LAGS-lfebODAT* POINTS

4 J i
1,

a
j\

1.0 -l-|

ii
\

* -\ h-J \ A
1.0 -}-\ \ / \

4 " *l
ct I A /
£ ... - i

4 r i \ J,.;. i i i i i i i i i i i

FREQUENCY

-NET FLUX SPECTRUM

(i) X = 55

-

PRINCETON UNIVERSITY COMPUTER CENTER

LflNGDON AB 602 60221 0-41-10 9 l: • ? « ?;

MP-HC-.005 EY=0 aAtER T=2000 TAPE 1965

X= 65.Op 100LAGS- l£|)ODAT£ POINTS
1.0 —

4 - J \
1 1 / \1

1.0 -iT

4 -1 / \ A
I

1 ^ \ A
i.o -i-^ WiL

* ' "! M /rv |

3MC

/
<*• 1.0 -3- I „ 1/

4 U .'., p, j i i i i i i i i i i i i i i 1

g o o

©

FREQUENCY

.NET FLUX SPECTRUM

PRINCETON UNIVERSIT. CONRUTCR CENTER 1
LflNGDON AB 602 60221 0-41-10 9 17 67 « 7 1

MP-MC-.OOS EY=0 aAteR r- 2000 TAPE 1965

X= 30.0- 100LAGS-lkb.ODATA

".: A A
POINTS

•i Mif
\ >

]1.0 .-4 1 w\
i ' ~\
a 1 /
"• ..0 -J- I /

\J
4 L 1 \l / 1 1 1 I 1 I i i i i i 1 I i I i 1

O 9
o

Q
V ©

6 6 - -• •»

FREQUENCY
.MET FLUX SPECTRUM

(j) X = 65 (k) X = 80

Fig. V. 4. Poynting flux spectrum
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