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I. INTRODUCTION

In this paper we give sufficient conditions for the stability of

multiple-input multiple-output linear time-invariant feedback systems.

In this sense it is generalization of the results which started with

Nyquist [1, 3, 7]. The class of open loop systems considered is broader

than those studied heretofore. The open-loop impulse response may-

contain an infinite sequence of impulses subject to the requirement that

the open-loop transfer function be stable in the sense of Zadeh-Desoer

([2], p. 413). In contrast to previous work on multiple feedback systems,

the gain matrix K is not assumed to be diagonal. It is not necessarily

symmetric either. Furthermore the specialization of the results of

this paper to the case of single-input single-output systems are more

powerful than those we obtained recently [7] because of some technical

improvements in the method of proof.

Since the dynamical systems under consideration are described

in terms of a convolution operator, the stability results are expressed

in terms of input-output properties. This is particularly important

nowadays when most of the results concerning nonlinear systems are

expressed in this form [8, 9,10]. Means for applying the results of this

paper to the study of stability of nonlinear time-varying systems are

indicated in the conclusions.



II. DESCRIPTION OF THE SYSTEM

Consider the linear, time-invariant, multiple-input, multiple-

output system shown in Fig. 1. The vectors u, e, £, n, z and y have n

components. The symbol K denotes a linear time-invariant gain block:

its input-output relation is described by the equation

e(t) = K £(t)

where K is an n X n constant real matrix. G is a linear, time-

invariant, nonanticipative subsystem: its input-output relation is described

in terms of its impulse response matrix G by

C (G * £) (*) for t > 0

Tl(t) =

^

(1)

0 for t < 0

We assume throughout that the input u(t) = 0 for t < 0 and that z(t) (which

represents either the zero-input response or some outside disturbance)

is also zero for t < 0. We think of e as the "error" and y as the output.

The equations of the system are

e = u - y (2)

y = n + z (3)

and, since u and z are identically zero for t < 0,
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u(t) - z(t) - (G * Ke)(t) for t> 0

e(t) = \ (4a)
0 for t < 0

Using (2) to eliminate e in (4a), we obtain the relation between the

input u and the output y of the closed loop system

z(t) + [G * K(u-y)](t) for t > 0

Y(t) = { (4b)

for t < 0

III. ASSUMPTIONS

The n X n identity matrix is denoted by I. The symbol | • |

applied to a vector denotes a norm in R and, applied to a matrix, it

denotes the induced matrix norm. || • || applied to any vector denotes

sup | - |.
t>0

Let g be a distribution whose support is in [0, oo). We say that

g is an element of C£ if

oo

^(t-t.g(t) =ga(t) +£ g.6(t-t.) (5)
i=0

where g : [ 0, oo) -> R is in L (0, oo); the sequence {t.}°° is in [ 0, oo)
a i 0

with 0 = t < t < t . . . ; the sequence of constant vectors in R {g.}

oo

is subject to \ |g. | < oo. The set of all elements in (J constitutes a
i=0
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commutative Banach algebra with the usual definition for addition, the

product defined by convolution, and the norm defined by ([4], Chapt.

VI, sec.5;[5], sec.6. 2;[6], sec. IV. 4)

oo

00

HkII =f |gJt)|dt+V |g | . (6)
J° to

Similarly we shall say that the n X n matrix G is in (£ whenever each

of its column vectors is in Q . With these notations in mind we

formulate the following assumption:

(G). The open loop impulse response matrix G is of the form

R + G A(t) for t > 0

(7)

for t < 0

where R is an n X n constant real matrix and G e (J, , i. e

co

G (t) = G (t) +) G 6(t-t ) for t > 0 (8)
i a Zj v' v

v=0
oo

with G eL and the constant matrices G satisfy ) |G I < oo .
a v £_, vl

v=0

IV. MAIN RESULT

Theorem 1. Let the system S satisfy the assumption (G). Let G(s)

denote the Laplace transform of G. Under these conditions, if
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inf |det(I + G(s)K) | > 0 (9)
Res>0

and if either R = 0 or all the eigenvalues of RK are in the open right

half plane, then the impulse response matrix H of the closed loop

co

system S is also in Q, i.e., H(t) = H (t) +> H 6(t-T ) with He L ,
a (mtmi i' v a

\>=0

co

the constant matrices H satisfies \ |H |< oo and 0 = t < t. < t < . .Zl»vl
v=0

A

Proof. Note that in view of (G), the elements of G(s) are analytic

functions of s in Res > 0 which are bounded as |s |-*co with |4-s |^ — .

