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INTRODUCTION

Of particular importance in the realization of selective

amplifiers is the sensitivity of the response to.both active

and passive components where response invariance can be

characterized by constant center frequency and constant

bandwidth. Active RC selective amplifier designs are

12 "5-^
commonly based on gyrator, * negative impedance converter,

positive immittance inverter, or feedback amplifier reali

zations. In previous work, Gaash developed three tempera

ture insensitive selective amplifier design procedures

7 8
based on first-order considerations,'' In this report this

work is re-examined and extended for the single-loop con

figuration. Emphasis is placed on designs compatible with

the.-limitations imposed by present levels of monolithic

• diffused integrated circuit technology.

.The procedure and typical realization proposed by

—Gaash are studied with-respect to a range of values of

temperature coefficients of circuit and device parameters.

Effects of charge storage (excess phase) in active devices

and due to parasitics are considered. Losses brought in

—by-second-order--modeIs-of-active devices are examined.

Problems due to tolerance effects and imperfect Integrated

realization are considered. For this vork, extensive com

puter-aided analysis is used. This includes simulation

and temperature analysis with several standard circuit
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9-11
analysis programs. As the. design procedure proposed

by ..Gaash was graphical in nature, root locus techniques

are used extensively.
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I. FIRST-ORDER TEMPERATURE SENSITIVITY

IN MONOLITHIC SELECTIVE AMPLIFIERS

A. INTRODUCTION TO FEEDBACK IN ACTIVE RC SELECTIVE AMPLIFIERS

Feedback amplifiers provide a convenient way to realize

a dominant complex pair of natural frequencies necessary for

active RC selective amplifiers. The general form of the

feedback equation is

a(s)
A(s) = . (1)

1 - a(s)f(s)

a(s)

1 + T(s)

where

A(s) = closed-loop transfer function

a(s) = forward transmission function

f(s) = feedback function

T(s) = loop transmission function

The natural frequencies of the amplifier which are the poles

of A(s) are given by the zeros of 1 + T(s), the return differ-

ence. To illustrate the dependence of natural frequencies on

-the-feedback function, consider the following example where

the forward transmission function is given by

a(s)= a(0) a(0)b<
(1 - s/Pl)(l - s/p2) s2 + bj_s +b0

- 3 -
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and the feedback function is given by

t(s) = f(O) (4)

and is assumed to be constant with respect to frequency.

The closed-loop transfer function can be expressed as

a(0)boA(s) = _ °__ (5)
s* + t^s + bQ(l + TQ)

1

where TQ is defined by

TQ = T(0) = -a(0)f(0) (6)

As f(0) is varied from zero to infinity, the poles of A(s)

move away from p^^ and p2, the poles of a(s), as shown in

Fig. 1. The loci of the poles A(s) can be constructed with

^familiar rpo_t-locus techniques.12

By way of further Illustration, consider the shunt-

series feedback pair of Fig. 2. Resistor values shown were

..chosen.to, achieve,the approximate bias currents indicated

while satisfying the.constraints imposed by requirements on

T0 as will be pointed out shortly. C1 and C2 are to be

chosen such that the closed-loop response has a center fre-

J^encx_iJ.0_=^Q^J^^ ..or..ratio of
center frequency to bandwidth, Q > 10. For these values

a narrowband situation exists; the center frequency, bandwidth,

and selectivity can be expressed in terms of the dominant

pair of natural frequencies q. 0 = o* + jCJ .

- 4 -



yu

-X >- •< Xr

Fig. 1. Root locus.
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Vcc = 6.5 V

Rj = 2.6 kSl

Rp= 90 Si

JC1 *C2

Rb=13 ksi

RL=3U
Rg « 270 si

2 mA

Fig. 2. Shunt-series feedback pair.
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Oj0*z CJX BW«-2C^_ 'Q« -0^/2 0^. (7)

A first-order, small-signal representation of the shunt-

series feedback pair is presented in Fig. 3. The feedback

loop has been broken so as to be able to characterize the.

forward transmission function and the feedback function in

terms of the circuit elements and parameters. A discussion

of .this method"of obtaining the open-loop response and the

assumptions upon which this method is based is presented

in SEEC, Vol. V.1^ Note that the low-frequency, first-order

approximation, as shown in Fig. 4(b), to the hybrid-pi tran

sistor model of Fig. 4(a) has been used in the representation

of Fig. 3(a).#

The forward current gain function is given by

aT(0) =

JL *t(0)aT(s) = L
Is (1 - s/Pl)(l - s/p2)

__where from Fig. 3(a)

-A>rb[[<Vre> £oRI
^((V^W^m V^/V^o+^K

Pi- = -i/RiCi

#
n A more complete discussion of the hybrid-pi model of
Fig. 4(a) is presented in Section- I.C when the sensitivity
of the elements and parameters with respect to temperature
is considered.
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Pig. 3. (a) Forward transmission and. (b) feedback networks.
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teS#Jfi,,Ja) ?K^?"Pi transistor ™>del with typical parameter values, (b) First-order approximation to hybrid-pi model
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P0 =r -1/R^C0
2 .22

and the equivalent resistances R-^ and Ro are given by

R2 = riI[[/30/V^0*i)Rf[|Re]

The feedback function is given by

f (s) = _z_

which from Fig. 3(b) can be written

Ip oc Rj; -RE
fT(s) = fT(o) = -£ = -

IL Rp +. RE Rp + Rg

where oc , the common-base, short-circuit current gain, Is

assumed to be approximately one. The closed-loop current

gain can be written

A(g) = aI(°)/RlR2ClC2
1 s2 +(l/R^+l/RoCoJs +(l+TQj/R^C^^Cg

Assume for _co.nyenience that the two open-loop poles p., and

Pg are equal

'PX = P2 = P

The closed-loop current gain may then be expressed by

- 10.-



,, aI(0)p2
-A (s) = — ± -

1 s2 - 2ps + p2(l + TQ)

and the poles of Aj(s) are given by

qi,2= ^i^rp; Jp^o
The center frequency, bandwidth, and selectivity are

CjQ «s -pVi^" BW * -2p Q*Vv/2

Based on the required value of center frequency, 6jQ, and

the assumed element values, C-, and Cp are found to be

0.075/fF and 0.011/4F, respectively, where from the expres

sions given above, Rx *s 272 J*, Rg «s 1.97 kSl, and TQ ss 400.

These results are summarized and presented below in the

first__c.olumn o£_.-Table l„_.„The second column presents the

results of a computer analysis of the circuit representations

of Fig. 3 and of the closed-loop response.# The third

..column.presents the results of a computer analysis of the

circuits of Fig. 3 and of the closed-loop response where the

hybrid-pi model of Fig. 4(a) has been used instead of the

first-order model of Fig. 4(b). Consider the results of the

-f4rs-t-order-analys is. -The -neti-ceable shift -in-the real part

of the closed-loop poles is explained by the presence of a

Throughout this report, analyses in which the reduced
hybrid-pi model of Fig. 4(b) are used will be referred to
as first-order, while those in which the hybrid-pi model
of Fig. 4(a) are used will be referred to as second-order.

- 11 - .



Table 1

Results from Shunt-Series Feedback Pair
(Frequency in rad/sec x 106)

Design First-Order Second-Order

aj(0) -534 -540 -460

*!«>) 0.75 0.75 0.75

TjCO) 400 405 346

Pi -0.0500 -0.0458 -0.0483+JO.0035

P2 -0.0500 -0.0487 -0.0483-JO.0035

*1,2 -0.0500+J1.00 -0.0942±J0.948 -0.0915±J0.899

"o 1.00 0.948 0.899

BW 0.100 0.188 0.183

Q 10.0 • 5.0 4.9
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transmission zero on the negative real axis at -9.13x10

—-rad/&ec.—This -zero-results from forward transmlssion

through the feedback network and could be eliminated by

applying the signal at the collector of the first transistor.

From the results of the second-order analysis, it can be

seen that losses due to loading by rx, r^, r , and r have

reduced the low-frequency value of the loop transmission, Tq.

Io.__conclude, feedback-amplifiers can be used to realize

a dominant complex pair of natural frequencies, although

first-order design procedures, can, at best, only approximate

the desired results. Excess phase and interaction effects

due to charge storage and the finite loads introduced by

actual transistors must be treated in the final design, or

else designs must be used which sufficiently minimize these

effects..

B. SENSITIVITY FUNCTIONS IN SINGLE-LOOP FEEDBACK AMPLIFIERS

_It is-to be expected that variations in the character

istics of passive and active components with respect to

temperature will produce corresponding variations in the

open-loop singularities and in the low-frequency value of

—the-loop-transmi&sion,-~TQ. —Since -the root locus is a func

tion of the entire configuration of open-loop poles and

zeros, the net effect of any variation in the open-loop

poles or zeros is to change the shape of the root locus;

similarly, variations in Tq produce changes in the positions

! - 13 -



on the loci of the closed-loop poles. Thus it can be con

cluded that-the-closed-loop poles -will suffer some displace

ment as temperature changes. A crucial observation is that

for small increments, it is possible to reduce the net dis

placement in any closed-loop pole into two components—one

component to represent the motion of a pole along a particu

lar locus as a function of variations in TQ and a second
-component to represent the variation in a pole location due

to the change in shape of the particular locus considered.

The use of monolithic integrated circuits allows one

to take advantage of the inherent homogeneity of elements of

the same type. By requiring that all dominant open-loop

singularities be determined by passive RC products, Gaash

obtained a simple expression for the second component to pole
displacement mentioned above. It should be noted, however,
that the use of monolithic diffused integrated circuits

places limitations on the range of values which passive dif-
-_fused resistors, may assume.

It is apparent that a more detailed analysis of the

effects of temperature on gain parameters and network

function singularities is required.. It is convenient to

-Jntroduce„±wo^ensitivlty-i^inctions. -.Root sensitivity,
introduced by Horowitz14, expresses the sensitivity of a
singularity with respect to a parameter x and is defined

according to

- 14 -



x Jx/x dx

This is the ratio of the variation in the singularity q,

to the fractional change in the sensitive parameter x. In
q<

this manner the phase of S * is identified with the phase of

the incremental displacement of the singularity, dq*.

Classical sensitivity as defined by Bode1^ and later modified

by Mason is a first-order sensitivity function defined

according to

F bF/F dln F din F
S = — = x = — (9)
x dx/x bx bin x

This is the ratio of the fractional change in the value of

the function F to the-fractional change in the sensitive

parameter x. Note that in general, root sensitivity has a

phase associated with it, whereas classical sensitivity has

-an associated phase-when F is -complex but none when F is

scalar.

These two sensitivity functions may be used to relate

changes in amplifier response to changes in sensitive param

eters-.-'-.-Assume-that-the-clbsed-loop"transfer-function, A( s),

of a single-loop feedback amplifier is written in the form

, % N(s) N(s)
A(s) = —- = (10)

D(s) 1 + T(s)
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where D(s) (not necessarily a polynomial) Is the return

—di-fference-ana-Hs) Is the -loop-transmission- function. T(s)
may be written in one of the two forms^

Jd .s/z ,
T(s> = Tn"£ — (ill

07T(i-S/pe) U1}

•^ K *

y(s-pe}

where the low-frequency value of the loop transmission, T0,
is given by

T0 = T<°> (13)

#
The symbol, zk,-will be-used to denote any-of the set of

open-loop zeros zx, z2, ..., zm • similarly, the symbol,

Pe, to denote the set of open-loop poles P]L, p2, ..., p ;
and the symbol, q±, to denote the set of closed-loop poles

ql» q2* #*#> qn» where a Proper system (n>m) is assumed.

