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INTRODUCTION

In the classical theory of communication, nearly all of the
results pertaining to the rate of transmission of information have
depended upon accurate characterizations of the channel operator and
the statistics of the noise. Recently however, W. L. Root and P. P.
Varaiya have investigated the problem of determining the channel
capacity iﬁ situations where accurate characterizations are not possi-
ble. In [1l], Root studied the problem of estimating the maximum rate
of transmission for the case where the channel operator was known to
a large extent, but where it was not possible to characterize the dis-
tortions and perturbations of the signal probabilistically in a more
than rudimentary manner. Other investigators [2], [6], considered
only the limiting behavior, where the perturbations and distortions
became vanishingly small.

The case where the noise was known to be Gaussian but where
the channel operator was assumed only to lie in some conditionally
compact class of linear operators was investigated jointly by Root and
Varaiya in [3], [4].

In this paper, we shall consider a combination of both these
cases. We will assume that the channel operator is known only to
belong to a conditionally compact class of linear operators and that
the probability that the noise has average power greater than some number e

is vanishingly small. The number € may be arbitraily large and no
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It is convenient to denote sequences of x's by u = (xl, Xys eees X )
n

and sequences of y's by w = (yl, Voo ooes yn) . We can then characterize

the n -extension of a channel A by

~-
A 0 0 0 oo 0 )
Y
0 A 0 0 cee 0
n Y
A = 0 0 A 0 0
Y Y
0 0 0 0 oo A

b \{.J

In most physical problems we are not interested in transmitting
all of R™P. We will therefore only consider transmitted sequences u

2
which satisfy an average power constraint i.e., ueUIIi'/I = {u] “u “ <nM,

n

M > 0} where Hu”2 = zj:l

.2 .

=P (x%) and x. is the ith component of x..

i=17) J J
It is also convenient to assume that the class é is bounded i.e., there
exists a real number a, 0 <a <o such that the operator norm A |

Y
of any matrix AYe ﬂ satisfies HAyl| <a.
In order to define our problem it is necessary to introduce the

concept of the distance between the 'total images'' of any two input se-
quences. Given any two input (transmitted) sequences u,, quUi)/I’ we

define the number di j as follows
t]
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d; = inf [z -w]|

where the infimum is taken over all ze |J Anu., we U Anu. )
Y 1 Y ]
Aye'é A e v

Using this notation we first define what we mean by an attainable
€ -rate of transmission and then define the € - capacity as the supremum
of such rates.

We say that R is an attainable € -rate of transmission for

é if there exists a sequence nk with lim n, = o0 and G(nk) trans-
k~»c0
mitted signals uje UII:/I of length n such that d = inf di > e n and

i#j ? J
. 1

lim — logeG(nk) =R.
k=0
The € - capacity for 1@ , denoted by Ce is the supremum of all
attainable € -rates of transmission for ‘é .

In Sections II and III, we determine numbers Ee and Qe such
that Ee > Ce > Qe . Although these estimates are not as tight as one
would like, nevertheless they are in many cases better than those obtained

in [ 1] even when é is a single point. This will be discussed in more

detail in Section IV.

B. Discrete Infinite Dimensional Model
The infinite dimensional model is related to the finite
dimensional model in the sense that the transmitted signals x and the

received signals y are related by the matrix transformation

= A x
y Y
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In this case however, x and y are infinite dimensional column vectors
and AY is an infinite dimensional matrix which belongs to a class

of such matrices. The n -extension of AY, A:{l is defined as before
so that it carries an n - sequence of transmitted vectors u = (xl’XZ’
ooy xn) into an n - sequence of received vectors w = (yl,yz, e ¥

with

We will also assume the following:

(i) Each matrix Aye 5, is Hilbert-Schmidt, i.e., if AY = {aij} then

2
Z..a..< 0.
1] 1)

(ii) For any two Hilbert-Schmidt matrices A = {aij}’ B = {bij} we
|2

define HA-B||2= =, .Ia.-bij . Then, || || defines a

i,j i)
metric (in fact, a norm). We further assume that Zf is a totally

bounded subset of the metric space of all Hilbert-Schmidt matrices.
As before, we impose the average input power constraint M, i.e., we

only select transmitted sequences u which satisfy

2 i 2
ueUI\C:Io = {u] |Ju]|” = Z)i’j(x;) < Mn }.

For any two transmitted sequences us uj, we again define the

distance between the total images of u, and uj, di i as follows
2

di,j = infl|z -w [l
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where the infimum is taken over all ze¢ {J AMu, we U A"u,
A eé Yy ! A eé v o)
Y ‘ Y
(U APu={z|z=(A x,A x,,...,A x), A eﬁ}). With this
Y vyl y2 Yy n Y

A e
Y
notation, the definitions of attainable € - rate of transmission, and

€ - capacity are identical to those in Section L A.

C. Continuous Time Model
We also consider classes of channels that can be des-
cribed as follows. By a transmitted signal over the time interval [ -T, T]
we mean a real valued function x which is square integrable with reAs -
pect to Lebesgue measure on [-T,T]. If x is the input signal over
[ -T, T] the received signal y over an interval [ -T, T] is to be given

by an expression of the form

y(t) = ‘Sﬂ

-T

T
hy(t-'r)x('r)d'r, -T<t<T

The function hY belongs to a class —é of channel operators

which has the following properties:

(i) If hYe é s then hye LZ(-oo, o) and there exists a finite positive

number a such that ”hyHZ <a, forall hye é

(ii) ﬂ» is a conditionally compact subset of LZ(-oo ,00) i.e., the

closure of % is compact in LZ(-oo, ).
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It should be noted that in [ 1], Root makes the assumption that
the convolution operator determined by a function h have finite mem-
ory, i.e., there exists a & > 0 such that h(t) = 0 for all [t] >6. We
do not require that 'é be composed only of finite memory operators.
Root's results however can be extended to include the case where the
operators do not have finite memory.

In Section II we approximate the class é by a class of finite
memory operators. The assumptions imposed on Z give this approxi-
mating class some useful properties. Let T, denote a ''truncation"

&

operator defined as follows;

"

(5 h)(t) = h(t), [t] < &

lt] > &

i
o
-

Notice that 1‘5 is a linear, continuous operator which maps LZ(-oo, )

into LZ(—oo,co) . Thus, ﬁ 5 defined as
= {h h =T.h , h el
Tg ) { y,6| 7X:) Oy vy é }

is also a conditionally compact subset of LZ(—oo, o) and th 5 ”2 <a

for all h 66 46 .

