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The problem of classification will be ideally
solved if there is no point x which is misclassified by the
decision procedure, This will be the case, for example, if we

can find f(x,w) such that '

f(x,w) =2 O for all x € A
f(x,w) < O for all x ¢ B
Definitions

The sets A and B will be said to be linearlx-sega-
rable if there exists a furction f(x,w) of the type (11) such
that

f(x,w) = WyeX = W, >0  for all x £ A

< 0. for all x &£ B

The sets A and B will be said to be strongly-linear
1y-separable if there exists f(x,w) of the type (1) such
that
f(x,w) = WyeX - wof> 0 for all X & A
< 0 for all x ¢ B

, It is known that the sets A and B are strongly- .
linearly-separable if and only if their closed cénvex hulls
are disjoint. The ‘closed convex hull of a set 2 is the mini-
mum closéd convex set containing A, or the intersection of all
closed convex sets containing A, or the closure of the set of
all points that can be written as a convex corhination of

points in A;
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For simplicity, augment the vectors x to a = (x,-;l)
(that is, write the number -1 as the (€ + 1)th coordinate) |
and, considering the set AU (-B),~ define |

Qs { a = (x,-1); xEA U(-s)}

'Then, the conditions stated in the definition of
strongly-linearly—separable seTs can be re-gtated as follows:
| The sets A and B will be said to be strongly-
1inearly.-s'eparable if there exists a vector weE 041 such
that

w.a >0 for all at(l = {a = (x,-1); x£ AU (-B) }

Definitions

The set (I, satisfying the above condition will be
called strongiy-linearly-separable. That is, a set is

strongly-linearly-separable if it liss strictly in a half-

' space.

Similarly, a set Q&E I3 is said to be linearly-sevarable:

1f there exists a vector w e B quch that
w.a 20 - for all a £
A pattern a zCL is said to 'be misclassified by a
vector w €E£if
w.a < O
Under the hypothesis that the sets A and B are
strongly-linearly~-separable, the decision problem can be

re—~stated:



Problem:
Find a vector 8 £ E f+1 such that
§:2)0 forall aeQ={a-= (x,-1);x £ Au(-B)}
- A11 of the practical pattern~-recognition machines
use only a finite number of ratterns in A and B for design

purposes It is worthwhile noting that, if the sets A and B
are finite, then A and B llnearly-separable implies A and B
| strongly-linearly-s eparable.

(Proof: A and B are 11near1y separable. Then,

"there exists Wy and wo such thet

wl.x;wd for xga
Wy o X LWy for xé€B
Consider
max wy « X = wp) < Vo
XeB :
Let ' .
A Wo + Wo1
Yo == ¢
Then,
- A
Wol < Wo < Wg
Hence, '

A

Wl « X0 W, 5 W, for all x£a
A

WL - X { Wo1< W, for all x¢B

Therefore, there exists ;v\o satisfying the strong-linear-

separability condition .)
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Nevertheless, for a finite get Cl s linear-separa-

bility does not imply strong—linear-séparability.

Solutions to the Decision Problem.

”Two clessical solutions to the decision problen
will be presented below. The first, due to F. Rosenblatt, is
very important for its simplicity and for the fact that it
leads to a solution in a finite number of steps, whenever the
- get CI is strongly-linearly-separable. The second solution is
due to S. Agmon, T. S. Motzkin end I. J. Schoenberg and is
also very imporfant, particularly for the fact‘that it requires
only that the set . be linearly-separable. The relaxation
of the strong-linear-separability will permit its use in the
solution.oonther problems, such as symmetric games, which are
not solvable with Rosenblatt's algorithm (see ChapterAII).

Rosenblatt's solution.

In the case where the sets A and B are finite and
(stronély)-1inear1y-separable the decision provlem has a very
‘elegant solution, due to Rosenblatt (Ref. 1) (see also Novikoff
(Ref. 2)). | |

Consider the strongly-linearly-separable set
a=iaj;j=l’2, ooo,NzajEE‘%}
Form a sequence S with the property that each vector aj
appears in S infinitely many times. This can be accomplished,
for instence, forming S by the selectian of the vectors

ajE.Cl' following each other in a cyclic manner, as follows:
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S i ial, 32, evey aN’ al’ 8-2, oo ey aN, al, LI }
Re-label the elements of S eccording to its orderxr
of appearance:

'8 = i a.l, a2, ceveey ak, .....%

This is by xio means the only way of keeping the
requirement that S must satisfy. Actually, the requirement
on S is very loose, and one only wants to be sure that after
the ntE element of the sequeance, no matter how large n is,
one still will find each element aj of CL infinitely often.

In the patte‘rn recognition parlance the term
"training sequence" is used in reference to S.

Consider also the sequence. {gnl- obtained by the

iterative ﬁrocedure :

8 = arbitrary, in EQ

£

g, + a? if &,- a® éO (1.2)

n
8n+1 &, if &y & >0
Rosenblatt's theorem states the following:
o1 .
THEOREM (Rosenblatt). The iterative procedure (1,2)

terminates in a vector EEE, satisfying
g.aj» 0 for all ej e Qo
in a finite number of steps.

Roseﬁblatt's solution is very attractive since it

requires no memorization of the past history of the process.

See references 1, 2, 13.

A
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One can also say that the most important part of the design is '
the training, that is, the adjustment of the parameters., This
makes the machine highly adaptive, in the sense that a "learning"
period(where the vector g is readjusted) can always follow
eny modification of the set (X . That will be the case, for
instance, if the set Cl is a sample of an infinite set of
patterns.'Thﬁs, new samples can be inéorporeted in Cl or even
a new set of samples may be used. (For example, if the machine
is a spoken word recognizer and was previously trained to
recognize words.spoken by a particular operator, the change of
operator may requifé a new learning period in which the machine
" would become “familiar" with the new operator.)

Rosenblatt's procedure is an error correcting pro-
cedure: patterns belonging to the training sequence S are
presented to the machine and at each step n in which an
error is detected, a correction is made by adding to g, the
pattern a®? which was misclassified.

The success of such procedure, however, is highly
dependent on the fact that the set Q must be strongly-linear-
ly-separablel. OtherwiSe, since for every g, there will
always exist some ajeC’i éuch that 8n*2j £ b, termination
is impossible.

Agmon-Motzkin-Schoenberg's Solution.

The above authors, studying a system of linear

inequalities, proposed some procedures leading to its solution.

Among several slightly different procedures presented

1 In some cases, the probability of N points in E 4 being
(strongly-)linearly-separable is studied in Refs. 13 and 14.
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in the work of Agmon (Ref. 3), one can find the following
(which was selected for its simpler formulation using the
notations of the preceding'section):.

Consider again the training sequence S obtained
from vectors aj € (. , where Cl,is a lineaxly separable set.
Forma.sequence'.igh} s Where &, is given by the‘following

procedure:

8 = arbitrary in E,

. n N
p41 = & + A la?l'gnl —g—l_l? if a".g <0 (1.3)
B YT
g

. n |
n+l ".gn if a -.gn>,0

Then, Agmon and also Motzkin-Schoenberg (Ref. 4)

I

proved the following:

THEOREM (Agmon-Motzkin-Schoenberg).
The iterative procedure (1,3) converges to a vector

g ¢ Ey satisfying

g.aj)/o for all a3 QA
provided

0< AL 2,

The rate of convergence is shown to be exponential.

This procedure, like Rosenblatt's, requires no
memorization of its past history and, for that reason, is of
great practical interest. Also, it is applicable to sets
which are linearly separable, as opposed to Rosenblatt's pro-

cedure, which requires strong-linear-separability. On the
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other hand, termination is not guaranteed in Agmon's proce-
dure (aside from some special cases).

It is interesting to‘note that in Agmon's procedure,
- whenever an error occurs, the correction is made proportional
to lan,gnl. This has some similarities with other methods
(gradient methods) in which the corrections are made proportional
to the error, leading also to exponential rate of convergence
(Ref. 5,6).

Rosenblatt's and Agmon-et-al's solutions are repre-
sentative of two groups of solutions so far Presented to the
problem. The first group makes use of a correction without
regard to the magnitude of the error ang leads-tq termination
whenever a solution exists, The second group makes a correction
proportional to .the magnitude of the error. Termination is in
general sacrificed for the possibility of relaxing the condltlon

of strong-llnear-separablllty to linear-separability,

We present here an outline of the remaining chapters.,
1n chapter 2 we show the intimate connections that exists
between the basic pattern recognition problem and problems
of matrix game and linear programming, In this connection
we p01ntout however, that the dimensionality usually asso-
clated w1th the pattern recognition problem ”enders ineffective
the usual linear programmlng technlques. In chapter 3 we
introduces a one parameter (0< € £ 1) femily of continuous-
time algorithms, ﬁhich for € = 0,1 reduce to the Rosenblatt
and Agnon-Motzxin-Schoenberg algorithms respectively. Sore

inportant termination-convergence properties of this class
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of algorithms are shown. In chapter 4, we treat the time-discrete

~ versions of the algorithmé introduced in chapter 3., Although

the results here are a little weaker than the corresponding
ones for continuous-time, they do, nevertheless, represent
important improvements over previously knowvn results.in the
area. Ve conclﬁde in chapter 5 with some not too complete
computer runs, Some comments on related directions of inquiry

are also presented,



CHAPTER II
RELATED PROBLEMS

Games.

