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I. INTRODUCTION

With the invention of an electrical device a number of questions
must be answered by circuit theorists in order that designers can
achieve the full potentialities of the new device. For example, a prac-
tically important problem is to determine exactly characteristics that
can be achieved using the new device imbedded in a passive circuit. In
particular, this question might reduce to the following: If the device is
imbedded in a passive circuit, what are the necessary and sufficient con-
ditions on the resulting driving point function? .If the device is a tunnel
diode represented by the complete linear equivalent circuit shown in
Figs. la and lb, this questionis still unansweréd, although a number of
significant attempts have been made.

Kinariwala1 first found the limitations on the natural frequencies
of a tunnel diode imbedded in a passive network with the tunnel diode
treated as a negative resistance in parallel with a capacitor. For this
same equivalent circuit necessary and sufficient conditions on the driving
point impedance were then found independently by Kinariwa.la.2 and Sandberg. 3
Golosman and Newcomb4 next found the allowable natural frequencies using
an equivalent circuit consisting of the circuit in Fig. 1 with either the series
resistor or series inductor absent. For the same circuits, S::mdberg5 then
found necessary and sufficient conditions on the impedance obtained by im-
bedding these circuits in a passive network.

In this paper we extend these results to define the regions of the
complex frequency plane in which natural frequencies can be achieved for
the tunnel diode imbedded in a passive network, using the complete linear
equivalent circuit of the tunnel diode. The technique used is the same as
that of Golosman and Newcomb, namely the application of the theory
developed from energy considerations by Desoer and Kuh6 for determining
"active points'' in the right half of the complex frequency plane. However,
whereas Golosman and Newcomb only carry through the analysis for the
simplified equivalent circuits for the tunnel diode, we are able to define
exactly allowable regions for the natural frequencies for the complete

equivalent circuit.



II. STATEMENT OF THE PROBLEM AND SUMMARY OF RESULTS

A real, linear, time-invariant, one-port network N is said to be
"active' at the complex frequency Py with Re Pg > 0, if there exists a
passive one-port NP such that the combined network N - NP formed
by imbedding N in NP as in Fig. 2 can support a mode of the form
I(t) = Iepot where I is some fixed current. In other words, N is active
at pg if there is an Np such that the network N - NP has a short cir-
cuit natural frequency at Py Stating it in still another way, Py is an -
active point if there exists an NP such that ZP(pO) + Z(po) = 0 where
ZP(pO) is the impedance of the passive network NP and Z(po) is the
impedance of the diode. The point Py is called an active point and the
region in the complex frequency plane containing all points at which N
is active is called the "active region.' The problem then becomes to
determine the active regions for the tunnel diode using the complete linear
equivalent circuit.

Desoer and Kuh have derived necessary conditions (shown to be
sufficient for a one port7) for a point Pg to be an active point for an

n-port device imbedded in a passive n-port network. When specialized
| to a one-port device imbedded in a one-port passive network these condi-
. tions reduce to la, 1lb and lc below, where Pg =9 % jwo. Im Z(p) denotes

~ the imaginary part of the impedance at Py and Re Z(po), the real part.

Re Z(po) <0 for all wq and “ > 0 (la)
Im Z(po) - W Re Z(py) <0 for ©q >0 and % >0 (lb)
Im Z(po) + wy Re Z(p;y) > 0 for wy; >0 and o,>0. (lc)

0

Note that for Pq = jwo, {1b) and (1c) reduce to (la). For Wy = 0 (1b) and (lc)
become vacuous statements.
The physical meaning of (la, b, c) for the one port network is readily

apparent. If we are to have



Z(pg) + Zp(py) = 0

then Re Py > 0 we must have Re Z(po) < 0 since for a positive real func-

tion Re Z ) > 0. Similarly since ZP(pO) is positive real it satisfies

p(Pg) >

the conditions Iarg ZP(po) lf_ Iarg(po)l for Re Py i 0 which is equivalent
to (1b) and (lc) for Re Z(po) i 0. (la), (Ib), (lc) are the conditions applied
to the tunnel diode equivalent circuit of Fig. 2b for which we can easily show

Re ‘Z(p) and Im Z(p) are given by (2a) and (2b) respectively

g -1
Re Z(p)=r + 1+ (0--1)2+w2 (2a)
_ w
Im Z(p) = 4w - - 1)2+ " . (2b)

The remainder of the paper is concerned with the detailed solutions
and interpretations of Eqs. (1) and (2). The results of the investigations
are displayed in Tables 3 and 4 for all possible relative values of r and £.
The curves labeled (D and (@) are described by the Eqs. (3a) and (3b) to be
derived later.

w2=ir(1-zo)-(cr-1)2 (3a)