Y

We can let HY denote the integral operator with kernel hy(t -T)

and write the relation between x and y as follows



We again impose an average power constraint on the transmitted sig-

nals by requiring that xe Z{:‘A where

T T
U - {x |5_Tx2(t)dt < ZMT}

For any two transmitted signals X xj, we define the distance

between the ''total images' of X x‘j as follows

di j = '11'1sz-W“2

?

where the infimum is taken over all ze U H xi s WE U H x..
H e é Y H eé vJ
Y Y

We say that R is an attainable € - rate of transmission for ﬁ if

there exists a sequence T, , lim T = co and G(Tk) transmitted signals

?
k k—’ook

u eu’]:k over [-T.,T.] suchthat d =1lim 4. . > E\‘T and
j M k' Tk i#j i, j — k

. 1 _
lim T loge G(Tk) = R.
k-0 'k
The € - capacity for -‘é , denoted by Ce is the supremum of all
attainable € -rates of transmission for é .

Having defined the three types of models of interest, we will

show in the next section that the lower bounds for Ce obtainable for

model A can be used to obtain similar results for models B and C.

II. LOWER BOUNDS ON Ce

In this section we derive lower bounds on CE s -C-e , for each of



the models given in Section I. The best results to date for such bounds
’

were derived by Root in [ 1] for the case where the class é consisted
of a single point or a ball. His bounds were obtained by using variations
of packing arguments. It appears however that such methods cannot be
satisfactorily generalized to include cases where the structure of 6
is complex; the total images may, for example, be disconnected and
their shapes may depend on the choice of transmitted sequences.

Our approach is fundamentally quite different. Our lower bound

for the Ce of the model A (see Theorem lA) is obtained in three steps:

(1) We imbed our problem in a stochastic problem by artificially adding
Gaussian noise. A rate of transmission is chosen so that the maximum
probability of error for this rate is less than some judiciously chosen

exponential. This is done in Theorem Z2A.

(2) We then show that certain exponential bounds on the maximum
probability of error imply that the total images of the transmitted
sequences yielding these bounds are separated from each other by the

required distance. This result is stated as Theorem 3A.

(3) Theorems 2A and 3A are combined to give the bound. The results
for models B and C as given in Theorems 1B and 1C are obtained by

approximating these models by model A and applying Theorem lA.
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A. The Finite Dimensional Case

Theorem lA

If the class é of channels satisfies the assumptions

of model A then

1/2

c.z2¢ -62/2[‘}}

1
c = sup{ sup inf loge |I +Ays AylZB l

€ P
B>0 Sek’/M Aye é

where JI\I:I = {S|trace S<M, S isa p X p covariance matrix}, | |
denotes the determinant of a p X p matrix and I is the p X p identity
matrix. |

We defer the proof of Theorem lA until the end of this section.
It is a logical consequence of Theorems2A and 3A which follow. Before
we proceed any further, note that we may always assume that 9@ >0
If _(_;e < 0, there is nothing to prove since Ce > 0.

It is necessary at this point to 'imbed' model A in a stochastic
model. That is, to the received signal y of model A we now add a
Gaussian random vector z and call the new received vector ;r\ To be

precise, ;‘r, x, and z are related by

A
=Ax+z A €
y= A, , Y&

where z is a zero mean Gaussian random (column) vector of dimension
p and with covariance matrix PI, f a positive scalar, I is the p X p

identity matrix, and where x, Ay’ —{f, are defined as before.
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The n-extension channel Az of this new model is defined

according to the rule

91= AYxi+zi, i=1,2,...,n

where the z, are mutually independent Gaussian random vectors each
with covariance matrix PI and zero mean. We denote sequences of
x's again by u = (xl, Xos enes xn) and sequences of I)\r's by v= (91,92,
cees ?n) .

In order to take advantage of random coding arguments we
also define a probability distribution for the transmitted (or input)
signals X, . For convenience we assume that the xi‘s are zero mean,
independent Gaussian random vectors each with covariance matrix S
belonging to the set JI\P;I = {S|trace S<M, S is a p X p covariance
matrix}. We let q(u) denote the np-variate probability density function
for the transmitted sequences u which are assumed to be statistically
independent of the noise z. The conditional probability of a set of
received signals B, given a transmitted sequence u depends upon the
channel AI;. We denote this probability by Py(Blu) and define pY(vlu)
to be the np-variate Gaussian density function determined by Py(B Iu) .

Then,

p (V) - { » mlwawa
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defines a probability density for the received (or output) vectors v.

The mutual information J Y(u,v) for the density q(u) and the channel

A" is defined to be
J (u,v) = lo v U.)/ \'

To prove Theorem 2A we need a number of facts which involve
slight modifications of known results. We state these facts in the series

of lemmas which follow.

Lemma 1

Let g‘ = {Al’ AZ’ e AY" cees AL} be a finite class of
channels and q(u) be én input (transmitted sequence) probability
density function determining pY(u,v) and JY(u,v). Let EC RP" be a
fixed constraint set. Forany «> 0, 6> 0, G> 1, if

L

+ L% 4 ALPES) + ; P {J (wv)< a+s}
/vy =
y'=l

A= LGe™®

and 0 <A < 1, then there exists G distinct input sequences LTRERFR

eeey B _, of received

all belonging to E, and G disjoint sets B G

G .
sequences {J Bi = an, such that
i=1

1’

Py{B:[ui}iA forall i=1,2,...,G and +y'=1,2,...,L
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The proof is a trivial modification of Lemma 3 in [ 5].

