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ABSTRACT

The state-space characterization of a linear time-invariant system
can be viewed in terms of a general multiple loop feedback configuration.
The return difference matrix and the null return difference matrix with

respect to the A matrix are derived and related to the poles and zeros
of the transfer function. A useful formula for sensitivity of the transfer
function with respect to an element of the A matrix is also obtained.

1. INTRODUCTION

Bodes1 feedback theory for single-loop systems was first general
ized to the multiple-loop case by Sandberg [1, 2]. Further extension
in terms of the return difference matrix and sensitivity was given by
Kuh [ 3, 4]. The relation between general feedback theory and the state-
space characterization of linear systems was first suggested by Kalman.
He pointed out that the degree of a rational matrix which was crucial in
its realization in terms of state-space characterization is related to the
degree of a feedback system [ 5].

The present paper is intended to bring together further the general
multiple-loop feedback theory and the state-space representation of
linear time-invariant systems. The matrix signal flow graph is used to
calculate and interpret the return difference matrix and the null return
difference matrix. Based on these results we then derive a useful formula
on sensitivity for the transfer function with respect to an element of the
matrix A.

' The research reported herein was supported by the National Science
Foundation under Grant GK-716 and the Joint Services Electronics
Program (U.S. Army, U.S. Navy and U.S. Air Force) under Grant
AF-AFOSR-139-67.



For simplicity, we restrict our study to single-input, single-
output linear time-invariant systems. The state-space representation
is

x = A x + bu

* „ (1)\ y = c x + du

where x, u and y are the state vector, the input and the output, respectively.
The matrix A, the vectors b and c, and the scalar d are the state-space
parameters which characterize the system. The transfer function is

w(s) = X. - d +c^i _K>r\ (2)

where s is the complex frequency variable, and the simbol hat (* ) is used
to denote the Laplace transform. The matrix signal flow graph representa
tion of (1) is shown in Fig. 1, where the feedback loop is clearly indicated.

2. RETURN DIFFERENCE MATRICES

In feedback theory we always focus our attention to a particular
entity in the system which is of special interest. In the signal flow
graph of Fig. 1 we choose the entity to be the branch matrix A. The return
difference matrix for the branch A, denoted by F(A), can be introduced as
follows: Setting the input u zero and considering only the feedback loop,
we break the loop at the input of the branch A as shown in Fig. 2. We
apply a vector signal g and calculate the returned signal h. Clearly

!} = 7-£«l (3>
The returned difference matrix F(A) is defined in terms of the difference
between g and h:

£<£> § =§,-£ (4)

From (3), we obtain

F(A) =1 - — A = —(s 1 - A) (5)

and

det F(A) =-2^- (6)
~* ** n

s
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where Q(s) is the characteristic polynomial of the matrix A, and n is the
order of A.

Next we wish to derive the null return difference matrix. With
reference to Fig. 3, we again open the loop at the input to the branch A
and feed in a vector signal g. In addition, we apply a special input u
such that the output y is identically zero. Expressing y in terms of u
and g in Fig. 3, we have

y=du +ict(A|/ +bu) =0 (7)
From (7), we obtain

tA
-c Ac

u = —

sd + c b

The returned signal h with the presence of both u and g, is

(8)

h = - (Ag + bu)

1 be

s x~ , t, ' **~
sd + c b

We define the null return difference matrix F (A) as in Eq. (4) in terms of
the difference of the returned signal h in Eq. (8) and the signal g. Thus,
from (8), we have

where

n i be
F°(A) =1 - - (1 - -"^-r- ) A

sd + c b
<«V /v

£l- iA° =i(sl.A°)
** S +* S ** s»

(9)

o A kc
A° = (1 - ~~ „ ) A (10)

sd + c b

Now we are in a position to introduce the following theorem which
represents a generlization of Blackmen's impedance formula

o
detF (A) .,,.

W(A) = W(» detF(A) (U)

where w(0) is the transfer function under the condition that branch A is
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zero. From Eq. (2) or from the signal flow graph of Fig. 1, we have

c b ds + c b
w(0) = d + -fi-2- = zlzl (12)

s s

The proof of the theorem is straight forward and is omitted; it depends
on the determinant identity

det (1 + JG) = det (1^ + GJ) (13)

Eq. (11) has interesting interpretations. Consider the case d = 0,

A°=(l- -^ 1 A (14)

is a constant matrix. Thus in Eq. (9) the determinant of the null return
difference matrix can be written as

detF°(A) = 351- (15)
~ ~ n

s

where P(s) is the characteristic polynomial of the matrix A . The
theorem as expressed by Eq. (11) becomes

w(A) =&& %$- (16)
~ s Q(s)

where P(s), the characteristic polynomial of A in (14), gives the zero of
the transfer function and Q(s), the characteristic polynomial of A, gives
the poles of the transfer function t. These results check with that of
Brockett which he obtained based on the concept of the inverse system [ 6].

