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1. INTRODUCTION

In using geometrical figures to convey information, we make

little use of the position or orientation of the figures. Rather, the

information is contained in their "shapes, " which might be defined as

those properties of a figure which are invariant under rigid-body motions.

An occasional counterexample, such as the numerals 6 and 9 in certain

type fonts , only serves to remind us how rare these counterexamples

are. It is not surprising, therefore, that most pattern classification

problems for geometrical figures involve classes each of which is closed

under rigid-body motions. Seldom, if ever, are we required to distinguish

a figure from a congruent copy of itself. This paper is concerned with

the problem of classifying geometric figures without regard to their

positions and orientations. We want to establish procedures which

recognize squares of a fixed size in any position and orientation as

belonging to the same class.

In formulating pattern recognition problems it is often convenient
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to distinguish two separate operations in the recognition procedure,

namely, measurement and decision. The problem of measurement is to

obtain from the sample to be classified a finite set of numbers which are

indicative of the class to which the sample belongs. This operation has

the dual function of data conversion and data reduction. The operation of

decision consists of assigning the sample to one of the prescribed classes

on the basis of the measured values. The bulk of the pattern recognition

literature is devoted to the problem of designing effective decision

procedures. We shall have something to say about both of these operations.

It is intuitively clear that for recognition of geometric shapes, we should

begin with measurement which are invariant under rigid-body motions.

There are at least two reasons for this. First, such measurements

coupled with any decision procedure automatically give rise to invariant

recognition. Congruent figures will automatically be assigned to the

same class. A second advantage of starting with invariant measurements

is efficiency. Positional and orientational information is not relevant

to the classification problem and should not be measured.

As was pointed out by Pitts and McCulloch [1], one way of

\
obtaining invariant measurements is to average over all rigid-body

motions. This idea of averaging is also basic to the suggestion of

Novikoff [2 ] that the techniques of integral geometry be used in

pattern recognition. The basic principle underlying Novikoff's suggestion

can be illustrated by a simple example. Suppose tliat the geometric
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figures to be recognized are simple closed curves. Suppose we throw

straight lives "randomly" at the figures and measure the lengths of

their intersections. If "random" is taken to mean that no position or

orientation is given a preference, then the average of these intersections

will converge to a number which is independent of the position and

orientation of the unknown figure. Hence, the average constitutes an

invariant measurement. This example also serves to illustrate some of

the difficulties associated with the averaging approach. First, to obtain

a good approximation to the limiting average may require a large number

of lines to be thrown, which is clearly undesirable. Secondly, and more

importantly, the average, while invariant with respect to rigid-body

motions, may not depend much on shape either. For example, the

average of the lengths of intersection between a simple closed curve and

random lines is proportional to the area enclosed by the curve. Clearly,

this measurement is useful only in discriminating among figures with

different areas. Furthermore, since only approximations involving a

finite number of lines can be obtained in practice, the figures to be

distinguished should have very different enclosed areas, in order for

the average length of intersection to be a useful measurement. Invari-

ance is a necessary property for measurements, but not a sufficient

property. The most important attribute of a measurement is, after all,

its power in discriminating between classes.

While the approach suggested by Novikoff has been developed in

somewhat greater detail by Ball [3] andTenery' [4], there appears
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to have been no study specifically addressed to the two difficulties

mentioned earlier; namely, how to keep the number of trial measurements

small and how to choose measurements which are not only invariant with

respect to motions but also discriminating with respect to shape. This

paper summarizes come preliminary results of a study to re-examine

the appropriateness of integro-geometric techniques in the recognition

of geometric shapes, with special attention being given to the difficulties

mentioned earlier. There are two distinct features in our approach which

should be pointed out at the very outset. First, we have essentially

abandoned the idea of averaging, in favor of treating the observations as

"random variables. " Secondly, sequential analysis is used and plays

an important role in keeping the number of observations small. The

preliminary results from a computer study are very encouraging

indeed. In assessing these results, however, we must keep in mind

certain assumptions. First, these results pertain to noise-free recog

nition problems. Each class contains only figures congruent to each

other, and not deformed figures. In practice, of course, deformations

are unavoidable, and they will change the results somewhat. Secondly,

these results pertain only to two-category classification problems. The

basic procedure extends readily to the multi-category situation, but the

more optimistic conclusions may not. Finally, as will be seen, the

invariance that we actually achieve is with respect to only those motions

which keep the figure within a prescribed retina. The larger the retina,
J
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the larger will be the needed number of observations for a given level

of performance.