Perhaps the problem of solving a matrix game is the
most intimately related with the problems introduced in the
previous chapter. |

. A zero-sum, two-person game, can be summarized as
foliows (Ref. 7):

Each player has available a finite set of pure

strategies. A pay-off matrix A is defined by the quantities
aij earned by Player i.(or'lost by Plgyer IT since it is a
zero-gum game) if Player I uses pure strategy i and Player
IT uses pure strategy j.

A mixed strategy can be used by the players by’

associating, for instance, a probability to each of the pure
strategies available (the earning of the players will be
regarded, in this case, as average earnings). If one repre-
sents the pure strategy i by the unity vector ey =

= (0,0,..., 1, 0,0, ..., 0), the 1 appearing in the itk place,
a mixed strategy.will be represented by the vector |

X=ZX;€,;, X;ZO,Z_\,::; =1
4

<

If mixed strategies are used, the yield to Player I

will be:
XAy = Z Z XiQYs
4+ . :
where x = Player I (mixed) strategy
where y = Player II (mixed) strategy

~ -12 bt
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Call X (Y) the set of all possible strategies x (y)
for Player I (Player II).

For a fixed‘strategy x€ X, consider the minimum
yieid’to Player I when Player II runs his strategy ¥ over'
Y. 1t is‘the interest of Player I that this minimum is
maximized. Player I will, then, look for a strategy that
yields him, at least,

Vi = max min X.Ay o
Similarly, fgr axfixed strategy yiEY, consider the maximum
yield to Player I when he runs his strategy x over X.
Player II is interestéd in minimizing this maximum yield.
He will look for a strategy that prevents the yield of
Player I from being greater than

VIT = min max X.AYy °

The main thgorem in matrix games states:

THEOREM ( Von Neumann)

VI ® Vi1 -V .

The number v 1is called value of the gane,

An optimum strategy x, for Player I (or y, for

Player I1) is one such that

-

XooAy >V for all y £Y

x.Ayo LV for all x £X

Obviously,
xo.Ayo = v
Since any strategy y 1is a convex combination of pure stra-

tegies for rlayer II, x_, is an optimur strategy for Player I

o
if and only if

x A dvi
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where v is the line vector v (v,v,...,v) and the inequality
signal holds for each component of the vectors involved.

Similarly, for Player II,
Ay, < vt

where zT is the transpose of v.

Definition. A symmetric game is one having a skew-

symmetrié matrix, that is, A$= -A (or aj 4= 'aji)°

In this case, every strategy available to Player I is
also available to Player II.

The value of the‘géme, in this case, is zero since, if

X, is an optimum strategy for Player I, Yo= X5 is also an

o
optimum strategy for Player II and then,

by the fact that the matrix A is skew-symmetric.,

Thé following fact is very important to relate matrix

games with pattern recognition problems.

Theorem (von Neumann - Brown): Given any game with matrix

A, there exists a symmetric game with matrix

0 & -1
B=|-AT 0 1
1 -1 o0

(where O is a matrix of zeros, of suitable dimensions, and 1 is a
vector of suitable dimension having all components egual to l}

such that every optimum strategy (x, ¥y, A) for B satisfies:

2oxXi=2_Yyi = a
1 i
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and a~lx and a'ly are optimum strategies for the game with the
matrix A., The value of this game is

V= 7‘/&.

Hence, from now on, only symmetric games will be
considered and it will be understood that the results apply to
any matrix game after its reduction to a symmetric game.'

Theorem, An optimum strategy for a (symmetric) game

with matrix A is a vector x satisfying

xTAy 0 (or Ax<Q)
' %; xj= 1, x;%0
This theorem is a consequenée of the pfoperties of
optimum strategies and the fact that a symmetric game has value
Z2ero.
One éan look at the matrix A as a set(ﬂ;of vectors aj,

the columns of A:

Hence, an optimum strategy is a vector x satisfying

x.aj>,0 for all ajc-O.

At this point, the similarities between this problem
and the one introduced in Chapter Iare evident. The main

difference is in the constraint that a strategy must satisfy.
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The inequalities'
x3%0 and X.ajy 0

are similar and one can incorporate the first into the second
by adding the vectors eg (O,O,,...,,O,l,O,,....,O)T (where the
number 1 occurs in the ith, place) to the set a . Call the new
set a’ , From now on, the game problem is to find a vector x
satisfying |
x.aJ.),. 0 for all aje O
Eixi = 1, o
The last constraint can be dropped, since if x is an

optimal strategy, any vector g=0x, >0 will satisfy
. , . .

g.aj>, 0 for all aje Q (2.1)
and conversely, given g# 0 satisfying (2.1) the vector

x= (e e
will be an optimal strategy for the original game, that is,

x.a5% 0 for all aj e Q’

. %}xi-:l, x;% 0

‘The equivalence between the problems is, then, complete. In the
‘pattern recognition problem, the set (1 can be linearly
separable or non-linearly separable., In the game problem, how-

ever, Q is always linearly-separable.



-17 -

Linear Programming

The connection of linear programning with matrix game
is well known% Therefore, its connection to the pattern recog-
nition problem can be easily understood.

The problem of linear programming is the following:

Given the vectors ¢ and b and the matrix A (ot suita-
ble dimensions), find a vector x which maximizes the inner

product c.x , subject to the constraints

(where the inequality signals for vectors again stand for ine-
qualities for each component of the vectors),
| | ITo each problem of linear pProgramming one can formulate
its dual:
Find‘y which minimizes
Yeb

subject to the constraints
YAYe, ¥y 0

Solving the linear programming problem and its dual is

equivalent to- solving thesymmetric game with matrix

o At ¢
- . B = A - g_ -.b
~C b 0

An optimal strategy for this symmetric gane, z (x,y,A ), with

A> 0, has the properties:

1
© See Refo 7 .
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(A 2yTa y c (" x)
cx = mex c.x' = b,y = min b.y'
x' yl

where x' and y' satisfy the respective constraints.
Conversely,if X and y are solutions to the linear programming

problem and its dual, the vector

= (X,¥,X)
with
| A= 1/Q+TXpLT)
x=A X
Y= A ¥
will be an optimal strategy for the game with matrix B,
Any game can be directly shown to be equivalent to a
linear programming problem as follows:
Suppose the game has matrix A and value v) O (unknown)l

To find an optimal strategy one must find x such that

xTA Y vl
subject td

xel=1, x%»0
~ Put

W) ix = w (v is a scalar)
One must find w such that |

wiay 1

with

= w1, wy O

1 1t is no restriction to suppose v > 0 since a positive constant
can be added to the elements of A without changlng the set of
optimal strategies.
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Hence, the geme for Player I is equivalent to
‘min w.l

subject to

wEAga 1

w>0
which is a linear programming problem.. It is easy to see that
the linear program for Player II is the dual of the above.
Since the solution of a game can be found using
linear programming techniques, the solution of the pattern

recognition problem also can. It is interesting to note that

to solve a linear progran one must find a starting point sat-
isfying Ax < b, which is the pattern recognition problem.
Vhen the simplex algorithm is used for the solution of the
1ineér programming problem, most of the time this starting
point can be found trivially (for instance, if b > 0, putting
x = 0). A non trivial solution is, then, approached by the
algorithm, seeking the maximum of the objective funetion c.x .-
The problem of pattern recognition can be formulated

as a linear brogrammiﬁg problem as follows:

Pattern recognition probvlem.

find x such that Ax > 61

Linear programming problem.

maximize
-l.v
subject to
Ax + v 2 01
v 20

WVith the addition of the artificial vector v, the solution of
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the linear program can start with x = 0, v = 61l. If there
exists a X such that Ax » €1, the objective function will

drive v to zero, and therefore, it will result

Ax > ol.
In case there exists no x satisfying Ax » 61, the linear

programming will give an optimum X in the sense that, for

the misclassified patterns,
Zle-apx]
J

will be minimum.
fhé only thing missing in the linear program formula-
tion of the pattern recognition problem is the constraint x. 2'°
This is not very important since it is well known that the
‘positivity constraints are not restrictive and any linear

program without it can be reduced to the canonical form by

putting x =y - 2z, with y2 0 and 2z 2 O.

