

Copyright © 1967, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

AN ALGORITHM FOR MINIMUM ENERGY CONTROL

by

E. Polak and M. Deparis

Memorandum No. ERL-M225

1 November 1967

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

An Algorithm for Minimum Energy Control

E. Polak and M. Deparis

Department of Electrical Engineering
and Computer Sciences

Electronics Research Laboratory
University of California, Berkeley

ABSTRACT

This paper presents a very effective, large step, para

metric method for solving fixed time, minimum energy,

discrete optimal control problems with linear plants and

convex constraints on the terminal state* The reason

for using parametrization is that it removes the usual

severe ill-conditioning effects.

The research reported herein was supported by the National Aeronautics

and Space Administration under Grant NsG-354, Suppl. 4.

INTRODUCTION

When confronted with a minimum energy discrete optimal control

problem such as the one discussed in this paper, a control engineer

finds it natural to invoke necessary conditions such as those given in

[1] and to reduce the problem to that of finding a set of co-states and

multipliers. Such an approach leads to gradient methods which search

in the co-state space, and are similar to the one described by Plant [2]

for continuous systems. Unfortunately, these algorithms cannot be

proven to converge and, in addition, since they require repeated inver

sion of highly ill conditioned matrices, they are computationally very

inefficient,

A somewhat less direct approach consists of transcribing the

discrete optimal control problem into the form of a nonlinear programming

problem and then of applying a standard convex programming algorithm,

such as Zoutendijk's method of feasible directions [3], which is known

to converge. Unfortunately, ill conditioning effects again make these

methods computationally inefficient.

Since a straightforward approach does not yield efficient com

putational procedures, the authors have resorted to ai: imbedding, or

parametric, method which does not depend on matrix inversions and

hence does not suffer from ill conditioning effects. Although such an

approach may not be particularly appealing esthetically, it has been

found by the authors to be extremely efficient computationally. In fact,

it enjoys the best of the optimal control and nonlinear programming

worlds. It searches the co-state space, it does not involve matrix

inversions, it utilizes an "antizigzagging precaution" common in

nonlinear programming, it can be shown to converge, and it is simple

to program. On the dozen or so examples worked by the authors it

proved to be roughly ten times faster than a good optimal control

gradient method. The example given at the end of this paper gives

some idea of the performance of the algorithm described.

-2-

I. Statement of the Problem.

Consider a discrete dynamical system described by a vector

difference equation of the form

x4j.i = A; x; + b; u^i» i = 0, 1, 2, . . . , N -1 ,

where, for i = 0, 1, 2, . . . , N, x. cRn is the state of the system at

time i, and, for i = 1, 2, . . . , N, u. eR is the input at time i . The

matrices A , b , i = 0, 1, 2, . . . , u -1, are real and are of dimension

n X n and n X 1, respectively.

Suppose that we are given the initial state x of the svstem
0 y

and that we wish to minimize

N

2
u.

l

i=l

subject to the constraints

|u. J < 1 for i = 1, 2, .. . , N

and

3J (*n) 1 ° for j =1, 2, ..., m,

where the q (•) are strictly convex, continuously differentiable func

tions, and x is the solution of (1) at time N, corresponding to x = x
iN 0 0

-3-

and the input-sequence u = (u , u , • • • , u), i. e. ,

*n =An-x^W" aoxo+ £ An-i^n-z'" Ai+lbiU
i=0

It is convenient to rephrase this optimal control problem as a

convex programming problem, by introducing the following substitutions,

Let u = (uv u2, •••, uN), let d =A^A^ •-•A^ and, for

i=0,l,...,N-l, let ri+1=AN_1AN_2...A.+1b., (with rN =^J .

Then (5) becomes

XN = d +

N

) r. u. .
L 1 i

i=l

N n
Clearly, (6) defines an affine map from R into R , and we shall

designate this map by r, i.e. ,

N

r(u) = d +) r. u.
L l 1
i=l

N
Finally, let K be a unit hypercube in R with center at the origin,

i. e. ,

K = {u = (u , u, .. ., u) €En lu. I < 1}
0 1 n ' l' —

-4-

and let Q be the set of admissible terminal states in Rn, i.e. ,

9 O = {x€En|qj(x) <0 for j =1, 2, ..., m}.

then the optimal control problem can be restated as follows.