In the absence of more specific notation, Tt will be used
k

to indicate a product over the range of the index k (=1, 2,
_«.~_,_..m)-,. -and,.-TT-and -JT ,-~to---lndi<>ate products-over -the

• e l

reapective ranges of the indices e (=1, 2, '..., n) and i (=1,
2, ••••, n). Analogously, the notation L , £ ,and E

k e i
will be used to indicate a summation over the respective
ranges of the indices k, e, and i.

- 16 -



and where K is defined by

Til-**)
Let q± denote a pole of A(s), i.e. a zero of the return dif-

ference, D(s). Under these assumptions, the following rela-

tions, developed in Appendix A of this report and alterna-

tively-b-y-Kuh-and-Rohrer17, can be-shown to hold
t

„. _qi dT0 «i v qi dpe <*iV <*! dzk
dqi = ST + ST > — " ¥) —= (15)T0 T0 T0^qi-pePe V^-z^

S*1 =Hes^(S-^
To 7T(» - qj)

= ^(8-Pe>
S=qi _^_7T (s - q.) s=q±

(16)

(17)

-Eq. 15 relates the incremental change in the closed-loop pole

qA to fractional changes in the low-frequency value of the

loop transmission and the open-loop poles and zeros. Eqs.

16 and 17 give two expressions for the sensitivity of the

—closed-loop pole -qj-irltii-respect to TQ.--Note that the

evaluation of the second expression requires only a know

ledge of the open-loop poles and zeros.

Consider a singularity rj (= pe or zk) of a feedback am
plifier under open-loop conditions which is determined by the

- 17 -



product of the passive elements R, and C both of which are

assumed to be sensitive functions of temperature

r = (18)

where

R=R(T)

Taking the total differential with respect to temperature,

one obtains

dr. « ilJjLJdT + JLlllJdT
J dRj dT 5Cj 5T

• =-rj-i^L _L*iL
J\Rj^T "CjSt /

By multiplying the numerator and denominator by T, one can

write the above equation in the form

Pj ^-dT/P &T/T J T

Based on the assumption of homogeneity of elements of the

same type for monolithic integrated circuits, it is reason

able to conclude that

- 18 -



and

.^1 ._,.<u?2 _ 4Rj .' <3Rn <JR

Rl~ R2~ " " Rj \~~*

dCa dC2 _ _ dCj dCn dC

cl c2 Cj~ "Cn""c

Hence, Eq. 20 may be written

(22)

dr. /6R/R 5C/C\dT
—-~ + — (23)
r1 . \dT/T bT/T T

From Eq. 23, it follows that

drl _ dr2 _ dri drn dr

-Vl -?2 •-.—£j~ ~ rn~ r

Thus Eq. 23 may be written

... 4r / r c\dT
- =~iST +\J- "(25)

where from Eqs. 9 and 23, S* and SC are given by

6t/tst ^-ttt 7 (26)

sc _ ac/c
t ~* b?/r (27)

If in Eq. 15, all of the open-loop poles, p , and zeros, z, ,
e * lc

- 19 -



are determined only by passive RC products, one can conclude

the following, based on'Eq. 25

dr dpe dzk

}e zk

Thus, from Eq. 15j one obtains

dq4 =

u-0 u \ e *i ~ Pe H qi zk/

dr

r

(28)

q. dTn dr

T0 T0 * r

q, dTn / R C\dT

= S*— " qi S +s — <29>T0 TQ i\ T T/ T

_wjiere_ Eq.. 17 has been used in the above derivation. Eq. 29

relates incremental changes in the closed-loop pole q. to

fractional changes in the low frequency value of the loop

transmission, T , and to changes in the passive elements

determining the open-loop poles and zeros with respect to

fractional changes in temperature. It is convenient to in

troduce a multielement sensitivity for the closed-loop pole

q4 ..defined according to

q. dT0 q, e dT
dq = S * —S + S *S — (30)
x 0 TQ e T T

where

- 20 -



qi
Se = -qi (31)

e R c

S = S + S (•*?}
T T T

qi ^iNote that dq±, ST ,and S^ all have an associated phase
while the remaining terms are scalars. By way of summation

then, the incremental change, dqif of a closed-loop pole

q±f due to the sensitivity of passive elements to temperature
can be described by avector from the closed-loop pole q±
through the origin of magnitude \q± |Se ^ where it is true
that all open-loop poles and zeros are determined only by
passive elements.#

C LOW FREQUENCY TEMPERATURE DEPENDENCE IN MONOLITHIC

~' INTEGRSTED~CIRCUIT COMPONENTS

Recall that the closed-loop poles (natural frequencies)

_are also functions of the loop transmission gain constant,
Tp, and that TQ is in general a function of active as well

.As_Pa_s*ive element^,_Thus, classical sensitivity may be used

to relate fractional changes in TQ to fractional changes in
..temperature.._Jf the.hybridal,, .small-signal transistor

model of Fig. 4(a) is considered, it is apparent that T0.may

m3e+S°?Se?VenCes ?f the non-realizability of the require-
^*^ra11 open-loop singularities be determined only by
passive RC products are examined in detail in Section III

- 21 -



be expressed as a function of the following parameters

T0 = VR> A>' %' r/<> r0> rc) (33)

where each of the parameters is assumed to be temperature

sensitive and where the ohmlc base resistance, r , is

included in the general term R representing any passive,
base-diffused resistor. Taking the total differential of

Eq. 33 and rearranging terms, one obtains

dl

T

b=/ j>V*p &R/R. ; _&V*Od/&& dTcA> aSo/Sn,
0 \ *R/R dT/T fy?0//90 6T/T +dg^ e>T/T

brM/rM 6T/T &Vro bT/T + &r^ dT/T j T

.V . RT°/° ' cTOeSm . Jo'M Jo_'o T0 r'\dT='shV^-J^^-;;s;o

TQ dT

Note that in the above expressions, a summation of the

contributions to the sensitivity of TQ from all elements of
the same type within the circuit is implied by each term.

If it is momentarily assumed that the dc biasing is such

that collector currents to-first-order are insensitive to

temperature variations, the individual sensitivity functions
in the above expression may be considered to be of two

- 22 -



types.w Terms relating the fractional changes in R, fi0%

gm, r^, rQ, and rc to thejfpactional change JLn .temperature

are independent of any circuit configuration, whereas terms

relating the fractional change in Tq to the fractional

changes in R, /Q , g^, rM9 r , and r 'are dependent only on

the circuit configuration considered.

In considering sensitivity functions of the first type

18
above, Chenette has reported typical temperature coeffi

-cients for/30 and R at 300°K of 6600 ppm/dC and 2000 ppm/°C

respectively. These values may be related to the corre

sponding sensitivity functions by the expression

Thus

SX = T7X (36)
T ' T

S*° = 2.0
T

R

~S ="0.6
T

The expression for the transconductance gm is

*""In "terms"of "the" fbur possible combinations of two two-
port networks in a feedback configuration, it can be demon
strated that the shunt-series combination and, where the load
and feedback function have similar temperature dependence,
the shunt-shunt combination stabilize current gain in the
feedback loop with respect to temperature. Circuits consid
ered throughout the remainder of this report will be re
stricted to these configurations.
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qic
-*» = 5T - (37)

Thus from Eq. 9, the sensitivity function is given by

ST = ST -1-0 (38)

Suppose_that„a-bias.scheme is chosen such'that dc collector
current is stabilized with respect to temperature. Eq. 38
then reduces to

S = -1.0
T

The output resistance, r0, is given by

where the basewidth modulation factor, 7J ,is proportional
to M/q. The sensitivity function is then given by

where it is assumed that contributions' to the sensitivity of
r0 due to variations in basewidth with respect to collector-

base voltage, are of second order.** Again where Ic is sta
bilized with respect to temperature, Eq. 40 reduces to

- 24 -



-S v = 0
T

Next, r^ can be obtained from the product of /S and r #

PA = /3oro

The sensitivity function for r is thus given by

vm _6o M
S ' = S'~~ - s
T T T

(41)

(42)

Again, where Ic is stabilized with respect to temperature,

*j» Po
S = S

T T

-s -2*0

(43)

Finally, recall that r^ models bulk resistance effects

._in3he_.cpllector„region,.._.which_ is usually..lightly, .doped.

#
The expression for r*. is correct if it is assumed that

the bulk recombination defect is large with respect to the
emitter efficiency defect.19 This assumption is not Justl-
.£ied_f.or_._planar, .diffused structures currently—being pro
duced. tA more correct expression would seem to be r^'^^'r
where &Q>>@0. An attempt to verify this by .considering0 °
manufacturers h-parameter and y-parameter data was unsuc
cessful in that computed ratios of rH/r0 varied from values
much less than/30 to values much greater than/60. Because
of this lack of agreement and because r^ is large in any
case and its effects relatively negligible, the functional
relationship of Eq. 41 is assumed.
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Its value and temperature coefficient can vary depending on

tether or-not—a~Jbur±ed- layer is used. It is -assumed that

the temperature coefficient is approximately77^

i

r

Y C ss 3000 ppm/cC
T

at 300°K. The sensitivity function is thus given by

r*
c

S c = 0.9
—T

These results are summarized in Table 2.

Though expressions for TQ do not involve charge storage

elements, for completeness, they are considered briefly.

The elements c^ and cg are assumed constant with temperature,

while cT is assumed to have the same temperature dependence

as gm, where f.. is assumed constant with temperature.

— The—second—group-of—sens-itivity- functions -(those relat

ing the fractional change in TQ to the fractional changes

-in R, /30s gm, tm , r0, and rc) are dependent on actual

—circuit-configurations. Note -that in any single-loop

feedback formulation, Tq Is a dimensionless quantity even

though a(0) and f(0) may not be dimensionless. It is

-77—The—consensus-conveyed to- -t^ae -author in recent -private
conversations with several people more closely involved in
tljLe processing area is that the temperature coefficient of
rc should actually be somewhat less than that for a base-
diffused resistor. The functional dependence assumed here
was retained, however, as these conversations occurred after
the compilation of this report and as.it was felt that this
correction vould not significantly alter the results and
conclusions presented.

- 26 -



• Table 2

Typical First-Order Parameter Sensitivities

X

X

S

T

X

S
T lC^f(T)

R 0.6 0.6

Bo 2.0 2.0

gm S C - 1.0
T

1.0

ro -s c
T

0

r* 2.0 - S u
T

2.0

r'
c

0.9 0.9
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convenient then to consider three examples in which the

.-S^ensitiYity 0f voltage and. current .gain are examined.. .It..is

assumed that Ic is stabilized with respect to temperature.

In the common-emitter configuration of Fig. 5(a), charge

storage elements have been neglected since only the low-

frequency value of voltage gain is of interest for the

moment. If rx is assumed to be included in Re and the

effects of r^, rQ, and r^ are assumed to be negligible, the
circuit of Fig. 5(a) reduces to that of Fig. 5(b). The low

frequency value of voltage gain is then

-~a~(0) =_= -a .= • ° L
Vs V0 Ra +fij^ + (fl + i)R(

e

"»L
V#o +1/Sm + Re ~~K)

Taking the total differential of Eq. 44 with respect to

temperature and rearranging terms, one obtains

dav(°) = (M90)Sj°+ (i/SkHs^ +s*) dT
av(°> Rs//30 + l/g^ +Rg T

.^®_sensitivity^ function is thus

av(0) (RS/^0)S^° +(l/gJCs^ +S*)
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-Fig. 5. (a) Low-frequency, small-signal representation of a
c-e stage, (b) First-order approximation to circuit (a), (c)
Circuit (b) with Norton equivalent source.
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From Eq. 45,- individual sensitivity functions may be

extracted and the equation put in the form of Eq. 34;

however, it is more convenient to leave the expression in

its present form.