Lemma 2
n
For any channel AY ,

1/2

1
Expectation of J (u,v) = EJ (u,v) =nlo I+ =-A SA
v( Y Ee B v v

Proof:

This lemma is a special case Lemma 3 of [3]. We reprove
this lemma to familiarize ourselves with the notation. It is easily
seen that v is a Gaussian random vector with mean zero and pn X pn

covariance matrix

- -
r 0 0 . 0
0 r o0 0 0
L] r

E vv' = . T
LO 0 0 0 T

where T = AYSA'Y + BI. Hence,

p/2 . 1/2

=iA

n
p ) = 1 [1/@0P 2 r [ expl -3 5177]

i=1l

. n .
The Gaussian random vector (zl, Zys oo zn) =V - Ayu has covariance

-14-



matrix BI, I the np X np identity matrix and mean zero, hence

n -p/2 -p/2 1
p (v]u) = noem p/2 gl expl - 35 (?ri-Ayxi)'(Qi-AYxi)]

Thus Jy(u, v) is given by

n n
_ 1/2 p/Z /’\Y -1'\
Jy(u,v) = nge o™ =Bt "+ Z Ty,

i=1 i=

The first term on the right is a constant and in fact equals

2
n loge |1+ -é—AYS A'Y |1/ ; the expectation of the second term is
n n
R VS _ 1. .
Y EIHT gzl = ) FEoR) = 0
i=1 i=

Lemma 3

Let AI; be a fixed channel, q(u) be the Gaussian distribution
for u with covariance matrix S and let Jy(u, v) be defined as above.
Then for any ® > 0, and any t satisfying 1>t > 0,

P{J (u,v) <EJ (u,v) ~-n® }
Y Y - Y

5 1/2 1/2
< expf-nt® -nlog [ T+ @-t )AYSA'Y/[3| /|1 + AYSA‘Y/[SI 1}
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Proof:

The proof of this lemma involves an exact duplication of part

of the proof of Lemma 4 in [ 3] .

Lemma 4

Let X, i=1,2,...,n be independent identically distributed
p-dimensional Gaussian random vectors with mean zero and covariance

matrix S. Let the trace of S be equalto M-£, 0<§ < M. Then,
n
PUl[all®= ) 1%, 112 nM) < expl-a/(M-) - 1
' i=1

- log [M/(M -§)] )_rz_l}

Proof:

'This lemma is just an application of Lemma 5 in [ 3].

Lemma 5

Let Az, A% be the n-extension of two channels and let u be a
transmitted sequence of vectors X, . Let pY(vlu) be the np-variate
probability density for the received sequence v, given u, for Ar;, and
py(vlu) be the corresponding density for Ag. Then, for those v

satisfying ||v||2_<_nc, Cc>o0,

py(vlu)/pq(vlu) < exp{n[ NMC + aM] HAY- AQII/B}

-16-



Here, M and a are the numbers introduced in Section I.A, i.e.,

2 " 2
ol =5 Ibel1* < o, 1A, 1] and [lag Il < 2
i=1l

Proof:

This lemma is just a special case of Lemma 7 in [ 3].

Lemma 6

Let A: be any channel satisfying the conditions for model A.
2
Let u be any transmitted n-sequence satisfying Hu“ < nM. Then,
the received sequence v satisfies
2 2 '
PY{]|v|| > n[2a"M + 2Pp + 2k] | u}

< [(1 + k/BP) exp{ -k/BP} /2

for every scalar k> 0.

Proof:

The proof of this lemma involves only a slight modification of
the proof of Lemma 8 in [ 3].

We can now state and prove Theorem 2A.

Theorem 2A

Suppose that the class 'é satisfies the conditions for model A.
If R is any positive number satisfying R < ge , and G = [eRn] = the

. R ‘s . .
greatest integer less than e ? then for the additive Gaussian noise

-17-



channel, there exists G disjoint (decoding) sets Bi’ i=1,2,...,G
G ,

with U Bi = Rnp, G transmitted sequences (code words) u, satisfy-
i=1

. 2 . - ~

ing HulH < Mn, and finite positive numbers B, N, 6 such that

A

Py{B: o} < exp {~(¢2/8F + 8)n} for all Acf, i=1,...,G

and nz N.

Proof:

Since R < -ge , then by the definition in Theorem 1A, we can

find positve numbers E, 0 such that

~ 2 ~
R+210 < sup = inf  log, T+ AYSA;IZIS |1/ - /2B

Se I\I/)I AYeé
A
Let R denote the first term on the right hand side of this inequality.
We will first consider the case where é consists of only a
finite number L of elements and denote such a class by 6 '.

n

With the conditions imposed on % ' and /I\IZ » the product

set (S,A |) of all Se Jp and A € g' is a conditionally compact

Y M Y 2 2
set with respect to the usual metric for RP x RP . Because of this
fact and the continuity of the determinant and loge functions it follows

A
that there exists a scalar £, 0<£< M and Se JI\I/; with trace of

A
S =M - £ such that

-~ 2 -~
log |I+—1—A S A! |1/ >R-9 for all A e é' .
e 26 Y Y Y

~18-



We let S be the covariance matrix for the transmitted vectors
x and EI be the covariance matrix of the noise vectors z, in the sto-

chastic model described earlier in this section. Apply Lemma 1 to this

Rn:|

stochastic model by choosing G = [e y E= UEA = {u] [|u ”2 < Mn},

2 ~ ~
a=(R+e /8B + 50)n, 6:(&2/8(3+59)n. As a consequence of this

p

lemma we know that there exists G transmitted sequences u, in UM

G
and G disjoint sets Bi’ U Bi = R™P such that
i=1

Py{Bflui}<A forall i=1,...,Gandall y=1,2,...,L ,
- n

where

Al -LnP{ ||u||2 > Mn}] < Ln eRn[exp{-(R + ezlsé + 56)n}]
L
n
+ z Py{JY(u,v) < (R+ 2¢%/8F + 100)n)
y=1

. Li[exp{-(ez/sé +50)n}]

2 ~
We now proceed to show that A < exp{-(¢ /8B + 36)n} for n greater

than some finite number N 0°

Notice that there exists a number Nl < oo such that

Ln[exp - (62/86 + 50)n] = -13;-exp{-(€2/86 + 50)n + loge (3L"'l)}

< exp {~(¢2/8F + 40)n) for n>N

W =

1

Likewise, there exists a number N2 < o such that
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LG exp{—(ez/SB +50)n} < % exp{—(eZ/SE + 40)n} for n> N,

Using Lemma 3 we see that there exists an N3 < oo such that

for n > N, the following string of inequalities is valid.