2. INTEGRAL GEOMETRY IN THE PLANE

l
Let R denote the Euclidean plane, on which we can choose an

origin and Cartesian coordinates (x, y). Euclidean distance between

two points (x, y) and (x , y ) is given by

2 2 1/2(!) d[(x,y), (xQ,yo)] =[(x-xo) +(y-y^]

2 2By a rigid-body motion g we mean a mapping of R onto R which is one

of the following types:

2
(a) g is a translation tt ., (£, n) € R ,

(2) t(€>'n)(x,y) =(X +6» y +T1)

(b) g is a proper rotation t , 0 ^ 9 < 2 ir ,
9

(3) tq (x, y) = (x cos 9 - y sin 9, y cos 9 +x sin 9)

(c) g is a succession of translations and rotations.

The collection G of all rigid-body motions is a group. Every rigid-body

motion is equivalent to a translation followed by a rotation. This

correspondence g = t t provides a natural coordinate system

{{£,v\f 0); (£,n) c R , 9 € [ 0, 2u)} for G. Hence, a subset A of G
— 2

corresponds to a subset A of R X [ 0, 2ir). Consider those subsets

A for which the integral
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(4) n(A) =jd£ dn d9
A

is well-defined. The function |j.(A) has the important invariance property

(5) |j.{g A) = jjl(A) for every g in G

where gA= {g g;g€ A}. Furthermore, subject to some mild additional

conditions, every function F(A) with this invariance property is a constant

multiple of |i(A). The function (i(A) is known as an invariant measure

(or Haar measure) for the group of rigid-body motions.

As illustrated by the example in the introduction, the measurements

that we shall consider are all generated by throwing lines, points, arcs

and other geometric objects randomly against the unknown figure which

is to be classified. The notion of "randomness" is to be defined in such

a way as to be consistent with invariance with respect to rigid-body motions.

The way to do this is through the use of the invariant measure. Let co

2
denote a fixed set of points in R . For example, co maybe the horizontal

axis {(x, 0), - co < x < co}, or the origin (0, 9). Let M be the collection

of all possible copies of co under rigid-body motions, i.e. M = {gco , gcG}.
o o

It turns out that the invariant measure |i of G induces automatically an

invariant measure |jl-. on M. That is, \x (.) is a non-negative cr-additive

set function defined for a class of subsets of M such that

^o3' = VB) for V G
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By choosing a coordinate system for M, (j. can be expressed similarly

to (4). For example, let M be the set of all infinite straight lines.

Every such line can be obtained from the horizontal axis co = {(x, 9),

- co < x < 00} by a vertical displacement t, ., - 00 < y < 00, followed
(o, y)

by a rotation t , 9 ^ 9 < it. Thus, (y, 9) € ( - 00, 00) X [ 9, tt) provides
9

a coordinate system for M. A subset B of M corresponds to a subset

B of { - 00, 00) X [ 9, tt), and up to a positive multiplicative constant

\x ( •) is given uniquely by

(6) ,iM(B) =J dyd9
B

Roughly speaking, integral geometry deals with integration with respect

to the invariant measure ul%, for various choices of M.
M

Let C denote a fixed geometric figure in the plane. Let f(co, C)

be a real-valued function which depends on C and on elements co of

a given M in such a way that f is invariant when co and C are

simultaneously acted upon by a rigid-body motion. Then, the integral

(7) 1(C) =J f(co, C) HM(dco)
M

is invariant when C is acted upon by rigid-body motions. This is the

average of f. If M is the set of all straight lines, C is a simple closed

curve, and f(co, C) is the length of intersection between C and co, then

1(C) is proportional to the area enclosed by C. References 2 and 3

contain a number of examples where the integral 1(C) can be explicitly
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computed. More examples can be found in the book by Santalo [5]. In

practice, unless 1(C) corresponds to a simple quantity such as area or

perimeter, 1(C) can only be measured by generating elements of M

according to the invariant measure and average the results. Strictly

speaking, only a modification of this can be implemented. Instead of

all straight lines, we consider only those that intersect a prescribed

retina, and modify the invariant measure accordingly. This will be

explained in more detail subsequently. In most cases the number of

elements of M that have to be generated may be quite large for a

satisfactory approximation to 1(C).