As typical values, assume Rg = 5 ksi, Re » IO.ji, RL= 5 kst,
£Q - 100, and re= g^1 « 12.5 A; then

../ i -5000
av(0)= - . = .69.0

(50 + 12.5 + 10)

and

av(0) 50S_° + 12.5(3™ + Sm)
T 72.5

= 1.31

A.t T = 300°K, the temperature coefficient is

Vav(°)
ff = 4360 ppm/°C
T

If in the circuit of Fig. 5(b) the source is replaced by its

Norton equivalent, the low frequency value of current gain

is then, from Eq. 44,

a1(0)=^^VRi=aio
h VSRL I0

-R8
• (46)

Rs/^0 + l/JL + R
m e
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The sensitivity function is obtained in a manner similar

to "that"Tor voltage gain and is found to be

sa1(0)= sav(o)
T T

= (Rs/VSt° +(l/gm)(S^ +sl)

Thus for the typical element values assumed

aj(0) = -69.0

Sm = 1-31
T

Next consider the emitter follower of Fig. 6(a).

"Again if"r—is absorbed intolXs and if 5,, ror:ahd~rc'
neglected, the. circuit of Fig. 6(a) reduces to that of

Fig. 6(b). The low frequency value of the voltage gain
Is given by

av(0) =̂ =a - (go+l)RJ
v avo •

VS Rs + 0O/Sm + flSL + 1)R

RL

(47)

Ml, +l/gm + R, (48)

Taking the total differential of Eq. H8 with respect to
temperature and rearranging terms, one obtains
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Pig. 6. (a) Low-frequency, small-signal representation of an
emitter follower stage, (b) First-order approximation to cir
cuit (a), (c) Circuit (b) with Norton equivalent source.
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ft tr "R

*y(0)_ (RS/50)ST°+ (l/gm)(STm +ST) dT
av(0) Rs/0o+ i/gm+ rl T

Thus the sensitivity function is

sav(°) = (Rs/^0)Sy° +(l/gm)(Sjm +Sj)
Rs^0+1/Sm+ \

-1Assume Rg = 5 ksi, RL= 3 k^, 0Q = 100, and re= gm = 50SI;
then

and

3000
av(0) = =0.97

(50 + 50 •*• 3000)

•v.(PL. 50S °t_5o(S m+_S )_
Sm zr . _± T__

3100

= 0.026

At 300°K, the temperature coefficient is

Ya (0)
/ =86 ppm/°C

T

The circuit of Fig. 6(c) is obtained by replacing the source

"in"the circuit of Fig. 6(b) by its Norton equivalent. The

low frequency value of current gain is given by

.l(0) =̂ =.T(0)'|i =aIQ
S L
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a_(o)«s —— ? -(c0)
1 R^o+1/gm+RL

where Eq. 48 has been used. The sensitivity function is
given by

eal(0) a (0)
T T

For the typical element values assumed

aJ(0) = 1.61

STX = 0.026

Finally, as a third example, consider the common-base

configuration of Fig. 7(a). -Absorbing rx into RB and neg
lecting rM rQ andr£, one obtains the circuit of Fig. 6(b)
The low-frequency value of the voltage gain is given by

aT7(0) a '" — ~- ..&>+• D?x
V * '

VO RRB + *</**.-t (P0 + 1)R
' s

V»c

RL
+ l/gm + R

s

- 34 -
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Upon taking the total differential of Eq. 52 with respect

to temperature and rearranging terms in the usual manner,

one obtains the sensitivity function

av(0) RB/J30ST°+ (l/gm)(s5ll+ S*)
ST = ~ — (53)

R /ft + 1/g + Rc
•do m s

Assume Rg = 400 ji, Rfi = 10 kSl, R = 2 kil, p = 100, and
Jj 0

r = g "* = 25 si; then
em.

2000
av(0) = = 3.81

(100 + 25 + 400)

/ -% &a 6m ftsav(°)_ 100ST° + 25(STm-f ST)
T " 525

= 0.362

At 3OO0K, the temperature coefficient is

^a (0)
S v = 1200 ppm/°C
~T

1.

The circuit of Fig. 7(c) is again obtained by replacing the

source in the circuit of Fig. 7(b) by its Norton equivalent.

The low-frequency value of current gain is given by

aI(0)=-i=av(0)--l=aI0 (54)

R
s

RB^c> VfiL, + Rom s

- 36 -
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where Eq. 52 has been used. The.sensitivity function Is

given by

a;r(o) a (0)
S = S v
T T

R /$ + 1/g + R
Bo m s

For the typical element values assumed

aT(0) = O.76

aj(0)
S x = 0.362

T

<56)

D. —BARTIALLY-C-OMPF.NSATFD SELECTIVE AMPLIFIER

At this point it will be helpful to begin to tie some

of the results and conclusions from above together. Recall

that response invariance is of primary concern. Response

invariance in terms of constant center frequency, cJ0, and

constant bandwidth, BW, is obtained if the net displacement

of the dominant complex pair of poles (natural frequencies)

is zero,.as will be shown below. Subject to the assumption

that all open-loop poles and zeros are determined only by

passive RC products, the displacement of the closed-loop

pole q± can be written from Eqs. 30 and 35 as follows
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q, T0 dT q e dT
dq.= S i S u_^.-4- S * S :—• (57)

1 T T T e T T

Qi T0 q< e\dT;1s°-hs1s —= Sxsu+Sis — (58)
\ T T e T / T

The first term relates incremental changes of q along

the original locus to changes in the loop transmission

gain constant, TQ, with respect to fractional changes in

temperature. The second term relates incremental changes

in the shape of the original locus of the closed-loop pole

q to changes in the passive elements determining the open-

loop poles and zeros with respect to fractional changes in

temperature.

T£t q denote one" of the dominant complex pair"of"closed-
#

loop poles. If it is assumed that a narrow-band situation

exists, the center frequency can be approximated by

cjq ^ Im (qi) (59)

and from Eqs. 9 and 58, .one obtains

- A>o dIm -(.qJAn -CO Im (q, ) ,^%
S = -A— L- = s 1 (60)
T dT/r t

w It will be understood that any conclusions drawn regarding
the behavior of q1 also apply to its conjugate denoted q^.
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T,

sw° =
STU Im (S^1) S an (S 1)

Hn (ql) Im (qa)
(61)

Under similar conditions, from Eq. 7, one can approximate

the bandwidth by

BW «= -2Re (qx)

and from Eqs. 9 and 58, one obtains

BW

T dT/T t

d2Re.(q )/2Re (q ) Re (q, )
= — A— s: « 1

sT°Re (S-1) S Re (s1)
Re (qa) Re (q.^

(62)

(63)

(64)

rtr is apparent fronrEqs .~6o and 63-t]

invariance is achieved.

The condition dq]L = 0 is satisfied if and only if

'"dq^ = 0, response

ql ToSTQ ST =- s -*- Sm
e T (65)

This expression may be written in terms of magnitude and

phase as

Arg

"T
0) T

1 T0 T
= -Arg \S 1 S

\ e T

- 39 -
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Three of the four terms in Eq. 65 have been considered
-qi

in some detail. The fourth, ST , has been mentioned only

briefly (Eq. 16). It is considered in detail in.Appendix A,

and specific examples are considered shortly. One important

conclusion can be reached immediately without any further

detailed analysis. Recall that the basic concept behind

root-locus techniques is to illustrate the trajectory of a

closed-loop pole as TQ (or f(o)) is changed. If the incre

mental change, dq±, of any closed-loop pole q is considered

in terms of its magnitude and phase, the phase must be such

that the pole moves along a tangent to the locus at the

point q . Further recall that the phase of SQi is deter-
e

mined by the angle of a vector from q through the origin

of the complex frequency plane. From examples considered

in the previous section, it is apparent that generally

S >0. Further, it is generally true that S >0. The
T

phase condition, Eq. 66(b), then reduces to

Arg S^ = - Arg S 1 (67)

This condition can only be satisfied when the tangent to

the root locus at the point q± passes directly through the
origin.

The consequences of the above conclusion with regard to

the two-pole example of Section I.A are immediately apparent.

The phase condition can never be satisfied for a complex
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pair of closed-loop poles in the open left-half plane.

Partial compensation in terms of constant center frequency
can be achieved, however, as the following example will
show.

Consider the negative feedback amplifier of Fig. 8. It
consists of a single Inverting common emitter stage and two

emitter followers. This configuration was designed to pro
vide good isolation between active devices and those passive
RC elements used to determine the dominant open-loop singu
larities. In a small-signal representation, the high output
impedance of the common emitter stage and the high input
Impedance of the first emitter follower effectively isolate
Ra and Cx from the rest of the circuit. One open-loop pole
is thus given by

Pi ="i/Vi (68)

Similarly, the low output impedance of the first emitter
follower and the high input impedance of the second emitter
follower effectively isolate R2 and C2 from the rest of the
circuit, The second open-loop pole is thus given by

p2 = -1/R2C2 (g9)

To first-order, the requirement that all dominant open-loop
poles and zeros be determined by passive RC products has

been satisfied. The characteristic polynomial of the closed-
loop transfer function can be written directly by inspection
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R1 =

C, =

R2 =

R,

^El
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100 pF

5 k.ft

100 pF

Q<

-A/W

^1=^

R^ = 3 k*
E3

Rp = 5 kJi

Vcc = 12.5 V

.Ig _=_£.0.mA

IC2 = 0#5 mA
Ic = 0.25 mA

Fig. 8. A partially compensated two pole negative feedback
frequency selective amplifier.
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#as

S '+

T0 + 1
= 0 (70)

R-i C, RpCp/ R^RpC-.Cp

where

T0 = -a(0)f(0) (71)

Assume

p= Pl = p2 = -1/RC (72)

Then Eq. 70 may be written

s2 - 2ps + p2(l + TQ) = 0 (73)

From Eq. 73, the poles of the closed-loop transfer function

and the dominant natural frequencies of the circuit of Fig.

8 are given by

ql,2 = p+JpV^ (74)

A question might arise as to whether a possible Miller
effect augmentation of the effects of oM could lead to
severe distortion of the expected root loci. Curiously
enough, for both first-order (c«. and c^ now included) and
second-order_representat;i_ons.» _the„.following was._observed
"upon using "computer analysis. When C^ and Co were present,
there appeared to be no Miller effect augmentation. When
C-, and C2 were removed, an open-loop pole due to c*i appeared
in the vicinity of -2.5x106 rad/sec. The explanation seems
to lie in. the fact that Miller effect arguments are based on
characteristic time constant descriptions which cannot
adequately describe any but the most dominant natural
frequency.
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The center frequency, co0, and the bandwidth, BW, are given by

(j0 = tpVt£" (75)

BW = -2p (76)

To this point, a(0) and f(0) have not been Identified.

