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to I - 1. Negate it for dimension £ :

!Then, there exists k > 0 such that for every <X >0

there exists A < <*• such that K(A) > k.

Hence, one can construct a decreasing sequence k±-*0

and have KU±) > k. It follows that there v/ill be a g0 and

{°Cn\ f °^n < A leading to

iKiii > iigo!i +k for some n-.

One can follow now the same arguments used to prove

Theorem 1, substituting k for K±, k± —*- 0 for K±

pick {A±) such that

max

\+e !h'e izK/, (Ai)
<^ k

y\

where i is the same as in Theorem 1 (recall that ^n^^^^
as A- —* 0 by the induction hypothesis).

As a result, one has the bound on (**) of Eq. 4.2.

It follows that:

0<n Nk --^(xj *

which leads to a contradiction as A.^ —^ 0
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Convergence

The principal results of this Chapter are embodied in

Theorem 4.2 below. The substance of this Theorem is that with

a suitable choice of \<x n\ the iteration procedure given by

P4 can be made to converge in general and terminate under strong

linear separability. Thus, this family of procedures combine

the important termination property of the perceptron algorithm

with the stability (viz., convergence under all circunstances)

more commonly associated with iterative procedures.

P4

THEOREM 4.2. Suppose that in the iterative procedure

ox —^ o

n -*- «*©

•oo

=r OO

Then, (a) & not linearly separable implies || gn|| —^0

Cb) (X. linearly separable and gQ =. 2Lai in?-ies

8^ —* g » g«aj >/ ° for ^y aj e-CX

(c) CL strongly linearly separable and g rya.
implies that there exists nQ such that °^0

Sn - g for n ^ nQ
and

g.a. ^ 0 for every ai £ £3^

1 Any value of g0 such that g0.g > 0 would be suitable.
The proposed one was presented just to be explicit. This
condition is necessary to avoid convergence to a trivial
solution of g.a^ ^ 0.
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The proof for Theorem 4.2 is quite long. One ?/ill

first give an outline of the major steps in the argument, and

supply the details later. One begins by considering for pro

cedure P4 two mutually exclusive possibilities-1-:

(i) For every y > a , there exists a g in the

sequence { gn \ such that

l«a'aj|<7llM for a11 3£Jn •
(ii) There exists II > 0 such that'for every g ,

Un-ad| >^KH for some ^Jn •

Now one can show (Lemma 4.2) that (i) implies linear

separability. Therefore, if the set CL is not linearly sepa

rable, (ii) is the only possible case. Using this and Theorem

4.1, part (a) of this Theorem 4.2 is proved. Part (b) is proved

by demonstrating that linear separability and g - ^-„a.

imply that (i) is the only possibility. Therefore, Lemma 4.2

below shows convergence for this case. Part (c) is proved by

induction over the dimension of the space spanned by Q- .

First, it is easy to show that it holds for the one-dimensional

case. Next, (strong) linear-separability and g = 22 ai

excludes possibility (ii). Based on possibility (i). Lemma 4.2

shows that'"after a finite number of steps the iterations must

One need not consider the case of J being empty, in which

case termination occurs and the results to follow would be

trivially true.
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be constrained to a lower dimension. The conclusion follows by

induction.

LEMMA 4,2. Situation (i) above implies the existance

of a vector v* £ E^ satisfying

v*.a. >, 0 for all a. € (X .
3 ' .j

Further, gn/ || gn(| —^ v*

Proof:

Construct a decreasing sequence \/r[^\ with ^u"""5' °
(^ > 0) and, correspondingly, a sequence $3n 1 sucl1 "^at,

according to (i) ,

|Snk'aJ | < "?k |Snk|| *>r all aj LJnk

Without loss of generality, suppose that the indices of the

sequence j gn,^ are increasing with k. Take a subsequence

U ^fcVy and the corresponding subsequence {{^ ^} such
that gnk/||gn jj converges to some v£"E^(|lv|| =1). Call Sy
the index set of this subsequence. Hence, for any "§ > 0, there

exists n0( I ) such that

H3«J
* -^ < ^ (or n^n^O, i\ £Sv ,

To prove the existence of v*, select

i < 4v
and consider the subsequence {^ Vz}} starting from a k such

that nk> n0(^). Pick the first nj satisfying



Call nk ~ n( ^) . Consider

3n t*
v.a. —

9»; 3»it

Then, for any n± > 11(5) , n±CSv ,

Iv.a, | < ^ M +/r). < 2£M •for all j^Jn.

and since

S < 2n

iv.a,V< *v

But since, by definition of s„,
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3n;' ^

lv-ai I > ov for a..v^L0 , a^ <f (\, >(°r> aj 4Lv>

one must have

v.a - 0. for all j£Jn. , n±>n(5) , ^ £S ,

Hence, for some iteration n.) n(^) ., only points a. £ Lv

will be involved. Further, according to Lemma 4.1,

sign v.a. = sign gn.a. for all a^ £ Lv .