1° The Convex Programming Problem: Given the map r : R -♦ Rn

and the sets K, fi, defined by (7), (8) and (9) respectively, find a
N

vector u in R such that

11

12

u€K, (i.e., |u. | < 1 for i = 1, 2, . .. , N)

r(u)€tt (i.e., qX(r(u)) < 0 for i =1, 2, .. . , m)

N
and for all ueR satisfying (11) and (12),

13 iiuii2< iiuii2,

where

N

|u||2= If'
i=l

Following the custom in nonlinear programming, we shall call any
N

ueR satisfying (11) and (12) a feasible solution, and we shall call

a u satisfying (11), (12) and (13) an optimal solution.

-5-

Since the above is a standard convex programming problem,

it can be solved by such well known algorithms as the method of

feasible directions [3] . However, the standard methods would require

us to invert matrices whose columns depend on the r., which may be

exponentially related, and consequently, serious-ill conditioning might

and, usually does occur. As it happens, after carefully examining the

geometric properties of our problem, it is possible to construct a

family of algorithms which not only do not suffer from the structure

of the problem, but make great use of it in order to achieve very

efficient calculations.

H. The Geometry of the Problem.

In this section we shall establish the geometric properties of

our Convex Programming Problem (10), which lead to efficient

algorithms for computing an optimal solution u. We shall also state

at this time our assumptions.

Let S(o') be a closed ball of radius a and center at the origin of R

Then 2(a)flK = K for a > <s/~N , where K was defined in (8).

Definition: The map ^ from [0,^] into the set of all subsets of
nt

R is defined by

Whenever it will be necessary to establish the continuity of a function
from one Euclidean space into the space of all subsets of another
Euclidean space we shall use the Hausdorff metric in the range space.
The Hausdorff distance between two sets fl , SI C R<* is defined as
foUows: letdi= ||x-y||andletd sup inf „ „

i y uz v*n2 xe^
then d =max(d1,d2) is the Hausdorff distance.

-6-

N

13 & (a) = r(2(*)) 0 r(K) = r(2(a) O K)

where r is the map defined in (7).

-2 ~ - ~
Let u be an optimal solution and let a = <u,u>, then <x is the

smallest <*€[0,n/n] for which /~(a)C) ft is not empty, and r(u) € •'< (a)O ft,

We shall shortly show that the Convex Programming Problem (10) is

equivalent to the problem of finding a hyperplane which separates the

J? -
sets /-> {a) and Q.

We now state two assumptions which will simplify our con

struction.

14 Assumptions: It will be assumed that (i) the strictly convex set £2 ()

is compact and that its interior is not empty;
,i

(ii) the interior of i'i («s/n)f| ^ is not empty (i.e. , int r(K)f) Q± 0).

15 Definition: Let P(v, s) be a hyperplane in R passing through the point

v €R , with unit normal s . Thus,

16 P(v, s) = {x|<x-v,s> = 0}

17 Definition: Let S = {s |<s,s> = 1} be a unit sphere in Rn, with center

at the origin and radius 1. Let v : S -»• 9f2 (the boundary of ft) be a map

defined by the relation

18 <x-v(s), s> < 0 forallxcft,

-7-

i.e. , v(s) is the point on the boundary of ft at which P(v(s), s) is a

support hyperplane to ft , with outward normal s . (Since ft is strictly

convex, the map v is well defined and continuous). The image of S

under v(«) is the set 3ft , the boundary of ft (see Fig. 1).

1 9 Definition: Let VC 9ft be a set of points such that for every v€ V there

exists an s eS with the property that v(s) = v and P(v(s), s) separates

ft from the point d = r(0), i. e. ,

20 <d-v(s),s)> > 0

21 Theorem: There is exactly one optimal solution u to the Convex Pro

gramming Problem (10). Furthermore, the optimal solution u satisfies

the relation

22 r(G)€V

Proof: The set {u|ueK and r(u)eft) is compact, and not empty by

assumption (14). Hence an optimal solution u exists. Now, suppose

that u' ^ u" are both optimal solutions. Then, for X.«(0,1),

(\u' + (1 -\)u")eK, r(\u' + (l-\)u")€ft and

N N N N

y (\u> +a-\)u»)2 < \ y u«2 +a-\) y u^2 =y u^2,
i=l i=l i=l i=l

o - /—=~T~^
Suppose that u is the optimal solution to (10). Let a = v <u,u> ,

-8-

then r(u) .'"' {a) O ft . But the optimal solution u is unique, and

therefore (<*) (~) ft = {r(u)}, singleton. Now, v (a) and ft are both

convex and therefore there is a hyperplane P(r(u), s), with unit normal

s, which separates ' (a), and hence the point d, from ft, which

proves that r(u) V.