2 _ 1 2
w -—-ﬂ—o-:Tr—- —(0' -].) . (3b)

For 0y = 0 the maximum frequency of oscillation ws is given by

The largest Ty for Py =0g*t jwo, with wg = 0 is given by

0'i=1§(1--2—'—). (5)



The other critical points indicated on the curves are given in (6)-(10)

o=ty et Ver® e (6)

=~ \
oy = 5 -x/2)- % Vi +x/0)? - 4l (7)

where o and @, are the real roots of the equation

g -Dot -t/ o+ (Bgh =0 (9)

given in Appendix B. Finally we have

W = \A/l -1/4 (1+r/2)2 (10)

III. TUNNEL DIODE ACTIVE REGION

We now proceed to derive the results described in the previous section.

Substituting (2a) and (2b) into (la, b, c) we have, respectively, (11), (12), and
(13) as follows.

Lo +£crw2+(r-2£)0'2+rw2+(l-£ -2r)o+r-1<0

(11)
2 2
ro +rw +2(1-r)o+r-1<0 (12)
3 2 2 2
20 0" +20o0w +(r-4)o +rw +(20 -2r)oc+r-1<0. (13)
Rearranging, we have:
2 1- 2
from (11) «” < -r—-r% - (o -1) (14)



from (12) w® <1/r(l - 20) - (¢ - 1)° (15)

2 1

2
from (13) w E —m—- - (0' - 1) . (16)

The regions of the complex frequency plane satisfying (14), (15) and
(16) then consists of the points in the first quadrant of the complex frequency

plane enclosed by the axes and “the points’ satisfying (17), (18) and (19),

respectively.

Wi oo (oo (17)
r+ico
W = ;1(1-20')-(0'-1)2 | (18)
2 1 2

W = g - (e - 1) . 19)
2 e . 2 2
Values of w satisfying (17), (18), and (19) will be denoted by Wrs Wrp
and wz , respectively. Then a point o, on the real axis will be an active

II1

0
point if and only if wf' >0 for that o

o A point wy on the imaginary axis

will be an active point if and only if w(z) is not greater than the value of

wf' at 0 =0. A point Pg=0gt jwg in the first quadrant (not including the

axes) is an active point provided that wp» @pr and wi?'u are all positive at

. 2 . 2 2 ~ .

Tg and provided that wq < Ig/hn (wI W wIII) atA ¢ =0y For a given
value of o, @p O Wy OF Wiy is said to be '"dominant" or to be the
""dominant restriction' if it is equal to Min (wIz ) wIZI’ iZII)' Eq- (17), (18)
or (19) is said to be the '"dominant curve'' or the '"dominant equation' if

it yields the dominant restriction. It is shown in Appendix A that the

. 2 . . .
relative values of w., w,., and coZ and, hence, the dominant restrictions

1" 11 I
for different ranges of r, £ and o are as given in Table 1.
The problem of finding the active regions in the first quadrant for the

tunnel diode has therefore been reduced to examining the dominant restrictions



for different ranges of r, £, and ¢. The active regions for the fourth
quadrant are then found by reflecting the region in the first quadrant

about the real axis. In Sec. IV the region is found over which wz > 0.

1=
Since wIZ determines the active region on the real and imaginary axis,
these regions are then found and given in Table 2. In Sec. V the

region of non-negative wf'l is determined. From Table 1 we see that for

r>{, w, is dominant. We can therefore determine the active region

II

(not including the axes) from wfl. Combining this region with the active

region on the axes found in Sec. IV, the complete active region for r > 1

is then given in Table 3. In Sec. VI, the region of non-negative W is
determined. Combining the results of Secs. IV, V, and VI, the active
region for r </{ is then given in Table 4. In Sec. VII it is shown that
the necessary restrictions on the natural frequencies are also sufficient.

IV. REGION OF NON-NEGATIVE wiz AND

ACTIVE REGION FOR w=0OR ¢ =0

We consider (17), which yields the region of activity on the real and
imaginary axes. We first identify the regions over which wIZ > 0 If
o >1, then w;' < 0. Hence ;ve can limit our investigation to the range
0<¢<1l If o=1, then w >0 corresponds to a single point, (1,0) on

the o axis. Next, consider o <1. Rearranging (17) we have

2 _ l-g¢
0)1 —Tm [1-(1-0’) (r+10')] (20)
l-¢ '
~-"r¥Io is non-negative, for 0 < ¢ <1, since r and £ are assumed

positive. In order that wIZ be positive, we therefore must have F(c) >0

where F(¢) is defined by

F(o)

1-Q-0)(r+20) (21)
or '

F(o) = [o - 1/2(1 - x/12)] ¢ 4 [1/4 -1/40+ x/2 3_]2 > 0. (22)



We then have three cases to consider, as follows.