Hence, there exists no a. € &- such that v.a.<0. The

first part of Lemma 4.2 is, then, proved by putting v* =r v.

To shov/ the second part, for an arbitrary C > 0,

let

a/£($0) = min (5Qi i£)

Select \ ( C) satisfying



Consider ni such that
o
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This is possible since v is a cluster point of the

sequence gn/li gn 1\ • According to Corollary 4.1, select p

such that

sWf* ^ 4-g*o'v
Since c* —e 0 , select nQ(P) such that

c^n < P for all n>n

select

n ^ max
o [n0W »n0(f> •mo]

%
By the first part of the Lemma, for n± > nQ , n^S^

only points in L will be involved in the n^h. iteration. We.

will show that all remaining iterations after the n.th will

make use of only points in L . One proceeds "by induction.

Suppose that all iterations from the n.th to the "X th in

volve only a^ £L__. Lets examine the (*X-v-l)th iteration:

from P4,

a-i

3} . /Snfi J\ll3»;||

II Snii
•+ trl - -1

B5>li



Hence, since J^ -IT
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| 4 I -} for *i>r>0(s) , n; e%

ll*>U
-O" ^. —r- •+•

Prom Theorem 4.1,

A

7>-»

2La2_ lftj'3j °j M

1 fern; J*J^% 11
^;fU)

"X-l

>

It follows that, for n± >n0(p)

' ^.ZLh-a-A ^Kf + K^ff) T4.u)

On the other hand, for h/jl^.|| in a ^ neighborhood of v
(see proof of Theorem 4.1,eqs. H-l, 4,10 )

II V II .(2_s-rf
la***! «-£

r4.-3)

Prom P4, one can also write, taking as starting point e :

r>;-i

and since a<j.v }0 for all a, £ (3. , and gm .v > 0,
0
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fl

Combining eqs 4. U, U,I3 *"<A'4 ; for ni > no ' niESv

11 3vi H
-aT <

«-*
4- - < -S-VS*

Hence, according to Lemma 4.1,

sign g^v-aj =siSn v-aj for a^ 4-Lv

But by the first part of the present Lemma, vis such that
v.a. ^ 0 for all a^ £ (X ,

J

Hence, the vectors to be used in the O+Dth iteration
(that is, those such that g^( .ad ^ 0) can only belong to
Lv.Then, by induction, all iterations following the n^h:
( n > n . n- «- S„) will make use only of vectors in Lv.
\ "^ ^ **o • l V

As a result, the relation

11 3>,i II
- \r ^ s < £.

holds for all \ £ n0, which proves the Lemma,

^n

Proof of Theorem 4.2

Proof of part (a); (X not linearly separable.

According to Lemma 4.2, situation (i) must be ruled

out. Consider, then, situation (ii): there exists o)>0 such

that for every &&*

K^i^UM) for some **Jn-
(Jn cannot be empty since a is not linearly separable).



Let

V* =2Ja;i-Snl

prom P4 and Theorem 4.1,

|1 Ula*4+«*" NK -2^^
But 1+6 i+€.i J*€

Therefore, putting C = M . tt & i
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J

To prove part (a) of the Theorem, one must show that for

every *X > 0 there exists n0CX) such that

2 '^ for all n > n.(?-).H«nlro
Since o/n—"' 0,there exists nx(> ) such that

^ <

and

n^ 1C ' for n> nl(^>
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Prom eq. 4. IS , if all (|gkj|2 > A/2 for n> k> nx( * ),

Since ^ c^ k is divergent, there must exist n2(70 such
that the above inequality cannot hold if ||gk|[2>> "X/2 for
n>k>nx(^ ) and n>n2(> ). Hence,

II 3 |f< Jl
" V,,, " -2. for some n, n2(>)^n^n1(^)

Let n0(>) be the first time this occurs,, Hence,

K(*)||2 i^ "
<*A-^ ^ ">%(>) ^

2C

>t+fr

simultaneously. Equation 4. IS shows also that whenever

M2> ^/2 for n>n0,

)|gn+ll! < |\gn|)2 (a decreasing function of n)

It follows that for n>n0, ^f2 <^ ,since:

lSts IKoll2 < T
2 : whenever, for n>n and [(g |j2 < 2L

3rd: whenever -^ <||gn||2 <^ , n>n0,
11 Snl| is decreasing, that is,

tiv.!i2<tt3,f
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This concludes the proof of part (a) of Theorem 4.2.