A linear program can always be solved by the simplex
algorithm in a finite number of steps. Nevertheless, the
application of the simplex algorithm involve the inversion of
matrices. If the dimensionality of the problem is very large,
a large number of large matirices must be inverted before a
‘solution is reached. To deal with such large problems the
| fast growing field of Decomposition of Large Scale Systems is
required. In this respect it is intefesting to note that,

instead of using the conventional technigues of 1linear
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@

programming to solve pattern recognition problems, it _is more

adventageous to use vattern recosnition techniaues to solve

large linear orogramming oroblems. Agmon's procedure can be

used to handle such large linear programming problems, b& its
reduction to a symmetric game. in this respect, we would like
to emphasize the fact that the large dimensionality of the
problem does not play an important role in these error ¢orrect-
ing procedures,

Gradient vprocedures

The iterative procedures presented so far are closely
related with gradient procedures. This fact is more evident in
thé procedure of Agmon-et-al where the correctibns are made

proportional to laj.gnl for the misclassified patterns a.. If

J.
one is trying to minimize, for instance,

Zla g |

jeJ,

where J, = { Js 25.8, £ 0, ay € CN,}

one will get, for the gradient of ¢ ’

grad g, = - (1+E)Z la . nl

Jedn
For € =1, this gradient suggests a direction of

change of g, very similar to Agmon-et-al's, For & —» 0, the
correction will be similar to Rosenblatt's.
In the next two chapters a great deal of work moti-

vated by these gradient ideas will be presented.



CHAPTER IIIX

CONTINUOUS-TINE PROCEDURES 1

As seen in Chaptexs I and II, the classificetion
problem and some¢ related ones can be solved if a vector g
is found such that |
g.a5 70 (>0), gek,
for every aj in a finite set Q. of vectors belonging ﬁo %1 ’
the {~dimensional Euclidean space.
. If the set (L is strongly-linearly-separable, any
scheme of the type of Rosenblatt's procedure can be used to
solve the problem in a finite number of steps. In case the set
QU is only linearly-separable, the solution would be found by
schemes of the type of Agmon-et-al iterative procedure. In this
case, convergence in finite number of steps cannot be guaranteed.
In problems of game theory and linear programming one
can always be sure that the set L is linearly-separable.In case
of classification, nothing can be said a-priori.Therefore,it is of
great interest to find a scheme having the advantages of both types
of procedureg, that is, that will terminate whenever the set is

strongly-linearly-serzrable and will converge to a solution if <the
S

4

Kost of The schemes and proofs in this Chaptexr were suggested
by Prof. E. Vong.

- 22 o
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set Cl is only linearly-separable. More, in case the set is
not linearly¥separable, it is desiresble tret thé procedure
converges to some g which either will indicate the non
linear-separability character of Cz or is optimel in some sense )
(that is, converges to a g thaet will work as well as possible).

lMotivated by these ideas, gradient type of proce-
dures where investigated. As indicated in Chapter 1I, the
procedures of Rosenblatt and Agmon-et-al could be connected to
each other if one looks at the corrections as being made against
the direction of the gradient of the function

k? =Z‘aj.g|”'é J =i‘j P aye8 & o, ajs(}.i
Jed |

This suggests that, by keeping 0 < & < 1 one might
have a scheme exhibiting the properties of both Rosenblatt's ..
and Agmon-et-al's procedures.

This Chapter will consider only continuous-time
procedures (that is, where the vector g changes continuously
with time), The doted quantities are the derivatives with
respect to time. B

Consider the follrowing procedure:

(Pl). &(t) = Zlaj.g(t)' a; J(t) = ij;aj.g(t) < O,ajﬁa}
: | Jed @ , ' : <
3.1, THEOREM. The procedure Pl converges, for € » 0, to a

solution of g.aj 2> 0 for all a5 & a. .

Proof: Define

I+ €
a:o8 0
JsJ(tl ! l 2,
[aj.gl y JEJI(E)

@ (1)

Call ' S)J
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One can see.that ‘-Pj> 0 implies a"j,g<0 , in which case,

‘ and l?)j = "aj og
pherefore, for &3» O

4({-):"’ s € -
P | %(He)laggl a5+ &
= _(I+G>JZ}:(§ ,aj-g’éaj'ak ‘ak"g.éé
= =-(l+te) " g“zé & ' (3:0
0On the other hand,

G 3l &[ - 5 - Llers|%es

=) ¢o

By Schwarz's inequality,

o [Refeeryap
Hence, o ,A(P(f)z v
lef<o

putting g, =g(0),

. resulting

1815 gy e
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combining Eq. III.2 with Eq. IIIL.1l,

. (l+e) _‘L z
g S 2 K YO

Solving,

P
t?()\ -“?—eKt

)
Hence, L?('t) —0 for every € 7 0.
But (%) = O implies

g&=0
and

aj.g ) 0 -for every a,j £ CL

3.2. THEOREM. Under existence of a vector ¥ " such that y.aj>/9>0
for every ajtj O, , the procedure Pl terminates (that is, will reach
the equilibrium point in a finite time) for 0 E< 1 in a solution

of aj.g >/O for all aj & Q . Furthermore, choosing 8o such that

go.y>/9 (take for instance, & equal to one of the aj's), igl# 0.

Proof: a) For O0<¢&<l, consider
. . €
Eoy =) ie58|%9y 30 188l (33)
3eJ JeJ
Using Jensen's inequality (3 N > (z(m‘:rc—)eﬁfe )

gy > B(Z iaj-gl‘*e)é/“"’ - e (gé//-fé S o

By Schwarz's 1nequa11ty, ) y
(£:7Y)° 6 t+e
LI > Iyt 7 TyE

Therefore, using Eq. 3.1,

g = - (+] 8] < ~KQ K >0 (34

)
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Integrating, €# 1,

\ch < 5+c (Ko—Klt)

H-

with

‘?0(—_)_ -}or o<Ke <¢|
b) For € = 0, consider, on the one ‘hand,

|

?s;rﬂ@ﬂ g-8=-fco
hence,
On ‘the other hand,

&-Y>0 , B8-Y>60t+8:Y>0(t+1)
which yields by Schwarz's inequality

ﬂéﬂ

t"‘" < uy"'ueo“
S "“—““_6 — .

hence;

&>y ¢

- To show that llgﬂ:% 0, for 0¢e<1l,consider, from
(Eq. 3..3):

y.8 5 O
which yields
&) Vo8, ©

Hence,

2 (Y-8 &
"8" NS 7 Iy
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3.3. COROLLARY: If there exists weE, such that

w.aJ.),O for every ajea s, W#O0
(that is, (U is linearly-separable), then, procedure Pl will
converge to a g#0 for €>0 provided gy.w> 0. The latter
condition can be fulfilled by putting, for instance, g,= Zaj

. gjex
(Since there exists a¥e¢g Q such that w.a*> 6>0).

Proof: Consider

é,w 0
Hence

BoW 3 8oW > ©
By Schwarz's inequality,

| 8w | o

l=]s -
T e

REMARKS. The set J={ Jj aj.g<0 ’ ajea} gives the

vectors (patterns) 2 (jed) which are "misclassified", Therefore,
the procedure drives to zero the function

£(t)= 2

JeJ

the summation of the o power of the error laj.g l for the

o
aj,gl , &> 0 arbitrary,

misclassified patterns. Note also that the distance from a pattern

to the separating hyperplane defined by g 1is

N | a..—-—vg
e

and hence, f(t) is the sum of functions of the distance of the
misclassified patterns to the separating hyverplane.
The procedure converges for all €> 0 at least 2t a rate

of t-l and in case of s‘crong-—linear-separability, the procedure
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terminates for O0€<K1 ,
- For =1, in this case, (Zq.3/{) shows-that convergence

takes place ét least as fast as an exponential with time.,

In case of linear-separability, by picking gol&ﬁ?a
one can be sure that Pl will drive g to a non trivial solution
of aj.g>,0 for all aje a .

In case of non linear-separability, Pl will drive g
to zero,

The fact that for (I not linearly-separable the vector
g given by procedure Pl will converge to zero indicates the non
linear-separability of C2 . ff it is desired to have a useful g,
again based on gradient techniques, a ﬁodification of Pl can be

made to obtain a vector g which converges to a local minimum of

the function

?(g)=3_ |a

JeJ

Let's consider the problem:

)

e J".{j ’ aj°g<0 ’ ajéa}

| . : z
min ‘Io(g) subject to " g ll =1
g

The Lagrangian for this problem is:

L(g,A) = ﬁo(g) - A

At a minihum point g ,

é?EL = —~(!-+C) E:: 'Etj-é%'egéﬁ - 2A é% =0

Hence,

-(I+ e) —
2h by

~ |€
i8] e
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The value of A can be obtained by taking the inner
" product of %\ with g :
oL A A (1FE A2
8= —-(I+C)Z:!a3 e, -—27\"6”
JjeJ

2A = (I+C) u‘P(!z (!+e)§D(§)

WJ

T?herefore,

”~
Hence, g 1is a solution of

A

8 =‘ __JGJ, Q- ¢ ’eaj
P(2)

Hence, the obvious modification of Pl would be:

. 8)
(P2) g = "(’ii",g+§:'a.g‘

3.4. CIHEOREM. The vector g given by procedure P2 converges
to a local minimum of the function (P (g) for € > 0. Further,

if there exists y with “ yﬂ::l such that y.a; > 6> 0 for

J
every ajé€ Q , then, starting with g = g(0) such fhat
8o+-¥Y? 6)0 (put 8, = aj/ I ajﬂ for instance), procedure P2 will
terminate for 0§ € < 1, with ¢)= 0.