The process of estimating 1(C) by observing f for a sequence of

randomly generated elements from M is analogous to the process of

estimating the mean of a distribution by the sample mean of a sequence

of sample random variables. The correspondence becomes exact, if

we convert the unnormed measure \x into a probability measure by

the introduction of a retina. Let R, called the retina, be a closed and

bounded region in the plane which contains the figure C. Let M be
o

the subset of those elements of M that intersect R. For a subset A of

M, we define

u_ _(A fl M )

M o

The function fl {A) is defined whenever H«M(A) is defined and is a probability

measure. If we are choosing elements from M according to the /^measure,

-8-



then elements that do not intersect the retina do not get chosen. Of

course, (J is no longer a true invariant measure. For a given A in

Mo' ^ is invariant onlY for those motions which do not take A out

°* Mo* Th° Process of estimating 1(C) can now be stated precisely as

follows: For the function f(co, C), let

(9) P (x) = f({ co; f(co, C) <x})

be its probability distribution function. The mean of the distribution is

equal to

(10) m=J xdP(x) =--L-J- j" £K C) „M(du)
- oo M o

M
o

which is not quite 1(C) but closely related to it. If, for example,

f(co, C) = 9 whenever co does not intersect the retina R, then

m = .1(C). Now, the sequence of observations on f generated by
*W o'

choosing elements out of M corresponds to a sequence of identically

distributed random variables: l(co, C), f (co, C) , each being

distributed with distribution function P(x). The random variables

should preferably be chosen to be independent as well. The problem is

reduced to one of determining whether the sample mean

N

mN<">= -TJ-Ifk("'c)
k=l

converges to m.
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3. SEQUENTIAL ANALYSIS

From the point of view of pattern recognition there is no reason

why wo should restrict our attention to sample average. Instead, we

should seek the best procedure for deciding the class to which C belongs,

using as data a sequence of identically distributed samples. The situation

is this: The random variable f(co, C) has a distribution function P(x, i)

which depends on i, the class to which C belongs. Let f , f , ..., f

be a sequence of random variables independently and identically distributed

according to the distribution function of f. Upon observing a realization

of the sequence f,, .... L. we want to determine the class number i.
n IN

Thus posed, the problem becomes a standard problem in statistical

classification. In fact, we have here a much nicer statistical problem

than is usually encountered in pattern recognition. Normally, the

measurements in a pattern recognition problem are neither independent

nor identically distributed. It is also difficult to think of another pattern

recognition situation where it is natural not to fix the number of measure

ments, namely, N, a priori. The setting here is perfect for the

application of sequential analysis [6].

The basic ideas of sequential analysis can be outlined as follows.

Our observation is represented by a sequence of independent and identically

distributed random variables f , f , Given a set of observed values,

we are to decide something about the common distribution of f_, f ,

The number of observations in a sequential test is not a priori limited.
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After n observations we can either go on observing or terminate the

observations and make the necessary decision concerning the distribution

of {f.}. Unlike the fixed-sample case, we now have an additional degree

of freedom, namely, the flexibility of determining when to stop observing.

.In sequential analysis one usually tries to minimize the average number

of observations consistent with a given level of performance. To be

specific, suppose f , f , can be distributed according to one of

two distribution functions, with density functions p^x) and p?(x) respectively.

Now, there are two types of error that can be made; deciding that the

density function is p.(x) when it is in fact p?(x), and conversely. Suppose

we require that the probability of error for these two types of error not

to exceed c* and (3 respectively, and design a decision procedure which

minimizes the average number of observations that are required to

achieve this level of performance. The resulting decision procedure is

the celebrated sequential ratio test of Wald [6]. First, two positive

numbers A and B, with B > A, are computed for the given values of a and

(3. Suppose f., f?, . . . are the observed values, then for each n > 1 we

compute the likelihood ratio

»_. Pl(fk)
(11) Vfi £n» =]J^y
and compare L against A and B. As long as L lies between A and B,

n n

sampling continues. As soon as L exceeds B or falls below A, the

sampling stops, and we decide in favor of p,(x) of L > B, and conversely
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if L < A. Clearly, the number of observations depends on the actual
n

values observed, and is thus a random variable.