CaseI. If 1/2 -1/4(1+ /2 )2 >0 then F(o) is always non-negative
for all ¢ <1. This condition is equivalent to r < 2 -\ﬂ-\— £

Case IL. If 1/¢ - 1/4(1 +1/2)% = 0, then

(a) for r>1¢, “’122 0 for 0<oc<1

(b) for r <4, w2> 0 for 1/2(l-r/2)<c< L

Case III. If 1/ -1/4(1+ /2 )2 < 0, rearrange F(o¢) in a factored form

F(o) =[c - 1/2(1 - x/2) +1/2 'f(l + /2 )2 - 4/2] [o-1/20 - r/2).

/2~y Q+r/0) - ar0 ] (23)

and let
o =1/2(0 - x/2) + 12l +2/0)% - 4/ (24)
o, =120 -1/8) =121 +x/20)° - 4/t . (25)

For o <o< Ty F(o) is negative. For o smaller than both oy and 0y OF
greater than both o and oy wlz > 0. Next consider the locations of o and
0y there are two cases:

(a) if r >4, then o, < 0 or complex

(i) ifr >1, thenl> 0'1>0
(ii) if r =1, then o) = 0

(iii) if r <1, then oy < 0 or complex
(b) if r <¢, then oy < 0 or complex
(i) if r >1, then Ty < 0 or complex
(ii) if r

(iii) if r <1 then 1> o, > 0 or complex

1 then Ty = 0



In Table 2, the first two columns correspond to different relative values
of r and £. The third column contains the regions in the first quadrant
of the complex frequency plane for which wz is less than or equal to mIZ
and for which Wy is non-negative. The region in the fourth quadrant is
found by symmetry. The fourth column contains the active regions on the
axes of the complex frequency plane found by taking the intersection of
the regions in the second column with the axes. In the table the maximum

real active frequency is denoted by ;.

V. REGION OF NON-NEGATIVE wfj AND

ACTIVE REGION FOR 1> {£.
Rewriting (18), we have

[f-0-1va]% +ed = [U/ra/re-1) (26)

We see that wIZI describes a circle with center at (1 - 1/r, o) and radius
R =+1/r(l/r - 1) as in Fig. 3.

If r =1, the region inside the circle degenerates to a single point (0, 0).
a'j, the maxirznum value in the region on the real axis, cannot exceed 1/2.
For r >4 wy is dominant. Combining the results for the axis from Table 1,
with the dominant region for wIZI, we then have the active regions in Table 3
for r>1¢.

VI. REGION OF NON-NEGATIVE wfn AND

ACTIVE REGION FOR r < {

For r <2 and 1/2(1-r/2)<c<1, wfj given in Sec. V is dominant.

Next consider (19) rewritten as:

ofy = greys OG- (o+ne-n7 @

1
Since £, r and o are positive, - 200 + r is always positive.



Define G(¢) by the equation

Glo) =1 - (280 + 1) (¢ - D% . (28)
Then wizl > 0 if and only if G(s) > 0. Thus for values of r and £ satisfy-
ing the constraint 392/3 _2p<r<2 £ - £, there are two separate regions

on the real axis which degenerate to one region for r < 392/3 _ 24 or
r>2 £ - £. In Table 4, 6'3 and o, are given by the real roots of G(c)=0.
- These values are calculated in fs,gpendix B.

Having now examined wy in Sec. IV, wIZI in Sec. V, and wIZH in this sec-
tion, we can describe the active regions for r < £. On the real and imaginary
axes the active regions are as given in Table 1. Off the real axis wlzll is
dominant for 0<g¢ <1/2(1 - r/2) and wIZI is dominant for 1/2(1 - r/£)i0' <L
The active regions for r < £ are plotted in Table 4. In its dominant interval
has its maximum value of w}Z) - 1/8 - 1/41 + r/ﬁ)2 at ¢ =1/2(1- r/2).

2
“11 ,
is positive so long as r > 2 VI g If r=2 s l, wy=0.

oy

VII. SYNTHESIS OF PASSIVE IMBEDDING NETWORKS

Simple RLC imbedding networks can be devised to imbed a given active
one-port network and obtain any of the allowable natural frequencies. One
such imbedding network is included here with its justification as an example.