5
L

1
z P (I (w,v) < (R + 2¢%/8B + 10 6)n)
v=1

L
n

< Z PY{Jy(u,v) < (ﬁ -62/26 - 219-1—&2/46 +100)n}
y=1

L

n
< Z P {J (u,v) < (log |I+A é\A'/Z'\[.’;ll/2
- Y Y - € Y Y

y=1

- 106 - e2/4 E)n}

L
n

= Z P {J (u,v) <nlog [I+A S A /f‘lll2
Yoy - e Yy Y

y=1

1 A ~ N ! ~
- n (5 log | |1+Ays A'Y/I3|/|I+Ays AY/zp|]

+ 1oe+e2/46)}

WA

t A ~ N ~
L exp{-n[z>log (|I+A SA'/ /|1+A SA'/2
o Plmlzlog ([I+A SA/B] /|1+a SA/2p])
¥ alog (|I+(1-t5)A SA/B|/|1+4 Ba /By
2 e Y Y Y Y

2 ~
+ 10tO + te /4B]} forall 0 <t <1

| A

1 A ~ A ~
L - -1 I+A SA! I+A SA'/2
nexp{ nl3 oge(l tA Y/;.a'l/! tA Y/ B)

(cont'd.)
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1 3 A ~ A ~
+ 5 log_( |1+ ZAySA'Y/B [/ 11+ AYSA'Y/ﬁ ]

+ 56 + ezlsrs]}

=+ L_expf-n[2log (|[I+>A'Sa /6 1%/ 1+2a SA /6| T+Aa_Sa/B))
' 4 e 47y Y 27y Ty Y Y

‘

+ 50 + /861

< L'r] exp{-n(62/8§ + 58} f_gl exp f—n(eZ/SE + 40)}

) =N

Thus, for n > max (N Nz, N l,

1 3

Al 1- LnP{"u ||2 > Mn}] < exp{-n(ez/s'é+4e)}

Applying Lemma 4 we can bound the bracketed term on the left as follows:

1 -L,Pj o’z un e 1 - L, expf- [ M/(M -7) - 1
- log, W/(¥ -f)]n }
2

. Since log  x < x - 1 for x # 1, there exists a constant

© > W > 0 such that
2
1 'l‘f fiu®2mny > 1 - Lnexpf -wn {

Hence, there exlsts a constant N5 { oo such that for

naNs,

-21-



1 -L{{Ilulle‘r,Mn 12 1-expf-3wn} > o0
We now have that for n > max (NA,NS) = Ng,
8 < exp{-(€/8F 4+ 40)n} /[1 - exp§- 3wn}]
= expf -(€/8F 448 )n 4+ log [1/( 1 - expf-3wn})] }
€ exp { -(€/8F +40)n+ expf- 2wn} /(1 - exp{- 3wnl)]

Thus, there exlsts a finite number N7>,N6 such that for

n>,N7,
A < expf-(€/8F + 38)n}

and hence Theorem 1B is proved for the case where & 1s a
finite set.

If ¢ 1s not finite, we can pick a finite subset ¢’
of € such that given any number % > O , for every A€ ¢
there 1is an Aa' € C'  with the property thet “Ar - A:'"f'l .
This follows from the observation that a bounded subset of

S
R 1s totally bounded. We now proceed to shcw that 1if

c L R
l;{Biluil (expj-n(€/88 + 38)] for all n>,N7,
all 1 = 1,...,G6 and all Aa,ec',

then there exlsts a finite number N, N > N7 such that

_22-



P‘{B: luy§ ¢ exp § - n( e.’/8§ + 6 )} for all n 2N,
all 1 =1,...,6 and all A, € C .

Define the set F by F = v ||l vI°¢ nc}, C = 222 +
2,§p + 2k, where k 1s a number that will be selected later.
We see that for all k) O,

P {By1ul = 2, { (BINPIU (B5NF%) | u, |
< PJB:”F‘UH + P F° w,t  foralli=1,...,6

and all Au e &

Using Lemmas 5 and 6 we see that

P iBiV w1 ¢ B {BEN Pl ul exp {n(/WC + amliia- AW }
+ J(1 + x/g?) exo{-x/gP} )™

¢ Px.{B?_ 1 u1'§ expf n (fMC + aM)"Ad' Au"/ﬁi o
+ JC1 4 /5”7 ) exp §- k/ﬁPI]

Notice that ( 1 + k/g’) exp § - k/ﬁ’f can be made arbi-
trarlily small by choosing k large enough. Choose k so
that this term is less than % exp§ - £;/8,g+ 6% and
choose R %A~ ANl to satisfy (/MC + am)y /E < 6.

Hence there exists an finite number N, such that N > N.' and

P{Bi\ ui} & exp ?- n( e&/s;?; 26 )} + (%) exp{-n( e’/85+e )§

-23-



LS
£ exp{- n(é/8,5 +e)} for all n3N, 1 =1,...,G,
and all AteC’,

This completes the proof of Theorem 24. %We will now
relate the maximum probability of error as in Theorer 2A
to the minimum distance between the totzl images of the

transmitted sequences through Theorem 3A which follows,

Theorem 3A

If there exists G disjoint (decoding) sets B

i’
&
_L) By =R"P » G transmltted sequences uy satisfying
=
] uilleéMn , constants ¢>0 and O ¢ N <=0, and nolse
-dn

covariance matrix &I  such that P {Bjju,} < e
for all n3 N, 1 =1,2,...,G and for all A ¢ ¢ , then

glven any positive number b there exists a number No =

No('b) satlsfying NN < oo such that

A ~

d = inf d,, >/83An/(1 + 1) for naN

1] o]
14
( Recall that dij = inf Jlz - wll where the infimum 1s
taken over all z & L)Ar.:ru1 , we U u, )
Aec AyeC

Proof:

Let u, be any one of the transmitted sequences 1in the
statement of the theorem. Let uc be any other such seaquence.

Given any positive number § , we can choose points
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n n n n
A§ u,, A?uk so that | Aiuc - Ag ukll < dk,c ¥y §

Define the set Dc K @s follows:
?

- n nol
Do x = {v v - AQucll ¢ liv - A ukl .&

See figure 1 for a symbollie sketch of Dc K Notice that

2

if ve Dc,k , pé(vluc\ > pg(vl uk) since

~ P/

p"( vl u) exp §{ - ;lﬁ'.(v - AI; u)'(v - AI:, u)} /(2T 8 )

= exp{-;‘gﬂv - 8% il t /(emE )P/

Therefore PciFluc} % Pi.iFluk'g 1f FC D, y . Thus we have
that

c
P%,{Dc,kluk} = P%:inc,kanl uk} + P'i'iDc,Q Bkluk'g
c
& P§§Dc’kn B lu} + P§{Dc’p B, |y }
c
£ P;{{Bkluc} + P§§kauk}

< ¢ ¢
§ P& {Bc | uc} + P,;'JBk l uk}
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h
Since the noise 1s sg‘er’ically symmetric. by the

definition of Dc X we have that

P~§Dc k‘ uk"g = Sexp{-w2/2ﬁ3/(2ﬂﬁ)% dw
¥ ’ wH (dmc“‘S)/‘L
= s'exp j- wz/z} /(2”)% dw , w is a scalar

w > (d,“cob')/z/;:' variable,

So, we have that

Sexp i- % wg} /(27]’)7‘15 dw £ 2 exp{-dnf
w>(dn“" x)/a;?