'For the case d £ 0, it is possible to derive an alternate formula ,by
considering the branch —1^ in the signal flow graph rather than the branch
A to be the entity of interest. In this case

w = d
detl

det
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3. RETURN DIFFERENCES FOR A GENERAL REFERENCE

The purpose of this section is to study the situation when only a
portion of the matrix A is of interest. This is the case if we are
interested in the sensitivity of the system with respect to, say, an element
a of the matrix A. Thus we can decompose the matrix into two parts:
ij

A = A' + K (17)
sw «v *v

where A1 represents the branch of interest and K is called the reference
matrix." Typically A1 may contain a single nonzero element, a , then
K is the matrix A under the condition a.. = 0. We write

K=A| „ (18)
~ '-'a =0

ij

In Fig. 4 we redraw the signal flow graph of Fig. 1 but we split
the branch A into £' and K. For ease in further reduction we insert two
unity branches at the inpuT and the output of the branch A1. Since we
are interested now in the branch A', we can redraw tjhe signal flow graph
of Fig. 4 by combining the branch K and the branch —1as shown in Fig. 5.
The combined branch is J = (s 1 - K)"1. We may now use the signal flow
graph of Fig. 5 to introduce the return difference matrix and the null return
difference matrix by opening the feedback loop at the input to A1. The
return difference matrix so obtained is clearly 1,- JA! =1, = (sL- K)-lA'
and is called, by difinition, the return difference matrix with respect to
the branch A for the general reference K. We use the following notation

F (A) =1 - (si - K)~ A' (19)

Clearly, if Kis zero, then (19) is reduced to the original return difference
matrix F(A)7 It is also useful to point out that (19) can be written as

FK(A) =(sl-K^sl-K-A/)
=(sl- gfNsl- A) (20)

=F(K)"1 F(A)
where

K

F(K)=i--f- t21)

Similarly, using the signal flow graph of Fig. 4, we can
introduce the null return difference matrix. Under such conditions the null
return difference matrix is called the null return difference matrix with
respect to the branch A for the general reference Kand is denoted by
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F (A). Similar to the derivation of Eq. (9), we find

FT, (A) = 1 -
K

1 -

d+c^-KfH),
(sl,-K)-1A» (22)

It is straightforward to show that

det EK( A>
detF (A)

<v /\^

detF (K)

(23)

where

be

K (24)
ds+c b

as in Eqs. (9) and (10)

4. SENSITIVITY

To obtain the sensitivity of the transfer function w with respect
to an element a.. of the matrix A, we recall the formula [ 4]

,w
a.. f(a..) ro. .

1
(25)

where f(a..) is the sclalr return difference and f (a..) is the scalar null
return difference with respect to the element a... In the previous section
we mentioned that we would choose A* to be the matrix with the only nonzero
term a., in the i-th row and the j-th column. Because of the simiplicity of
the form of A', it is easily recognized that

and

detFK(A)=f(a )
ij

detF° (A) =f°(a..)
~ K ~ ij

(26)

(27)

Substituting (26) and (27) in (25) and using the formulas (20) and (23), and
the fact K = A I ., we obtain

~ ^'a..=0
ij

5W
a..

detF(A)| . detF°(A)|
*" **» a =0 *" /v a =0

ij y_

det F(A) detF (A)

(28)

This formula gives the sensitivities for the transfer function with respect
to all elements of the matrix A. It is only necessary to calculate the
determinants of the return difference matrix and the null return difference
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matrix of the system under the nominal condition and under the condition
a =0 to obtain the sensitivity of the transfer function with respect to
ij

a...

5. EXAMPLE

Let the single-input single-output system be given by

y = C1 0 ;
Let us calculate the sensitivity of the system with respect to the term
a = -1. For convenience we write the matrix A in terms of the element

21 ~

a as
21

A=-X *
a21 *

*-<! -C.
The following calculation is easily checked:

i Z8-1 -1
\-a s-2

<*•*£<*) =4-<s2 "3s +2"V
s

F°(A) =1

^F0^ =7 (S ' T^
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ThUS detF(A)| n detF°(A)| _n
w 21 21

S

a21 det F( A) det F°(A)
2

s-3s+2 s-1

2 3
s-3s+3 s""2

We can also use the information of the determinants to write the transfer
function immediately. From (12) we have

w(0) =

Thus from (11), we have

w<£)
s

c b 7

s

2-a
1 , _21 x

2 7(S ~} 2s-3
12 2
- (s -3s+2-a ) s -3s+3
s

6. CONCLUSION

In this paper we have employed the feedback theory to the state
equations. We have found some siginificances of the return difference matrix
and the null return difference matrices. In particular, the determinants
contain information of the nonzero poles and zeros of the transfer function
and the sensitivities.
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Fig. 1. Matrix signal flow graph representation of the state-space
characterization of linear time-invariant system.

F(A) =|-tA
oj /s/ *N/

Fig. 2. Interpretation of the return difference matrix:



f°(a)=i--La°=i-t(i-
b c* .

•^7-) A
sd+c'b ^

fKf>J

Fig. 3. Interpretation of the null return difference matrix:
F°(A) s = g - h under the condition that u is adjusted such
that y = 0.



A =A-K
/v» *>j

Fig. 4. The branch A is splitted into A' and K.

A'=A-K

Fig. 5. The signal flow graph of Fig. 4 is redrawn to emphasize
the effect of 4'.
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