Consider ag a general imbedding network a series LC circuit with impedance,

- - 1
ZP(PO) = LPO = —I;(-)—C— (30)
%0 . %0
- PR S —— ] - _.__ 3
oo L+ =2 1/C +j l})OL 2.2 IIC:I (31)
0 0 -0 -0

As stated in the intrdduction, the sufficient condition for N with im-
pedance Z(po) to be active at p is that ZP(po) + Z(po) = 0. We therefore re-
quire that ZP(pO) = _Z(po) = -a-jp where

a = Re Z(p,) and B =Im Z(p,) » (32)

and



Z(po) is the impedance of the tunnel diode. Using (31) and (32), we

have
70
o L+ ——— 1/C = -a (33a)
o2 + wd
0 0
“o
wy L - ———— 1/C=-B . (33b)
0'2 + wz
0 0
Solving for L. and C, we have
(o wy + B op)
L= 0 0 (34a)
Zcrowo
20w
C = Y . {34b)

([30'0 - awo)(cr% + wg)

In order that L. and C be positive and real (note that ®q and o, are

assumed positive), it is necessary that

aw0+[30'0 <0 (35a)

Bo’o - awy >0 . (35b)
Equation (35a) corresponds to (1b) and (35b) corresponds to (lc) , i.e., the
dominant restrictions for wq > 0. Hence if Py 2san active point with

w, >0, then L and C are positive and real. The element values are given

0
by

-10-



1 0
L=- (r+ Lo, + Yw, + 0L w, - )
20nW 0 2,..2 0 0 0 1 1 el
070 (0'0-1) +w0 (cro 1) +w0
(36a)
20, W
C = 00
2 ) wg 0'0-1
(6% + w8 Hw, ~——————) 7, - w.(r+L o, + )
0 0 0 (0'0-1)2+w% 0 0 0 (0'0—1)2+mg

(36b)

Thus the series LC circuit covers the whele active range for wy > 0. Asan
example, consider a tunnel diode with r = 0.01, £ = 0.085, and’ Py = 0.1+30.1.
Then L =55.0 and C =10.0. The resulting network is given in Fig. 4.

VIII. CONCLUSION

The exact regions of allowable natural frequencies have been obtained in
the right half of the complex frequency plane. Several interesting general con-
clusions can be drawn from the tables. As r-and f increase, the region of
activity generally becomes smaller. For r <f as r increases from zero,
the active region first consists of a single domain. The region off the real
axis then splits into two parts. One of these regions then disappears; the re-
gion on the real axis then splits, and finally for r =1 all that is left is one
part of the real axis. The behavior for r > { is not quite as interesting but
still points out that as r increases the region of activity is severely limited.
Two final points should be noted.

First we have considered only natural frequencies in the right half plane
since any natural frequencies can be obtained in the left hand plane. Finally,
it should be noted that although any active point Py can be achieved with a
passive imbedding, there is no way of predicting what other active points in
addition to the desired active point are obtained with a given imbedding. The
realization of isolated active points represents a major problem yet to be

solved.

-11-



APPENDIX A
DERIVATION OF ENTRIES IN TABLE 1

Define S'ZI I as wz - wz . Then

I 11
_ 2 2 _ l-¢ 1- 20
e e = - =)
_ 21ic 4
=TT [0-1/2(1-1'/1)] : (A.1)
Since we have assumed £ and r to be positive and 0 <o <], —-1—.1—172—_5—1%_7 is

non-negative. However, the sign of [0' -1/2(1 - r/2 )] depends on the values
of o, rand £. We consider the following cases:
(a) if r> £, then anz 0.

(b) if r < £, there are three cases:

(i) if 1>0>1/2(1 - x/2), then @ ;>0
(i) if o =1/2(1-x/0), then @ ;=0
| (iii) if£1/2(1 - r/2) > o >0, then Qlllf 0.

Next, define QIIIIE wlz - wIZH . Then

1 - 1
IIII - r+lot;' - [710'+r]

Q

e - Y20 - x/0)] (A. 2)

24
(r+2o)(dfc+ 1)

However, the sign of o -1/2{(1 - r/¢) depends on the values of r,

is nonpositive.

£ and o

-12.-



(a) if r>14¢ QIIII—<—0
(b) if r <f there are three cases:

(i) if 1>¢> 1/2(1—r/£)thenQIHI§0
(i) if o =1/2(1-x/2), then 2 ;. =0

(iii) if 1/2(1 - r/£)> o> 0, then @ ;1> 0.

-13-
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Fig. 1. Equivalent circuit of tunnel diode.

Z Z
p
Fig. 2. Active network N imbedded in possitive network NP.
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]
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1L=55.0
R=1/r(1/r-]) /// o.=1-1/r +\N1/x(1/z-1) tunnel
‘ 7 J —C . diode
| //// C=10.0
| (1-1/7) | |
Fig. 3. Region in right half plane with Fig. 4. Tunnel diode
w2>0 and QZ‘wZ imbedded in
I- =71’ passive network.
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