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INTRODUCTION

In the classical theory of communication, nearly all of the

results pertaining to the rate of transmission of information have

depended upon accurate characterizations of the channel operator and

the statistics of the noise. Recently however, W. L. Root and P. P.

Varaiya have investigated the problem of determining the channel

capacity in situations where accurate characterizations are not possi

ble. In [ 1], Root studied the problem of estimating the maximum rate

of transmission for the case where the channel operator was known to

a large extent, but where it was not possible to characterize the dis

tortions and perturbations of the signal probabilistically in a more

than rudimentary manner. Other investigators [ 2], [6], considered

only the limiting behavior, where the perturbations and distortions

became vanishingly small.

The case where the noise was known to be Gaussian but where

the channel operator was assumed only to lie in some conditionally

compact class of linear operators was investigated jointly by Root and

Varaiya in [ 3] , [ 4] .

In this paper, we shall consider a combination of both these

cases. We will assume that the channel operator is known only to

belong to a conditionally compact class of linear operators and that

the probability that the noise has average power greater than some number c

is vanishingly small. The number € may be arbitraily large and no
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It is convenient to denote sequences of x's by u = (x., x0, . . . , x )
i c. n

and sequences of y's by w = (y., y0, .. . , y ). We can then characterize
JL c n

the n -extension of a channel A by

A11
w = A u

Y

n
where A is the np X np matrix defined as follows:

n

A 0 0 0 • • • 0

Y

0 A
Y

0 0 • • • 0

0 0 A
Y

0 • • • 0

In most physical problems we are not interested in transmitting

all of Rnp. We will therefore only consider transmitted sequences u
2which satisfy an average power constraint i.e. , u€UM ={u | ||u|| <nM,

2 * 2 iM> 0} where ||u|| = Sn 2.^ (x1) and x. is the ith component of x .
j—1 l—l J J J

It is also convenient to assume that the class -yo is bounded i.e., there

exists a real number a, 0 < a < co such that the operator norm ||A ||

of any matrix A € -Q? satisfies ||A || < a.
Y *^ Y

In order to define our problem it is necessary to introduce the

concept of the distance between the "total images'* of any two input se-
p

quences. Given any two input (transmitted) sequences u^ u €U^, we

define the number d. . as follows
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d. . = inf llz -w II
i»J

where the infimum is taken over all z € I] A u., we U A u. .

Y ^ Y

Using this notation we first define what we mean by an attainable

€ - rate of transmission and then define the € - capacity as the supremum

of such rates.

We say that R is an attainable € -rate of transmission for

fy if there exists a sequence n with lim n = co and G(i\) trans-
k-*oo

P A -imitted signals u.eUf, of length n, such that d = inf d. . > e J n/ and
j M k i,j- k

lim —• logeG(nk) = R.
k-**co k «

The € - capacity for -£s> , denoted by C is the supremum of all

attainable € -rates of transmission for £.
In Sections II and III, we determine numbers C and C such

€ —€

that C > C > C . Although these estimates are not as tight as one

would like, nevertheless they are in many cases better than those obtained

in [ l] even when ^ is a single point. This will be discussed in more

detail in Section IV.

B. Discrete Infinite Dimensional Model

The infinite dimensional model is related to the finite

dimensional model in the sense that the transmitted signals x and the

received signals y are related by the matrix transformation

y = A x
Y
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In this case however, x and y are infinite dimensional column vectors

and A is an infinite dimensional matrix which belongs to a class
Y

of such matrices. The n -extension of A , A is defined as before
Y Y

so that it carries an n - sequence of transmitted vectors u = (x ,x^,

.. . , x ) into an n - sequence of received vectors w = (y. ,y9, . . . , y
n l c

with

y. = A x., i = 1, 2, .. . , n
11 vi

We will also assume the following:

(i) Each matrix A €£ , is Hilbert-Schmidt, i.e., if A ={a^} then
2 ^

2.. a.. < co .

(ii) For any two Hilbert-Schmidt matrices A = {a.,.}, B = {b } we

define IIA-bII = 2. . |a..-b..| . Then, || || defines a

metric (in fact, a norm). We further assume that fy is a totally

bounded subset of the metric space of all Hilbert-Schmidt matrices

As before, we impose the average input power constraint M, i.e. , we

only select transmitted sequences u which satisfy

4 2

ucU^ ={u| ||u|r = S <*J) <Mn}.

For any two transmitted sequences u., u., we again define the

distance between the total images of u. and u., d. .as follows
1 J ^-» J

d. . = inf z -w
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where the infimum is taken over all zcU^Au., we U Au.
A e£ Y x A c£ Y J

Y Y

( U Anu = {zlz =(A x., A x-, ..., A x ), A e if}). With this\€J V Y 1 Y 2 Y n Y^
Y

notation, the definitions of attainable € - rate of transmission, and

€ - capacity are identical to those in Section I.A.

C. Continuous Time Model

We also consider classes of channels that can be des

cribed as follows. By a transmitted signal over the time interval [ -T, T]

we mean a real valued function x which is square integrable with res

pect to Lebesgue measure on [-T,T]. If x is the input signal over

[ -T, T] the received signal y over an interval [ -T, T] is to be given

by an expression of the form

y(t) = f h (t-T)X(T)dT, -T <t <T
\J rp I

The function h belongs to a class -£? of channel operators
Y

which has the following properties:

(i) If h € tL , then h eL0(-co,co) and there exists a finite positive
Y ^ Y 2

number a such that ||h || < a, for all h € •£,.
Y

'2
(ii) ^?> is a conditionally compact subset of L_(-oo , co) i.e. , the

closure of "£? is compact in L_(-co, co) .
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It should be noted that in [ l], Root makes the assumption that

the convolution operator determined by a function h have finite mem

ory, i.e., there exists a 6 > 0 such that h(t) = 0 for all |t | > 6. We

do not require that -v> be composed only of finite memory operators.

Root's results however can be extended to include the case where the

operators do not have finite memory.