Proof: Take | gof = 1 for simplicity.

a) Convergence;

(1) Y » o

(ii) g.g-.-."_gfz“ “

——-dtllsu wé ©

aJslags 3030 O

and hence,

H

2
Therefore,

lel=fse|=1 .
(iii) Taking the inner product of g with P2,

=2 Pz | .
B LS S EYN PR
Jed AN

€ .
o BN se &

[al



- 30 -
on the other hand,

(iv)

(Pz—(!—é-é)z l&j*g'eajér-’ (I+é)”é§'ﬁ2\( O
de]
By (1) and (iv), lp must converge, and therefore,
‘70-* O , which implies .
g — 0 ,. g — &*
Hence, since ‘P(g)zo for all g‘ , if 50—*0, the
convergence to a minimum is proved. 1f ‘P—a— ‘P;—‘ 0, then
& — &* -
g% being the solution of é‘= 0 , that is

But this was shown to be a local minimum of (P(g)
subject to "gﬂz = 1.
(b) To show termination under exisitence of vy , “y“: 1,

such that y.a >8>0 for all aje Q. , consider, for, 0<&< T,

£y P 8. y+o0l

ﬂg Ilz deJ

aj-slé ' (3.5)

1

on one hand, .

&Yy - P (2-7)= P (& )

. Is |

and therefore, integrating
j:l,’)dt’ A

&Yy &Y€ > &.,y>020 (5.9
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On the other hand, by the use of Jensen's inequality, Eq. 3.5
gives :
R 3 - 2., A €frer\> 2 2&/iv€
BT 8y (98 +00 ) ye'g
Hence, (iv) gives
° . 2z Zé/x-ré
Q (- (1+€)e @
and, like in theorem 3.2, termination occurs for 0<K €<,
with *? = 0.
To show termination for € = 0, it is enough to
remark that from Eq. 3.5 and Eq. 3.6(which hold also for € = 0)
E.y>06>0
| and therefore,
8.y 2> 6t + 8o°Y
Hence, '

= g-y e
L= lelpgyyrer+®

Phe inequality cannot hold indefinitely. Thus, at some time,

termination occurs. To see that f—?O, from Egs. 3.5, 3.6

(% A
.7 > _
éy/ uguz.e >0

and since g.y—>0, Y->0.

3.5. THEOREM. If there exists wgE; such that w # 0,w.aj>,0
for every aJ:’ t QL (that is, Ci is linearly-separable), then,

procedure P2 will give a vector g converging to a solution of

g.a:i 2> 0]



- 32 -
for all ajé a, n gl = 1, provided g,-Ww> O. The latter
condition can be fulfilled (there exists a*e€ QU such that

w.a*¥> 6> 0) by putting, for instance, &, =Zaj . The rate of
. ajeQ
convergence is at least 1/t .

Proof: In a similar way as in Theorem 3.4, one can get

\ . \
°

. ‘
8o ),ﬂg—ﬂlg, (3.57)

and hence, |
g.W g,.WYy 050 (3.4

Therefore, é.w‘>‘ LP e>0
Y

and since g.w—0 , SD-—»O .

o show that the rate of convergence is at least 1/%,

consider, by Schwarz's inequality,

- (Bew)t PF
"8[] % "W"z>f ﬂeﬂ“ﬂWll"

Using (iv) of Theorem 3.4, and the fact that "g“ =1,

Lpz

RPN o
(P'—' <l+c)"°" < 1w
By integration, o

L, 6y

¢ 7 g wl

which .yields

- Hence,
| ‘LFWO and g & as t — <o

{
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such that
o] - 2

g*.aj;. 0 for all ajc_Q

REMARXS. Procedure P2 with €>0 will always lead

to a local minimum of the runction
(P= zlaj°g|‘+é
| . JeJ

keeping " g [] =1,

Wwhen Q is linearly-separable, however, P2 would
drive LP to zero at the rate of at least 1/t.
| | When Q is strongly-llnearly-sebarable, P2 would

drive (P to zero in a finite time (O € <1).

MODIFICATION OF BROWN~VON-NEUMANN PROCEDURE

To solve a symmetric game, Brown and von-Neumann havg
'a,continuous procedure of the type of that of Agmon-et-al: the
correction is made proportional to laj.g[. In the Brown :
von-Neumann approach, however, it is desired to have at all
time a vector y satisfying the strategy constraints. This fact:
contributes to an additional correction term, as will be seen.

The continuous approach of Brown von-Neumann can be
modified according to the preceding ideas in order to increase
.its rate of convergence, as follows:

" One ‘seeks an strategy y for Player II satisfying

R .
ui(y.) =2a;.y¢0 for all a;€ A
(hexre a; is the ith. line of matrix A)

Defixe

p-

Q,(ul) ai.y l .Hl
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with H;  the indicator of J = } i; a;.¥>0, a; e AL

¢(y>‘“z,[¢<u ) <7 laryl©

‘ed
Consider the procedure:

J
z ¥(0) an arbitrary strategy.

€
f y.._a = ¢ (u;) - yj¢(‘ (y)
P3

For €& = 1 this is the Browva von-Neumenn procedure.
The motivation for such scheme is that since
¢(uj) = 2aj.y >0 for j£& J means that Player I is.getting
_a positive return by playing strategy Jj, Player II should
'move in the direction of this strategy (the game being sym-
metric). This what is indicated by the Tirst term in the pro-
cedure. The second term is a normalizing term, in order to pre-

serve the constraints imposed by the fact that y is an strategy.

3.6. THEOREM. Procedure P3 converges to an optimal strategy

for €& 0. Furthermore, at each instant, y(t) is an strategy.

Proof: a) Convergence.

t/ Z, “&Cug

As in Theorem 3.1,

Define

S;J = (H- é)Z‘ §o'€(u.i) é(u;) .:(we)Zj ¢e(wg Qi'j -

=(l+¢ '
=( )ZZJ¢LL.‘)Q 3{ Clv-é- Z:c,".( )eii{;(}%uj‘)*j/j%bﬁ
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= 1+ LU e 353y by

since the game is symetric.

Hence, /
V. —<i+e)‘[jcl> G b y)= - (1+€) N Y

Using again the Jensen's in‘equality, results:
(b( )_24)6(&. s, i+e l+e.- rsb‘,%.—é
C_Y“i “ J)/ qs(ul) el

'+2g

'VJ< - (I+e) ’l// Ire

By integration, for € > 0,

Ve ]

Hence, as t —co ’110—;- 0, which guarantees that yJ 0]

For &> 0, using Holder$ 1nequa11ty, with X =1 + &
_ _l+e
/3“ c !

v € ZZ Bluy) ¢ 17 [? ¢'<+§i)]‘—"_é

Hence,

<,

or 1
2

1

Za
< N
K1+et

>~ O ds T — co

Note that the rate of convergence approaches -~

exporential eas & —>0 ,
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b) ¥; (%) Y% 0 for all t.

Suppose not. Then, there exist tl sucxk that

y;(%,) <0
Let to be the largest value of t <for which
yi(t) ¥ O
Hence, |
yi(t) < 0 for to<t\<‘bl
Since
€ ,
g (u)> 0
gc—‘,(Y) 7 0,

. €
y;(t) = ¢ (uny) - 3;4(y) % 0, Tor B <t
Expanding y;(t) in series up to the first power
(which is legitimate in this case, since the equations admit

a solution y(t) having first derivaﬁives)

¥ (8) = y5(8,) - 7;(E) (% = %)
b, T <%
t, <t <t

Hence,
¥ (8) > ¥;(%,)

which is a contradiction.

¢) 2, yy =1 for every t.
7 .
Proof: - oL

g1 Tn]- L= - g TN -

| =§é(Y)(t—€‘:y;)



e
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Hence,
¢ ,
Q-E- y; =0(, exp ~J ¢ (¥)dt
i 0 |
but since y(0) is an strategy, Co = 0 Q.D.E,

Remarks . It was shown that P3 has a minimum rate
of convergence faster than that of P2, However, convergence
can only be proved for F3 in the case in which (L is linearly-

separable,

~ e



CHAPTER IV
DISCRETE-TINME PROCEDURES

Procedures Pl and P2 of Chapter III are of great
appeal since they exhibit the desirable features of termination,
if CL is strongly-linearly-separable, and convergence, if not.
However, thelr practical interest is limited by the fact thet
they are contlnuous. For large problems it is impractical to
run the procedures in an analog computer. The use of a digital
computer type of machine demands that these procedures be
discretized. In this Chapter, the discretization of Pl and
the proof of its convergence will be presentéd.

Consider the set Cl of vectors aj, J = 1,2,...,N;
it will be understood that the set (A spens a £ -dimensional
space Ej . Form the sequence of vectors ~£gh§ by the follow-
ing procedure:

&y = arbitrary, in EQ,

a8t n ) Loy ol
Jt n
P4 where J = ta; 2;-8,<0, ay f_a}

{f{n} is a sequence of pbsitive
scalars, 0<x <A

0L€eXl
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The principal results of this Chapter can be summa-

rized as follows:

(1) ifzak"“’oa. o, —» 0 , then,

1.

