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I. INTRODUCTION

With the invention of an electrical device a number of questions

must be answered by circuit theorists in order that designers can

achieve the full potentialities of the new device.. For example, a prac

tically important problem is to determine exactly characteristics that

can be achieved using the new device imbedded in a passive circuit. In

particular, this question might reduce to the following: If the device is

imbedded in a passive circuit, what are the necessary and sufficient con

ditions on the resulting driving point function? If the device is a tunnel

diode represented by the complete linear equivalent circuit shown in

Figs, la and lb, this question is still unanswered, although a number of

significant attempts have been made.

Kinariwala first found the limitations on the natural frequencies

of a tunnel diode imbedded in a passive network with the tunnel diode

treated as a negative resistance in parallel with a capacitor. For this

same equivalent circuit necessary and sufficient conditions on the driving
2

point impedance were then found independently by Kinariwala and Sandberg.
4

Golosman and Newcomb next found the allowable natural frequencies using

an equivalent circuit consisting of the circuit in Fig. 1 with either the series
5

resistor or series inductor absent. For the same circuits, Sandberg then

found necessary and sufficient conditions on the impedance obtained by im

bedding these circuits in a passive network.

In this paper we extend these results to define the regions of the

complex frequency plane in which natural frequencies can be achieved for

the tunnel diode imbedded in a passive network, using the complete linear

equivalent circuit of the tunnel diode. The technique used is the same as

that of Golosman and Newcomb, namely the application of the theory

developed from energy considerations by Desoer and Kuh for determining

"active points" in the right half of the complex frequency plane. However,

whereas Golosman and Newcomb only carry through the analysis for the

simplified equivalent circuits for the tunnel diode, we are able to define

exactly allowable regions for the natural frequencies for the complete

equivalent circuit.



II. STATEMENT OF THE PROBLEM AND SUMMARY OF RESULTS

A real, linear, time-invariant, one-port network N is said to be

"active" at the complex frequency p_ with Re p« > 0, if there exists a

passive one-port N_ such that the combined network N - Np formed

by imbedding N in N.p as in Fig. 2 can support a mode of the form
pnt *

I(t) = Ie u where I is some fixed current. In other words, N is active

at p0 if there is an Np such that the network N - Np has a short cir

cuit natural frequency at p~. Stating it in still another way, p~ is an

active point if there exists an Np such that Z.p(pn) + Z(pn) = 0 where

Zp(pn) is the impedance of the passive network Np and Z(pn) is the

impedance of the diode. The point p_ is called an active point and the

region in the complex frequency plane containing all points at which N

is active is called the "active region. " The problem then becomes to

determine the active regions for the tunnel diode using the complete linear

equivalent circuit.

Desoer and Kuh have derived necessary conditions (shown to be
7

sufficient for a one port ) for a point pn to be an active point for an
n-port device imbedded in a passive n-port network. When specialized

to a one-port device imbedded in a one-port passive network these condi

tions reduce to la, lb and lc below, where pn = o"0 + jo>n- Im Z(p) denotes
the imaginary part of the impedance at pn and Re Z(pn), the real part.

Re Z(pQ) < 0 for all coQ and cr > 0 (la)

Im Z(pQ) - a>0 Re Z(pQ) < 0 for coQ > 0 and <rQ > 0 (lb)

Im Z(pQ) + coQ Re Z(pQ) > 0 for wQ > 0 and cr > 0 . (lc)

Note that for Pq = jooQ , (lb) and (lc) reduce to (la). For Wq = 0 (lb) and (lc)
become vacuous statements.

The physical meaning of (la,b,c) for the one port network is readily

apparent. If we are to have
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Z(pQ) + Zp(P()) = 0

then Re Pq ^ 0 we must have Re Z(pQ) < 0 since for a positive real func
tion Re Zp(pg) >^ 0. Similarly since Zp(pQ) is positive real it satisfies
the conditions |arg Zp(pQ)|< |arg(pQ)| for Re pQ >0 which is equivalent
to (lb) and (lc) for Re Z(pQ) < 0 . (la), (lb), (lc) are the conditions applied
to the tunnel diode equivalent circuit of Fig. 2b for which we can easily show

Re lZ(p) and Im Z(p) are given by (2a) and (2b) respectively

Re Z(p) = r + 1+ °" - l (2a)
(cr - 1)* + c/

ImZ(p) = ico " _ . (2b)
(or _ 1)* + coz

The remainder of the paper is concerned with the detailed solutions

and interpretations of Eqs. (1) and (2). The results of the investigations

are displayed in Tables 3 and 4 for all possible relative values of r and i.