23 Proposition: Let T = {s €S |v(s) €V}. Then for every scT,

24 P(v(s),s) 0 •£ (VN) * 0 ,

where 0 is the empty set. (Note, T is a closed set.)

Proof: Suppose P(v(s),s)Pll (*/N) = 0, then, since the hyperplane

P(v(s),s) separates the point de :, (n/n) from the set ft, P(v(s), s)

separates -£-. (n/nF) from ft. But this contradicts our assumption (14)

that int ft 0 fc> (\[n) ± $.

The above fact enables us to define two functions which we

shall need in the construction of our algorithms.

25 Definition: We define the surrogate cost function c : T -*• [0, n/n"] by

the relation

26 c(s) = min {or |P(v(s),s) nS (a) i 0}
<*€[0,n/n]

27 Proposition: Because of assumption (14), for every scT, c(s) < n/n .

-9-

28 Proposition: Let s e T be arbitrary, then

29 >' (c(s)) HP(v(s),s) = {w(s)},

a singleton.

30 Definition: We define the map w: T -* Rn by the relation (29).

We are now ready to relate the quantities developed above to u,

the optimal solution of (1 0).

31 Proposition: Let u be the optimal solution of (1 0) and let v = r(u). Then,

(because of assumption (14)) there exists a vector s€T such that

32 v(s) = w(s) = v .

33 Theorem: Let s e T be such that w(s) = v(s), and let X< 0 be the

solution of the equation

N

34 <^d + y sat <\s, r >r. - v(s), s\ = 0,
i=l

then u = (u , u , . . . , u), with

35 u. = sat <X.s, r. > , i = 1, 2, . . . , N,
i i

is the optimal solution to the Convex Programming Problem (1 0) .

Since u, the optimal solution of (10) is unique, and, by assumption

v(s) = w(s), we must have r(u) = v(s) and V<u,u> = c(s) .

-10-

36

Now, consider the problem of minimizing <u,u> subject to u«K

and r(u) eP(v(s), s). The solution u* to this problem obviously satisfies

\/<u*, u*> = c(s), r(u*) = w(s), and from the Kuhn-Tucker conditions [1, 4]

which are both necessary and sufficient for this case, it follows that u

is determined by (34) and (35). Thus, u*€K, r(u*)*ft and

V<u*,u*> = c(s) = V<u,u>. Consequently, u* is also an optimal

solution to (1 0), and since the optimal solution to (1 0) is unique, we

have u* = u, which completes our proof.

The effect of this theorem is to transcribe the original Convex

Programming Problem (1 0) into a geometric problem in a lower dimen

sion space (R).

The Geometric Problem: Find a vector s eT such that w(s) = v(s) .

Because of the preceding discussion we shall refer to any s €T

satisfying w(s) = v(s) as an optimal solution to the geometric problem.

It should be clear from Theorem (33) that the point w(s) is easily

obtained by first computing the point u(s) = (u (s),u (s), . .. , u (s)),
1 £ K

according to the formula

37 ^(s) = sat <\(s)s,r.>, i =1, 2, .. . , k,

where Ms) is the root of the equation

-11-

k

38 <^d + \ sat<\ s,r.>r. - v(s), s\ = 0,
i=l

and then by evaluating w(s) according to the formula

N

39 w(s) = r(u(s)) = d+ V u.(s)r.
i=l

The computation of v(s) may present some problems when the

point v(s) is on an edge of ft or when the functions q are of an

unfavorable nature. We shall discuss the computation of v(s) for the

case when the q are quadratic forms in Section IV.

III. Algorithms.

The convergence of the algorithms we are about to develop

depends on the continuity of the functions c and w defined in (26), (30),

respectively. We therefore begin by establishing these properties.