Proof of part (b) of Theorem 4.2

Part (b) is a consequence ctf part (a) and Lemma 4.2.

Let v U\v|)-1) be such that

a^v ^ 0 for all a* £ £L ,. •
By selecting

So^Zv
one must have, from P4s

(the last two inequalities hold since there must exist at least

one a.. 4 Ly , for which a..v £. 0> 0 )„ Hence by Schwarz's
inequality,

e

IWl
IIMI^—*©

Thus, g^ cannot converge to zero and therefore (ii)
is ruled out (part (a) of the Theorem). But by Lemma 402, (i)
implies that

on

11% I]

Proof of part (g) of Theorem A.P

This part is proved by induction over the dimension
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of the space spanned by the set CL. s

1) If all vectors are colinear with a vector
a ( l(a||=l), writes

g = H a ,
n n

a — \ a

Since there exists y =Aa such that

without .loss of generality; take a <0and hence, } <o for
.all j0 Thus, j e J gives 3

• n

n 0* n j

which implies

a > °u n . .

Procedure P4 ,then, is reduced to the following
scalar procedures

#.,,- h-«XLihr~*«-^i. i[^

v, if I < 0
n

(since J is empty)
n
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Part (c) asserts that this procedure terminates,

that is. there exists n^ such that for n > n .
» o f o

ln<° •
Negate its for all n, £ > 0. By concavity of the

function x1" *(0 ^ €<!),

(x •+ h)1 "^x1"^ +(1- €)x~6h (x>0, x + h> 0)

Hence, one has

Thus, starting with ^ arbitrary, there results

and since Z-«rn—> o^» , for some n, a contradiction is evident.

This proves part (c) of Theorem 4.2 for dimension 1.

2) By selecting

g = ^^ a.
0 a^a J

as in part (b), one has, due to the (strong) linear separabi

lity of Q. :

11 ^n l(> e for a11 n-
Therefore (ii) is ruled out. But by lemma 4.2 (see its proof),

(i) implies that after a finite number of steps the iterations

only will make use of vectors in Ly, reducing the problem to
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dimension 1-1. Hence, by the induction hypothesis, termina
tion occurs.

A more direct discretization of procedure Pi of

Chapter III would suggest the choice of <yn = oc ,a constant
for all steps of the iteration. Unfortunatly, convergence

does not occur in general, as can be shown by conterexamples.

Nevertheless, one can obtain a theorem (Theorem 4.3) similar

to that of Uzawa-Arrow-Hurvicz (Hef. 12) for the discrete

gradient procedure in concave programming. Theorem 4.3 not

only indicates some bounds in the step size <K in order to

drive 0n within a prescribed error $ from zero, but also
indicates the role of the parameter & .

THEOREM 4o3. Given q>0 arbitrary, there exists

p/<§)>° and nQ( (% )such that if in procedure P4, c*' =
=*<0(5>) for all n, then, 0n < y for all n> nQ( <p ).

Proof. It is enough to compare the hypothesis of the

theorem with the ones in the previous results. Before, it was

required that Jjxn~*> <*> and <* -^ 0. The fact that <x -**
n

was used to ensure that for an arbitrary P , ©• <P for some

»> »0 (f)• By fixing p as jd(cj )and picking c« = <* ,
constant, satisfying <^<p(cj), the requirement of oS s> 0
can be substituted by the present requirement on od(as long

as Lg and f(cj) are kept fixed). Obviously, ZoS-> CO («^>0)

The relations between p and to can be understood from results
of theorem 4.2 j

0

Let
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£o s(iry
1/1 +f !

ME »

Si = J 2E if Q- is linearly separable by v.

v. 1 if d is not linearly separable.

Choose f such that

/+4(2T -f2)*^ 1£(5o)
1 c- f

Consider mQ £ sy such that

g^o°V >0 if d is linearly separable by v
Put

m0 = ^ if ^L is not linearly separable.