In Section II we approximate the class ^p by a class of finite

memory operators. The assumptions imposed on -£? give this approxi

mating class some useful properties. Let t denote a "truncation"

operator defined as follows;

(r6h)(t) = h(t), |t| < 6

= 0 , |t| > 6

Notice that t_ is a linear, continuous operator which maps L_(-co,co)
6 *•

into L (-co,co). Thus, £? - defined as

J? A= {h Jh . =t h , h e£ }
T^7 6 y,o '7,0 o y Y

is also a conditionally compact subset of L2(-co, co) and ||h ||2 < a

for all h e Jjp .
y> o ^ 6

We can let H denote the integral operator with kernel h (t - t)
Y Y

and write the relation between x and y as follows

y = H x
Y
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We again impose an average power constraint on the transmitted sig-

T

M
nals by requiring that xe C( where

U = I x| f x2(t)dt < 2MT

For any two transmitted signals x., x., we define the distance

between the "total images" of x., x. as follows

d. . = inf z - w Li,j M2

where the infimum is taken over all z e U H x. , we |J H x .
H c£ y X H e£ Y J

Y Y

We say that R is an attainable e - rate of transmission for %? if

there exists a sequence T , lim T = co and G(T,) transmitted signals
T k-^co ^

u eV over [ -T, , T, ] such that d = lim d. . > e J T andj M k k ^. i,j- k

lim ^-loge G(Tk) =R.
k-*co k »

The e - capacity for -£p , denoted by C is the supremum of all

attainable e -rates of transmission for y? .

Having defined the three types of models of interest, we will

show in the next section that the lower bounds for C obtainable for

model A can be used to obtain similar results for models B and C .

II. LOWER BOUNDS ON C
e

In this section we derive lower bounds on C , C , for each of
€ ~"""€
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the models given in Section I. The best results to date for such bounds
.1

were derived by Root in [ l] for the case where the class ^& consisted

of a single point or a ball. His bounds were obtained by using variations

of packing arguments. It appears however that such methods cannot be

satisfactorily generalized to include cases where the structure of ~Xj?

is complex; the total images may, for example, be disconnected and

their shapes may depend on the choice of transmitted sequences.

Our approach is fundamentally quite different. Our lower bound

for the C of the model A (see Theorem 1A) is obtained in three steps:
e

(1) We imbed our problem in a stochastic problem by artificially adding

Gaussian noise. A rate of transmission is chosen so that the maximum

probability of error for this rate is less than some judiciously chosen

exponential. This is done in Theorem 2A.

(2) We then show that certain exponential bounds on the maximum

probability of error imply that the total images of the transmitted

sequences yielding these bounds are separated from each other by the

required distance. This result is stated as Theorem 3A.

(3) Theorems 2A and 3A are combined to give the bound. The results

for models B and C as given in Theorems IB and 1C are obtained by

approximating these models by model A and applying Theorem 1A.
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A. The Finite Dimensional Case

Theorem 1A

If the class *$2> of channels satisfies the assumptions

of model A then

C > C = sup{ sup inf .log |I+ASa'/2(3|1/2 - e2/2|3}
€"-€ (3>0 Se^P Ae^ e' * *

My

where *$,, = {S Itrace S<M, SisapXp covariance matrix}, I I
M ' —

denotes the determinant of a pXp matrix and I is the pXp identity

matrix.

We defer the proof of Theorem 1A until the end of this section.

It is a logical consequence of Theorems 2A and 3A which follow. Before

we proceed any further, note that we may always assume that C > 0

If C < 0, there is nothing to prove since C > 0 .

It is necessary at this point to "imbed" model A in a stochastic

model. That is, to the received signal y of model A we now add a

Gaussian random vector z and call the new received vector y. To be

precise, y, x, and z are related by

y = Ax + z, A e -y>
Y Y

where z is a zero mean Gaussian random (column) vector of dimension

p and with covariance matrix pi, (3 a positive scalar, I is the pXp

identity matrix, and where x, A , -£? are defined as before.
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The n-extension channel A of this new model is defined
Y

according to the rule

v. = A x. + z. , i = 1, 2, ... , n
7i y x 1

where the z. are mutually independent Gaussian random vectors each

with covariance matrix pi and zero mean. We denote sequences of

A .A A
x's again by u = (x , x2» ... , x ) and sequences of y's by v= (y^y^*

..., yn).

In order to take advantage of random coding arguments we

also define a probability distribution for the transmitted (or input)

signals x. . For convenience we assume that the x.'s are zero mean,

independent Gaussian random vectors each with covariance matrix S

belonging to the set X) ^ = {S |trace S < M, SisapXp covariance

matrix} . We let q(u) denote the np-variate probability density function

for the transmitted sequences u which are assumed to be statistically

independent of the noise z . The conditional probability of a set of

received signals B, given a transmitted sequence u depends upon the

channel & . We denote this probability by P (B|u) and define p (v|u)
Y Y Y

to be the np-variate Gaussian density function determined by P (B|u).

Then,

p (v) = j p (v|u)q(u)du
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defines a probability density for the received (or output) vectors v.

The mutual information J (u,v) for the density q(u) and the channel
Y

A is defined to be

J (u,v) = log [p (v|u)/p (v)]
Y e Y Y

To prove Theorem 2A we need a number of facts which involve

slight modifications of known results. We state these facts in the series

of lemmas which follow.

Lemma 1

Let yp' = {A , A , ... , A ,,..., A } be a finite class of
1 Li Y -*-1

channels and q(u) be an input (transmitted sequence) probability

fixed constraint set. For any a > 0, 6 > 0, G > 1, if

L

A = LGe~" + L2e"6 + ALP{E°} + S P ,{J ,(u,v) < a +6}
Li Y Y ~

Y'=l

and 0 < A < 1 , then there exists G distinct input sequences u , . . . , u

all belonging to E , and G disjoint sets B , . . . , B of received

G
sequences I J B. = R , such that

i= 1 X

density function determining p (u,v) and J (u,v). Let EC R be a

P{BC|u.}<A for all i=l,2, ...,G and y' = 1. 2> • • •»L
Y ii —
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The proof is a trivial modification of Lemma 3 in [ 5].