Now by definition of the impulse response of S, if we set z~0 and

u(t) = d.(t), then the corresponding output is the j— column of H,

(j = 1, 2, . . . , n). Therefore, from (4b), the equation for H reads

H + G * KH = GK . (10)

We think of this equation as a convolution equation in j£)' which has to

be solved for H. Since in^' , the convolution product has no divisors

of zero ([4], p. 173; [5], p. 150) the solution is unique. Suppose now that

H is Laplace transformable, then (10) gives

H(s) =(I +G(s)K)"1G(s) K (11)

/\

where H(s) denotes the Laplace transform of H. In view of the

A A

properties of G(s) and (9), H(s) is an analytic function of s in Res > 0

-5-



which is bounded as |s |->oo with |4-s | ^ — . Therefore H(s) as given

by (11), satisfies the necessary and sufficient condition for being the

Laplace transform of a distribution in£)' ([ 4], p. 306; [ 5], p. 237).

Therefore H, the solution of (10), is uniquely defined by

H=£-1 f(I +G(s)K)"j^-irG(s)K\ (12)
Case I. R = 0. Then G reduces to G (see(7)), and GKe Q. We assert

that the 1— factor in (12) is also in ft. Calculate (I + G (s)K) by

Cramer's rule:

(I +G£(s)K)_1 =A(s) [det(I +G^(s)K)]" (13)

where A(s) is the n X n matrix whose i-j element is the cofactor of
A A.

the j-i element of I + G (s)K. Since all elements of I + G^(s)K are

transforms of elements in (£, it follows, from the properties of the

algebra Q', that all elements of A(s) are transforms of elements in

(%. Since R = 0, assumption (9) becomes

A .
inf |det(I + G (s)K) |> 0 . (14)

Res>0

2
Hence by a result of Hille and Phillips ([6], p. 150) , the second factor

in (13), is the Laplace transform of an element in qf. Therefore by

the closure property of (£, (I +G (s)K) is the transform of an element

in (% . And by (12), so does H.
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Case II. R is not the zero matrix but RK has all its eigenvalues in the

open right half plane. For this case,

G(s) =s^R +G (s) for Res > 0 (15)

and (11) becomes successively

H(s) =[I +s-1RK +G (s)K]"1 [s^RK +G (s)K]

=|(sl +RK) [I +(si +RK)"1sG^(s)K]V _1 sfs^RK +G(s)K]

=[I +(si +RK)"1sG|(s)K]"1 [s(sl +RK)"1(s"1RK +G(s)K)]

(16)

Call the first bracket M.(s) and the second M (s), then

H(s) =M1(s)'1M2(s) (17)

Now by assumption RK has all its eigenvalues in the open right half

plane; the elements of (si + RK) are rational functions of s with poles

in the open left half plane and these rational functions -»• 0 as |s | -*-oo.

Consequently the elements of^G [s(sl + RK)" ] are in Q : the factor s,

which indicates differentiation, may at most create impulses at t = 0.

A

Going back to (16), we see that M (s) is of the form

-1 -1 A
(sI + RK) RK + [s(sI+RK) ][G(s)K] (19)

The inverse transform of the first term is in Q; that of the second te rm
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is also in^because it is the convolution of two elements in C£• It

remains to show that^" {[M.(s)]~ } e Q, for then by (17) it follows
_ A

that IrlzCC- We calculate as before the inverse of M.(s) by Cramer's

rule.

In view of the quoted result of Hille and Phillips, the claim will

A

be established if det[M-(s)] is bounded away from zero in the closed

right half plane. To prove this consider

A „1 A
det[ML(s)] = det [(si + RK) (si + sG(s)K)]

A .1
= det[sl + sG(s)K] [det(sl + RK)] (20)

The second factor is bounded away from zero in Res 2: 0. By assumption

(9), the same is true for the first factor except possibly, in the

neighborhood of the origin. Now at s = 0 the matrix in the first factor

reduces to RK. But det(RK) > 0 since RK is a real matrix with eigen

values in the open right half plane. Consequently the first factor in (20)

is bounded away from zero for all s in Res ^ 0. Therefore inf |det(M_(s) |
. Res^O

> 0, henceo£ {[M.(s)] } € Q, and so does H. This completes our

proof.

V. INPUT OUTPUT PROPERTIES

We now use Theorem 1 to describe the input-output properties

of the closed loop system. Since in Eq. (4a), the input u and the

disturbance z play symmetric roles, we shall exclusively consider the

-8-



case where z=0. Note also that our results are stated in terms of the

input u and the output y; the concurrent properties of the error e are

readily obtained from Eq. 2.

Theorem 2. Let the system S satisfy assumption (G). Let z=0. Let

inequality (9) hold and let either R = 0 or RK have all its eigenvalues in

the open right half plane. Under these conditions,

(a) u€# =} y €tf ;

(b) for 1 ^ p ^ co, u € LP^ye LP ;

(c) provided RK | 0, for any constant vector a €R , if u(t)

= al(t), then y(t)-* a as t-* co ;

(d) u(0) =0 with u continuous on [ 0, oo) implies that y is continuous ;

co ,. , . T co
(e) u € L and u(t) * 0 as t ^ oo implies that y € L and

y(t) -*0as t -*• oo.