Call

, x 2/1+e

Choose P =min (P1?P29 f>3), where
?\- arbitrary if d is not linearly separable

f1 is such that ^-i(fi) <*$(£) ^ -v
if Q is linearly separable by v

2 _•> 1
*2 = 2(i2+€ N2K*e ±f is not linearly sepa

rable

P = arbitrary if & is linearly separable



if

Put

l+€ r^J

f3<7 (?)

U^nlJ
- Vv

3 ' < W C IW W
if Q, is not linearly separable

Q- = arbitrary if LX is linearly separable

Choose B-D(\) such that

^ ^ for n>nQ(p, n £. Sy

\X is linearly separable by w •

Put »0(^) - 1 otherwise.

n>niax £n0(p, n^l * nQ
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It follows:

(a) If CL is not linearly separable, situation (ii) occurs
2

from (a) of Theorem 4.2, || g^j will finally be driven beaiow

A" "FT2- l.N

and consequentely,

je^n

(b) If Ca is linearly separable (i) occurs1 and fpir all

n > n , only points a^ £ L, are involved and

g.
n

II «nll
- V < 5

1 (i) occurs as long as g^ -2, a- . Otherwise (ii) may occu:
0- dand (, «y!' * > for n >. -a;
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Hence,

-%r • a - <or Y\£ L1^

Then,

*n j*Jv%

(c) Finally, if the set d is strongly linearly separable,

termination would be proved as before. In this case, if

termination occurs at step N, #N = 0.

Discussion

One should note first that the case of 6 = 1 is

excluded from the proofs presented here because of a question

of technicality. As was pointed out before (Chapter II and III),

this case is closely related to a procedure presented by Agmon-

Motzkin-Schoenberg (Ref. 3, 4). As in their procedure, here

one should expect, for the case of linearly separable sets and

constant step size<^n =c*, an expDnentlal convergence of 0 to Ofar

£ = 1 as long as o* satisfies certain bounds. Even though the

proofs presented here are not suitable for 6=1, most of the

results hold if one is willing to restrict the value of A =

sup °^n to a small value. In fact, excluding termination in
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the strongly linearly separable case, all results hold for

€ = 1 if A is such that

/ c v2 2 e
A<-2-[i^ sfjLj\ 2sin J2.

22 VW/ ^USBfJ 2

where eQ is the minimum angle between two non-colinear

vectors in CL . This bound was obtained to ensure the contra

diction in Theorem 4.1 for 6 = 1, in this case even exponential

convergence of.- 0^to zero; can be shown for fixed step size °< .
Por € = o, P4 corresponds to the Perception Algo

rithm. The fact that this algorithm can be turned into a

convergent procedure is a very interesting result, even though

this was not originally the object of this work. The conditions
which guarantee convergence are weak, namely,



CHAPTER -V

CONCLUSION

COMPUTER RESULTS

A computer program was written in order to verify

the results of this work. Three sets of points in E, were

used; one set of 20 points not linearly-separable, one set

of 20 points linearly-separable but not strongly-linearly

separable and one set of 20 points strongly-linearly-sepa

rable. Por each of these sets, 2 types of iterations were

programmed: one with c<_ = 2/n and the other with <=>< = <*,
n n '

a constant. Tests were done with c^ = 2.0, 1.0, 0.5, 0.25,

0.125. In each case, the parameter £ took values 0.0,

0.25, 0.5, 0.75, and 1.0, and 34 iterations of each were

done •

Por cK = 2 and £ = 1, a rapid increase in $n

and II ^n II were observe<i f°r the non-linearly-separable case

and linearly (but not strongly-linearly-) separable case. In

all other cases 0fn either converged to zero or was bounded

from above. Termination was observed in most of the cases

where the strongly-linearly-separable set was used. In some

cases, termination occurred in as few as 5 iterations and in

two cases ( <V » .5, e = .25, and o< n = 2/n, € = .25) in

only 3 iterations. The cases where termination was not ob

served before the 34th iteration for strongly-linearly-sep

arable sets were those using small 0< «s ( oC = .125 or .25)

— 71 .-
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and large e *s ( € >/ .75).

The dependence of the stability of the procedure on

the parameter €• was observed. An increase in 6 not only

had a smoothing effect on the behavior of 0n, but also indi

cated a decrease in the final bound of #n- Nevertheless, in

most of the cases, as € approaches 1, the procedure converged

slowly.