39 Theorem: The function c : T -»» [0, n/N] is continuous.

Proof: Let s be an arbitrary point in the relative interior of T. Then

c(s) > 0 and by (27) c(s) < >JW. Let € > 0 be any number such that

(c(s) + 6)€ (0,n/N). Let P , P be two hyperplanes parallel to

P(v(s),s) which are support hyperplanes to ;&(c(s) +e), ^(c(s) - e),

respectively. Then, since ^ (c(s) + €) 3 "£ (c(s)) D <?(c(s) -e)» and the

-12-

containment is strict P t P ^ P(v(s), s). Consequently, since
€ T € —

v:S -»• 9ft is continuous (see (17)) there exists a 6 > 0 such that

for all s1 € B(s, 6)0 T, where B(s, 6) is an open ball of radius 6 and

center s, P(v(s'),st) separates ft from -£?(c(s)-€) but not from

^(c(s) +€). Thus, |c(s«) - c(s)| < e for all s'eB(s, 6)0 T, which

proves that c is continuous at all points s in the relative inferior of

T. Now let s be a point on the boundary of T . Then c(s) = 0, and for

any sequence s. €T, i = 1, 2, . . . , such that s. -*• s, it can be shown

that c(s.) -*• 0. This completes our proof.

40 Theorem: The function w : T -*• R is continuous.

Proof: Let s*€T be arbitrary and let s. eT, i = 1, 2, 3, . . . be any

sequence which converges to s*. Then, since c(») is continuous,

c. = c(s.), i = 1, 2, 3, . . . , is a sequence which converges to c* = c(s*)

and, since -£? (•) is a continuous map, •%> (c.) -*• "£•> (c*). Now consider

the sequence w. = w(s.), i = 1, 2, Since w. € fa (c.) C "£> (n/N), a

compact set, the sequence w., i = 1, 2, .. . must have a convergent

subsequence, w. with jsK, an index set. Suppose w. -* w*. Then,

since w.€ v(c.), w*€ •£?(<:*)• Also, since w. € P(v(s.), s.), w*«P(v(s*), s*).

Hence w*€ 4o (c*)H P(v(s*), s*) = {w(s*)}» i.e., w* = w(s*), and all

convergent subsequences of {w.} converge to w* = w(s*). Consequently,

w. -*• w*, i.e., w(s.) -+ w(s*), which proves that w is a continuous

map.

-13-

The conditions under which an algorithm for computing a point

seT such that v(s) = w(s) will converge and the freedom with which

it can be chosen are illuminated by the following two theorems.

41 Theorem: Let a : T -*• T be an algorithm*such that for every seT, for

which v(s) i w(s), there exists an e(s) > 0 and a 6(s) > 0 with the

property that

42 c(a(s')) - c(s') > 6 for all s'eB(s,e)OT,

where B(s,e) is an open ball of radius € and center s . Let s.,

i = 0, 1, 2, ... , be any sequence generated according to the rule

43 s = a(s.), i = 0, 1, 2, .. .
l+l i

with seT arbitrary. Then every convergent subsequence of the sequence

{s.} converges to a point s* in T satisfying v(s*) = w(s*) (where s*

may depend on the subsequence).

Proof: Let {s.}, generated by (43), be a sequence in the closed set T, and
l

let {s.}, jeK, be a convergent subsequence of {s.}. Now suppose that s.-*s*,
J J

for jeK, and that v(s*) ^ w(s*)« Then, by hypothesis, there exist a n

e * > 0 and a 6* > 0, and a peK such that

44 s.eB(s*, e *) for all jeK, satisfying j >p
w

and

t We shall call a function an algorithm if it can be used for finding points

s eT such that v(s) = w(s) .

-14-

45 c(s) - c(s.) > 6* for all I > j > p, with i , jeK .
J

But, c is a continuous function and hence c(s.) -»• c(s*) = c* for jeK,

which is impossible in view of (45). Hence we have arrived at a con

tradiction which proves the theorem.

As an immediate consequence we get the following results.

46 Corollary: Let a : T -*• T be a continuous function such that for every

seT for which v(s) t w(s)

47 c(a(s)) - c(s) > 0

then a is an algorithm which satisfies the assumptions of theorem (41).

48 Corollary: Let a : T -*• T be an algorithm satisfying the conditions of

theorem (41) and let {s.} i = 0, 1, 2, . .. , be any sequence in T with

the property that

49 c(s. M) - c(a(s.)) > 0 for i = 0, 1, 2, . ..
1+1 i —

Then every convergent subsequence {s.}, jeK, of {s.) converges to

a point s* satisfying v(s*) = w(s*) (where s* may depend on the sub

sequence).

50 Corollary: Let a : T -»• T, b : T •* T be any two algorithms which satisfy

the conditions of theorem (41). If d : T -* T is an algorithm with the

property that

-15-

51 d(s) = a(s) or d(s) = b(s) for all seT,

then d also satisfies the conditions of theorem (40).