2,

gn as given by P4 will converge to zero if the

set (L is not linearly separable.
g, s given by P4 will converge to a non trivial

solution of

g,aj>/0 for all aLj e CL .
if the set QL. is linearly separable and gozga?j
g, as given by P4 will converge in a finite nJumber
of steps to a non-trivial solution of

g.a;y0 for ell a; £ a

-if the set A is strongly-—linearly—separable and

go:Z a. o

G&"f& J
For &=0, termination will occur at a g satisfying

g.aj70 for all 25 ¢ ¢S

(II) If o) = &< for all k,

1.

2,

Por every A >0 there exists P(}\) and n,(})
such that, for o< < O(}), |

I &n lI< A for every nyng,
if the set O. is not linearly separable.
If the set (1. is linearly seperable, then for
every ( > 0 arbitrary it is possible to find (3(9)
and ng(Q) such that,

an:Z_ \aj.gn"*eg_gy for n yny(¥)

j«‘.' Jn
provided o < g)(zg).
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3, If the set (l is strongly-linearly-separable,
there exists a 6) such that if « (F, pro-
cedure P4 will converge in a finite number of
steps to a non-trivial solution of

' g.a; » 0 for all a5 (L
For €& =0, termination will occur at a g satis-
fying
g2 > 0 for all 2 e CC.

(III) In any case,

A
e, 1< llsdl + KA for all n .
A : A
The constant X(A) is such that, as A+ 0, K(A)—~O .

The role that the parameter & plays in these pro-
cédures is roughly the follwing: for 0<£ €<1 an increase
ih c ixhplies an increase in the stability of the iterations,
which is not always desirable, since concommitant to the stabi-
lity is a slowness in convergence (or with € =1 and strong
linear separability a loss in finite termination). Thus, in
actual practice the choice of € depends on the a priori
likelihood of strong linear separability. If strong linear
separability is guarantééd, €=0 is a clear choice. If not,
€ should be larger than zero and near 1 if strong linear

separability is unlikely and small if it is likely.
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Boundedness

In P4, the correction term leading from &, 10 8n41
uses only vectors having a non positive scalar product with gn.
In the continuous case this makes Hg(t)ﬂ a non increasing
function of the time. Here this fact does not hold. Nevertheless,
one can prove (Theorem 4,1) that ‘lgn\l is bounded from above.
The least upper bound on ][gn\\will be reQuired to prove other
results later in this Chapter.

In what follows, the iteratioﬁ leading from g, to gni1
will be referred to as the nth. iteration, or step, of the pro-
cedure.

Let M and N denote

M=maX a.
N = total number of vectors in a. .
For a given vector v in EQ’,(uvn = 1),let L, and

év be defined by

Ly {aj;ajov = 0, aj£a.,}

S

m i
v a: 4

Ei{ajov, 50 , |

Lemma 4.1, Let v be a fixed vector in B, (livl = 1)

and Cl = {aj} a finite set of vectors in E‘Q.Then, any vector

g€ E ] satisfying

- vl 5=

has the property that a;€ a , aj&"Lv implies
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J . By
‘Ilan R
and
sign aj.v = sign aj.g
Broof:
LR R R
Hﬁll | 131l . 15

Hence for 23 g Ly »

‘.ﬂ_%_“.q'&lzgv_.gmg

which proves the first part of the Lemma, Since

frer s = o] =g )

and

—v '.“aj %

‘v.a:j 'lé SV for all aj$Lv , one has

. sign g.aj = sign v.ay (aj & L)
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A
THEOREM 4.1.1 There exists a2 positive number K ,

jndependent of n, such that, for the sequence {“gnﬂ§ with
En given by P4,

l&ali < lleoll +

A

= >

K
provided
0 < x <4
Proof:

The proof is by mathematical induction over the di-
mension of the space spanned by the aj's.

(1) The thearemis first proved for colinear aj's:

From P4, only those vectdrs in Q. for which aj.gnéﬁ)
appear in the summation, Since the problem is one dimensional,
this means that the vectors involved in the nth., iteration
are proportional to -g . Hence, in each iteration l,gn+ln

either decreaées (if the modulus of the summation is less than

2 igy]l )» or is bounded by the modulus of the summation.

| e
AU

N e

\~;——’“v»-_/~—’;1’/ 0 qan

e
a;'s involved

AV
L)

>

Figure 1

. Thus, either

sopll 91l = |l Sel .

1. A similar theoren (basically corresponéing to our case
for ¢€=0) was given in Ref, 10.
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—_ 13 1 €
or  supll9all=sup NSl € 5}"?"‘\72_; el - 131 N AV >§?\\‘3nl\
N N+t 4] . Y

ce \Mi-e
sopll 3l ¢ (AMTENY
n
In either case,
(t € h-& .
svp | 3l < a0+ (AM  N) (4.1)

wvhich proves the theorem for dimension 1.

(ii) Suppose now that the a;'s span a space of

J
dimension £ and the theorem holds for dimensions up to fL— 1,
but fails for dimension £, . One will show that this leads to
a contradiction. |

If the theorem fails for.ﬁimension E', then, for

A .
every K, there exists g, such that for some n,
ligall > X +l&ll = K -

A

Then, it is possible to construct an increasing sequence K;—»<°

and for every i, to pick gbi and nj such that
“gni “ < Ky

“ gni-*l “ > Ki
(since\\goin;gﬁgoi“1-ﬁi = K;). Without loss of generalitiy,
i ,
take the indices nj to be increasing with i . One has,

from P4 ﬁ
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19 o "=l S0l 02 \LMJ i ||y 2, L\a 9\,
J€50; .
J€9n;
and hence,
, , 21+€) 26&
K:<U 3:1;—‘;;“2$ “3%”1‘*‘ °(nz; ™ Kf. ( -2 }stl ag Snl
z’g (-»s*) l_ @.2)

Now, a lower bound on the negative term (**) can be found as

follows: the sequence

3 351;
I D i

being on the unit sphere, must have a convergent subsequence,

converging to some v (}{vil= 1), Let
Sv‘-_- min f]aj.vl; a5V 7 0, arjéa)g

Then,it can be shown (and will be shown in the sequel) that

for a subsequence {K;} and the corresponding igni} such that

+E ’/l—-.& 6 [:/(\ ™M 3
K: > 'max[ 2AM N 16 "o l
‘7 ( ) / Bv ("’ §)

and’

\\nfm “ <5

where { is such that

[ 3
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: 72
§+0(285-5°) ¢ Sv
i-%

y/
N
=

and £1~4 is the bound of the theorem for dimension £ - 1,
the inequality
|8 951 K 2 ) GER, g
« (43)
holds,
Then, using (4.3 ) in (4.2 )

+€ e

Mz(s c) z 4e -Z%\(SVK> <qz[ 2(t76)7.2£- 2{__‘,)

Since {Ki} 1s unbounded, a contradiction follows for 0ge<l!.

To show that, under the asserted conditions,.

. Sy
| &n;i2; \ >/ Kj_Z"

, 53‘ |
consider the subsequence “J,” converging to some v (hv“~l)

Thus, for an index subset Sys given £§>0 arbitrary, one can

find n,(¥) such that

Bn;p
nls:,u-"\\<3' - - - - fornigyng, myes)
Call

L, = {aj P aj5.v=0 , ajaa}

Clearly, L is aproper subset of Q » Since it is

contained in a space of at most £ - 1 dimensions, K; and 8;
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are such that

el < s

vhere g is such that

AN
and K{’,-l is the bound of the Theorem for dimension -1,

Then,
Jn ¢ IL'v

<
. . . s ov
To prove this claim consider Lemma 4,1; since g <

2 /

sign gni.aj = sign v.a; for ajy 4,'LV (44)

Hence at the n,;th, iteration, all aj€d, are such that
i

v.aj & 0 . Suppose that JniC. Ly , that is for all ajE'Jni ’

ajELv. Let's continue the i’tera{ion up to the step A where
for the first time some ajé:Lv is involved. This nust happens
for a finite )\  since otherwise the procedure would involve

only points in ¢ - 1 dimension and, by the induction hypotihe-

sis, || 8, |] would be bounded, which is a contradiction.