Assume that the voltage at the emitter of Q, is taken as

the output and that the input signal is applied at the base

of Q-^. The natural feedback description is in terms of a

shunt-shunt combination, and a(0) is recognized as a trans-

impedance while f(0) is the transadmittance -1/Rp. Recall

that for shunt-shunt feedback, transimpedance is made in

sensitive. If in the circuit of Fig. 8 both RF and RE,,

the effective load resistance, are considered to be dif

fused resistors, it can be assumed that they will exhibit

similar temperature dependence, and thus current gain can

also be considered stabilized with respect to temperature

as-desired. Tq is a current gain and is easily evaluated

by inspection by considering the voltage gain from the col

lector of Q^. around the loop and then making the conversion

to current gain. If the first-order, low-frequency, small-

-signal-hybrld-pl model of Fig. 4(b) is substituted and it

is assumed that the load seen by each emitter follower Is

3 k-ft, application of the gain expressions developed in

Section I.C yields
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Rl .
:•••. To = -M0) — ^ 64 (77)

RL

where RL is an equivalent low frequency driving point

resistance seen from the collector of Q,. Thus center

frequency, bandwidth, and selectivity are given by

CJ0 & 16x10^ rad/sec

BW « 4xl06 rad/sec

Q as 4

Consider now the expression for the incremental dis

placement of the closed-loop pole q,. From Eq. 58

/ ql To R\ dT
dql = Kn V - qi S — <78>\ l0 T 1 Tj T

C

where it is assumed S =0. From Eq. 74

stJ = *Jp"^o" (79)

Thus Eq. 78 may be written

(T R \ dT*^ST°-*lST]— (80)
From Eqs. 61 and 64 and from Eq. 74
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cJ0 Tn R
S° =iS° - S (81)
T T T

BW R

S = - S (82)
T T

Again, from examples considered previously and from Eqs

81 and 82, one obtains

and

*>o
S ss 0.655 - 0.6 = 0.055
T

BW

S as -0.6
T

At 300 K, these values correspond to temperature coeffi

cients of

J sz 175 ppm/«C
T

3W

/ as -2000 ppm/°C
T

These predicted results may be compared to those obtained

by computer analysis of the circuit of Fig. 8 and presented

-—in-!Table -3.-—Element-^alu^s-were -varied--according to the

results of Table 2 to reflect variations over a 5°C

temperature change. The results of the second column are

based on the transistor representation of Fig. 4(b) and

give good agreeement. The results of the third column are
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Table 3

—Temperature-Dependence of -a-Partially Compensated
Two Pole, Negative Feedback, Frequency Selective Amplifier
(Frequency in rad/sec x 10°. Sensitivity in ppm/°Cx.)

Design First-Order Second-Order

Pl -2.00 -1.84 -1.32

p2 -2.00 -2.23 -2.04

To 64.0 62.3 52.3

n° +4350 +4390 +4820

*1.2 -2.00ijl6.00 -2.04ijl6.01 -0.716+J11.84

wo 16.00 16.01 11.84

+175 . +50 -865

bw 4.00 4.08 1.43
-yBW
1 T -2000 -2140 -8000

Q 4.00 3.92 8.26

§ T +1825 +2090 +7135
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based on the transistor representation of Fig. 4(a). Here

there is a_algnif.leant,deviation-from predicted results in

terms of both closed-loop pole location and sensitivity.

This is primarily due to excess phase resulting from the

additional open-loop poles and zeros present when charge

storage is considered. The nearest open-loop pole is on the

negative real axis at -74.9 x 106 rad/sec. This pole results

largely from cv (« 20.2 pF) associated with Q^ This is

demonstrated by the fact that when c^ is removed from the

circuit, the nearest open-loop pole is found to be at

-331.9 x 10^ rad/sec. In Fig. 9 two root loci of the

closed-loop poles q-^ 2 are sil0wn« The first (dashed curve)

corresponds to the simple two pole approximation associated

with the first-order analysis of the second column of Table

~3. _?ke second (solid curve) corresponds to the„addition of

the nearest non-dominant pole indicated above to

the two open-loop pole's given in the third column of Table 3.

It can_be_ seen that this second locus reflects the closed-

loop response found in Table 3. The additional open-loop

pole then adequately models the effects of excess phase.

It Is apparent from the previous discussions and this

JBxajpaple_th^ (suffi

cient control of the shape of the root locus) to allow the

simultaneous realization of a desired response and its

invariance with respect to temperature are not available

with a system whose open-loop transfer function can be
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-16 -14 -12 -10 -8 -6 -4

Fig. 9. Root locus for a first-order analysis of a two
pole negative feedback selective amplifier (dashed curve)
and the effects of excess phase' (solid curve).
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approximated by two dominant poles. In the next section,

systems with additional degrees of freedom are examined.

These additional degrees of freedom appear as additional

open-loop poles and zeros.
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II. COMPENSATION WITH ADDITIONAL DEGREES OF FREEDOM

It has been pointed out that a frequency selective

feedback amblifier whose open-loop transfer function can

be approximated by two dominant poles does not have suffi

cient degrees of freedom to satisfy the phase condition,

Eq. 67, for zero sensitivity of the closed-loop poles

Ql 2* This limitation can be examined in a more quantita

tive manner. Recall that the poles of A(s) are given by

the zeros of 1+ T(s), where T(s) is given by either Eq. 11

or Eq. 12. From Eq. 12, it follows that the necessary

phase condition for q.^ to be a closed-loop pole of A(s) is

given by

-2"Arg-(qi -zkT~- "Y/rg (q. -Pe) = TT (83)
K e

If the following notation is adopted,

r} = Arg (q1 -r^) (84)

Eq. 83 may be written in the form

7?'k ~-~£pe - v (85)

The phase-condition for zero sensitivity of the closed-loop

pole q. can be obtained from Eq. 67
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ArgSj^ - Arg S x (86)
10 e

= - Arg (-qi) = 7T/2 + S (87)

where 6 is defined in Fig. 10 and is given by

-lRe fai) , %* =- Tan1 ^- (88)
Im (qx)

. ql
From Eq. 16, S can be written

T0

q-, Tt (<l - pj . x
Sj- = -4 i £— (89)
To jt (% -qJ

From Eqs. 87 and 89 and from Eq. 85, repeated here, the

"two independent phase conditions which must be satisfied

at q are

£*• "Z$j = */2 + * (90)
a

Consider again the two pole example previously discussed,

From Eq. 85, one obtains

-(^+ Sg) = ir
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Fig. 10. Phase angles associated with the root locus
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and from Eq. 90, one obtains

Pl+ ^2 " ^ = V2 + €

A unique solution for 6 exists

€ = -27T = 0

This result indicates that the root locus must include the

entire imaginary axis, which is the' conclusion reached

before from physical reasoning.

Consider now the open-loop pole-zero configuration and

root locus plot of Fig. 11 where a single zero has been

added to the system previously considered. From Eqs. 85 and
90, one obtains

A 6 a
zl -Pi—-Pfe = *--- (91)

and

~-Pr*--P2 - Tf/2 = 77/2 + S (92)

It is apparent that the additional degree of freedom

resulting from the added zero allows the simultaneous

solution of these two equations for an arbitrary choice

of S. By way of example, assume fq = 79.5 kHz. and Q="so-
then the required values of qJL 2 and S are given by

Ql,2= (-°-°°5 ± 1 0.5)xl06 rad/sec

<$*. = 0.573°
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Pig. 11. Root locus of a two pole-one zero configuration
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From Eqs. 91 and 92, zx is given by

?!= 6 = 0.573°

and from Pig. 11, z^ is given by

I I2
ql *z. = -. ' 7 .- -50.005 x 10° rad/sec

Re M
For convenience, assume p1 = p2 =Tp. Then from Fig. 11,
p is given by

,qlP = z. + ' x
1 Tan <S

= -0.0025 x 10^ rad/sec

However, recall, from.Fig. 4(a), that for the transistors

chosen as typical, f = 600 MHz. Consider the typical

common emitter-stage examined in Section I.C. When charge

storage elements are included, analysis by computer indicates

non-dominant poles due to these charge storage elements of

the order of -2 x 10 rad/sec. This value is greater than

the required value of z_, and the excess phase resulting

from these effects would surely distort the desired locus.

Consequently, this configuration must be rejected.

It might appear possible to modify the above results

by the addition of a second open-loop zero as shown in

Pig. 12; however, it can be shown that such a placement of

zeros does not alter the circular nature of the locus
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Pig. 12. Root locus of a two-pole, two-zero configuration.
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previously considered. If it is.assumed that the same values

for Ql,2 are re(*ujLred an<* that again px = p2 = p, the same
value of p would be required as before. The largest passive

base-diffused resistor which can readily be fabricated,

keeping in mind reasonable amounts of chip area, power

dissapation, and tolerance, is of the order of 10 k,Q. To

realize the above value of p, one would require a correspond

ing value of capacitance of the order of 40,000 pf. This -

is much larger than what one would normally like to use with

integrated circuits. Further, conjugate complex zeros can

be difficult to realize without introducing additional

constraints on pole-zero locations.

As a third possibility, consider the type of pole-zero

configuration depicted in Fig. 13. Based on intuition, it

might appear to-be possible to choose open-loop pole-zero

locations such.that the two phase conditions could be

satisfied. However, at least one of the two open-loop poles

Pl and p2 must still be greater than Re (q, 2), again im-
J. , c

plying the need for excessively large capacitors. It is also

possible that p3 will be of the same order of magnitude as

the non-dominant excess phase effects due to charge storage
"in active devices.

As a final example, consider the pole-zero configuration
of Pig. 14. This system is examined in detail in the next

section, and consequently, no detailed justification for the

shape of the locus is given now. It is apparent, however,
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Fig. 13. Root locus of a three pole-one zero configuration.

- 59 -



«f X
-5»

%

z2

Pig. 14. Root locus of a three pole-two zero system
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that a pole-zero configuration such as this would allow

the realization of reasonable high~vaiues of Q (narrow

bandwidths) for a given center frequency,^, while not
placing excessive demands on the RC products required to

realize p1, p2, and p^.
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III. THE TEMPERATURE COMPENSATED SELECTIVE AMPLIFIER

In this section the single-loop feedback approach pro

posed by Gaash is considered. Attention is given to the in

fluence on response and response sensitivity of second-order

effects associated with monolithic diffused circuit realiza

tions. Extensions are considered in order to encompass more

realistic limitations on components and their temperature

coefficients.

In-the last section it was implied that an open-loop

pole-zero configuration whose root locus is similar to that

shown in Fig. 14 might be used to achieve desired center fre

quency, high selectivity, and response invarlance. A zero-

order realization of this system is shown.in Fig. 15. RL and
it

RT represent equivalent loads and are discussed shortly. The
*j —

brldged-T network realizes the required complex conjugate

zeros but introduces an additional constraint on the system.

The transfer impedance of the bridged-T network is given by

s2 + (pol(l+Rx/R2)+P02)s + Polpo2^1+Rl/RBT^z21(s) = RBT-
s +(Pol(l+Vh2>+P02>s +PolPo2 { j

where

Pol = ^i0! <94a>

Po2 = 1/R2C2 (94b)
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Pig. 15. Zero-order realization of a three pole-two zero
system of the type shown in Fig. 14.
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If the poles of z21(s) are denoted ?1 and p2, the following
constraint is placed on the zeros of z21(s)

Re (« ) = pl + ^2
(95)

There are no such constraints on Im (z1>2), which may be
varied independently by varying RBT. The third open-loop
pole is determined by

P3 - -^/x,3^3= -1/R,C: (96)

Pour conditions must be satisfied for the simultaneous

realization of specified response and response invariance.