Lemma 2

n

For any channel A ,

Expectation of J (u, v) = E J (u, v) = n log
Y Y e

I + f A S A'
P Y Y

1/2

Proof:

This lemma is a special case Lemma 3 of [3]. We reprove

this lemma to familiarize ourselves with the notation. It is easily

seen that v is a Gaussian random vector with mean zero and pn X pn

covariance matrix

E w'

r

0

0

r

o

o

r

oooo

where T = A SA' + |3I. Hence,
Y Y

n

p (v) =n [i/(2u)P/2|r|1/2]exP[-|-^r-1yi]
y i=l

The Gaussian random vector (z., z_, .. . , z ) = v - A u has covariance
12 n v
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matrix pi, I the np X np identity matrix and mean zero, hence

p (v|u) =n (Z^-P^p-P^expt-^- (VAX.)'̂ -Ayx.)]
^ i=l

Thus J (u, v) is given by

i=l i=l

2p wi y x x Y 1-

The first term on the right is a constant and in fact equals

1 1/2n log 11 + —A S A' 1 ; the expectation of the second term is
°e ' P Y Y

n n

^[yjr-1?,^!.] =£ j(p-p) =o
i=l i=l

Lemma 3

Let An be a fixed channel, q(u) be the Gaussian distribution
Y

for u with covariance matrix S and let J (u, v) be defined as above.
Y

Then for any (?) > 0, and any t satisfying 1 > t > 0 ,

P {J (u,v) < E J (u,v) - n© }
Y Y ~ Y

1/2 1/2

<expf-nt© -nlog [ |l+ (1-t )A SA'/P| /|l + ASA'/p| ]}
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Proof:

The proof of this lemma involves an exact duplication of part

of the proof of Lemma 4 in [ 3] .

Lemma 4

Let x., i = 1, 2, ... , n be independent identically distributed

p-dimensional Gaussian random vectors with mean zero and covariance

matrix S. Let the trace of S be equal to M -£, 0 < £ < M. Then,

n

P{|M|2= Y ||x.||2> nM} < exp{-(M/(M-^) - 1
i=l

-log [M/(M-£)])n}
e 2

Proof:

This lemma is just an application of Lemma 5 in [ 3].

Lemma 5

Let A , A/s be the n-extension of two channels and let u be a
Y Y

transmitted sequence of vectors x. . Let p (v |u) be the np-variate

probability density for the received sequence v, given u, for A , and

p (v|u) be the corresponding density for Aa . Then, for those v

satisfying ||v|| < nC, C > 0,

p (v|u)/P/.(v|u) < exp{n[ n/mC + aM] | JA -AA||/p}
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Here, M and a are the numbers introduced in Section I.A, i.e. ,
.nl|u||2= £ ||x.||2<nM, ||Ay|| and ||A.||<a.

Proof:

This lemma is just a special case of Lemma 7 in [ 3].

Lemma 6

Let A be any channel satisfying the conditions for model A.
Y

Let u be any transmitted n-sequence satisfying ||u|| < nM. Then,

the received sequence v satisfies

P {||v||2 > n[2a2M+ 2pP +2k] | u}

< [(l +k/pP)exp{-k/pP}f/2

for every scalar k > 0.

Proof:

The proof of this lemma involves only a slight modification of

the proof of Lemma 8 in [ 3].

We can now state and prove Theorem 2A.

Theorem 2A

Suppose that the class >£> satisfies the conditions for model A
Rn

If R is any positive number satisfying R < C , and G = [e ] = the

greatest integer less than e then for the additive Gaussian noise

-17-



channel, there exists G disjoint (decoding) sets B., i = 1, 2, ..., G
G 1

with U B. = R , G transmitted sequences (code words) u. satisfy-
1=1 2

ing ||u. || < Mn, and finite positive numbers p, N, 9 such that

2 ^P {BC|u.} < exp{-(e /8P + 6)n} for all A e £, i= 1, . . . , G
and n > N .

Proof:

Since R < C , then by the definition in Theorem 1A, we can

find positve numbers p , 9 such that

R+219< sup inf log |l +ASA' /2 p |1/2 - e2/2 p
St J* Ae^ e Y Y HI

My

A

Let R denote the first term on the right hand side of this inequality.

We will first consider the case where v^ consists of only a

finite number L of elements and denote such a class by <j> '.

With the conditions imposed on -$£> ' and «? Jf. , the product

set (S,A t) of all Se xO^ and A fe •£' is a conditionally compact

set with respect to the usual metric for R X R^ . Because of this

fact and the continuity of the determinant and log functions it follows

that there exists a scalar £, 0 < £ < M and Se vd_, with trace of
M

A

S = M - £ such that

log |l +—A SA' |1/2 > R- 9 for all A e £?' .
2P Y V " Y

-18-



We let S be the covariance matrix for the transmitted vectors

x. and 61 be the covariance matrix of the noise vectors z. in the sto-
1 1

chastic model described earlier in this section. Apply Lemma 1 to this

stochastic model by choosing G = [e ], E = UP = {u | ||u|| < Mn} ,
2 2

a = (R+e /8P+ 5 9)n, 6 = (e /8p + 5 9)n. As a consequence of this

lemma we know that there exists G transmitted sequences u. in UP

Gand G disjoint sets B., [J B. = R such that
1 i=l 1

P {BC |u.} < A for all i = 1, . . . , G and all y = 1, 2, . . . , L ,
V l l — n

where

A[l-L P{ u > Mn}] < L e [exp{-(R + e /8p+59)n}]
T) - T)

L

+ Y P {J (u,v) < (R+ 2e2/8p + 109)n}
L Y Y -
Y=l

+ L2[exp{-(e2/8P + 59)n }]

2
We now proceed to show that A < exp{-(e /8p + 3 9)n} for n greater

than some finite number N .

Notice that there exists a number N < co such that

L [exp - (e2/8p + 59)n] = ~ exp{-(e2/8 P+59)n +log (3L )}
T| -3 e T|

<j exp{-(e2/8p +49)n} for n>Nx

Likewise, there exists a number N? < co such that
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L exp{-(e /8P + 59)n} < T exp{-(e2/8p +49)n} for n > N0
n —J — 2

Using Lemma 3 we see that there exists an N, < co such that

for n > N„, the following string of inequalities is valid.