In the case of constant cv = ex. , the effect of

the step size ex* was noticeable. Por a small ex* the behavior

of the procedure was closely predictable by its continuous-

time counterpart, PI. That is, one could observe that 0n and

jigll were not increasing with n, or better, essentially

decreasing with n. In any case, a decrease in step size v/as

followed by a decrease of the final 0n. However, the number

of steps necessary for 0 to reach the final bound was natu

rally increased by a decrease in oc .

These results are summarized in Pigs. 2, 3, 4, 5,

6, 7* tfnd- 6> *:.

PINAL REMARKS

Different approaches to the problem of classification

can be found in the literature. In particular, an interesting

point of view was introduced by Wong and Eisenberg (Ref. 8).

These authors study the case where the vectors are vertices

of a hypercube of t -dimensions (this is the case when the

measurements performed in the patterns only assume the values

+ 1. That is, one checks if the given pattern has or has not
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each feature). A one-to-one correspondence between these
vertices and intervals in the real line is established. Then,
the problem of classification is studied on the real line. A
procedure using iterative "projections is then used to deter
mine a linear functional that correctly classifies all points
(in case of strongly-linearly-separable points).

It is interesting to notethat Wong-Eisenberg^ pro

cedures points out some similarities with adifferent class of
problems. Formally, the iterative projection method is equal
to the method used in the. solution of some problems studied
by Sandberg (Ref. 9) in connection with certain contraction
mapping problems. However, the conditions under which these
procedures are applicable are quite different. Wong and
Eisenberg use a finite dimensional space to prove termination
of the procedure for a nonlinearity violating the conditions

used by Sandberg to prove uniqueness of the solution and con

vergence of the iterative projections in more general spaces.

It would be interesting to see how much these iterative pro

jection approaches could be extended in both cases in order to
get some overlapping on the conditions of applicability of the

methods•

The approach of Wong and Eisenberg is also closely

related to the approach due to Aizerman-et-al (Ref. 11) c In

this case, the spaces used are more general than those used by

Wong and Eisenberg and instead of projecting the indicators of
the misclassified intervals (as in Wong-Eisenberg's approach)
the projection of a »&-function" at the misclassified points
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is used (this is accomplished by means of potential functions).

Once more, this indicates that a good direction of inquiry

might be the extension of Wong-Eisenberg's procedure to more

general spaces.

The Wong-Eisenberg procedure of iterative projec

tions is equivalent to the procedures presented in Chapter IV

of this work (for € = 0 and 'e = 1) for the case of linear

ly-separable sets. Although the proofs given both here and

by Wong and Eisenberg are heavily dependent on the finite di

mensionality of E^ ,it is believed that the procedures can be
extended to vectors in more general spaces. This would make

stronger the connections between these techniques and the works

of Sandberg and Aizerman-et-al.

The discretization of procedure P2 was not pursued.

The author believes that such discretization can be done along

similar lines as those of Chapter IV.



Pig. 2

Procedure P4 with
constant step size.
Non linearly-
separable set.
—o— e= O
x-_ £=.25

— O—.- fs,5

9

- tk-

—O



A

4-
c

c

O

DO

d
c

iz2i

Pig. 3

Procedure P4 with
constant step size
Linearly-separable
set.

€ =0
e s. t&s

}[ •fw^ —Ta m Y" "~

^

~~~&
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Pig. 4

Procedure P4 with
constant step size,
Strongly-linearly-
separable set.

ocr J*5



£
O

0

c
D
O

c

0

Pig. 5

Procedure P4 with
constant step size.
Non linearly-
separable set.

c* = .125

<x^.25

.25 .5T .75
IIfc" ll}lMi^1U^

i.O €.
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-2
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termination ,

v
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Pig. 6

Procedure P4 with

<*n = 2/n, 6=0
not linearly-5ep. set
\inearly-sep- Set"
sffoocjly-linearly-ss?. s<st

-iX*

MMtl f^MwawM -_r~ r r * i — ' —*»-r

/5* 20 2S rt



K

1 -

10

-2
10

-3
\o -J

termination

3*|0 L
IO

2>n--60

Pig. 7

Procedure P4 with

ol = 2/n. €.= 0.5

r^oV linear^-sep. Ser
- )inearly-sef>. set

/5 20
-a



^Si-

Pig. 8

Procedure P4 with

c* = 2/n, &= 1.0
n ' *

not linsarty-Sep. set
linearly-5ep# sot
sfron$ty-\mearty-S*p
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