The gist of the last corollary is that we may switch from one

algorithm to another in any way we please. This observation is im

portant, since the algorithm a may be fast only in some parts of T

while b may be faster than a in others.

The manner in which the corollaries (46) and (48) are used will

become clear from what follows.

We begin with the preliminary steps of the construction of a

family of algorithms for computing points seT which satisfy v(s) = w(s),

52 Definition: Let o- be a map from T into the set of all subsets of T

defined by

s + X.(w(s) - v(s))
cr(s) = {s'eT|s' = , 0 < X < 1

||s + \(w(s) - v(s))||

Since w -v is a continuous function, so is cr.

53 Theorem: For any seT, the function c assumes its maximum value

on the curve o-(s) at exactly one point. Furthermore the point s*ecr(s)

which maximizes c(s) on o-(s) is also the only local maximum point of

c in cr(s).

Proof: Let

s + \(w(s) - v(s))
54 s(M =

||s + Mw(s) - v(s))||

-16-

then s(X.)eo-(s) for all X.e[0, X.'], where X.1 is the largest value of X. in

[0,l] satisfying s(X.') e cr(s). Now, suppose that the function c(s) does

not assume a unique local maximum on <r(s). Then there must be at

least three points X. < X. < X. in [0, X.'] such that

55 c(s(\x)) = c(s(\2)) = c(s(\3) .

But this contradicts the fact that there can only be two hyperplanes

p(v(s(\)), s(X.)), P(v(s(X.?)), s(X.)), with normals in the two dimensional

plane spanned by the vectors s and (w(s) - v(s)), which separates ft

from (c(s(X^))) and which, at the same time, are support hyperplanes

to these sets. Consequently for the function c there is a unique local

maximum point on o-(s) which is also a global maximum point.

Definition: Let m be a map from T into [0, n/n"] defined by

56 *n(s) = max c(s')
s' e o-(s)

57 Proposition: The map m defined by (56) is continuous.

Proof: Since c and cr are continuous, the composite map ccr which

maps T into subintervals of [0,n/n], according to

(co-)(s) = {are[0, n/n] \ a = c(s'), s'eo-(s)}, is continuous. Hence the

map m is continuous.

58 Proposition: For every seT such that w(s) ^ v(s) m(s) > c(s) .

-17-

Proof: Let s e T be such that v(s) 4 w(s). Then P(v(s),s) separates

ft from (c(s)) and is a support hyperplane to both ft and to (c(s)),

with the respective points of support being v(s), w(s), which are

distinct. Hence there must be a hyperplane P(v(s'),s'), with s'ecr(s),

which separates (c(s)) from ft and P(v(s'),s')n . (c(s)) = 0. Hence

c(s') > c(s) and therefore m(s) > c(s).

59 Definition: Let the algorithm a : T -»• T be defined by the relation that

a(s)eor(s) is the point in cr(s) which maximizes c(s) over cr(s), i.e.,

c(a(s)) = m(s).

60 Theorem: The algorithm a defined in (59) satisfies the assumptions

of theorem (41) .

Proof: By construction, c(a(s)) > c(s) for all s such that v(s) ^ w(s).

Hence, by corollary (46), we only need to show that a is continuous.

Let s be any point in T and let s. eT, i = 0, 1, 2, . . . , be any

sequence which converges to s. Then the sequence a(s.) i = 0, 1, 2, ,

must contain a convergent subsequence, say a(s.) with j eK, an index

set. Suppose that for jeK, a(s.) -* s * and that s* ± a(s) . Then since

a(s.)eo-(s.) and a is continuous, it follows that s*eo-(s) and hence, by

theorem (53)

61
m(s) > c(s*)

since m(s) = c(a(s)) .

-18-

Now, m(s.) = c(a(s.)) by definition of a, and m and c are continuous.

Hence for jeK, m(s.) -*• m(s), c(a(s.)) -* c(s*), and therefore

m(s) = c(s*). But this contradicts (61). Hence s*= a(s). Since every

convergent subsequence of {a(s.)} converges to a(s), it follows that

a(s.) ->* a(s) and hence a is a continuous map.

62 Corollary: Let a be the algorithm defined in (59) . Then, for 0 < X <1,

the map a. : T -*• T defined by
X

63 a (s) = S+ Ma(s) - S)
||s + X(a(s) -s)||

is also an algorithm satisfying the assumptions of theorem (41).