The curves labeled (T) and (2) are described by the Eqs. (3a) and (3b) to be
derived later.

u2= 1 (1 - 2o-) - (cr - l)2 (3a)

2 1 2
u> =— • - (o- - lp . (3b)

For o-q = 0 the maximum frequency of oscillation a), is given by

«!=-/-- 1' • (4)
1 r

The largest o-Q for pQ = o-Q + j'cjq, with wQ = 0 is given by

"i= yd- T> • <5>
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The other critical points indicated on the curves are given in (6)-(10).

°"l =\ (1 ' r/i )+\ l/d +r/i )2 - 4/4 (6)
= l(l.r/i) 1 ->/l+ r/-'2

^

°2 = 2U " r/jE >" ^ yu + r^ ) " 4^ (7)

o"3 = ay cr4 = a2 (8)

where a, and or? are the real roots of the equation

o-3 +i^j - 1) or2 +(1 - r/i ) 0- + (-^-i) =0 (9)

given in Appendix B. Finally we have

-.- ^ 21/4 - 1/4 (1 + r/i )" • (10)

III. TUNNEL DIODE ACTIVE REGION

We now proceed to derive the results described in the previous section.

Substituting (2a) and (2b) into (la,b, c) we have, respectively, (11), (12), and

(13) as follows.

4 o-3 + 4o-co2 + (r - 24 ) cr2 + rco2 + (1 - 4 - 2r) cr + r - 1< 0 (11)

r o-2 + rco2 + 2(1 - r) 0- + r - 1< 0 (12)

24 o-3 + 24 o-co2 + (r - 44 ) cr2 + rco2 + (24 - 2r) cr + r - 1< 0 . (13)

Rearranging, we have:

from (11) co2 < —^_ . (o- _i)2 (14)
x ' — r + 4 cr v '
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from (12) co2 <l/r(l - 2cr) - (cr - l)2 (15)

from (13) co2 < 2i *+r - (cr - l)2 • (16)

The regions of the complex frequency plane satisfying (14), (15) and

(16) then consists of the points in the first quadrant of the complex frequency

plane enclosed by the axes and the points' satisfying (17), (18) and (19),

respectively.

co2 = l ~ °" - (o- - l)2 (17)
r + 4 o-

J- = 1 (1 . 2cr) - (cr - l)2 (18)
r

2 2 2Values of co satisfying (17), (18), and (19) will be denoted by coT , coTT,

and coTTT , respectively. Then a point o"n on the real axis will be an active

point if and only if coT > 0 for that crn. A point co-. on the imaginary axis

will be an active point if and only if co^ is not greater than the value of
2o^ at cr = 0. A point Pn = °"q + j^n i-n tne first quadrant (not including the

axes) is an active point provided that co_ , co__ and coTTT are all positive at
2 2 7 7crn, and provided that coA < Min (coT , coTT> cOxtt) at cr = crn. For a given

value of cr, coT or co or coTTT is said to be "dominant" or to be the
JL J.J. J.1JL 7 7 7

"dominant restriction" if it is equal to Min (co , co , coTTT). Eq- (17), (18)
or (19) is said to be the "dominant curve" or the "dominant equation" if

it yields the dominant restriction. It is shown in Appendix A that the
2 2 2relative values of coT , co_T, and coTTT and, hence, the dominant restrictions

for different ranges of r, 4 and cr are as given in Table 1.

The problem of finding the active regions in the first quadrant for the

tunnel diode has therefore been reduced to examining the dominant restrictions
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for different ranges of r, 4 , and cr. The active regions for the fourth

quadrant are then found by reflecting the region in the first quadrant
2

about the real axis. In Sec. IV the region is found over which co > 0.
2

Since co determines the active region on the real and imaginary axis,

these regions are then found and given in Table 2. In Sec. V the
2

region of non-negative coTT is determined. From Table 1 we see that for
2

r > 4 , co-_ is dominant. We can therefore determine the active region
— 2(not including the axes) from co_T . Combining this region with the active

region on the axes found in Sec IV, the complete active region for r > 4
2 '*"is then given in Table 3. In Sec. VI, the region of non-negative col^ is

determined. Combining the results of Sees. IV, V, and VI, the active

region for r < 4 is then given in Table 4. In Sec. VII it is shown that

the necessary restrictions on the natural frequencies are also sufficient.