The first two conditions follow from Eq. 10 and are involved
in the realization of the prescribed poles.

T(s) = 1
s=q

1,2

Arg T(s) = 7T
s=q

1,2

The second two conditions follow from Eqs. 66a and 67

ql T0S/ S°
10 T

qi eS x S

Arg Sf = - Arg S
<*1
e
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In general terms, the procedure followed will be to find

open-loop pole and zero locations which satisfy the phase

conditions, Eqs. 97b and 98b, subject to the added constraint

on the real part of the complex zeros imposed by Eq. 95.
T

Next, the required values of TQ and ST° will be chosen such
that the magnitude conditions, Eqs. 97a and 98a, are

satisfied.

For the configuration being considered, &* can be writ-

ten from Eq. 89 as

A , \>i"%-V'*x-V (99)
0 (ql "^^l "V

This equation can be written in terms of magnitude and phase

as follows

» K-'slK-sl

ArSSTo= Pl +p2+ P3 *Q2 -q3

_ A , A A ,„ A=__.P1 +„P2-+_P - 7T/2 - q (100b)

The four conditions considered previously, Eqs. 97 and 98,

can now be written
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or

and

T _ I1 - qi/pi|[i - qi/p2[[i - *x/v3\
°~ I1 - V^ill1 - Vzs|

r_Ui - P1IR1- p2[Ki - p?l

21 +§2 -^ -£2 _£3 = tt

(101a)

(101b)

A A A A ^
Px + P2 + P3 - q3 = 7T + 5 (102b)

vhere Eq. 31 has been used in deriving Eq. 102 and where it

has been assumed that S = 0.
T

_._. ?feere are six degrees of design freedom associated with

the realization of desired response and response invariance
T

~"pl» P2>-~p-3» -1-1? ^i--2^» T0» and ^T°» Two of these are
required by Eq. 101 to satisfy the magnitude and phase con-

£mons_sujch^h^ ._Tvro..more.degrees

of freedom are required by Eq.. 102 to insure that the tangent

to the locus at the point qx passes through the origin and

that magnitudes are such that the desired cancellation

of sensitivity vectors does occur. Two degrees of freedom
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remain. Unfortunately, the obvious procedure of specifying
T

T and S ° and then evaluating the remaining quantities p^

n d . and Im (z ) requires the simultaneous solution of
2* 3 I,2
Eqs. 101a,' 101c, 102a, and 102b. The mathematics then becomes

unduly complicated. An alternate procedure is to specify

p and p and then solve for the required values of p ,
12 T
Im (z. 0), T,and S°and to then choose element values such
that the original six quantities take on the specified values.

This approach was followed by Gaash and is prompted by the

fact that an iterative solution which converges rapidly is

possible and is described below.

Prior to discussing this iterative design procedure, it

will be necessary to establish two preliminary results.

Consider two possible expansions for the numerator polynomial

of D(s).

s3 -(q^q^q^js +(o^Og^^^)* -V*2Q3 =° (l°3)

s3 - (Pn+P +P -K)s2 + (p p +PJP +PJP ~K(Z +0)B
123 122331 12

-P1P2P3+Kz1z2 =0 (104)

"Corresponding' c^fficients bf'like powers must be equal; thus

one can write

ql + *h. +q3= pl + p2 + p3 "K ^105^

Next, it is necessary to consider the conditions imposed
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on Im (zx^2) by the two phase conditions, Eqs. 101c and
102b. Combining these two equations, one obtains

§! +z2 = 6" +§3 = A (106)

where for the present, q3 is assumed to be known and A is

a constant. Based on the assumed shape of the root locus

of Fig. 14, assume that the following three conditions hold

Im (z1) > Im (q^) > 0

Re (z^) < Re (q^ •«« 0

z2 = z-

By defining the following variables

-y-L = Im (zx) - Im (q^

y2 = Im (z1) + Im (q2)

x = Re (qi) - Re (Zl)

one can write z^ and z2 in the following manner

~*l7= ^-tan"-1 (y^/x)

z2 = tan-1 (yP/x)

Thus from Eq. 106, A can be written
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-A = tan"1 (yg/x) - tan""1 (y^x) (112)

How define. N = tanA. Then the following identity holds

H = - = = tan A (113)
l + (y2/x)(yx/x)

or

x% +y^N = x(y2 - yx) (114)

Substituting from Eq. 110 and rearranging terms, one obtains

Im2^) = (Retq^-ReCz^)2 ^J"\ „ , ,x -1
* L1"

2Im(q1)'

[tanA(Re(q1)-Re(z1))
+Im2(q1)

(115)

It is now possible to formulate a design procedure for

determining the required open-loop singularities, loop gain,

and..gain sensitivity. _.,.This design-procedure..is .presented in

Table 4. It may be carried out graphically using constant

j>hase loci _as_was proposed by Gaash' or more easily and

accurately on a digital computer. Note that usually a know-

ledge _oi*..qf,.^--and..of--the_genera.l-shape.-.of ±he-Jocus are

sufficient to suggest reasonable values for p^ and p2; how

ever, this will be discussed in more detail shortly.

First, by way of example, consider the design and reali

zation originally proposed by Gaash.7,8 The desired center
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Table 4

Iterative Design Procedure

1) Assume q1 and q= q are specified.
2) Choose p1 and p2.

3) From Eq. 95, determine Re (z1 2).
4) Find p^ and pg.
5) From Eq. 102b, find p - q .

6) Choose a trial p~.
A A

7) Evaluate p , q , and q . .

8) Determine Im (z1 2) from Eq. 115.
9) Determine K from Eq. 101b.

10) From Eq. 105, find the required value of (p~ - q )and

compare this with the actual value.

a) If the required value is greater than the actual

value, shift p to the left (increase |p |).

b) If the required value is less than the actual value,

shift p to the right.(decrease |p I).

c) If the values are equal, this stage of the design is
complete.

11) Determine the required value of TQ from Eq. 101a.
12) Determine the required value of S^° from Eq; 102a.
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frequency was assumed to be 79-5 kHz. with a selectivity of

Q = 50. The design values proposed by Gaash are presented

below in the first column of Tabie 5. In the second column

are the design values as determined by the design procedure

of Table 4 when implemented on a computer. A comparison

indicates reasonable agreement between the two methods. It

is Important to note that in arriving at these design values,

Gaash assumed S* =O.36 (JR =1200ppm/°C at 300*K) with
C 7 . T

S =.0. Based on the requirements of Table 5, the realiza-
T

tion of Fig. 16 was proposed by Gaash. It is apparent that

the basic amplifier is the same shunt-shunt feedback config

uration considered in Section I.D with the addition of the

bridged-T network. As before, the collector bias.currents

indicated closely approximate measured values. In the fol

lowing discussion,—a-familiarty with this circuits basic

characteristics is assumed.

The results of a computer analysis of the zero-order

-realization-of Fig. 15 with the appropriate design values

for R-p C-p R2, C2, RBT, R,, and C-* taken from the circuit

of Fig. 16 are presented in the first column of Table 6.

Note that the dependent, voltage-controlled current source

-in Fig. 15 -cannot he-Identified with the transconductance

or related to the collector current of a specific transistor

in Fig. 16. It is strictly an idealization, and ^ was

chosen such that TQ = g^R^ + Rgm) = 70 in agreement with

Gaash1s required design value. Further, in considering
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Table 5

Temperature Compensated Single-Loop Feedback Selective
Amplifier Design Requirements Proposed by Gaash.
(Frequency in rad/sec x 10°.. Sensitivity in ppm/°C.)

Graphical Analytical

ql»2 -0.00500±J0.500 -0.00500130.500

^0 0.500 0.500

BW 0.0100
—

0.0100

Q 50.0 50.0

pol 0.100 0.100

Po2 0.100 0.100

Pi • -0^0500 -0.0500

P2 -0.200 -0.200

P3 -0.440 -0.441

Zl,2 -O.I25+3O.725 -0.125130.725
*y e
"/ T -1200 -1200

To 70.0 69.8

r? +4350 +4500
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R^= 5 k jl

C2 = 2000 pF

JRg...=. 10 kJi

C2 « 1000 pF

RBT= 95 Ji

R3= 3 kji
C3 = 750 pF

J*E1 = 10 si

RE3= 3 k-a

si

* Vr

VCC= 12-5 V
~IC1 =..2.0 mA

Iq2 = 0.5 mA

IC3 = 0.25 mA

Fig. 16. Single-loop feedback selective amplifier realization proposed by A. A. Gaash. amp^ner realiza

- 73 -



Table 6

—Response and Response Sensitivity of the Original
Gaash Single Loop Feedback Frequency Selective Amplifier.
(Frequency in rad/sec x K>6. Sensitivity in ppm/°C.)

Open
Loop Zero-Order First-Order Second-Order

Pi -0.0500 -0.0519 -0.0565

<VPi -1192 -1420 -1740

P2 -0.200 -0.200 -0.206

§ t -1193 -1200 -1450

»5 .' -0.444 -0.447 -0.448

rp -1194 -1380 -1380

Z1.2 -0.125±30.722 -0.125+30.722 -0.125±30.722

TRe^zl^ -1193 -1193 -1193

'vlm^)
-1193 -1193 -1193

T0 70.0 62.0 51.8

rTo +4350- +4350 +4810

Closed
Loop Zero-Order First-Order Second-Order

*1.2 -0.00636±30.500 -0.00734*30.489 -0.00820+30.481

<4 -1.26 -1.22 -1.21

Zlr2 -0.125*30.722 -0.127±30.719 -0.127*30.719

^O 0,500 0.489 0.481

-9 -T -63.5 -126 -121

BW 0.0127 0.0147 0.0164

/ T +515 -3900 -7800

Q 39.2 33.3 29.3

1 T -568 +3770 +7680
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response as a: function of temperature, a was varied so as

to simulate a sensitivity of _Tq of 4350_ppm/°C also in..;

agreement with Gaash1s required design value. The results

of a first-order analysis of the circuit of Fig. 16, where

the reduced hybrid-pi model of Fig. 4(b) was used, are given

in the second column of Table 6. Finally, in the third

column are the results of a second-order analysis where the

more complete hybrid-pi model of Fig. 4(a) was considered.

It can be seen that even for the zero-order realization, the

response is not quite that desired as Q is only 39.2.

Examining the open loop response, it is seenthat Im(z 0)
1, 2

and p do not agree with the required values proposed by

Gaash. Also, the sensitivities of the open-loop poles and

zeros reflect the fact that differential quantities have

been approximated by larger increments (i.e. dT = J\T = 5°C).

Both the response and its sensitivity become progressively

worse as the first and second-order models are considered.

Slight ad3ustments of RBT and C, to 94.1 SI and 755.7 pF.,

respectively, are sufficient to bring about the desired

closed-loop response for the zero-order realization as

Indicated by the results of Table 7. Here, also, for the

•Zero"order.real3-zation> ^ and its temperature sensitivity

were chosen so as to reflect the design requirements of the

second column of Table 5 rather than those proposed by

Gaash as given in the first column. Note that for the zero-

order realization, all open-loop requirements are satisfied
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to three place accuracy with the exception of the tempera

ture, sensitivities of the open-loop poles -and zeros, yet

the sensitivity of bandwidth is relatively large. This

point will be brought out further shortly. Considering

the results of the first and second-order analyses, it is

also seen that what little improvement in performance is

achieved in terms of bandwidth and center frequency is

more than offset by the corresponding Increase in sens1-:

tivity.