From this expression we can see that as n lncreases, dk

must become unbounded. Now, since lim w e—bw = 0, for

W
any scalar b>» 0, we can find a finite poslitive number No =

b

No(b), NO>,N such that for n>,NO,

Sexp f- 3 wz}/(?.’ﬂ )% aw 2 52 w(l + Db) expf-é(nb)wz}dw
Wy (du.c'.S)/z/;-" Wy, 3 /21 E

= 2 exp{-(1 + b)( dk,c +S)2/8;'§'}
Hence,

(1 4+ v)(q, , +J )2/8,'5 >dn for n 3N_

and

a . >/ 8afn/(1 +0) - &
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Since N_ does not depend ond, k,c and these numbers

are 2rbitrarily chosen,

4 . >/8°!,§' n/(1 + b) for all kfc

A
and hence, d >/8dﬁ n/(1 + b)

Thig completes the proof of Theorem 3A.
Proof of Theorem 1 A
We now combine Theorems 2A and 3A to prove Theorem 1A,

That 1s, given any number R satisfylng O< R<C. , we show
that R 1s an attainable & - rate of transmisslon for e .
If O<R <§6, by Theorem 2A there exlst G =[e'R p] trans-
mitted sequences uie, Uﬁ of length n, G disjoint (decoding)

@ ~
sets B _L)Bi = Rnp and finite numbers £, N, @ such that
"=

i’
c - ~
Pv{Biluiz ¢ exp §-(€/8F +8)nf for all 1 =1,...,6 ,
n 2N and all A, € c.
Using Theorem 3A with these Bi's, ui's, and/g , and
? ~ [al ?
choosing d= €/88 48, b= 8B8O /¢ we have that there

exlsts a finite number No’ NO>;N , such that

s f 8« Fn/(1 + 1b)

>
l

inf d
1#3 bJ

- /8(€/8F +8)En/(1 + 86 /€*)
= /én :é/—I—l.

Hence, R 1s an attainable &- rate of transmiseion for C,

and Theorem 1A 1s proven.
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B. The Discrete Infinite Dimenslonal Case

The results of this section depend critically on
Theorem 1A. In fact, we will show that the inflnite
dimensional model can be approximated arbitrarily closely
by the finite dimensicwal model because of the assumptions
imposed on the class C 2and the form of the model.

In order to state the results preclsely, some further
notation must be introduced. Let S denote an infinite
dimensional covariance matrix and define the set «&:’by
’A:’z f S | trace S ¢ M, S an infinite dimensional cova-
riance matrix } . Since Se.!:: , A,S A} 1s a symmetric
positive semi-definite matrix and we will let }:ax); >
..o > 0 denote the eigenvalues of A S Al.

For any matrix B = {bij} and positive integer Xk,

k

let B = §"byj} be the matrix given by kbi‘1 = b, ,

1If 1¢k, jJ¢k and kblj = O otherwise. For Se,8:and

k
A, e & we denote the eigenvalues of kA,‘kS Al by

¥
A Y, k
"1">, ).; %> ... > 0. Note that S &-dy . To show that
the infinite dimensional model can be aprroximated srblt-
rarily closely by a finite dimensional rodel we need the

following lemma.

Lemma 7
[
Let S €>, be a fixed diagonal matrix i.e. if

S = {sii}then Byy = O for 1 # J . Then for each
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>0 , o"'>o , there exiets ko = ko(e ,a”) <o guch

that for all k2k_ and for all A, el

(o)

|3 £ 10 (1 +25/6D) - 3 108 (1+ Xy /p2)] ¢ 8
13) e 1 izt e i

Proof: This 1s Jjust a restatement of Lemma 11 of [3] .

We are now prepared to state and prove the main re-

sult of this section, Theorem 1B.

Theorem 1B

For the class € of channels satisfying the conditions

of model B,

o
Cez g, = sup {sup inf %Zloge[U 4-)!1/2(3)
A>o Sévf:o Ael i

- e%i2p)

Proof:

If ge is less than zero, there 1s nothing to prove

since C,>0 . Hence, assume Ce > 0 in what follows.
Choose any number R satisfying O<R < __(26 . By the

definition of C, , there exist §>0 and B> 0 such that

Me

o0 ¥ ~ 2 ~
sup inf %Z' log_ (1 + li/zﬁ) - &£/2B
SQJ: Axéc ret

> R4+ 386
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From the definition of sup we see that there exists
5] eJ: such that 1if 2._‘1’ > A;y «.s % 0 are the eilgen-
values of A S Ay then

“ e ~ ~
3 Z’lose[U +2,/28) - %128 > R + 20
iz

for all A, el
We can choose an aprropriate besslis for the transmitted
and received spaces so that S 1s dlagonal. We note thet
the matrix representation of a chennel relative to this
new basls may be different, but this doee not change the
value of the eigenvalues of A8§A; . Using Lemma 7 we see

that there exists a k such that for k>,ko, the following
o

inequalities are valid,

3 Zlog (1 + _)::“/25) - ¢%/28 > R+06 forall A e A
R e

and hence

LK .
sup _ inf e}%loge (1 + 2/2B) >R +0
Se ,SM Aa"C iz

f,K k k
The )~1 are the eigenvalues of the matrix “A,

which 1s effectively a k - dimenslional metrix., If we

kl
STA,
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consider the kx k¥ submatrices of kA A‘eC formed from

b4 )
the first k rows and columns , we see that this cless of
submatrices,call it C, is bounded. Likewise if we consider
the corresponding kv k submatrices formed from the kS 's
o X
Sé€ -J" we see that thls class of submatrices is just J .
Thus, from Theorem 1A, we can see that R 1s an attainable

€ - rate of transmission for the class Cx. This means that

for the class of channels CK there exlists a sequence n

with 1lim n, = e , and G(n,) transmitted seguences u
X L < oo . j
€ UM of length n, such that d = i;g di,j” €fng
|
and lim & G(n) = R.
L poo ( ()

With this fact, let us now show that R 1s an attainable
€ - rate of transmission for the infinite dimensional channel
® . Suppose that u, = (x11,x12,.,,,x1%),1 =1,2,...,G(n,)

is a set of transmitted sequences which yield the €- attain-

2 3
9 X 9 LA N ]
13 1)

0,0,...) as the transmitted vectors for the cless of

able rate R for G‘ . Choose ;?13 = (xlj, X
xk
15

channels € and let ﬁi = (§c11,5'c12,...,)“c 1=1,2,...G(n,)

in)’
be the transmitted sequences for the class of channels (.