IV. REGION OF NON-NEGATIVE co2 AND
ACTIVE REGION FOR co = 0 OR cr = 0

We consider (17), which yields the region of activity on the real and
2

imaginary axes. We first identify the regions over which coT > 0. If
2

cr > 1, then co, < 0. Hence we can limit our investigation to the range

0 < cr < 1. If cr = 1, then coT > 0 corresponds to a single point, (1, 0) on

the cr axis. Next, consider cr < 1. Rearranging (17) we have

"I = r + t<r C1 " (1 " *] (r +l ff)] (20)
1 - o-

r + a cr is non-negative, for 0 < <r < 1, since r and 4 are assumed
2 "~

positive. In order that co be positive, we therefore must have F(cr) > 0

where F(cr) is defined by

F(cr) = 1 - (1 - cr) (r + I or) (21)

or

F(cr) =[cr - 1/2(1 - r/4 )] 2 +[l/4 - 1/4(1 +r/4 ))2 > 0. (22)
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We then have three cases to consider, as follows.

2
Case I. If 1/4 - 1/4 (1 + r/4 ) > 0 then F(cr) is always non-negative

for all o* < 1. This condition is equivalent to r < 2 -y 4 - 4 .

Case II. If 1/4 - 1/4(1 + r/4 )2 = 0, then
(a) for r > 4, co2 > 0 for 0 < cr < 1

(b) for r <4, co^ > 0 for 1/2(1 - r/4 ) <cr < 1.
2

Case III. If 1/4 - 1/4(1 + r/4 ) < 0, rearrange F(tr) in a factored form

F(cr) =[cr - 1/2(1 - r/4 ) +1/2 V(l +r/4)2 - 4/4] [ cr - 1/2(1 - r/4 )_

-1/2 V(! + r/l )2 - 4/4%]
and let

-7-
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o-j =1/2(1 - r/4 )+1/2-vtl +r/4 )2 - 4/4 (24)

<t2 =1/2(1 - r/4 )=1/2 V(l +r/4)2 - 4/4 *. (25)

For cr, < cr < cr^, F(cr) is negative. For cr smaller than both o\ and cr-, or

greater than both cr, and cr-, co_ > 0. Next consider the locations of cr, and

cr-; there are two cases:

(a) if r > 4 , then cr2 < 0 or complex

(i) if r > 1, then 1 > 0^ > 0
(ii) if r = 1, then cr, = 0

(iii) if r < 1, then cr, < 0 or complex

(b) if r < 4 , then cr- < 0 or complex

(i) if r > 1, then cr- < 0 or complex

(ii) if r = 1 then cr- = 0

(iii) if r < 1 then 1 > cr- > 0 or complex



In Table 2, the first two columns correspond to different relative values

of r and 4. The third column contains the regions in the first quadrant
2 2

of the complex frequency plane for which co is less than or equal to co_
2

and for which co. is non-negative. The region in the fourth quadrant is

found by symmetry. The fourth column contains the active regions on the

axes of the complex frequency plane found by taking the intersection of

the regions in the second column with the axes. In the table the maximum

real active frequency is denoted by co..

V. REGION OF NON-NEGATIVE cofj AND
ACTIVE REGION FOR r > 4 .

Rewriting (18), we have

[cr - (1 - 1/4)] 2 +co^ =[l/r (1/r - 1)] (26)
2

We see that cojj describes a circle with center at (1 - l/r, o) and radius

R = Vl/r (l/r - 1) as in Fig. 3'.
If r = 1, the region inside the circle degenerates to a single point (0, 0).

cr., the maximum value in the region on the real axis, cannot exceed 1/2.
J 2

For r > 4 co™ is dominant. Combining the results for the axis from Table 1,
2

with the dominant region for cott, we then have the active regions in Table 3

for r > 4 .