From P4 ,

< = &
8, = &ny -+—Z cx‘.{Z_J \C‘.;'Sitj ag
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Hence, | )l
q ([ 3n; i il N 3,,;“) | N
i\ 31“ Y= (“3;1;" )“ 3l - it Sl \i A\lt ‘a 4 G
E=ni J1£0k
“ 3;\“ lﬁmﬁ l[ 31{( (1 9l
-1 -
T e»u \L L‘ RIS \
13,

: L

On the other hand, since a;.v = 0 for all aj&Jk, n; < k<A,

“g \ g Vl"‘ {gnl ‘

and

ENT T

résulting for

“ x?s:‘:;u "vh < %)

S—

L a; Q| éj

féz,-v\\sz”g”‘“ T [\w;u SR | L

19,11 |30, 7
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————

But
” \ S “gnl mz_; \% 3*2 k\
REAN
and therefore,
RN |y L5 N /
ll\fb.ll V\\SSHN,V-’ lgm ) ,QZ/ z}l 3 SQ[ &) \ (15)
ne f.JE_

Since € 20, P4 gives

I 8nil) + otn, M7 N amil sn,+,\\>K

/

+€ 1+ &
|l D Ke = kae™M NI Inal€ Y Ko =AM NKE

1we Vi-€ i€ -¢
and since Ki > (2AM N) , or, AM N K; /2,

| &l > %72 (4.0)

al‘\.: __,(_f_’_’“;_v ﬁ')-‘l)‘ (gn., 'O')'U'i"’
T e e

~ ol sl Sl @)
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Hence

Ke (2(.8)
| 30, > "Z“(‘"‘i) |

Also, writting g")

of & and 8n; in the hyperplane perpendicular to v (that

and gﬁg for the projections

is, g"=g - (g.v)v ) and recalling that ﬁk—l is the bound

for dimension £,~ 1,

| I l=||3 Z_/MKL 4 3@\ Q S.“ 3 |l \ze-.
ni €
-t
i:o(RZja Jq( a. \\ Z‘HS;L\\ + ({Lq . (4"\)
k=n; 3€Tk
and from

T B S P L (- G-)< K] (zs 7)
(4.10)

results, combining egs. ﬂ,fl‘pé,4.7,ﬁ,g,4,9/4.u>

H ol =2 {Ken"’ZK 28- 51)/1]
—— ~v|{< .
B ‘ -3 (1-) Ki/z

|

} A
€+ 5(2e-CY* 4 Koy
-5 (o

-
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But since
i
g+8<zs—§‘)1< S
| =% S 4M
and
Q ,
4 Ko S,

(-5)%; S 4M

it follows

s

B |l < 75

Hence by Lemma 4.1,

sign gk.aj = sign Vel for all 25 ¢ Ly
By Eq. 4.4, ; .

sign gni.aj = sign Veay = sign g).aj

for all ajy é L, . Hence,

oa, 0] for some a. L
&y < me 25 4Ly
implies 0 . N
- t . .
gni a3'< or the same a3
This rules out the possibility that J, C Lv..So;
i

one must use some aj i LV at iteration n, . ™urther, by Lemrma

4.1,

. Sn; a %V
TEF I

i ® e —
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which together with Eq. 4.6 gives
- Svii S
Vo
{gni.aj l > = 1 3nill > Y K;
This concludes the proof of the assertion.

A - . A
tet %0 = swp g, - flsoli < X < oo

where the supremum is over all steps n of all possible &n
given by P4 by cha.ng:’_mg ‘g, and the sequence"icx h} , but
keeping 0(k<A . ‘

Hence, for every- k<I/{\(A) » there exist g, and

Sldki' y o, <A, 1eading to
ngn,“> ngou + k for some n .

One will proceed to show that as a corollary of
A v .
Theorem 1 , K(A)—>0 with A . This result is importesnt in

establishing Theorem 2 in the sequel.

A : :
Lorollary &l. K(A)—>0 as A—»0 . That is, for

every k» 0 , there exists ol (k)> 0 such that for every
A< oc, Ka)<k. |

‘Proof:

The proof will be done by mathematical induction over
the dimension ofthe.space spanned by O .

(i) The corollary is certainly true for dimension 1 ’

since one has, by Eq. 4.1

SHP “gn“- Ugogi < (‘A““"EHGN)VI-G

(ii) Suppose Corollary 4.11is true for dimensions up
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to Z- 1. Negate it for dimension € :

' Then, there exists k > 0 such that for every & >0
there exists 4 < ¢ such that K(a) > X

Hence, one can construct a decreasing sequence Ai-?O
and have E(Ai) > k., It follows that there v:j.ll be a g, and

{ocnf » Xy < A 1leading to

ligall > ligoli +%  for some =z.

One can follow now the same arguments used to prove
Theorem 1, substituting k for Xj, Ai —= 0 for Ki —_— e

pick {Ai} such thet

we VA6 g Ky, (W)
max [(2A,M N) ) ! ST
. §, (i- %)
where £ is the same as in Theoren 1 (recall that ;{\'e_l(Ai)-bO

as A; —> 0 by the induction hypothesis).
As a result, one has the bound on (*¥*) of Eq. 4.2.

It follows that:

o<M - —

R(1+€) 2 2e ? Y 1+€ \+E
N v
- ()

which l€ads to a contradiction as Ai — 0 .



Convergence

The principal results of this Chapter are embodiel in
Theorem 4.2 below. The substance of this Theorem is that wizz
a suitable choice of '}'Xnk the iteration procedure given Gty
P4 can be made to converge in general and terminate under s<rong
linear separability. Thus, this family of procedures combinsz
the important términation property of the perceptron algorizhm
with the stability (viz., convergence under all circunstanc:s)

more commonly associated with iterative procedures.

B . Suppose that in the iterative procelure
P4
o, — =20
n — oo
0
E o(n = o0
=i
Then, (a) A. not linearly separzble implies “gnn ;\—-:330
(b) a linearly separable and 8y = Z_aia) imziies
a ek
& —> & g.aj?,o for any ajf_CL
' (z
(e) a, strongly linearly separable and go-:Za’. )
implies that there exists n, such that acta
a.nd' &n = & for n>n,

8.2y 2 0 for every a5 € a.

1 Any vzlue of g, such that gy.8> O would be suitablsz.
The proposed one was presented just to be explicit., This
condition is necessary to avoid convergence to a triviel
solution of .25 > 0.
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The proof for Theorem 4.2 is quite long. One will
first give an outline of the mejor steps in the argument, and
supply the deteils later, One begins by considering for pro-
cedure P4 two mutually exclusive possibilitiesl:

| (i) For eVery '7 Y 0, there exists a 8, in the
sequence {_gnk such that

[gn.aj(<.«? (i 8l for all jed, .

(ii) There exists ?j>0 such that for every &, »
. ‘gn‘ajl >'r)“gn“ for some JE£J .

Now one can show (Lemma 4.2) that (i) implies linear
separability. Therefore, if the set a is not linearly sepa-
rable, (ii) is the only possible case, Using this and Theorenm
4.1, part (a) of-this Theorem 4.2 is proved. Part (b) is proved
by demonstrating that linear separability and g, :;ggaaj
imply that (i) is the only possibility, Therefo;e, Lemma 4.2

below shows convergence for this case, Part (c) is proved by

"~ induction over the dimension of the space spenned by Q .

First, it is easy to show that it holds for the one-dimensional
case. Next, (strong) linear-separability and gy Z: aj
excludes possibility (ii), Based on possibility (i), Lemmz 4,2

shows that after a finite number of steps the iterations must

1 One need not consider-.the case of Jn being empty, in which
case termination occurs and the results to follow would be

trivieally true.
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be constrained to a lower dimension. The conclusion follows by

induction.

MMA A.2. Situation (i) above implies the existance
of a2 vector v*¥ & Eﬁ- satisfying

v¥,a;> 0 foralla £€QL .
J o .

kurther, gn/ i gall —¥ v*

Proof:
Construct a decreasing sequence i”zk} with /rlh—-v 0
("M, > 0) and, correspondingly, a sequence 53“ k such that,
. . (-3

according to (i) ,
| ‘gnk.aj ‘ < "’]k f\é’nk\l for all a5 & Iy

Without loss of generality, suppose that the indices of the
sequence {gnkz are increasing with k. Take a subsequence
ﬁ "I;e\'y and the corresponding subsequence Hgn 7]'} such

k
that gnk/ Il gnk“ converges to some vEEQ([(vﬂ = 1). Call 8,
the index set of this subsequence. Hence, for any § > 0, there

exists ng( §') such that
i % J
\\ I3ng

To prove the existence of v¥*, select

Sy
§ < B

and consider the subsequence {{ ’72}} starting from a k such

< § - QO( nk>/ho[§)/ ﬂe\'g SV’

that ny > ny( §). Pick the first 07&. satisfying

T, <{M



Call nklz-. n( g) . Cong;ider

Sn{ Tne ar Sm.
]V'ajlzl(”"n 3n;n+n%n;n>' 3 \& e

Then, for any nj 7 n(3) , niisv ,

\v.aj[ < Qu + m.< 2TM  for all j&£d,.

and since Sy
< 3m
'\v.aj\‘< Sv

But since, by definition of g v?
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a.l, Ini" N
o B

1

\v.aj} > gv for aj.vio » oag & L » (or, ajiLv)

one must have

v.aj-—- 0  for all jiJni ’ ni>n(§) s

ni‘a' Sv !