The sequential procedure can be easily adapted for the pattern

recognition problem that we have been discussing. In order to obtain a

better assessment for the entire approach to invariant recognition, some

numerical computations have been conducted, and more experiments are

underway. Preliminary results are summarized in the next section.

4. EXPERIMENTAL RESULTS

All the experiments reported in this section have the following

features in common:

(a) M is the set of all infinite straight lines.

(b) The geometric figures to be recognized are all simple

closed figures.

(c) f(co, C) is the length of intersection between the straight

line co and the figure C.

(d) In each experiment only two classes are involved, and a

version of the sequential ratio test is used.

In each experiment two simple closed line figures representing the two

classes are chosen. Roughly speaking, the sizes of figures are chosen so as

to render the underlying classification problem as difficult as possible.

For a fixed retina R, the probability distribution functions P.(x) ^^

corresponding to the two figures are then computed for f(co, C) using

(3) and (9). We next compute the average number of samples needed
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for a given pair a and (3, probabilities of the two types of error. The

main variables of each experiment are a, p and the size of the retina R.

The role of the retina is an important one, because it pertains

to the question of invariance. The recognition procedure is invariant

only with respect to those motions which keep C within the retina.

Naturally, we can expect that the larger the retina, the larger the required

sample size. This comes about because for a large retina there is a

large probability that the observed intersection is zero, which is not an

informative piece of data. Provided that the retina is convex, the average

sample size depends only on the perimenter of the retina and not its

shape. However, the specific motions that we can tolerate obviously

depends on the shape of the retina.

The distribution functions P(x) that we encounter in these

experiments can always be written as

(12) P(x) =Pq + (1- PQ) j P(x')dx» x >9
9

= 9 x < 9

where P £ 9 is the probability of the length of intersection being zero,
o

and p(x) is a probability density function. As was alluded to earlier, the

principal effect of increasing the size of the retina, is to increase Pq.

Let P.(x), i = 1, 2 be the distribution functions corresponding to the two

classes, and let P1 , p.(x), i = 1, 2 be defined in terms of P (x) as in (12).
o 1 1

Define for x 5: 9 the function L(x) by
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P1
(13) L(x) = —2- , x = 0

o

Pi(x)
x > 9P2(x) '

For a sequence of observation x , x , . . ., let

n

(14) Ln(xr . . ., xj = JJ L(x.)
i=l

The sequential test consists of computing L and comparing it against A

Po1
and B as was explained earlier. If the retina is large, then — is

P C
o

1 2
approximately 1, and both P and P are nearly 1. This means that

there is a large probability that L . and L are approximately equal.

Obviously, this situation would require a large number of samples to

reach a decision.

In our computer study, a set of 15 simple basic figures were

chosen. This generates 195 pairwise recognition problems. Of these,

5 pairs are presented in the accompanying figures. They are arranged

in an increasing order of difficulty, ranging from the trivial problem of

separating a circle from a block U, to the rather difficult problem of

separating two nearly identical pentagons. In each of these cases, the

probabilities of error of the two types have been set to be equal, and

two values of this probability for each retina ratio are presented.

Retina ratio refers to ratio of perimeters, and retina ratio = 1 is for any
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retina which encloses either shape in its standard position, and has the

same perimeter as the smallest circle which has this property. The

average sample size depends on the true class of the figure being tested,

and both cases are presented.

We feel that these results are very encouraging. For an example of

medium difficulty, consider Case 3: circle vs. square. For a retina ratio

of 1 and an error probability of . 2 per cent, no more than 5 samples are

required. For a retina ratio of 2 and the same error probability, the

average sample size is 8 or 15 depending on the true class of the observed

figure. Those results indicate that the procedure proposed in this paper

is well within the realm of practicability. Case 5 involves a problem

of discriminating two nearly identical pentagons. This is by far the most

difficult case among the 195 that were studied. We feel that the

difficulty for this case is only in part due to the close similarity of the

two shapes, but perhaps more importantly, it is due to the fact that line

intersections are ill-suited for discriminating between these two shapes.

For a given set of shapes the problem of determining the best manifold M

of random objects and the best invariant function f(co, C) to be used is

undoubtedly the most important open problem in the application of

integral geometry to pattern recognition. We feel that the techniques

outlined in this paper provide an adequate vehicle for the comparison

of two integro-geometric measurements. However, the problem of

determining the "best" measurement is not only unsolved, but is yet to be

properly posed. We are continuing our study in this direction.
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