VI. REGION OF NON-NEGATIVE to2 AND
ACTIVE REGION FOR r < 4m

2
For r < 4 and 1/2(1 - r/4 ) < cr < 1, cojj given in Sec. V is dominant.

Next consider (19) rewritten as:

1
co,
'HI 24 cr + r

1

Since 4 , r and cr are positive, 24 cr + r is always positive.

-8-
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Define G(cr) by the equation

G(cr) = 1 - (24cr + r) (cr - 1)' (28)

Then col. > 0 if and only if G(cr) > 0. Thus for values of r and 4 satisfy

ing the constraint 342/3 - 24 < r < 2 V* - $•> there are two separate regions
on the real axis which degenerate to one region for r < 342'3 - 24 or
r > 2 V4 - 4. In Table 4, or, and cr. are given by the real roots of G(cr) = 0.

These values are calculated in Appendix B.
2 2 2Having now examined to- in Sec. IV, co-j in Sec. V, and co^ in this sec

tion, we can describe the active regions for r < 4. On the real and imaginary
2

axes the active regions are as given in Table 1. Off the real axis co,,, is
2dominant for 0 < cr < 1/2(1 - r/4) and co^ is dominant for 1/2(1 - r/£)<<r <_1.

The active regions for r < 4 are plotted in Table 4. In its dominant interval
2 2 2wfT has its maximum value of co, - 1/4 - 1/4(1 + r/4) at cr = 1/2(1- r/4).

co, is positive so long as r > 2 *\fi - JI. If r = 2 V^ * ^» <*>£ = 0-

VII. SYNTHESIS OF PASSIVE IMBEDDING NETWORKS

Simple RLC imbedding networks can be devised to imbed a given active

one-port network and obtain any of the allowable natural frequencies. One

such imbedding network is included here with its justification as an example.

Consider a§ a general imbedding network a series LC circuit with impedance,

<rQL +

Zp(p0) = LpQ =
Po77

0

2^2
^O+^O

1/C + j co« L -
0

co
0

2,2

(30)

1/C (31)

As stated in the introduction, the sufficient condition for N with im

pedance Z(p-) to be active at pQ is that Zp(pQ) + Z(pQ) = 0. We therefore re
quire that Zp(p0) = -Z(pQ) = -Qf-jP where

a = Re Z(pQ) and |3 = Im Z(pQ) (32)

and
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Z(pn) is the impedance of the tunnel diode. Using (31) and (32), we

have

aQL + 'o
1/C = -a

"0 + o>0

coQL - <°o
• 1/C - -

ao*al

Solving for L and C, we have

(33a)

(33b)

-{a co + p <r0)
L = - — (34a)

2o0w0

2obwoC = — ^— . (34b)
(f3cr0-c«o0)(or2 +co2)

In order that L and C be positive and real (note that co- and o\_ are

assumed positive), it is necessary that

orco0 +(3 orQ < 0 (35a)

Pcr0 -acoQ > 0 . (35b)

Equation (35a) corresponds to (lb) and (35b) corresponds to (lc) , i. e. , the

dominant restrictions for co- > 0. Hence if p- as an active point with

co- > 0, then L and C are positive and real. The element values are given

by

-10-



^o"1 % . ,m wo
L = - - — (r + 4 cr + -) co + or (4 co - -)

2<r0w0 ° (o-0-l)2 +co2 ° ° ° (o-0-D2 +co2

(36;

C =
2cr0a,0

^0 % , . . °0 "l(cr' + co£) (4 con -) crn -co-(r + 4cr- +
(o-o-l^ +cog (cr0-l)^i-co0

(36b)

Thus the series LC circuit covers the whole active range for co- > 0. As an

example, consider a tunnel diode with r = 0. 01, 4 = 0. 085, and' p_ = 0.1 + jO.l.

Then L = 55. 0 and C = 10. 0. The resulting network is given in Fig. 4.

VIII. CONCLUSION

The exact regions of allowable natural frequencies have been obtained in

the right half of the complex frequency plane. Several interesting general con

clusions can be drawn from the tables. As r* and 4 increase, the region of

activity generally becomes smaller. For r < 4 as r increases from zero,

the active region first consists of a single domain. The region off the real

axis then splits into two parts. One of these regions then disappears; the re

gion on the real axis then splits, and finally for r = 1 all that is left is one

part of the real axis. The behavior for r > 4 is not quite as interesting but

still points out that as r increases the region of activity is severely limited.