Hence, for some iteration ni) n(¥) , only voints

will be involved. Further, according to Lemma 4.1,

sign v.,a:j = sign gn.aj

first part of Lemma 4.2 is, then, proved by puttiing

To show the second part, for an arbitrary

let

<

C(6y) = min (G, =)

Select § (50) satisfying

§+4(25-5)"%
1= $36

£
a‘j Ly—

for 211 a3 q; Ly

Hence, there exists no 2 & L  such that v.aj<0. The

vV = v,

So” 0



Consider mo such that
oV | 0
EnyoV 7

Phis is possible since v 1is a cluster point of the

sequence gn/ Il 8,1} « According to Corollary 4.1, select ?
such that s

< S

A |
KL-I(P) < 5 8noeV

Since n—® 0 , select %o(f) such that

« < P for all n>/n\°

‘select

=05

o = max (no(’i) ’ /ﬁo((’) ’ mo\)

By the first part of the Lemma, for n, > ’;\1\0 » M E S,
only points in LV will be involved in the nith. iteration. Ve
will show that all remaining iterations after the ni@ will
make use of only points in LV . One proceeds by induction.
Suppose that all iterations from the 'nith to the A th in-

volve only 2 €L,. Lets examine the (A+1l)th iteration:

from P4)

- A=l .

LYy ¢ ) It 3nli 1 E Z-‘ e
—_— A = - =} —— a:.q )
“ 37\“ h (ll%n,ll “ Al + “ Al O(rg : ‘ J szQJ +

' . k=n{ JZSQ

(aje Lv)

_HI(U Anll _1>
b 3ali .
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B¢
Il In

-vl\<§ <y for nidn,(E) ,n €Sy

Hence, since “

| 3

S R o
1192l - "f\ < 1-$ lSn. ) — ;{3’( J "Je ‘ C‘ T \)
(a £ Lv)

From Theorem 4.1,

K (0) 1 3kl > [ 9, =

-n.,
(a E Lv)

1t follows that, for n; > no(JO)

ZO(Z{QJ 352

k=n¢ CO va)

a;ll < 2. 3 | +K (P (4.12)

Sn: .
On the other hand, for %3,,‘_” in a ¢§ neighborhood of v
(see proof of Theorem 4.l,eqs. 4.7, 4.10)

3| . (25-13)"

\Sna'u’l < s (4:!3)

From P4, one can also write, taking as starting point 8n.*

|97 =] 87 + 2 6T oy

kRzwm,y jEJ‘k

and since a4ev 270 for all ay & QL , ana &m, -V > 0,

[ 8n | > 3, ] = g, 7 Girg)
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A
Combining eqs. 4. W,12,13 and 14 ) formn; 7 Tg nj €Sy

. _ Ve !/(\-‘(?) 8
\ 3, gea(2f-¥0°  Ka® 5 5ot

—A)y é

+
“ 37«\“ 1= Sm.U' N 2

©

Hence, according to Lemma 4.1,

sign 8., \ 2y = sign V.a;

for aj'é.Lv
But by the first part of the present Lemma, v is such that

2 >0 for all a; €k,

Hence, the vectors to be used in the' (™ +1).th. iteration

(thai‘. is, those such that g, , -2j; < 0) can only belong to

Ly.Then, by induction, all iterations following the njth!
PA

(n; 2 ?10 y Ny T Sy) will make use only of vectors in Ly.

As a result, the relation

S?n'-l

e _olle 3 <8
USMH v 45

A , o
holds for all 7\ ??10, which proves the Lemnma,

Proof of Theorem 4,2

Proof of part (a): (}. not linearly separable.

According to Lemma 4.2, situation (i) must be ruled
out, Consider, then; situation (ii): there existsm >0 such

) that for every . 8,9

\gn.a \>"7“gn\ for some J £J,.

(In cannot be empty since QA is not linearly separable)
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Let

1+ €
n = / |2j-&n]

J€In
From P4 and Theorem 4.1,

2(14 €) 2 2€

{ goll? L3l + o M N = 2o B

JEIn
¢ = u2("ON22¢

But | ¢n zziaj;gn‘wé > n)wé“ﬂnuue

Therefore, putting

2

| “3“*'“ S “ 3n\\1+.°<.: C- 2 on q‘*e“ f\nﬂ'% _

= 13"~ % [z 7 lal " =, C} |
(4.15)

To prove par?t (a) of the Theorem, one must show that for

every A > O there exists ng('A) such that

“gn“?é?\ for all n>ﬁo(?\).

Since o/ , =¥ O,there exists nj(‘A) such that

|+ € .)\(H_e)/z
] o (3)
o, < -
and
2 A
%y <

2C | for n > n1(\)
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From eq. 4.15, if all [|g. Y2 > A /2 for n> k> n(A),

it € I+ € 2 1+el¥
HSM. REN 7 (2) =080l -7 (3) x|
n()
Since Zo( x 1s divergent, there must exist n2'(7\) such
that the abéve inequality cannot hold if “gkl[2> N/2 for
n>k>ni(A) and n>.n2(?\). Hence,

3 A '
” 3"” < Tz for some n, ny(A)>n nl(l)

Let no()) be the first time thls occurs. Hence,

 |leng( 22 -
2
Xng(™) -}C-
H‘é ‘+6'
*n,(a) ) ng()) n,(A)2%ny(2)

simultaneously, Equatlon 4, l‘a shows also that whenever

ugn([2> 7/2 for n >n,,

) &na1l2< lea®  (a decreasing function of n)

It follows that for n>n,, |g (2 < , since:

gy

15%; ”gno |\2 < 2

nd, A
27": whenever, for n)po and ugn ”2< 4

Nene ¥ <llgnf? + o2 < 2 o % -
37, yhenever %‘._ <ugn((2 £ A,npng,

. “gn“ is decreasing, that is,

ﬂ Shﬂ “2 < “ Sn}\L
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This concludes the proof of part (a) of Theorem 4.2,

Proof of part (b) of Theorem 4,2
Part (b) is a consequence af part (a) and Lemma 4.2.

Let v (lv|=1) be such that

| | ajov ;? 0 - for all aj 3 CZ\ ,

By selecting -

g°'== 222 aj
aex

" one must have, from - P4:

—~

, < B .
. = s Q. « N °
3n+\ v 300’-‘-; X \ J ﬁal A 1)'>/S°‘\7>/97'O
(the last two inequalities hold since there must exist at least
one a, & L, , for which B0V ;.9;> 0 ). Hence by Schwarsz's
© inequality, ' -

Thus, g, cannot converge to zero and therefére (ii)
is ruled out (part (a) of the Theorem}, But by Lemma 4,2, (i)
implies that ' |

I3
19l

w\r

Proof of part (¢) of Theorem 4.2

This part is proved by induction over the dimension
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of the space spannéd by the set CL :
| 1) If all vectors are colineaf with a vector
a (llall=1), writes ' '
) g = X ‘a
n n

a =) a
J J
Since there exists y :gaa' such that
' A
a°y:1_ > >0 ,
37 74P

without loss of generalitsr: take ? < 0 and hence, 2 40 for
. . . j

.all j. Thus, j £ J gives 7

g.a = {2 <o
n j o n j '

which implies

§, > °

| . Prqcedure‘ I‘"4 s then, is reduced to the following

' scalar procedure: |

nt |

| ' | ¢ | € A
X = K'n - thﬁn Z D‘JIH = 6-)’) ~ zs’f IGX»\)O

t

o if 0
8 sy, <

(since J is empty)
n .
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Part (c) asserts that this procedure terminates,
that is, there exists n_ such that for n)n.,

()
{, <0 -
'Negate it: for all n, én; > 0. By concavity of the
function x+~€ (0 < €<1),
(x + Jn):l - 6\(::1-6 +(1~ ¢ )x"eh (x>0, x +h > 0)

Hence, one has

~€ A € e - |
0L Ki-&-l = Uy =0 45 )7 5n1 Q- é)g\‘n

Thus, sterting with b)o arbitrary, there results
1-¢ 1-¢ 5 7
0 -(1-~ =4
< 2{J:H-Zl. <o (1- ¢ )26/ a
ince J_ o
and since o(n—b o<> , for some n, a contradiction is evident.

This proves part (c¢) of Theorem 4.2 for dimension 1.

2) By selecting

J
aiEO-
as in part (b), one has, due to the (strong) linear separabi-
'lity of a :
u 8, ][) e - for all n.

Therefore (ii) is ruled out. But by lemma 4.2 (see its proof),
(i) implies that after a finite number of steps the iterations

only will make use of vectors in I"v’ reducing the problem to
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dimension é-l,, Hence, by the induction hypothesis, termina-

tion occurs.

A more direct discretization of procedure Pl of
‘Chapter III would suggest the choice of 0¢, = o<, a constant
for all steps of the iteration. Unfortunatly, convergence
does not occur in general, as can be shown by conterexamples.
Nevertheless, one can obtain a theorem (Theorem 4.3) similar
to that of Uzawa-Arrow-Hurvicz (Ref. 12) for the discrete
gradient procedure in conc;a;re. programming. Theorem 4.3 not
only indicates some bounds in the step size « i.n order to
drive @, within a prescribed error ¢ from zero, but also

indicates the role of the parameter € .