Proof: For X fixed, a is obviously continuous and by theorem (53)

and proposition (58), c(a^(s)) > c(s) for all seT such that v(s) ± w(s) .

64 Remark: Since X> 0 can be chosen arbitrarily small without upsetting

the important properties of a (s), it is easy to choose simple rules for

picking s on <r(s) and still satisfy c(s) > c(a.(s.)) for some fixed
i <i i l+I \ i

X. The resulting sequences {s.} will contain subsequences {s.}, jeK,

which converge to points s* satisfying v(s*) = w(s*) .

IV- Computational Procedures and Antizigzagging Precautions.

We shall now suppose that the constraint functions q1 are quadratic

forms, i. e. ,

-19-

65 qx(x) = <x - §., Q.(x - £.)> -P., i = 1, 2, ..., m, with (3. > 0 ,
ii i i i

where the £. are given n-vectors and the Q. are n X n symmetric,

positive definite matrices. Suppose we wish to implement the algorithm

a(#) defined in (59), or for some 0 < X < 1, the algorithm a.(#)
—" X

defined in (63). For the computation to be effective, we must be able

to compute a. (s), for a given s, in a finite number of steps. Now

from the way a(#) was defined, we face two sources of difficulty. The

first is due to the fact that m(s) cannot be computed in a finite number

of steps. However, because of corollaries (48) and (62), and the fact

that X may be taken very small in a. (•), it is clear that given s. e T,
X i

we may choose s to be just about any point in cr(s.) for which

c(s) > c(s.) and the sequence {s.} will have subsequences which

converge to optimal points s*, satisfying v(s*) = w(s*) .

The major source of difficulty, therefore, is due to the fact that

v(s) cannot be evaluated in a finite number of steps when v(s) is on an

edge of the boundary of the set ft = {v |q (v) < 0, i = 1, 2, .. . , m}, i. e. ,

when there is more than one ie{l, 2, . . . , m} such that q (v(s)) = 0 and

V q (v(s)) t as, for some <x > 0 and i = 1, 2, . . . , m . (The reason for

this is that when v(s) is on an edge we must solve for the intersection

of at least two surfaces and one hyperplane, and this cannot be done in

a finite number of steps). Hence, we must avoid evaluating v(s) exactly

for all points seT for which v(s) ^ w(s).

-20-

The above considerations are reflected in the following sub-

procedures PI to P6 which are then organized into a flow chart. The

antizigzagging precaution, or the manner in which we improve the

accuracy of the evaluation of v(s), w(s), c(s) and a(s) should be clear

from the flow chart. The scheme we use is related to that of Zoutendijk[3]

Finally, since the assumption --1 (n/N)0 ft ^ 0 was only made

for the sake of simplifying our exposition, we relinquish this assumption

at this stage and shall have no test for it. Instead, we include a

test to establish that the problem has no solution. (When <^ (n/n)0 ft t 0

but int -2? (<s/N) 0 ft = 0, the empty set, the algorithm a(-) defined in

(59) may have discontinuities at some optimal points s described in P6.

However, it is not too difficult to show that these discontinuities do not

affect the convergence of the sequences generated by a (•) to an optimal

solution).

-21-

PI. Initial Guess Procedure: s

+
Step 1 Choose a point z in the interior of ft, i. e. , z satisfies

66 q (z) < 0 for i = 1, 2, . . . , m

Step 2 Find Xe[0,l] such that

67 q (Xz + (1 - X) d) = 0 for some i e {l, 2, . . . , m}

and

68 qJ(Xz + (1 - X) d) < 0 for all j e{1, 2, . . . , m}

Step 3 With X computed in step 2 and i any integer in {l, 2, . . . , m}

satisfying (67), let

69 s = Vq'jXz +(1 - X)d)
° || Vq\Xz + (1 -X)d)|

then s is in T and v(s) = Xz + (1 - X)d.

+
To find such a point z, use P2 to compute two points v', v" on the

boundary of ft and then set z = — (v1 + v"). Some experimentation will

be required to find a z which is "centrally" located in the interior of ft

-22-

P2 Computation of v(s), w(s), c(s), q-(s) when v(s) is not on an
edge of ft.

Let s eT be given. To verify that v(s) is not on an edge, carry

out the following calculation.