L

\ P {J (u,v) < (R +2e2/8p +109)n}
Z_y Y Y
V=l

L

< Y P {J (u,v) < (R - e2/2p - 219 +e2/4p + I09)n}
Y=l

L

< y P {J (u,v) < (log 11 +A SA'/2p|l/2 - 109 - e2/4p)n}
"Z^YY ~ e YY

Y=l

L
•i

= y P {J (u,v) < nlog 11 +A SA' /pi1'2
ZyYY - e1 y Y
Y=l

- n(i log [ |l +A SA'/p|/|l +A SA* /2p|]
c. e y Y Y Y

+ 109 +e2/4p)}

< L exp{-n[ ^ log ( Ii +A SA' /P I / |l +A SA'/ 26 I)
- n 2e YYYY

+ ~log ( |I+ (l-t2)A SA'/p |/|I +A SA'/p |)
c. e y Y Y Y

2
+ lOt 9 + te /4p] } for all 0 < t < 1

< L exp{ -n[-J- log ( Ii +A SA'/p|/|l +A SA'/2J5|)
— n 4 "e ' YY YY

(cont'd. )
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+i-log ( |l +jA SA'/p |/ |l +A SA'/p
c e 4 y Y Y Y

+ 59 +e2/8p]}

=* \ expf-n[^ loge (|I +| A'SAyp |2/ | I+̂ AyS A'y/p | |l+Ay SA7P |)

+ 59 + e2/8p]}

< L exp{-n(e /8p +59) <^ exp f-n(e2/8p +40)}

Thus, for n > max (N , N , N ) = N ,

A[l-L P{||u || 2 > Mn}] < exp{-n(e2/8p +49)}

Applying Lemma 4 we can bound the bracketed term on the left as follows:

1 - L^J Hull >. Mn}^ 1 - L expf- [ M/(M -f) - 1
- log. M/(M -f )]n }

Since log x < x - 1 for x ^ 1, there exists a constant

«• > **J > 0 such that

1-LP {Hull2* Mn } £ 1-L exp? -wn ?
1 t

Hence, there exists a constant N_ < oo such that for
5

n >, N5 ,

-21-



1 -LP {|jul|%Mn ] £ 1- exp ?- ^tUn"? > 0

We now have that for n >, max (N,,N ) = N, ,

A < expf-(ea/8ySt + 40)n ] /[1 - exp J- iu>n] ]

= expf -( £X/Qp 448 )n + log [l/( 1 - expj^wn})] \

S exp { -( e/8/3 +40 )n + expf- iu>n] /(1 - exp {- i*n\ ) \

Thus, there exists a finite number N„>,N such that for
f 6

n ^ N7 ,

A < exp f- (±X/Qp + 3d )n \

and hence Theorem 1B is proved for the case where £ is a

finite set.

If £ is not finite, we can pick a finite subset £'

of C such that given any number \> 0 , for every A. 6 £.

there is an A^, € C' with the property that || A -A,|l^ .
This follows from the observation that a bounded subset of

ffl is totally bounded. We now proceed to shew that if

PjB° )u ]< exp j-n( £/8ft + 30)] for all n^w,
all i = 1,...,G and all A.,*(?',

o

then there exists a finite number N, N >, N_ such that

-22



P{b^ Iu^ < exp J- n( **/8f +0 )J for all n»N,
all i = 1,...,G and all A~ £ C .

Define the set F by F= fv J/J vl/2^ nC] , C= 2a2M +
2y9p + 2k, where k is a number that will be selected later.

We see that for all k> 0,

pviBiiuiI =p*f (Bfnp)U (B^nFc) i uj

« P^B^OFju^ + pv} FC| u±l for all i=1,...,G
and all A £ £

Using Lemmas 5 and 6 we see that

P*? Bi *uil 4 p^, jBiH F| uj exp {n(/MC + aM)||A8,- A^Jfg }
♦ [(1 +*/£' ) exp J- k/£*i]"*

^ p^,{Bi I ^1 exPf n (/MC + aM)//Arf- Ajl/£ $
+ [( 1+*/£' ) expf- k/jTj]"'*

Notice that ( 1 + k/jfp ) exp }- k/jg *] can be made arbi
trarily small by choosing k large enough. Choose k so

that this term is less than -| exp $ - &/8y8 + $\ and

choose »j^||A.- AyH to satisfy (/mc + aM)>( /g < #.

Hence there exists an finite number N, such that N > N and

P\ Bi »u1l * e*P ?" »( */8/+ 26 )} + (*)nexpJ-n( £/$+ 0 )}
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*>,_ <*£ exp {- n( €/8yS +a )} for all n *N, i = 1, . ..,G,
and all A^C.

This completes the proof of Theorem 2A. We will now

relate the maximum probability of error as in Theorem 2A

to the minimum distance between the total images of the

transmitted sequences through Theorem 3A which follows.

Theorem 3A

If there exists G disjoint (decoding) sets B,,

U Bi = R , G- transmitted sequences u. satisfying
IS 2Hull ^ Mn , constants ei>o and 0 < N *"«>., and noise

covariance matrix JbI such that P {B.Ju "J < e~

for all n£ N, 1 = 1,2, . ,.,G and for all A. « £ , then

given any positive number b there exists a number N =

N (b) satisfying N^N_< <** such that

d = inf di, >r8«yFn/(1 + b) for n?>N0

( Recall that d = inf |l z - wll where the infimum is

taken over all ztUA^Ui , w^IjA u, .)