A PN A _ k A
Notice that 111¢,:UM and that Axxij = Atxij . Thus, the
distances di ] for C’u are the same as the distances di g
9 ,

for € and hence d >€ym, . It follows that R is an
€ - attainable rate for € . Since R is arbitrary except

that 0 € R < C., we see that C. 2> Cg¢ .
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¢. The Continuous Time Case

Just as we obtained results for the discrete infil-
nite dimensional model by approximating it by a finite
dimensional model, we can obtaln results for the conti-
nuous time model by approximating it with a discrete infi-
nite dimensional model. In order to do this, some further
notation 1s necessary.

Let Lp odenote Lp(-oo,oo) for 1¢ pfoo where Lp(a,b)
is the spacehcompl'ex valued functions such that the p-th
power of its magnitude 1ls Lebesgue integrable on the 1in-
terval (a,b). Lp(T)‘will denote Lp(-T,T), for 1€ pgoo .
If feLp or Lp(T), then Il f llp denotes the norm of f in
that space. If f,g€L, or Lo(T), their inner product 1s
written as (f,g). An operator on a space X is a conti-
puous linear transformation of X into 1tself. PT 1s to

denote the projection operator on Lp, 1< péoe defined by

(Ppx)(t) = x(t) , 81 €T

0 , 161> T for all x € Lp.

It chE(T) N L1(T) then for each T&¢we , a compact
operator Fp on L2(T) is given by

:
(Fx)(8) = [f(s-7)x(7) aT , - Tet eT
-T

We aleo have that f defines an operator F on L, given by
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the convolution

(Fx)(t) = Sf(t =T)x(T) AT | -eo ¢ t oo (%)

With a slight abuse of notation we ldentify the operators

FT and PTFP If £ has finite memory (1.e. £(t) =0

e
for Jtl=2§ ) then

PTF = PTFPT+3 and FPp = PT+;FPT

#*
If A 1s an operator on L2(T) or L2 then A will denote
1ts adjoint which is defined by

*
(x , Ay) =(Ax, y) for all x,ye LE(T) or L2.

If A is a compact symmetric operator, its trace Tr(A), is
deflined 1f the sum of the elgenvalues of A converges, and
1s equal to that sum,

Throughout this section, ¢ will denote the class of
channel operators whilch satisfy the assumptions of model C.
¢y wlll denote the class of finlte memory operators obtained
from & by truncating the kernels of the operators in e,
l,e.

Cp = §hu| h ;(t) = b (t) for Jtis§ , h
otherwise, h, e & }

ns(t) =0
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C} also satisfies the conditions for model C. We willl let
s denote the covariance functlon of a stationary stochastic
process with the additional property that se,L1. By known
properties of positive seml - definite functlons (see e.g.
{81, Th. 9) it follows that seIJIW L,. and hence there
exists a number A such that ]s(v)l<‘A czﬂ will denote

the set of such covarlance functions which satisfy
o0
~
Ks(v yavy = M
-0

For each T<e, h es and s as atove, let us deflne the

operators Hx,T -~ PHP ST = PTSPT where H‘ and S are

TXT’
defined in terms of h, and s as in equation (*). H( T is
¢ b}
then a compact operator and so the positive semidefinlte
operator
W P P_SP H*P ¥
5,7 = Fp B FpSE HF = Ho 0 S8y 0

is also compact. Finally we define

3#
Q p = B HSHE = P QR

3%
Qa;T is compact by virtue of the fact that Qf = HgSHr is
a convolution operator with kernel in L2. Then, qte L{1L2

and ite Fourler transform 1ls

~ ~ 2
§(v) = I8 F»)

1 ~
If fe L, its Fourier transform denoted by f is given by ’f\z V) =

fw £(t) e ™ ¢4t
%0 ‘
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which also belongs to L, since Z(;}) is bounded.
We will denote the elgenvalues of Qg T w T by
) ’ xo
> ..5>/o d 2 LI Y -
qg1(T).,q‘2(T); an WV1(T)z'¥2(T)f %0 res
pectively. For convenlence we now state three facts
which willl be essential in proving the main result of

this section, Theorem 1C,

Lemma 8

Let g be a continuous monotone-increessing real
valued functlion on the resl number which satisfies
g(o) = o, g(x)aak1x in 8 neighborhood of O for some
O<k, ¢eo , and |g(x) - g(y)l ¢ kix - yl for all x,y
¢ R and some O<k< oo , Define the functions
dy :C's-'IR and wn : & <R by

1 eo
(b, s ) = 2T 2 8la, (1))

T L1 iz
3
and WT(h&S) = 27 < s(wxi(T))
©o ~ 2
Then, 1) 1lim g (h ) = Sg(l h, (v)] %(y))dw
T %4 . 41
T"M .00

uniformly for hns &€ C%
11) 1im ( wT(hm) - qT(hm.)) =0
T oo

uniformly for h . e C¢
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111) Um wp(h,) = f“g( [ﬁm(v)f 3(»))av

T» o - oo

uniformly for h, . € Gy

Proof:

This lemma follows directly from Lemmas 4 and 5 of [4].

Lemma 9
Let C}'be defined as before and let B be any positive

number, Then,

=

Ms

iﬁn“ 2T 2 log (1 + w1 (T)/B )
= [1os (14 18,5161/ av
-0o

uniformly over Cf’a .
Proof:
Note that the function g(x) = log ( 1 + x/g )
e

gatisfies the assumptions of Lemma 8.