THEOREM 4.3. Given @ >0 arbitrary, there exists

e(q))O and no( Q ) such that if in procedure P4, o(n =
=o(<?( @) for all n, then, ¢n< @ for all n ;::o((p).
Proof. It is enough to compare the hypothesis of the
theorem with the ones in the previous results. Before, it was
required thathzc(n'-b ©9 and o, —» 0. The fact that o, 0
was used to ensure that for an arbitrary f R cxn<e for sone
n>n, (F). By fixing P as P(g) and picking o, = X,
constant, satisfying o« P( ¥), the requirement .of <, =0
can be substituted by the present requirement on o< (as long
a8 (@ and () are kept fixed). Obviously, Y o/—> O (ec30).
The relations between P and ? can be understood from resulis

of theorem 4.2 :
Let



9 1/1 +¢€ 1
§o=(‘ﬁ') K

S = { —27& it A is linearly separable by v.
1l

1 ir QA is not lineariy separable.
G (Co) =min (L, 51

.Choose § such that

£ v -2t |
+4:(sz'if) <385

Consider m, £ Sv such that

| gmoov >0 iz Q is linearly separable by v

Put
m, =1 if (L is not linearly separable.

o
( t9
‘Choose e min (f?l, fd’ \03), where

fl = arbitrary if OL is not linearly separable

{31 is such that Kﬁ l(f’l) < gg(g) gm R
it a is linearly separable by v

ES

2/1+¢€ |
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fbg = A 2 EC g iEE if (. is not linearly sepa-

rable
arbitrary if QA is linearly separable

0,
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Ifé +&
<7 @ &) ©

ifr Q is not linearly separable
?3 = arbitrary if (N is linearly separable

Choose no(i) such that

€n
l&a|]

it Q is linearly separable by w .

n\r'.'

dg for n>n°(§), n eSS,

‘Put =n (i) =1 otherwise.

N

Put n>max[ o) m ] = T
It follows:

(a) If a is not linearly separable, situation (ii) occurs:

from (a) of Theorem 4.2, “ gn" will finally be driven bellow

2/+€
A A%

and consequentely,
+G
O _7_ o8] < W\ gyl ! £Q
3€3In :
(v) If a is linearly separable (i) occurst and foxr all

n ) o, only po;nts asz are involved and

. | u CA N R

1 (i) ocuurs a2s long as g, =2, a; . Otherwise (ii) mey occur
and “gn“ » for ny@; @& J



- 69 -

Hence,
| Qa0 | “
a| < | == «r“ M< S,
u Sn 1\3.,\ } ‘ i 3nll
Then,

Z)o snwc\(SMK) N:kg
JEJn

(c) Finally, if the set Q is strongly linearly separable,
_termination would be proved as before. In. this case, 1if

termination occurs at step N, ¢N =

Discussion

One should note first that the cese of € = 1 is
excluded from the proofs presented here because of a question
of technicality. As was pointed out before (Chapter II and III),
this case is closely related' to a procedure presented by Agmon-
Mot'zkin—Schoenberg (Ref. 3, 4). As in their procedure, here
one shduld expect, for the case of linearly separable sets and
.constant step s:‘LzeMn = o/, an exponential conﬁergezw of Q’n to Ofar
€ =1 as long as of satisfies certain bounds. Even though the
proofs presented here are not guitable for € = 1, most of the
results hold'if one is willing to restrict the value of A =

egp Oén to a small value. In fact, excluding termination in




R

\»
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the strongly linearly separable case, all results hold for
€ =1 if A is such that

c\2 2 o,
‘A<< 2 Y < 1 2 sin —
o o \ 4 [ J\7uUF ' 2

MN

where 60 is the minimum angle between two non-colinear
vectors in (. . This bound was obtained to ensure the contra-
diction in Theorem 4.1 for € = l. In this case even exponential
convergencéAofsﬁhgto.zero;can be .shown -for fixed step size X .
For € = o, P4 corresponds to the Perception Algo- |
rithm. The fact that this algorithm can be turned into a
convergent procedure is a very interesting result, even though
this was not originally the object of this work. The conditions

which guarantee convergence are weak, namely,

Zo(’n"p OO’ o(n_':P 00



CHAPTER -V
CONCLUSION

COMPUTER RESULTS

A computer program was written in.order to verify
'tne results of thié work. Three sets of points in E4 were
used; one set of 20 points not linearly-separable, one set .
" of 20 points 1inearly-sepafab1e but not strongly=linearly
sepafabie and one set of 20 points strongly-linearly-sepa-
rable. For each of thése sets, 2 types of iterations ﬁere
programmed; one with oL, = 2/n and the other with = =,
& constant. Tests were done with o = 2.0, 1.0, 0.5, 0.25,
0.125. In each case, the parameter & took values 0.0,

0.25, 0.5, 0.75, and 1.0, and 34 iterations of each were

. done.

For K=2 and €& =1, a rapid increase in In
and llgﬁl) were observed for the non-linearly-separable case
and linearly (but not strongly-linearly-) separable case. In
~ all other cases ¢h either converged to zero or was bounded
_from aboxe; Termination was observed in most of the cases
wherg_the strong@y:ligeaqufseparable set was used. In some
cases, termination occurred in as few as 5 iterations.and in
two cases ( &« = ,5, &€ = .25, and Xy = 2/n, € = ,25) in
only 3 iterations. The cases where termination was not ob-
served before the 34%h iteration for strongly-linearly-sevn-

arable sets were those using small X 's ( o = .125 or .25)
=Tl = .
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end large & 's ( € > .75).

fhe dependence of the stability of the procedure on
the parameter & was observed. An jncrease in € not only
had a smoothing effect on the behavior of ¢n; but also indi-
cated a decrease in the final bound of ¢ . Nevertheless, in
most of the cases, as €& approaches 1, the procedure converged
slowly.

| In the case of constant o = &, the effect of

the step size O¢ was noticeable. For a small .c>< the behavior
of the procedure was close;y predictable by its continuous-
time counterpart, Pl. That is, one could observe that ¢n and
| ugnn were not increasing with n, or bettef, essentially
decreasing with n. In any case, a decrease in step size was
followed by a decrease of the final g, . However, the number
of steps necessary for ¢h to reach the final bound was natu-
rally increased by a decrease in o<l .

Theée results are summarized in Figs. 2, 3, 4, 5,

6, 7, aﬂdeo .

FINAL REMARKS

Different approaches to the problem of classificatioh
can be found in the literature. In particular, an interesting
" point of view was introduced by Wong and Eisenberg (Ref. 8).
These authors study the case where the vectors are vertices
of a hypercube of ﬁ,-dimensions (this is the case when thé
measurements performed in the patterns only assume the values

+ 1. That is, one checks if the given pattern has or has not
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each feature). A one-~to-one correspondence between these
vertices and intervals in the real line is established. Then,
the problem of classification is studied on the real line. A
procedure using iterative~projections is then used to deter-
mine a linear functional that correctly classifies all points
(in case of strongly-linéarly-separéble points).

It is interesting to notethat Wong-Eisenberg's. pro-
cedures points out some gsimilarities with a different class of
problems. Formally, the iterative projection method is equal
to the method used in the solution of some problems studied |
by Sandberg (Ref. 9) in connection witﬁ certain contraction
mapping problems. However, the conditions undér which thése
procedures are applicable are quite ‘different. Wong and
Eisenberg use a flnlte dimensional space to prove termlnatlon
of the procedure for a nonlinearity violating the conditions
used by Sandberg to prove uniqueness of the solution and con-
vergence of the iterative projections in more generél spaces.
"It would be interesting to see how much these iterative pro-
jection approaches could Ye extended in both cases in order to
get some overlapplng on the conditions of appllcablllty of the
methods.

The approach of Wong and Eisenberg is also closely
related to the approach due to.Aizerman-et—al (Ref. - 11). 1In
this case, the spaces used are more general than those used by
Wong and EiSenberg and instead of projeqting the indicators of
the misclassified intervals (as in Wong-Eisenberg's approach)

the projection of a * § —function" at the misclassified points
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is used (this is accomplished by means of potential functions).
Once more, this indicates that a good direction of inquiry
might be the extension of Wong-Eisenberg's procedure to more
. general spaces. .

'The Wong-Eisenberg  procedure of iterative projec—.-
tions is equivalent to the procedures presented in Chapter IV
of this work (for € =0 and € = 1) for the case of linear-
ly-separable sets. Although the proofs given both here and
by Wong and Eisenberg are heavily dependent on the finite di-
' mensionality of Eﬂ,’ it is.believeq that the procedures can be
extended to vectors in more general spaces. This'would make
strongerwthe connections between these techniques and the works
of Sendberg and Aizerman-et-al.

Phe discretization of procedure P2 was not pursued.
The author believes that such disceretization can be done along

similar lines as those of Chapter IV.



Finol Bound of 9,

D
4

V]

Fig. 2

Procedure P4 with
constant step size.
Non linearly-
separable set.

—o— €=0

_-..XQ-— e :’.025
_.O—--— e - ,5
oiom-oo e = .75

-3

Ry

- et e e ————



Fig. 3

Procedure P4 with
constant step size.
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