Proof:

Let u^ be any one of the transmitted sequences in the

statement of the theorem. Let u be any other such seouenct
c

Given any positive number <T , we can choose points
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Aj uc, Ajuk so that jj Afuc - a2 uj < ^c + /

Define the set Dc k as follows:

\*= \v|Hv-A1iUcll.<|lv-A%kll\

See figure 1 for a symbolic sketch of D . Notice that
C , J£

if vcD , , pA(vlu \ 1 p„(v| u, ) since
C,K if C V K

py( vl u) =expf-j£(v - A* u)'(v - A* u)] /{2Ttp)?'%

=exP{-^nv - a^uii2] /{zrrp )p/*

Therefore P*\f|u 1 >, P„}F|u 1 if FCD. v . Thus we have
y C' fc k' v,, *-

that

« P.fBk|uJ * ^ i Bj 1uk"4

>< 2 "C<ne
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Figure 1 : A symbolic sketch of D
c,k
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Since the noise is sperically symmetric, by the
A

definition of D , we have that
c,k

P\» 1u, 1 = [exp{-w2/2£j/(2Tl£r dw
£< c,k' kJ «J

= Pexp |- w2/2] /(2TT )* dw , wis a scalar
w> <6HtC4S)/%rf variable.

So, we have that

Jexp |-|w2] /(2JT)* dw N< 2exp/-*n]

From this expression we can see that as n increases, d^
—bW

must become unbounded. Now, since lim we =0, for
V/-+ CO

any scalar b>0, we can find a finite positive number Nq =

N (b), N >yN such that for n>N ,
o o o

Jexp f- *w2]/(2ff )* dw ^ J2 w(l +b) exp^-i(Ub)w2]

= 2 exp J-(1 +b)( dk>c +f )2/8/b ]

Hence,

(1 +fcMdfc c +J )2/8>8 ><** for n*NQ

and

dk> c >/8«j?n/(1 +b) - f

-27-
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Since N does not depend on J", k, c and these numbers
o

are arbitrarily chosen,

o^. >/8«yS n/(1 +b) for all k^c

and hence, d >/&*/* n/( 1 + b)

This completes the proof of Theorem 3A.

Proof of Theorem 1 A

We now combine Theorems 2A and 3A to prove Theorem 1A.

That is, given any number R satisfying 0<R<C€ , we show

that R is an attainable £- rate of transmission for df .

If 0<R<C^, by Theorem 2A there exist G ={e J trans
mitted sequences ucuj of length n, G disjoint (decoding)
sets B , LjB. = pnp and finite numbers/, N, 6 such that

p[Bi lui] * exp H**/8£ +0)nj for all i= 1,...,G ,
n £N and all A. £ £ .

Using Theorem 3A with these B^s, u s, and fi , and

choosing *= G/Qfl +& , b = QP& /** we have that there

exists a finite number NQ, Nq:> N , such that

d = inf d, 4> / 8*;s n/(1 + b)
1*0 ij J

= /8(^/8,3 *£)/8n/(1 +8/a /*a)

Hence, R is an attainable £- rate of transmission for £j

and Theorem 1A is oroven.
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B. The Discrete Infinite Dimensional Case

The results of this section depend critically on

Theorem 1A. In fact, we will show that the infinite

dimensional model can be approximated arbitrarily closely

by the finite dimensional model because of the assumptions

imposed on the class C and the form of the model.

In order to state the results precisely, some further

notation must be Introduced. Let S denote an infinite

dimensional covariance matrix and define the set -»oM by

i" = jg |trace S ^ M , S an infinite dimensional cova-

riance matrix ] . Since S*J^ ,A^S A$ is a symmetric
positive semi-definite matrix and we will let a 3» A^ >-

... ^ 0 denote the eigenvalues of A^S A^.

For any matrix B = {^A and positive integer k,

let B = }k^ij} De the matrix given by b =b
if i* k, j^k and b =0 otherwise. For S*„8~and

1J k k k
A £ £ we denote the eigenvalues of Ay S A^ by

tf,K j»,k ^ ^ Q ^ Note that g ^J" m To show that
*\ 2
the infinite dimensional model can be approximated arbit

rarily closely by a finite dimensional model we need the

following lemma.

Lemma 7

Let S *>*% be a fixed diagonal matrix i.e. if

S = (sj.) then s =0 for i^ J.Then for each
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0>O , cr >0 , there exists k^ = k (& , a%) < «> such
* ' o o

that for all k£k and for all A„ e £
o <>

I* 2 log ( 1 +//<r2) - * f log (1 ♦ A.*"/,2 )l * ©
* ;s; e l /s/ e l

Proof: This is Just a restatement of Lemma 11 of [3 J .

We are now prepared to state and prove the main re

sult of this section, Theorem 1B.

Theorem 1B

For the class C of channels satisfying the conditions

of model B,

C * C = sup {sup inf iZlogRl +^./2p)
^>c> S*J A.*Z

-e2/2p}

Proof;

If C. is less than zero, there is nothing to prove

since Cz^0 . Hence, assume C > 0 in what follows.
X £

Choose any number R satisfying 0 < R < C^ . By the

definition of C( , there exist d>0 &nd/3>0 such that

sup inf iX lo&* 0 * XJzp) - e /2p

> r 4 3 e
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From the definition of sup we see that there exists

ft M V \f
S €«JL such that if \. >, \ >, ... ^ 0 are the elgen-

values of AS Ay then

£ Zlog [(1 4 1./2P) -e /2(3 > R +

for all A £ C .

We can choose an appropriate basis for the transmitted

and received spaces so that S is diagonal. We note that

the matrix representation of a channel relative to this

new basis may be different, but this does not change the

value of the eigenvalues of A SA' . Using Lemma 7 we see

that there exists a k such that for kfck , the following
o o

inequalities are valid.

i £ log O + A*'*/2P) -e2/2p >R+9 for all A e^
it i e i Y

and hence

sup inf ££ loge (1 + V2p) >r+e

*!»K k k k
The X . are the eigenvalues of the matrix AS A'

which is effectively a k - dimensional matrix. If we
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consider the k* k submatrices of Ay , At«C formed from

the first k rows and columns , we see that this class of

submatrices,call it CK is bounded. Likewise if we consider

the corresponding k*k submatrices formed from the S f8

S£ oi we see that this class of submatrices is just >/ .