Lemma 10
Let C satisfy the condtions for model C. Then given
<
any positive number B , any s(ﬂ)i.JL and any positive number

©® there exists a finite number § such that
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o0 ~ 2~
1) | gloge( 1+ 1R ()] %50)/28)a
-co

_ j’i’ogeu s 15 %M 2eaw] < B

~ oo

for all h, € &

~ ~
11) IIn, - hyl, = | hv-h§512<_y%_qfor all h e &

Proof:

Since 8 €'Loo’ there exists a constant A such
that |8(v)l < a <¢oo for all ¥ . Recall that I n e
for all h ¢ C and that € is conditionally compact. We

therefore can find a finite positive number § such that
Ilhy - h,, ||2 = ”hx - hy M, < min( 8B/32a , 0/ 2M)
~ ~ ~
For each » define g§v) = max( h_(¥), h*s(o)). Thus,
~ ~ ~ ~ ~ ~ ~
e, =Byl ¢ Whgy - B NE, - Bypn, <ih, - Byl

and ng‘r Il ¢ 2a for all h,e&
k3

Therefore
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\ S?Loseﬁ + I'ﬁu(?)leg(v)/zp)d‘a

oo

- J1os (1 4 15,001%80 ) /20107 |

$ | [108 (1 4 1B, )1 %309 /20105

-0

- flos (14 18, (70250 /200 |
-co © ’

oo ~ 2~

+ | {108 (1 + 1B B(")/2p)av
a0 ~ 2"
- [roe 0 1+ 1B TECY /20107

Let us examine the last term on the right.
e ~ 2,
\ floseu + b, ()] 8(v)/2p)av
- 5%56(1 + |1'{x(9)’2'§(¢)/2[5)d;7,
-~ 0o
¢ | Jrog 1 s BN 1B, 7150 /Bs W, (nPEe )]

~ 0o

$ | JIE DE N ® - 18,0012 e 1B, ()1 Z89)1] 4V |
“oo
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INTE B b
¢ AQEN, + WL NEN, - vE ]

¢ zeafigll, - R /2

N

saallfy - el ,§ 3allfy; - B < B/2

2B 2p

The lemma follows from duplicating such arguments 1n

bounding the other terms.

We can now state and prove Theorem 1C

Theorem 1C

Let & be a class of channels satisfying the condi-

tions for model C. Then,

oo
6,> 8, = sup{ sup inf flog (1 + |Bu(2)] 28(») /28)dv
G =€ < I -] ¥
Bro  sed, hec ™
2
- €/2p §
Proof:

As before, we need only prove Theorer 1C for ge>o,
hence assume that g£>o in what follows.

For any R, 0<R<C. , there exists a ,370 and a >0
such that
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Q0
sup inf §1°Se (1 + lﬁy(v)leg(t”)/ZE)dv
s 6’8:' ktéc -0

- (e + 29)2/25 >R +46

<
Furthermore, we can always find an goe m such that

oo
~ 2.0 ~ -
51056(1 + |hy(0)] "8 (v)/2B)dv - (et 20)%/2p

- OO

> R + 36

for all h € @

Y.

For thls cholce of ,év,B , and 8 , we see from Lemma 10,
. o)

that there exists a flnlte number d such that

~ o~
| By~ By lly = by o - byl < e/li'Fl for all h e €.

Sloge (1 + Iﬁ*"x(v’)lzgo(tr)/zﬁ) a v

-~ (e+20)%/2F > R+ 20

for a1l h, . € <

§
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A A
Using Lemma 9 we can see that there exists a T, OK T <oo

such that
| {Tos, (1 # 15, (2178 ()& ) dor

1 o ’ e
- mgl log (1 + wx,i(T)/ﬂ)' < 6

holds for all hy s & E .

Using both these inequalitles, it ie obvious that

oo

3 flose (1 + wg’i('f)/ZE]

ize

- (ﬁ+5)(e+26)2/2/5

A
> (T +J3 )R for all ht’,x € GS

and therefore that

L4
sup _inf £ Ylog 1 +w ('i‘))/zﬁ]
< k. e y,1
SGJM h&’seet Ity ’

- (T+5)(e +20)/28 > (% 45 )R (1)

We now show how we can relate the continuous time
problem to the infinite dimensional discrete time problem.

Let {3" 11 $1¢ °°} be a complete orthonormal basis in
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L,(T). Relative to this basis, the operators PTHKP§’
#*
PéSP% and P%H‘E; have a representation as infinite
dimensional matrices. (Recall that Hyls the convolution
operator with kernel h¢5 ). We denote these matrices by
: %
A
Hr,T , Sf and Hy i respectively,

%
We note that H f 1e the transpose of H a and the
3, y,T

4
collection C;, of matrices H_ 4 form a conditionally

¥ T
compact set in the Hilbert-Schmidt norm. Notice also
A %
that w T are the eilgenvalues of H S&H .
¢,1(T) & VAT gD

Furthermore, S@ 1s an infinite dimensional covariance
matrix and the trace of S@ le less than or equal to QMf.
J“
Hence, S{f.‘ e
From 1lnequality (%) and Theorem 1B we see that
R(% +§ ) isan (€+ 28 )7 (T +§) attalnable rate for

Ca . Hence, there exists a sequence n, , lim n, = oo ’
T kLK

and G(n),) transmitted signals u, € U®. of lenzth n
(nye) X n signals uy OMT & k
such that 4 = 12f a, 3 > (€4 26),/nk(T +J) and
1£3 ’

1 =
b TEasTm, %8 &(m) = R.

We now proceed to show that R 1s an attainable (e +28)

- rate of transmission for Cy . Let uy = (xJ1,x yeeos

2
X, )& UsA be the transmitted sequences yielding the

R(T +§ ) rate for Ca . Corresponding to each vector

- 1T 2 \
Xy 4= (Xij’xij’ eeey «..) define the function xij(t)’
A
<
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x, (1) = Z-;' xijlf’ (¢)  1=1,2,...,&n)
J 1,2,...,!]

X
For 1 = 1,2,...G(n,) define the function Gi(t)
0$tgan (T +5) by

6,(t) = x”(t-é-e(a-mcﬁ +5) -5 )

for 2(3 - INT +5) +§¢ te2yf+5) -5 ,
J=1,2,...,nk,

and ﬁi(t) = 0 elsewhere.

Next define the functions uy(t),...,u )(t) on the in-

G(ny
A A
terval - n (T +5 )& t $n (T 43 ) by

uy (8) = ﬁi(t + nk('lf +5)

Notice frogx t)he construction of the functione u (t.)
n_ (T+§
that uimeu for all 1 = 1 2,...,G(nk) . (see figure 2 )

Since CJ has memory d , we see that J) (€ 4+ 26)/nk('f +5)
Thus, R 1s an (€ 4+ 28 ) -attaineble rate for C; . Recall
however that J was selected so that || hx; - by, llg( ooy .