If the open-loop results of Table 7 for the first-order

analysis are examined, it is apparent that several parame

ters do not agree well with their corresponding zero-order

values or the required values as specified in Table 5.

Consider the shift in px and p2 from the zero-order to the

first-order-realization. This is the-result of a finite

load introduced across the output of the bridged-T network

Let RL denote the equivalent load seen by the network as

.Indicated in Fig. 15. it represents the driving point

resistance presented by the first emitter-follower. The

expression for the transimpedance z21(s) of the bridged-T
network becomes

..m„.i .2. «.mAi.- -:_ _ „ Ri, <"«
z21(s) =

rbtrl s + pol(i+^)+Po2 8 ; PaiP (1+ 1 )
2 *3T

« 2 /, Rl, , Ro Rn+R«
l s +Poi(1v)+poa(1+rJ^) 8+poipo2'[1+-i-2r:R2 RBT+RL RBT+RL
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Table 7

Response" and Response Sensitivity of"the Corrected Zero-Order-
Design Selective Amplifier where Rgj = 94.1J2 and C^ = 755.7pf
(Frequency in rad/sec x 10°. Sensitivity in opm/°C.)

Open
Loop

Zero-Order First-Order Second-Order

Pi -0.0500 -0.0519 -0.0565

r?1 -1191 -1420 -1740

p2 -0.200 -0.200 -0.206

TP2§ T -1193 -1200 -1450

p, -0.441 -0.444 -0.444

rp3
1 T -1193 -1380 -1380

z1.2 -0.125±30.725 -O.125+3O.725 -0.125±30.725
^vRe(z1)

-1193 -1193 -1193

VIm(z!)
-1193 -1193 -1193

T0 69.8 62.0 51.8

rTo
/ T +4500 +4350 +4810

Closed

Loop

qiyg

51

3*2.

U)

rwo

T

o

m

BW

_1

Q

Zero-Order First-Order Second-Order

-Oi00503±30.500 -0.00607*30.490 -0."00698+30.481

-1.25 -1.21 -1.20

-0.125+30.725 -0.128+30.727 -0.128+30.727

0.500 0.490 0.481

••--17.-5 -121 -116

0.0101 0.0121 0.0140

+418 -4900 -9900

49.7 40.4 34.5

-435. +4780 +9780
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where pQl and p 2 are defined as before. It is seen that

-the—loading does not affect the zeros of z21(s). The load- -

lng does, however, introduce RfiT into the denominator of the

expression for z21(s). It might appear that this would pre

clude one from ad3ustlng Imfz^ 2) independently of p and

P2. Fortunately, in the case being considered, RgT is

negligible with respect to R* which is of the order of 300 ki*

RB_ can thus be neglected.

In the original work of Gaash, losses through the emit

ter followers were assumed negligible. Note that the com

mon emitter stage (transistor Q1) of the realization of Fig.

16 is nearly the same as that considered in Section I.D

which has a current gain of approximately-69. If this value

is compared with that of the loop gain from Table 7, it be-

„eomas_apparent that the. above mentioned losses are not neg

ligible. If Eqs. 46 and 47 are considered, it is seen that

this problem can be corrected while preserving the proper

..gain sensitivity by varying R^, and R£1. The required values

and the results of a first and second-order analysis of

this gain corrected circuit are presented in Table 8.

Notice that Q is relatively unaffected by this correc

tion. JPhis leads to the consideration of the tolerance

problem associated with RBT. In Fig. 17 is a plot of

Re(q1>2), Im(qlt2) and Q(unloaded) as a function of RfiT cor
responding to the zero-order realization of Fig. 15. Also

shown (dashed line).is the curve for Q,- , ,*, that is, for

- 78 -



*»

Table 8

Response and Response Sensitivity for Gain Corrected Design
where R£1 = 6Jt, Rp = 4.6 kft %r = 94.1/?, and C3 = 755.7 pf.
(Frequency in rad/sec x 10°. Sensitivity in ppm/°C.)

Open
Loop First-Order Second-Order

pi -0.0519 -O0O567

n1 .-1420 -1740

p2 -0.200 -0.206

rp -1200 -1450

p^ -0.444 -0.445

7? -1380 -1380

zi 2 -0.125+30.725 -O.125+30.725

yf'V -1193 -1193

yj?lzi} -1193 -1193

To 69.56 57o81 .

r?o +4450 +4690

Closed
Loop First-Order Second-Order

<llf2 -0.006l4±30.505 -0.00669±30.496

<4 -1.27 -1.27

z1.2 -0.128±30.727 -0.128±30.727

"o 0.505 0.496

f T -132 -124

BW 0.0123 0.0134

yW
-1700 -7650

Q 41.1 37.1

9 t +1560 +7525
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20rRe(qi)
(10-5 rad/sec)

Im(q.,)

85 90

RgT (ohms)

Fig. 17. Effect on Q of RBT and loading.
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Q where a 300 kji load has been placed across the output of

the bridged-T network. Clearly, the sharp dependence of Q

on Rgrj» as well as the dependence of Q on loading could lead

to difficulties.

In an effort to surmount these problems, consider the

following optimization scheme. Rather than redesigning

the circuit and accounting for the loading problem discussed

above, use the values of P1-and p from Table 8 and the val

ue of Re(z1 2) rather than Eq. 95 in the design procedure of

Table 4. Loading effects are then taken into account.

This will result in new required values of p,, Im(zn 0),
To * '

TQ, and S . The new required value of p_ can be realized
1 3 v

by the proper choice of C_. The new required values of T^TQ 3 0
and ST can be realized by the proper choice of RF and R^ .

Finally, the new required value of Im(z ) can be realized
1,2

by the proper choice of R__. Note that each of these three
til

ad3ustments can be made relatively independently of the

other—two as interaction is negligible. Such a procedure

results in the revised design requirements and element

changes given in Table 9. The resulting performance is

characterized in Table 10. It is seen that at least to

—first-order the response is that desired.

The problem of the large sensitivity of bandwidth

(Re(q1 2)) has not been resolved. The only noticeable

remaining deviations from specified design values are in

the sensitivities of the open-loop poles p.. and p . Recall
1 3
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Table 9

Modified Design Requirements and New Element Values Required
to Compensate for the Effects Due to Finite Active Loads.
(Frequency in rad/sec x 10°. Sensitivity in ppm/°C.)

•

Modified Design Requirements

pl = -0.0519 q'l 2 = -0.00500+30.500

P2 = -0.200 co0 = 0.500

P3 = -0.437 BW - 0.0100

zl,2 = -CI25+3O.725 Q = 50.0

To = 67.72 Yl° = +4511

New Element. Values

RE1 = 6.3 .ft RBT = 94.1 SI

Rp = 4.75 kii C5 = 768.0 pf.
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however that the fundamental assumption upon which all of

the foregoing design-procedure is based "is that all dominant

..open-loop poles and zeros have the same sensitivity with

respect to temperature.
Pi p.

The departure of S and S ° from the desired uniform
T T

sensitivity of 0.36 (1200 ppm/*C at 300°K) can be attribu

ted to the Increased temperature sensitivity due to BQ of

the active load presented to the bridged-T network and to

the R3-C, combination by the two emitter followers. The

effect of these deviations can be demonstrated as follows.

From Eq, 15, one obtains

dq, =s^o +S^JL «3t .BJiy _*L_5k (11?)
T0 T0 ^Vqi-Pe Pe °k^rt 2k

—From Eq. 35,.-dTQ/T0 can be related Xo dT/T by ST°. Assume
that based on some design, arequired value of S;£o, here

—denoted § 0, is known. Let /\S ° denote the error between
—the actual value and the required value

. As^° = s*° -S*o (118)

—-S-imliarl-y—from -Eq.- -9,—one-can write

dp p dT
—a = S e (119a)
p l T
e
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dz

z

k zk dT- = S * — (U9b)

Again assume that required values, denoted %e and ^k of
S e and S*k are known such that

** = f* = -(sR +sC)
T T T T

(120)

Let fas and ^\S denote the errors between the actual
T T

values and the required values

*P.AsPe
T

= S * - S
T

2,

/\s k = s

T

fk

Then Eq. 117 may be written

qldq =V
. T T e ql-Pr T Te

(121a)

(121b)

4-* 0-7.. T TkVzk T

dT

— (122)
T

Now assume that for the required values first-order com

pensation is achieved

##>**&
0 T

l1"t
y_i_gpe_ y_JLsz'
.««1-P. T k ql"zk T
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Then Eq. 122 reduces to

dq1 = £ A<° *^ [I—AsPe-Z— A32iLTo t TolVqi-pe t Vii-Zk T'

Now from Fig. 10 and Eqs. 16 and 88, one can write

and

ql

qlqxST =

Uir/2 +S)
e = j

&
M^+2S)

e

5l is
e

22*

dT

(124)

(125)

(126)

For a high Q (>30) circuit, 6 is small (<1°) and these

equations may be approximated by

ql
.T0 J

ql
-q-An-

1 0

13ll

*0

.-

1

ql
ql

To

Eq. 124 may now be approximated by

—dq-r«_B^Wfe^-?^

(127)

(128)

dT

— (129)
T

Now from Eq. 60, the sensitivity of center frequency, cj0,
is given by
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at

<4> Im (q-,)
S « S ± -

T T

51m (q^/lm (q^

~ dT/T

Im (fc qj-J/lm (qx)

iT/T ~~

ql A3?
Im (qx) Im (qx)

Im Z—A<e-E—A^

AsT°
Im (qx) - i4l ^-AsPe -I-i-A^j

\ e ql-Pe T Kqn-zir T /

where for a high Q situation, the approximation

I* (qi)« [qi|

(130)

has been used.

Similarly from Eq. 63, the sensitivity of bandwidth, BV7,

is given by

BW Re (qn)
S «s S L

T T

frRe (qx)/Re (qx)

i*T/T
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Re ( dq^/Re (qx)

&T/T

Re
'k

Re (qx) L « qrPe

Z1 . pe r-» -1
A8, - Z As

Hql"Zk" T

*2Q
T0

Re Z—A<e" Z—A
c *i-Pe * Hr*k

(131)

The important point to notice here is the appearance of the

factor 2Q in the expression for the sensitivity of bandwidth.

For the optimized first-order design considered above,

the deviations in the sensitivities of the open-loop parame

ters are

and

As 2« As lf2« As °~ °
T T T

A pl^S «s -0.066
T

As 3*s -0.054
..~T

For the assumed first-order compensation,

approximated by

f Q

ql 1 / R / Tn\
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c

where S =0. Using these values and the values for p_, p_,
T 13

-and q^--from Table 10, one obtains-jTrom Eqs. 130 and 131

d>0 /-0.066 -0.054
S °« -(0.133) Im

T lql-pl qi"P3
g* -(0.0176 + 0.0082)

«5 -0.0258

BV7 /-O.O66 -0.054
S « 2(50) (0.133) Re +

At 300°K,

T \qx - Pl qx - V3i

« -(0.165 + 0.708)

« -0.873

*>o7 « -86 ppm/ C
T

3W

T « -2910 ppm/ C
T

These values_agree. well with the actual sensitivities found

for center frequency and bandwidth as given in Table 10.

.Jiot ice .the -relative-magnitudes..of ..the „contrlbutions to the

• sensitivity of bandwidth from the poles p^ and Pg. This

results from the fact that [pJ, and thus Re(q1-p.), is small

with respect to [qj £sCjQ while fp,| is of the same order of
magnitude. This observation will referred to when exten-
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sions of Gaash's are considered.