Thus, from Theorem 1A, we can see that R is an attainable

€ - rate of transmission for the class £. This means that

for the class of channels CK there exists a sequence n

with lim n. = ©o , and G(n.) transmitted sequences u.
k Jt-> Co * * J

^ U„ of length nx such that d = inf d ^ fc/n^

With this fact, let us now show that R is an attainable

and lim "^ G(n.) = R.

£- rate of transmission for the infinite dimensional channel

C . Suppose that u. = (x4 .x ,..«,x. ) i = 1,2, .. .,G( n, )
l 11 12 lr>JL '

is a set of transmitted sequences which yield the £- attain-

* ' .1 v2 v3
, • • •,able rate R for CK . Choose x*, = (x , x , x-

x. , 0,0,...) as the transmitted vectors for the class of

channels C and let u, = (x.nx ,.00,xa ), 1 = 1»2,...G(ml)
i 1* 12 In x

be the transmitted sequences for the class of channels £.

Notice that u4cu\7 and that Avx, , = A^, x, a . Thus, the
1 M o ij * ij

distances d for <? are the same as the distances d
1, J AH 1, J

for C and hence d/**/!^ . It follows that R is an

C- attainable rate for £ . Since R is arbitrary except

that 0 < R < C€ , we see that C^ £. C $ .

32-



C. The Continuous Time Case

Just as we obtained results for the discrete infi

nite dimensional model by approximating it by a finite

dimensional model, we can obtain results for the conti

nuous time model by approximating it with a discrete infi

nite dimensional model. In order to do this, some further

notation is necessary.

Let L^ denote L(-~,~) for 1* p*~ where Lp(a,b)
is the space^complex valued functions such that the p-th
power of its magnitude is Lebesque integrable on the in

terval (a,b). Lp(T) will denote Lp(-T,T), for L< p.«~ .
If f4L or L (T), then II f |l denotes the norm of f in

p P P
that space. If f,g^L2 or L2(T), their inner product is

written as (f,g). An operator on a space X is a conti

nuous linear transformation of X into itself. ?T is to

denote the projection operator on Lp, 1< p*<*» defined by

(PTx)(t) = x(t) , |tU T
= 0 , lt|> T for all x € Lp.

If fiL (T) n L..(T) then for each Ta«« , a compact

operator FT on L2(T) is given by

(FTx)(t) = Jf(t -r)x(T) dr , -T«tN<T

We also have that f defines an operator F on L2 given by
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the convolution

(Fx)(t) = |f(t -Z)x(Z) &Z } -<*> < t<~ (♦)

With a slight abuse of notation we identify the operators

F and P FP . If f has finite memory (i.e. f(t) = 0

for Jtl^S ) then

V =PTFPT+J and FPT =PT+/PT *

If A is an operator on L^(T) or L then A will denote
2 2

its adjoint which is defined by

(x , A y) = (A x , y) for all x,y€L (T) or L .

If A is a compact symmetric operator, its trace Tr(A), is

defined if the sum of the eigenvalues of A converges, and

is equal to that sum.

Throughout this section, C will denote the class of

channel operators which satisfy the assumptions of model C.

6^ will denote the class of finite memory operators obtained

from C by truncating the kernels of the operators in £ ,

x. e.

otherwise, hv e £ ]
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£ also satisfies the conditions for model C. We will let
6

s denote the covariance function of a stationary stochastic

process with the additional property that s£ L . By known

properties of positive semi - definite functions (see e.g.

UJ, Th. 9) it follows that "s* L H L^ and hence there

exists a number & such that )s(^)l<A .«?4 will denote

the set of such covariance functions which satisfy

OO

1( v ) a' = Mr--oo
For each T<-», h * £* and s as above, let us define the

operators H » = P HvP_f ST = P_SPT where Hy and S are
y, i T*l l

defined in terms of h rand s as in equation (*). H is

then a compact operator and so the positive semidefinite

operator

W,,T =PT VtSPtH*PT = H*,T SH*,T
is also compact. Finally we define

Q„ m= P HySH*P = P QP
V,T t y ^ T T*T

*

Q is compact by virtue of the fact that Q^, = H^SH^ is

a convolution operator with kernel in L . Then, q e LHL
2 * 1 2

and its Fourier transform is

2

£(' ) = M» )| 3f(y)
1 ~s ^/

If f ^L^, its Fourier transform denoted by f is given by f( tf )

/ f(t) e dt.
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which also belongs to L1 since s( >> ) is bounded.

We will denote the eigenvalues of Q , W by
*>T y,T

q (T)*q (T)* ..*fcO and w^ (T)* w (?)* ... *0 res-
•i *2 \1 y2

pectively. For convenience we now state three facts

which will be essential in proving the main result of

this section, Theorem 1C.

Lemma 8

Let g be a continuous monotone-increasing real

valued function on the real number which satisfies

g(0) = 0, gfxj^^x in a neighborhood of 0 for some

0<k1 <do , and |g(x) - g(y)k< k/x - yl for all x, y

« E and some 0 < k ^ oo . Define the functions

QT :Cj-*IE and wT :Cs -*IR by

qT(h^} =2ff g(qti(T))
1 ^

and VNi* = 2T ~ s(wrl(T))

Then, i) lim ^(h^) = Jg( | hu(»)| Sdrfld*
T ** °° -oo

uniformly for h t & £x

11) lim ( w (h ) - qfh„)) = 0

uniformly for hy yt £^
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Ill) 11m wT(h<,r) = f°°s( |ha(>')|2 S(»))dv

uniformly for hy r c C^

Proof:

This lemma follows directly from Lemmas 4 and 5 of C4j.

Lemma 9

Let £y be defined as before and let p be any positive

number. Then,

1 «

lim 2T £ log (1 +w^(T)/^ )

oo

Jlog d + \\f{t)\2B{*)/p )as
e

uniformly over tfj .

Proof:

Note that the function g(x) = log ( 1 + x/a )
e r

satisfies the assumptions of Lemma 8.