If we use the same trsnsmitted signals ui(t) for €

A
d = 1inf 4 > €/n (T +5 ) . Hence R 1s ane¢ -rate
for @ . Since R 1s arblitrsry subject only to O(R&g6

Treorem 1C is proven.
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III. UPPER BOUNDS FOR Ce

Upper bbunds for ce have also been developed by Root
U111 for the case where C consists of a single point.
or is'a ball. For these upper bounds, Root again used
varlations of packing arguments. The inapplicability of
such arguments when C has a complex structure has been
discussed in Section II. We will use a much simpler tech-
nique to obtain upper bounds. We relate the usual capacity
theorems for Gausslian channels to the € - capacity of

such channels by a Judiclous choice of noise statistics.

Since the bounds for each of the three cases are derived
using the same techniques, we will provide the details for only the

continuous time case.

Theorem 4A

If the class € of channels satisfies the conditions
of model A, then

< T inf  inf 1lo [lW-&ASA'ﬁ/]W[%’]
ce‘ Ce-_:sup p 0 8 ¥= v
Sed AeC We¥

where W = {W | W is a pxp covariance matrix and

;
trace W < —;,;e‘ .g
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Theorem 4B

If € is a class of channels esatisfying the conditions

of model B, then

— it I's 2
< = 1
R s e e L
m Y EO" <€/a
Theorem 4C

1f C 1s a class of chemnels satisfying the condi-
tions of model C and in addition , there existe a finite
positive number § such that h (t) =0 1f JtI>§ for all
h, €® then,

0o
- ~ 2,.'
C.¢G = sup 1inf  inf Slog (1 +]R(2)] 28(») (e )4y
« T §ed’ h, e N e I )
m ¢ € -Oo
‘where )l = { N(w) | ©N(») is the spectral density
€
of a stationary Gaussian noise with
(-]
{3y av < €78 3
- 0o
Proof:

Assume the contrary, that C, < Ce . Then there exists

real numbers 8>0, A > 0 and an N(»#) e)(c- such that

f N(v) dv = &/8 -aA and
-
L. - - 2
ce> 20 + sup _ inf gloge(1 + [h(»)) 8(v)/ N(») ) a¥
sed, hy€ &0 ¥



There also exlsts an hQ ¢ & such that

C, >8 + sup,_ gloge“ + Iahajv)lzg(V)/l\T_(’) ) a»
€ SGAM ~0o 3

Let the second term on the right be denoted by C, then
C + & is an attainable ¢ - rate of transmission for € .,
That is, there 1s a sequence Tk , 1im T = oo and

K~»eo k
G(Tk) code words ui(t), ug(t),...,uG(t) over (—Tk,Tk)

such that
1
lim — 10g G(T.) = C+ ©
K~ e Tk € k

A
and d >,e/Tk (1.e. HH;ui-H§uJIJI » €/ T, for all
1£13)

Now consider the statistical problem gotten by

adding Gauscsian noise z(t) to (st)(t) , with the spectral
density of z(t) being N(»). Thus we have the following

noisy channel :

y(t) = (H§X)(t) + z(t)

A
Since dx»efT , there exist G(Tl) disjoint sets Bi
X <

such that

By O {vt) | v~ H4u1||§ < ie"rki
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IV  APPLICATIONS AND CONCLUSIONS

The most obvious application of the estimates of
sections II and III 1s to the sltuation where only rudi-
mentary knowledge of the addltlive nolse and channel ope-
rator of a communication channel 1s avallable. Suppose
for example that we have a channel model which relates
transmitted signals x(t) € L(: to received signals y(t)
in the following way

y(t) = (Hx)(t) + 2(t) , -T &t &7

where H¥ is a convolution type of operator known only to
belong to a class ¢ which satisfies the conditions of
model C and z(t) is additive noise which satisfies the

following condition:

: T
1im P{-Q-%-Szz(t) at >€] = 0
T—* oo -7
Nothing else is known about z(t) . Then, ce willl be a
lower bound on the channel capacity for this model.
The €~ capaclty can also be used to provide lower
bounds on the channel capacity for certain clesses of
nonlinear and time varying channels. Suprose N 1s a
nonlinear, time varylng operator which maps LQ(T) into

L2(T) for all T » O. Suppose there exists a class C of
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linear convolution operastors which satisfies the assumptions
T

of model C  such that for each xeW, there exists an Hxé-e-

| for which

T
JI(H,x)(t) - (Nx)(t)] 2 at <'€zT/4 for all T>0O
-7

Then, the 2 € - capacity for thils class & 1s obviously
a lower bound for the € - capacity of the nonlinear time

varying channel N .

Although we have derived bounds for the €- capaclty
of quite general classes of channels, in many situations
our bounds are better than those of Root even when CL
consists of only a single operator., We will verify thils
by means of an example.

Consider a continuous time channel with ﬁ(Lr)

defined as follows

We will let M = % and will assume, for convenience, that € <1.

Root's lower bound for Ce which we denote by (ZR

e_is
R -2 1oge2|h("’|/e @ - 21log_ 2 ~j dy
€ |h(v)| > € /2 B(y)| > €/2

and his upper bound 6]2 is

-51-



= _, [
Ce—Z

. 2|h(y) | /e J‘

|B(v) | >€/2%”

By making the appropriate calculations we see that

R
gé = 2 loge 2/e [loge 2/€ - 2 loge 2]
ER = 2log 2/e [log 2/€ + 5log 2]
€ e e e

BRI
By applying Theorem 1 C with s(y) /2 &

for |v| <1/2 log_1/2 eZ, §(v) =0 otherwise and

B =1/2] 1/252 log 1/262- 1/262 +1], we see that

c =21/2 1og§1/ze‘2.1oge1/2e2+1-z"2

For € =1/2, QI; = 0 but 9&2 .05. Thus our lower bound is
better than Root's in some instances.
2
By applying Theorem 4C with N(y) = 62/16/ 41 - € /16) log 2/e

for |v| <log 2/e, N(y) = e'2|”|/4u - e%/16) log 2/€

1 _ezlvl

for |y| 2log 2/e and :(u) = 5
4(l1- &€ /16) log 2 €

N(v)
for |y| <log 2/e, s(V) = 0 otherwise, we see that

C. < 2 2 2

C.=2 1oge le [loge le + loge 2]

which is less than EQR for all €.
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