Comments. (I) conclusions (c), (d) and (e) imply that, provided RK f 0,

the feedback system is a position servo with zero steady state error:

let u(0) =0 and u be any continuous function bounded on [0, co) with

u(t) -* u (a constant) as t-^ oo, then, by superposition, the output y is
co

also continuous, bounded and y(t) -* u as t -* oo.
oo

(II) All conclusions of Theorem 2 also apply to the error e, as

can readily be seen by Eq. (2).
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Proof. Given the assumption,

y = H * u

and H € Q .

(a) follows from Theorem 1 and that £?is closed under convolution ;

(b) case I: p = oo, i. e. u e L ; thus | |u 11 < co.

We obtain successively,

co

||y|| =||H*u|| <sup f Ha(t-T)u(T)dTJ +£ |Hj ||u||
"" v=0

*IMI[j |Ha(t)|dt +̂ |Hv|l
0 v=0

Finally by (6) we obtain

y 5 u H <oo.

P PCase II: 1 ^ p < oo. Let L (y) denote the L norm of y.

Lp(y) LP(H*u) = LP [vu+I »v^-\^

SLP(|Ha*u|) +£ |Hy| LP(|u|)

The first term can be bounded above ([11], p. 99 Thm. 53), and
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oo

LP(y) SI^lHj) LP(|u|) +£|hJ LP(|u|)

* llHll LP(u) . (23)

(c) For this case

y(t) =j H(t) adr (24)
0

Since H € d , for any e there is a T such that t > T implies

^"iH^^ldr+^lHj*. (25)
V

t € (t, CO)
V

Therefore, from (24), we conclude that lim y(t) exists. To calculate
t -> oo

this limit we note that the integral of every element of H is a locally

integrable function hence we may use the final value theorem of the

Laplace transform ([ 5], p. 250; [ 2], p. 542)

f* 1 Alim y(t) = lim \ H(T)adT = lim s — H(s) a (26)
t-*oo t-*co s-O

A

Referring to the second line of (16), as s-*0, H(s) = I. Hence

y(t) -*a as t -*• oo.

;t») = 1 H (t'-T)u(T)dT + \ H u(t»-Td) y(t') = \ H (t'-T)u(T)dT + > H u(t»-T ) (27)

Ty€[ 0,t)
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For any t! ^ 0, the first term is continuous and equal to 0 at t = 0. If,

for the t' under consideration, the summation indicated in (27) has a finite

number of terms then the second term of (27) is also continuous in t'.

Suppose now that the summation is over an infinite number of terms;

since for any finite t», sup |u(t) | is finite, by ) |H^ | <oo the sum is
t^t' ~0

uniformly convergent on [ 0, t'] hence it is continuous. Therefore y is

continuous on [0, oo).

(e) Since u(t)-*0 as t ->co by assumption, for any € > 0 there is a

T (e ) such that t > T (e ) implies
u u

|u(t)| <e . (28)

Now since H e (7 , for any e > 0 there is a T (e ) such that for

t > TH(e )

p co
\ |H(t')|dt' < € (29)

t

Note that in (29) we use an informal notation but the meaning is quite

clear. For any e > 0, let t > T__(e ) + T (e ), then still using the informal
H u

notation,

pt-TH -,t
|y(t)|*J |H(t-T)| |u(T)|dT+J |H(t-T)| |u(T)|dT

0 t-t
H

In the first integral, the argument of H varies from T to t > T^+T ,

hence, by (29), the integral is smaller than e ||u||. In the second
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integral, the argument of u is larger than t-T > T^ hence, by (28), the

integral is smaller than € ||h||. Therefore *> Tu +TH implies that

|y(t)|<e ( ||u|| + ||H||). In other words y(t)-* 0 as to -co.

VI. CONCLUSIONS

The application of the theorems above require the testing of

inequality (9). This can be done by graphical methods a la Nyquist:

r -i Aindeed the principle of the argument ([12], p. 252) applies to det(I+G(s)K)

since it is an analytic function in the closed right half plane.

The theorems of this paper give simple means for checking the

sufficient conditions for stability of broad classes of nonlinear time-

varying systems by the use of, for example, Sandberg's general theory

([8], sec. 5, theorem 8 in particular).
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LIST OF FOOTNOTES

1. d.(t) denotes the n-vector all of whose components are identically

zero except for the j which is 6(t).

2. In the notation of Hille and Phillips, our algebra $ is denoted

by L(l(.)) +A(1(.)).
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