Lemma 10

Let C satisfy the condtlons for model C. Then given

any positive number fi , any s(tf)« *„ and any positive number

B there exists a. finite number $ such that

-37-



i) I [ loge( 1+Ih^OOl 2s(^)/2p)d^
-oo

- fiog (1 +is (v)i2s(v)/2p)dv) < e
o e

"«0

for all h G d

id //£^.S^= >vVl><7feforallhv«c

Proof:

Since s cL , there exists a constant a such

that |s(*>)|< £<©o for all V . Recall that II hJUa

for all h^fc £ and that 5 is conditionally compact. We

therefore can find a finite positive number $ such that

/v rv

11 hy " ^s1' = "hv " hw'2 < mln( e/0/3dA ^ 8/JTm)

For each P define h(p) = max( h (>>), h. „(»>)). Thus,

"^ - S* II 2* W\l ' N«l >llfiv " Nf»2 «>lhr - *V«

and Hh H < 2a for all hv 6 £

Therefore
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1 f°°loge(1 +|hvr(y)|2s(P)/2p)dP

- Jio6ed +|h,(y)|2s(y)/2p)dv^ )
'OO

$ I fioged ♦ |Sv(#)|aS(*)/2p)di>

- Jlog ( 1+ Ih„ (f)| 2s(^)/2p)dv )
"OO

♦ j [loge(1 +|hv(v)) 3(*>)/2p)dv>

- flose( 1+| h„(v)/ g(«/)/2p)d^)

Let us examine the last term on the right.

I H°se(1 +lS/>^)|2s(^)/2|3)d^
-Oo

- |r0ge(i + ihx(y)/2s(«')/2P)d^i
-0©

-Do

s< | f[S(0[lhy(v)|2- |hy(y))2J/[2p+iJv(y)i28(y)]]J^|
-oo

w 2

i im: - «w
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^ 3aA[^H2 - «S^|I21 /2P

n< 3aA«L-V2< 3&±«S« -Nil < 6/2
2(3 2(3

The lemma follows from duplicating such arguments in

bounding the other terms.

We can now state and prove Theorem 1C

Theorem 1C

Let £ be a class of channels satisfying the condi

tions for model C. Then,

I Co f*

log^ (1 + |hJy)| s(y) /2p)dv

- *%/zfi ]

Proof:

As before, we need only prove Theorem 1C for C^>0,

hence assume that C>0 in what follows.

For any R, 0<R<Cfc , there exists a p>§ and a 6>0
such that
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loge (1 + )hy(i?)I s(^)/2p)dv

- (£ +20)2/2/JB >R+40

Furthermore, we can always find an s € >oM such that
o

Jloge(1 +|hv(^)|2s"o(ir)/2p)dv - (e+20)2/2J3

> R + 39

for all h e ~Y>

For this choice of /8 ,B , and s , we see from Lemma 10,
o

that there exists a finite number / such that

" \r 4r "2 = ,lhw - V2 <*/mfor a11 h*'e •

jloge (1 +|h^(ir)|2so(^)/2p) d^

- (e+ 20)2/2(3 > R+ 20

for all h r e <~f
tr
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A A

Using Lemma 9 we can see that there exists a T, 0<T <

such that

I jioa (1 +l\fMl S(ir)/Ji)iif
•oo

1 a* * t
- 2($ +f) 2 loge(1 +wy>1(T)/y?)| < a

holds for all h^ , 6 Cg .

Using both these inequalities, it is obvious that

££iog 0 ♦ * ,(*)/2p]

(T +*)(£ + 2b)2/Zp

> (T + J )R for all h„ . e £-
Tj 5 o

and therefore that

sup inf J £l0Set 1 ♦ w ^T))/^]

- (T +*)( € +20f/2fi > (* +S )R (t)

We now show how we can relate the continuous time

problem to the infinite dimensional discrete time problem.

Let 1ip£ |1^1<«>{ be a complete orthonormal basis in
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L^(T). Relative to this basis, the operators P*H P

P-SP4 and pAHyP4 nave a representation as infinite

dimensional matrices. (Recall that H^is the convolution

operator with kernel h^f ). We denote these matrices by

H* t > S£ ana H^ * respectively.

We note that H * is the transpose of H a and the

collection Cf of matrices H * form a conditionally

compact set in the Hilbert-Schmidt norm. Notice also

that w (T) are the eigenvalues of H „S*H a
*,i Y,T T tf,T

Furthermore, S,j is an infinite dimensional covariance

matrix and the trace of S$ is less than or equal to 2KT.

Hence, Sa € -xJ ^ .
T JUT

From Inequality (t) and Theorem 1B we see that

R(T +S" ) is an (6 + 26 ) /ITTT) attainable rate for

Cf . Hence, there exists a sequence nlr , lim n^ = ©© ,
K *->©oK

and G(nk) transmitted signals u^^ e U*° * of length n

such that d = inf d x (€4 26) /n. (T +J) and
i^J 1»J K

We now proceed to show that R is an attainable (* +2fi)

- rate of transmission for Gx . Let u_ = (x10x

x*n )£ UgMT be the transmitted sequences yielding the

R(T +5) rate for Cj . Corresponding to each vector
1 o

xij = ^xij,xij' '", *••) defin© the function x (t),
-Th< t * T by
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00 kj(t) = E^j^Ct) i=1,2,...,G(nk)
j 1, 2, ..,,n

For i = 1,2,...G(nk) define the function u (t) ,

k<0 >< t < 2nk(T 4 J ) by

^(t) = x^t - T - 2(3 - 1)(T +J ) -<T )

for 2(J - 1)(T +S ) +U t^2j(f +J) -J ,

J = *>2, ...,nk ,

and u.(t) = 0 elsewhere.

Next define the functions u«(t),...,u_, \(t) on the in-
1 GAnk'

terval - nk(T +S ).$ t <nk(T +£ ) by

u^t) = fl1(t ♦ nk(T +$ )

Notice from the construction of the functions u (t),
,Arf^J ithat u1(t)4 0.|-i for all 1 = 112, ...,G(n^) . (See figure 2 )

Since C- has memory $ , we see that J > (€ + 20)/n (T ♦ £ )

Thus, R is an (€4 2d) -attainable rate for Cc • Recall

however that $ was selected so that Jj hv - htf |L< &//2M .