As_.a_final jpoint prior to discussing the results of the

second-order analyses, notice the slight shift in the loca

tions of the zeros in going from open to closed-loop. It

can be shown that this is/due to feed-forward through R™

as follows. Assume temporarily that the input node is the

collector of Q^ rather than the base. The resulting circuit

is still recognized as a shunt-shunt configuration. For a

first order, small-signal analysis, however, the controlled

source of the reduced hybrid-pi model is unilateral, and

feed-forward is eliminated. Under such conditions, no shift

in zero locations is observed yet the closed-loop poles are

found to be identical with those observed in generating

Tables 6, 7, 8, and 10. Based on these results, the shift

in zero locations will be ignored.

If the results of the second-order analyses are examined,

three effects are quite noticeable. First, additional load

ing results in a larger deviation of p1 from its predicted •

value. Second, the sensitivities of the open-loop poles are

significantly larger. Finally, loop gain is reduced further

by losses associated with rx, r^, rQ, and r'. As a result,

jy^©.closed-loop re_sjponse_ is .not that'desired, while the

sensitivity of bandwidth is much worse.

Before attempting a sensitivity analysis such as that

carried out above for the first-order response, consider

the results obtained by following an optimization procedure
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such as was done for t'he first-order analysis. Values of

the open-loop..poles p and p and of Re(z, 0) were taken

from the third column of Table 6 and used as the basis for

a new design. The new design requirements, 'element values,

and open-loop and closed-loop responses are given in Table

11. It can be seen that while the closed-loop response is

improved, bandwidth sensitivity is still extremely large.

Eqs. 130 and 131 must be modified slightly to include

contributions to sensitivity from non-dominant poles and

zeros which are uncompensated. This results in the addition

of terms of the form

q-

*i

Im (qx)
Im

and

2 Q Re

E^
Pr r-» 1 zs

S — \ • S

f q- Z1 pr r-* 1 Zs—aS r - ) —iS S
p T " z T

7-i_sPr - y
r ^TVT ?*\~H T

«1

To
*s 2 Q S

^-» -D- T ^-J -zr Pr T

1 *BS s
a8 T

(132)

(133)

where p and z represent any real non-domlnanat open-loop
S •

poles and zeros and where it is assumed

- 91 -



Table 11

Revised Design Requirements, Element Values, and Response
for a Second-Order Optimization of the Gaash Realization.
(Frequency in rad/sec x 10°. Sensitivity in ppm/°C.)

Revised Design Requirements

Pi = -O.O565 qi 0 = -O.OO5OO+JO.500

P2 = ^0.206 CJQ = 0.500

P3
= -0.418 BW = 0.0100

z1.2 = -0.125+J0.723 Q = 50.0

T0 = 62.55 jI° = +4537

New Element Values

RE1 = 7i5J* RBT = 96.5 Jl

Rp = 4.1 kJl C^ = 804.0 pf.

Open-Loop Response

p1 =. -O.0565 7?1 = -1730
p2 = -0.206 r?2 = -"*>
p^ = -0.419 7f3 = -138O

Re (zx) = -0.125 ^Re(2l)= _n93

Im (zx) = -0.716 7j»t«lJ= -1193
TQ = 61.1 7*0 = +439o

Closed-Loop Response

^0 = 0.497 § T = -208

BW = 0.0955
VBW
t T = -7800

Q = 52.1 n = 4-7600
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The only additional pole which need be considered for the

case at hand is at -36.5 x 10 rad/sec and has a temperature

sensitivity of -4060 ppm/°C. It is due largely to c^

(ft 20.2 pf.) as can be demonstrated by the fact that upon

removal of c^ from the circuit, the nearest pole is at -91.3

x 10" rad/sec. All other non-dominant open-loop poles and

zeros are an additional two orders of magnitude removed from

frequencies of interest (ftlq^l), and from the form of Eqs.

132 and 133, it is easily seen that their contributions will

be negligible. Then for

a Pi
AS ft -0.162

T

A p2_AS * « -0.075
" T

A p3AS J ft -0.054
T

p?n-J3 ^ ft -1.22
*? • T

one obtains

- 93 -



•B^—(0.133)
T

-0.162 -0.075 -0.054 \ 0.5 ,
Iml + + 1 + — (-1.22)

qi-Pi qrp2 vp3/ -36.5

ft -(0.0432 + 0.0171 + 0.0078 + 0.0022)

ft -0.0703

BW

s « 2(50)(0.133)
T

" /-0.162 -0.075 -0.05M -1.22*

7\ qi-pi qi-p2' qi-p3i 36-5.

ft-(0.445 + 0.671 + 0.796 + 0.445)

«; -2.26

or at 300°K

y° « -236 ppm/*C
' T

^BW
T « -7520 ppm/°

-T

Again it is seen that these values agree reasonably well

with the sensitivities of center frequency and bandwidth

observed in Table 11.

An-interesting-po4nt-to-notice is the comparatively low
9

sensitivity of bandwidth observed in Table 10 to that seen

in Table 11. The failure of the preceedlng analysis to

reflect this result is due to the fact"that to first-order,

compensation is not achieved for the second-order response
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of Table 10 and Eq. 123 does not hold. The reduced band

width sensitivity seen in Table 10 is not due to the reali

zation of required design values but to compensating errors

in the realization of required design values. This phenom

enon was observed several times during the course of pre

paring this report; however, all attempts to optimize in

this direction failed.

By way of concluding this discussion then, the signifi

cant feature of the ab.ove analysis is the dependence of

bandwidth sensitivity on the factor 2Q. This causes what

at first appear to be second-order perturbations from design

requirements to have major effects on the observed sensi

tivities of bandwidth and selectivity with respect to

temperature.

Before going on to consider ways in which the effects

discussed above can be minimized, recall the following.

It was assumed by Gaash that S = 0.36 while a more reason- ^
T

able value might be 0.6. For this larger value, however,

the required loop gain sensitivity for the design proposed
1^ T

in Table 5becomes S * 2.25 or / °ft 7500 ppm/«C at
300<»K. From the results of Section I.C, it is apparent that

.such a.large,value is incompatible with the circuit realiza

tion of Fig. 16. It then seems desirable to consider circuit

modifications which both minimize loading effects and are

compatible with a resistive temperature coefficient of 2000
ppm/°C.

- 95

4^



Consider the selection of px and p2. Momentarily ignor

ing the loading problem and using the previously outlined

design procedure of Table 4, one can plot the curves of

Fig. 18. The open-loop poles.p^ p2, and p, were normalized

to the center frequency cj0 which was assumed to be 1.0. The

selectivity was assumed to be 50. Here IP2 Iwas assumed to

be the independent variable and \v\\ was.then constrained
such that the two innermost poles (the two poles nearest the

origin) were coincident. Thus, for fp2|>0.4, p1 ~ p,and
for |p2|<0.4, p1 ^ p2. Empirically it was found that such
a constraint assured a near minimal value for the required

loop gain TQ for a particular choice of |p2 . The required
value of gain sensitivity was found to be almost entirely

dependent on the value of the outermost pole. These curves

give a fair indication of the types of design requirements

which are likely to be encountered.

In choosing values for px and p2, it will be helpful to

keep iii mind the following considerations. From the discus

sion of the second-order analysis of the optimized Gaash

-realization, it is apparent that excess phase due to non-

dominant singularities can affect the sensitivity of the

-clos-ed-loop response. It thus seems -wise to use as few

active devices as possible to minimize excess phase. This

Implies the use of a single Inverting (common emitter) stage

if one wishes to use negative feedback.. The restriction to

a single inverting stage, however, places severe limits on
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500

5.Or

SjO/S?
4.0

3.0

2.0

1.0-

0.0

2.0

1.6 , . 2.0

Jp2i
Fig. 18. Summary of typical design requirements.
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the amount of loop gain and loop gain sensitivity which can

reasonably be realized.

If emitter followers are to be used In the manner em

ployed by Gaash to achieve Isolation, it would seem wise in

view of earlier observations to make (PtI >|Pg >and [p-* as
small as possible with respect to {q-,1 in anticipation of

effects of active loading on sensitivity. Unfortunately,

—this demand is not compatible with the constraint employed

in generating the curves of Fig. 18. Further, it does not

work out well in practice as the phase conditions upon which

the design procedure is based severely limit the degree to

to which the magnitudes of the three open-loop poles can

be minimized simultaneously. '•

As a compromise, consider a choice of |p2| near 1.4%

and Ip-,1 ft Ipjnear 0.1%. This selection is prompted by
the observation that as p2 is made increasingly large with

respect to p., its sensitivity more closely approaches the
1 R

ideal value of -S . Thus it would seem that contributions
T

from both p. and p2 can be minimized to some extent. From

Fig. 18, this choice of p1 and p2 imply the need for a loop

gain near 200 and a loop gain sensitivity near I.65 (5500

—ppm/°C-at 300°K). An obvious solution based on the results

of Section I.C is the addition of a common-base stage to the

Gaash realization. This can be done with an unbalanced dif

ferential pair connected in the form of a paraphase circuit,

though the inductive driving point impedance associated with
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the common-base stage may lead to problems. Biasing con

siderations suggest the realization of Fig. 19.

Here it has been attempted to minimize the effects of

loading by choosing relatively low values for resistances

used in realizing the dominant open-loop poles and zeros

where possible and large emitter resistors at each of the

emitter-followers. The bridged-T network has been moved

to take advantage of the larger driving point impedance

obtained at the base of the second emitter-follower.

Based on values required for biasing, a first-order analysis

was performed to assess the range of loop gains and gain

sensitivities available by varying Rp about a nominal value

of 5 k£. Gain levels ranged from 204 at 5 k-ft to 299 at

2.5 kU while gain sensitivities ran from 5410 ppm/*C to

4250 ppm/°C at corresponding values of Rp. With these values

in mind, the design procedure of Table 4 was used to seek a

compatible set of design requirements vrhile maintaining as

small values for IpIand Jp^l as possible. This led to
the design values shown in the first column of Table 12. C^

and C2 were then chosen so as to realize as closely as pos

sible the required values of p1 and p2# The actual values

realized and the value of Re^ 2) were then used as the ba

sis for a new design, the results of which are presented in

the second column of Table 12 for comparison. RBT, Rp, and

CL were then chosen so as to closely approximate the remain

ing design values.
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Rx = 10 kjl

C^ = 452 PF .

R2 = 5k* "
C2 =-^1505 pF

R, r 5 kA

R4 = 5 kJi

C* = 2616 pf

RBT =

^2 =

^3 =

RE4 ='

*B1 =

B2

HB3 =

281 Jl

2 k/l

500 Jl

10 kJi

10 kJl

10 kit

2 kJl

Rp = 4.3 kJt

Vcc = 6.5 V

I-. = 1.0 mA

IC2 =0.2 mA

IC3 = 0.5 mA
Iqk = 0.1 mA

Fig. 19. Selective amplifier realization with paraphase
interstage.
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Table 12

Initial and Final Proposed Design Requirements '
for the Selective Amplifier Realization of Fig. 19.
(Frequency in rad/sec x 10°. Sensitivity in ppm/*C.)