Two final points should be noted.

First we have considered only natural frequencies in the right half plane

since any natural frequencies can be obtained in the left hand plane. Finally,

it should be noted that although any active point p- can be achieved with a

passive imbedding, there is no way of predicting what other active points in

addition to the desired active point are obtained with a given imbedding. The

realization of isolated active .points represents a major problem yet to be

solved.
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APPENDIX A

DERIVATION OF ENTRIES IN TABLE 1

2 2

'II
Define $J_ __ as co - coTT . Then

^ 2 2 1-cr rl - 2cr-i
°i II =UI • wli ="FTTT " L— J

I#TT7T [«r-l/2(l-r/i)] • (A.l)
2 4 cr

Since we have assumed 4 and r to be positive and 0 < cr < 1, —7—:—j—c- is
r — — r(r + 4 cr)

non-negative. However, the sign of rcr - 1/2(1 - r/4 )1 depends on the values
of cr, r and 4 . We consider the following cases:

(a) if r > 4 , then ^ n > 0.
(b) if r < 4 , there are three cases:

(i) if 1> tr > 1/2(1 - r/4 ), then ftj. n > 0
(ii) if cr = 1/2(1 - r/4 ), then ^ n = 0

(iii) if 1/2(1 - r/4 ) > cr > 0, then a < 0.

2 2Next, define ^.TTT = to - col. . Then

QIIII
1 - 0- r l i
+ JI a- L 24 cr + r J

-24 <r

(r + 4 cr)(24 cr
-j-^y— [cr - 1/2(1 - r/4 )] (A. 2)

-24 cr
t—j—*—TTs-a ; r- xs nonpositive.(r + 4 cr)(24 0- + r) r

However, the sign of cr -1/2(1 - r/4 ) depends on the values of r,

4 and cr:

-12-



(a) if r>4 ^m<0
(b) if r < 4 there are three cases:

(i) if 1> or > 1/2 (1 - r/4 ) then ^ m < 0

(ii) if cr =1/2(1 - r/4 ), then Q^ m = 0

(iii) if 1/2(1 - r/4) > tr>0, then ^ m > 0.

-13-



APPENDIXB

CALCULATIONSOFROOTSOFG(cr)=0

Rewriting(28)andsettingG(cr)equaltozero,wehave

3.,r,%2.„,_.,r-1
cr+(-£y-1)or"+(1-r/4)cr+{^-)=0.(B.1)

Q

Itcanthenbeshown,thattherootsob(B.1)aregiveningeneralby

o-=_P_.w-_^1(B.2)

where
2

a2
P=aj-—(B.2)

and

72
aia22/„^ q=—a--27-(B.4)

w=p^-+Vq2/4+P3/27J<B-5)
andforourcasea2=(r/24-1)(B.6)

a2=(1-r/4)(B.7)

aQ=(r-l)/24.(B.8)

TherealrootsofG(tr)=0arethengivenbytherealrootsof(B.5),

substitutedinto(B.2).
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Relative Values

of r and 4

Range of cr Relative Values

2 2 2of coT , a>TT and co..,..

Dominant

Restriction

r > 4

r < 4

0 < cr < 1

0<tr<l/2(l -r/4)

cr = l/2 (1 - r/4)

1/2(1-r/4 )< tr<l

wiU "i i "in

2 2 2

"lll±"l ± "ii

2 2 2

"I = "II = "ill

2 2 2

"ll±"l±"lll

2

"II

2

"ill

2 2 2
to_ = CO = CO

I n in

2

"II

TABLE 1 Dominant Restrictions for Ranges of t,M and or



FIGURE AND TABLE CAPTIONS

Figures

1 Equivalent Circuit of Tunnel Diode

2 Active Network N Imbedded in Passive Network Np
2 2 ?3 Region in Right Half Plane with coTT > 0 and co < coil

4 Tunnel Diode Imbedded in Passive Network

Tables

1 Dominant Restrictions for Ranges of r, 4 and or

2 Active Regions for co = 0 or cr = 0, r > 4 , r<4

3 Active Regions for r > 4

4 Active Regions for r < 4
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