If we use the same transmitted signals u (t) for £ ,
A

d = inf d. > £ «/n. (•? +J ) . Hence R is an €-rate
i^J 1»J k

for C • Since R is arbitrary subject only to 0<R<C4 ,
Theorem 1C is proven.
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III. UPPER BOUNDS FOR C„

Upper bounds for C have also been developed by Root

1*3 for the case where £ consists of a single point,

or is a ball. For these upper bounds, Root again used

variations of packing arguments. The inapplicability of

such arguments when £ has a complex structure has been

discussed in Section II. We will use a much simpler tech

nique to obtain upper bounds. We relate the usual capacity

theorems for Gaussian channels to the k\ - capacity of

such channels by a judicious choice of noise statistics.

Since the bounds for each of the three cases are derived

using the same techniques, we will provide the details for only the

continuous time case.

Theorem 4A

If the class £ of channels satisfies the conditions

of model A, then

C 4: C = sup inf inf log fIW + A„S Aj I*/ IW| * |
€ « S«iP a,«C W*V eL r r J

where ^"= {W IW is a pxp covariance matrix and

trace W <^6* \
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Theorem 4B

If £ is a class of channels satisfying the conditions

of model B, then

C* C = sup minf inf if log (1 +\Jf.2)

Theorem 4C

If C is a class of channels satisfying the condi

tions of model C and in addition , there exists a finite

positive number I such that h (t) =0 if jt|>S for all

h €<? then,

log (1 +|h(^)|2s(^)^(^))J>>
e * '

where ^J = £ N(i*) | N(i*) Is the spectral density
of a stationary Gaussian noise with

fN(v>) dif < €*/8 J

Proof:

Assume the contrary, that C^ < C^ . Then there exists

real numbers 9 >0, A > 0 and an N(if) e}[ such that

I N(?) d? = «/8 -A and

C>26 + sup inf (log (1 + l^(y))2s(y)/ N(v) ) dV
•oo
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There also exists an h * £ £ such that
ft

C >a+ sup flogjl + |h(^)|2s(V)/N(^) ) d^
«

Let the second term on the right be denoted by C, then

C + 6 is an attainable £- rate of transmission for C

That is, there is a sequence T. , lim T. =00 and

G(Tk) code words u (t), u (t),...,uQ(t) over (-Tk,Tk)

such that

lim -1- log_G(T ) = C + 6
k-*~ Tk e k

and d X e/T" (i.e. ||HaU, - HAu B ^ */tv for all

i * i )

Now consider the statistical problem gotten by

adding Gaussian noise z(t) to (H.x)(t) , with the spectral

density of z(t) being N(tr). Thus we have the following

noisy channel :

y(t) = (Hjx)(t) + z(t)

Since &>$/¥ , there exist G(T ) disjoint sets B^
k k i

such that

Bi D I •(*) I II' - H.ujlg <n\ 1
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IV APPLICATIONS AND CONCLUSIONS

The most obvious application of the estimates of

sections II and III is to the situation where only rudi

mentary knowledge of the additive noise and channel ope

rator of a communication channel is available. Suppose

for example tha,t we have a channel model which relates

transmitted signals x(t)*U. to received signals y(t)

in the following way

y(t) = (H x)(t) ♦ z(t) , -T N< t $ T

where L is a convolution type of operator known only to

belong to a class C which satisfies the conditions of

model C and z(t) is additive noise which satisfies the

following condition:

lim P[-i-J22(t) dt >*] = 0

Nothing else is known about z(t) . Then, C will be a

lower bound on the channel capacity for this model.

The 4- capacity can also be used to provide lower

bounds on the channel capacity for certain classes of

nonlinear and time varying channels. Suppose N is a

nonlinear, time varying operator which maps Lp(T) into

L0(T) for all T > 0. Suppose there exists a class C of
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linear convolution operators which satisfies the assumptions

of model C ^ such that for each x*UM there exists an rL*«£

for which

i |(H,x)(t) - (Nx)(t)| dt <*€2T/4 for all T>o
r

Then, the 2£- capacity for this class £ is obviously

a lower bound for the € - capacity of the nonlinear time

varying channel N .

Although we have derived bounds for the € - capacity

of quite general classes of channels, in many situations

our bounds are better than those of Root even when £,

consists of only a single operator. We will verify this

by means of an example.

Consider a continuous time channel with h( if)

defined as follows

h (y» = e ' '

We will let M = -r- and will assume, for convenience, that €: < 1.

Root's lower bound for C which we denote by C is

CR =2 J log 2lhWl/£ dV -2 log 2 J dV
* |h<V)| >€/2 e e |S(v)|>€/2

j>

and his upper bound C* is
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C*= 2J|h(V)|>6/210Se2|"<,;)|/^V+5 1oge2 J|ff(y)|>fi/2d^
By making the appropriate calculations we see that

CR = 2log 2/€ [log 2/6 - 2 log 2]
— £ e e e

CR = 2 log 2/€ [log 2/€ +5 log 2]

6 - 6 2V"*"
By applying Theorem 1 C with s(y) (3/2 €.

Ii 2 "*'
^ < 1/2 log 1/2 ^ , s(v») = 0 otherwise and

e

2 2 2
(3 = l/2[ 1/26. log 1/26 - 1/26 + 1], we see that

C >l/2 log2 1/262 _log 1/2<L2 +1 - 2€?
—e. e e

For 6 = 1/2, C „ = 0 but C ^.05. Thus our lower bound is
-€ -£

better than Root's in some instances.

2 / 2
By applying Theorem 4C with N( y) = <& /16 / 4(1 - 6 /16) log 2/e

for |V|<log2/€, N(v) =e"2'̂ ' /4(1 - e2/16) log 2/£

for |j/| >log 2/€ and7(v»)= r -e2'*'']^)
4(1- e /16) log 2 €

for |>/| < log 2/£, s(v>) =0 otherwise, we see that

CL*2 1og 2/e [log 2/fe +2 log 2]
fc e e e

j^
which is less than C, for all £.
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