Initial Values Final Values

ql,2 -O.00500±jo.500 -0.00500+J0.500

^0 0.500 0.500

BW 0.0100 0.0100

Q 50.0 50.0

Pi -0.0400 -0.0399

P2 -0.7575 -0.7580

P3 • -0.0400 -0.0401

z1.2 -0."3987ij0.9576 -0.3983iJO.9577
ye

-7 T -"2000 -2000

*0 220.8 221.0

n° +5210 +5211
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The results of a first-order analysis are presented in

v the first column of Table 13. Again the deviations from

the assumed values of temperature sensitivity of the open-
»

n loop poles p^ and p, are noticeable. An analysis such as

that previously performed on the Gaash realization based

on Eqs. 130 and 131 yields the following

S « -(0.0286 + 0.0286) ft -0.0572
T

BW

S ft -(0.194 + 0.194) ft -0.388
T

At 300°K

o0
ft -191 ppm/0 Cr,

BW

% ft -1290 ppm/°C.
T

where it has been assumed

I'll -.n(b*/%0- °-192
Note that to first-order at least, the sensitivity and res

ponse obtained above is superior to that obtained from a

y first-order analysis of the optimized Gaash realization.

Finally, consider the results of the second-order analysis

as presented in the second column of Tablel3. While the

open-loop results are not unexpected, the closed-loop poles
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v

Table 13

Response ajid Response Sensitivity for the
Selective Amplifier Realization of Fig. 19.

(Frequency in rad/sec x 106. Sensitivity in ppm/*C.)

Open
Loop First-Order Second-Order

Pi -0.0399 -0.0421

ypi •
1 T -2240 -2350

P2 -0.0401 -0.0437

. 7P -2240 -256O

^ -0.7580 -0.7447

t T -1980 -2130

Z1.2 -0.3983iJ0.9576 -0.3983JJ0.9576
^Re(Zl)

-1980 -1980

rim(2l)
-1980 -1980

T0 220.8 156.8

rTo +5170 +5380
..

Closed

Looo First-Order Second-Order

...-*irP -0.00502+jo.500 +O.OO921+JO.463

*3 -1.077 -1.070

Zlr2 -0.4469iJ0.9320 -0.4469+JO.9320

^0 0.500

rytSo
-228 --—._

BW 0.0100 —-_«.«

"yBW
/ T -1470

Q* 50.0

+1240
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q. 0 migration into the right-half plane was not anticipated.
1> 2

This shift results from an additional open-loop pole at

-6.04 x 10^ rad/sec. As has been noted by others 1, this

narrowbanding is characteristic of the paraphase interstage.

The inductive driving point impedance Of the common base

transistor is augmented by the emitter follower. A root

locus corresponding to the first-order (dashed curve) and

to the second-order (solid curve) analyses is shown in Fig.

20 and was obtained from a computer analysis.

Though it might be possible by a design modification to

to realize the desired closed-loop response taking into ac

count the additional open-loop pole, note the following.

The additional pole has a temperature sensitivity, of -5110

ppm/*C. Consider the contribution to bandwidth sensitivity

ql
from Eq. 133 where it is assumed S- ft 0.192

l0

• BW

S W -4.88
T

BW

T ft -16260 ppm/ C
9 T

at 300°K. At this point, one is forced to abandon this

particular realization.
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^

' q3 p3
-I—*H h* »-

-1.4 -1,2 -i#o -0,8 -0.6 -0.4 -0.2

Fig. 20. Root locus for a first-order analysis of the
selective amplifier of Fig. 19 (dashed curve) and the effects
of excess phase for a second-order analysis (solid-curve).
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SUMMARY

An approach to the design of temperature insensitive,

active RC selective amplifiers proposed by Gaash has been

considered. Its development has been retraced using compu- •

ter-aided analysis and simulation. Single-loop, negative

feedback amplifier realizations were employed. First-order

sensitivity formulations were used to relate the dependence

of the required dominant complex pair of closed-loop poles

on temperature to the behavior of the open-loop poles and

zeros and the low frequency value of the loop transmission

or loop gain function. It was shown that, to first-order,

simplifications in the sensitivity expressions resulted when

all open-loop polesand zeros were constrained to have the

same temperature coefficient. These simplifications were

shown by Gaash to lead to a simple physical description of

the sensitivity of the closed-loop poles in the complex

frequency plane. The heed for extra degrees of freedom '

in the form of additional open-loop poles and zeros to be

able to design for desired response and response invariance

was demonstrated.

The single-loop realization proposed by Gaash was

examined in detail with respect to the effects introduced

by first and second-order device models. Charge storage

(excess phase) in active devices, resistive losses, and

non-ideal realization were considered. It was seen that
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deviations in the temperature" dependence of the open-loop

poles and zeros from prescribed values had major effects on

the observed sensitivities of bandwidth and selectivity with

respect to temperature. In particular, bandwidth sensitivity

was found to be proportional to 2Q. Efforts to minimize

these second-order effects while extending the design ap-

. proach to accomodate a resistive temperature coefficient

of 2000 ppm/°C led to unacceptable results.

The problem remains of reconciling the excellent experi

mental results reported by Gaash with the poor results

reported here. Two possibilities seem to exist. The first

is that non-linearities in device parameters or their temper

ature dependence inaccurately simulated on the computer

had a compensating effect which'has not been accounted for.

— The second is that variations in temperature coefficients of

elements of the same type resulted in compensation. In this

regard it can be demonstrated that had RfiT had atemperature
-coefficient. 200ppm/*»C greater than the uniform temperature

coefficient assumed by Gaash, much improved results would

have been observed. Without knowing the geometry of the

diffused resistors used by Gaash, it is not possible to say
—whether or not this could have occurred. It is known that.

.Gaash worked with at least one experimental circuit in which

discrete components were used. A comparison of the tempera

ture coefficients of several commercially available if resis

tors indicated slight uniformity between units of the same
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value from the same manufacturer while units of different

values showed no correlation at all. The main conclusion

seems to be then that while temperature compensation may
occur when the apjproach considered by Gaash is used, the

resulf cannot be consiered to follow from the first-order

design formulations presented.

Finally, a word should be said about the approach used

in this report. In defense of computer-aided analysis and.

-simulation itmust be said that no other method of analysis

seems possible. However, computer-aided analysis- and sim

ulation cannot be considered a substitute for intelligent

consideration and understanding of underlying physical

processes. As the author began spending what seemed like

an- inordinate amount of time verifying computer results,

finding that sometimes.mistakes were made by the computer,

more often by the program, and most often-by himself, it

became abundantly clear that no computer result should

ever be accepted uncritically. Therefore, it is the author's

contention that this report should not be considered grounds

for dismissal of Gaash*s work but as an additional piece of

information bearing on an imaginative approach to the design

of temperature insensitive selective amplifiers.
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APPENDIX A

SENSITIVITY OF CLOSED-LOOP POLES IN SINGDS-LOOP FEEDBACK

Assume that the closed-loop transfer function A(s) of

a single-loop feedback system is written In the form

N(s) N(s) .
A(s) « = (Aol)

D(s) 1 + T(s)

where D(s) (not necessarily a polynomial) is the return

difference and T(s) Is the loop transmission. T(s) may be

written in one of the two forms

7T(l - s/z. )
T(s) ~ TQ-£- -*- (A .2)

°^(l-s/pe)

m KJC k_ (A#3)
7T(s-pe)
e e

where the low frequency value of the loop transmission, TQ,

is given by

T s T(0) (A.4)

and

T7* / ^

K = T(O) e e (A.5)
7T(-2k)
K K
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The return difference may be written in the form

D(s)= 1 + T(s) = -£
TT(s - pJ + KTT(s - z„)

7/(8 - pe)
(A.6)

Let q. (i = 1, 2, •••, n) denote the zeros of the return

difference

D(s)= 1 + T(s) = -±- i-
7/<. - p.)

(A .7).

and equlvalently the poles of the closed-loop transfer

function A(s).

Let q denote the closed-loop pole of interest. Evalu

ating D(s) at q,, one obtains

• D(s ) = 1 --k-T(s)
s=q.

_ ff<s - «1>
,8^ 7T(s -pe)

= 0 (A.8)
s=q.

From Eq. A.6, the total differential of T(s) is given by

dT(s) = dD(s)

ff(s-pe) d7T(s-qJ - 7r(s-qi) d7T(s-pe)
?•7T(8-pe)

—€

and from Eq. A.8

eiT(s)
d7T(s - q^

•-Ql 7<-s - Pe) s=-Ql
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.- ?i(s-qJ)ds-^(s-q3)dqi'
7r(s-pe)

ql= qi(V VPe)

s=q.

^ql"qj^ dql "" ^^l^j^ dql
e *

= 0 r "(A.10)

- From Eq. A.2 and Eq. A.7, it is apparent that a closed-

loop pole, such as q , may be expressed as a function of

T0* \9 and Pe; that is'

(A.11)

where k±?.l, •••, m and e =1, •••, n. Consider the total

differential of q.

dql v1 dqi r-1 dql „
dqi=-r^dTo +I~r dz* +1—dp<d?t dzk dP(e u^e

&qi dTo v1
?iT T ^"J

dql dzk V „ &Q1 dPe

where

qa .dT-0 -J^..ql dzk JC^qldpe
£•? ^ -K1-—-S

0 0 « Zk Zk

sqi » T &«L
Tq °dT0
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.0 -o « "&Zk Zk " *>Pe P<e ^e

(A. 12)

(A .13a )



-p

zk k dzk

*X - P.
aqi

dPe

(A,13b)

(A.13c)

FronrEq. A.2 it is also apparent that the loop transmission,
T, may be expressed as a function of s, TA, zw and p

T = T(s, TQ, zk, pe) (A#14)

where k-1, ♦ ••, m and e= l, •••, n.

Prom Eq. A.10, the total differential of T evaluated at

s= q^ is given by

-dT

Thus

*1
5s

s=q.

ds

e

=-0

&T £T
ds + dT^4-V dT

dz +as 6t0 o L* 6Zk k v dPz
dT

^

e
s=q.

(A.15)

To^^+yZk^!!k+yp^<
s=qa L°_6T0T0 Vk5zk zk V e3Pe Pe. s=q.

(A.16)

The individual partial derivatives may be evalueted from Eq.

A.2. The result may be written
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-dqn-=
6T

bs

i-1

s==Qi/

dT

JoT. 4* a -z

q, dz

*Q1-Zk Zk
k+z

qi dZk' (A.17)
e Vpe ZkJ

Comparing Eq. A.17 with Eq. A.12, one caja identify the sensi-

tivity functions as follows

ql -V =
d*

bs s=q-

S 1
zk

= - S,
T 0 q - zk

q
l

Pe
S * = S>

ql
T^

ql " P«

~(A.l8a)

k«l, •••, m (A.l8b)

e =1, •••, n (A.l8c)

S-~ may-be evalua-ted-from-either Eqv A.2~or Eq. A.3;
T0

however, Eq. A.3 is chosen for convenience

STJ
2>T

b s s»q.

b Kff<s - zk) -l

6 s TT(s-Pe) s=q.

K^-7T(s-z. ) - T-£-7T(s-Pe)
bs K K bse

^(^-Pe)
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If

'f

ff(s - pe)

iMr(s - qi> s=q.

ff(* - Pe)
If(a - q,) s=q

t 1 J.

=• Res

f(» " P«)
7T(s - qJ
,=2 J

s=q.

A second form can be obtained from Eq. A.19

qi^/KZ7T(s-zk) .TCsj^TTts-p^r1
7T(S-Pe) h^i

s * =

7T(s-pe)
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