Step 1 For i = 1, 2, . . . , m solve for a , v. the equations

70 VqV-) = a1 s, a1 > 0

71 qV.) = 0 .

If there is a v. among the v. computed above such that q (v.) < 0 for
J l J ~

all ie {1, 2, .. . , m}, then v(s) is not on an edge.

Step 2 Since v(s) is not an edge of ft by assumption, find the

ie {1, 2, ... , m} satisfying

j I
72 q^v) < 0 , j = 1, 2, . . . , m,

73

and set v(s) = v. .

Step 3 Find the X * < 0 which satisfies

then

N

\d + \ sat<Xs, r.>r. - v(s), sy = 0
i=l

-23-

N

74 w(s) = d + \ sat <X*s, r. > r.
i=l

i=l

N M/2
75 c(s) = I Y (sat<X*s, r. >)2

76 o-(s) = {s' |s! = s + X(w(s) - v(s)), 0 < X< 1, and

<d - v(s'), s'> > 0}

P3 e-Approximate Computation of v(s), w(s), c(s) and q-(s) when
v(s) is on an edge of ft and seo-(s)

Suppose s , v(s), c(sn) and e > 0 are given and suppose

seo-(s0) .

Step 1 For i = 1, 2, . . . , m, solve for a , v. the equations

77 Vq (v.) = <x s, a > 0
l

78 qX(v.) = 0
l

Verify that v(s) is on an edge by showing that for every ie {1, 2, . . . , m}

there is a j e {1, 2, . .. , m} such that

79 q3^) >0,

-24-

when v. satisfies (77), (78).

Step 2a Suppose v(s) is not on an edge of ft. Then, by a process of

consecutive halving of subarcs of cr(s) , between s and s, find a

point s'ecr(s) between s and s, such that v(s') is not on an edge,

i. e. , for some i e {1, 2, ... , m}

0
80 Vq (v(s')) = o-s', with a > 0

81 q* (v(s')) = 0 ,

and for all ie {1, 2, ... , m}

82 q^vts')) < 0.

In addition, v(s') must satisfy

83 qV(s')) +e > 0

for some j e {1, 2, . . . , m} .

Step 3 For the j which maximizes the left hand side of (83), find a > 0

such that

84 qJ(z + tt(v(s') - z)) = 0,

where z is the interior point of ft used in PI. Let v' = z + <z((v(s') - z))

We now set v (s) to be the point which minimizes

-25-

85 ||v(s')-v||2

subject to

86 <Vql(v(s,)),v-v(s,)> = 0

<VqJ(v'), v-v«> = 0

i. e.,

88 v (s) = NT(NNT) (b - Nv(s') = v(s')
e

where, b = (< Vq^ (v(s'), v(s') >, <VqJ(V), v» >) , and N is a 2Xn
S. j

matrix whose first row is Vq (v(s')) and whose second row is Vq (v1).

Step 2b Suppose that v(s) (or v (sj) is on an edge of ft. Since v(sQ)

is known, w(s^) (or w (s \) is known. Find an a > 0 such that the
x 0 e x 0

point

89 v(sn') = z + <*(w(s) - z)

is a point on the boundary of ft , i. e. ,

90 q1(v(s ')) < 0 for i =1, 2, ...,m

and for at least one j e {1, 2, ... , m}

91 qJ(v(s>0)) = 0

-26-

With s ' defined by

VqJ(v(s'))
92 si = U

° ||Vqj(v(s»))||

we see that v(s') is consistently defined. Let

i" (Xs' + (1-X)s)
93 tr(s') = \ s •|s' = - , 0< X< 1

I. ||\s^ +(l-Ms)||

Now set s = s ' , o*(sn) = °~(s,!) and use steps 2a and 3 to compute v (s)

Step 4 Let X < 0 be the solution to the equation

N

94 \d + \ sat <Xs, r. > r. - v (s), sy = 0
i=l

then we set

N

95 w (s) = d + > sat <X s, r. > r.e ^ e i i
i=l

N \ 1/2
2

\ i=l

96 cjs) = |) (sat <Xfis, r.)

-27-

s + X(w (s) - v (s))
97 o- (s) = < s1 |s' = for 0 < X < 1 ,

€ \ ||s+ X(w (s) -v (s))||

and <d - vjs'), s'> > 0

98 Remark: Note that v , w , are point to set and not point to point

maps since their values are not defined uniquely. Also note that

in the approximate evaluation of v , we have substituted the wedge

formed by the hyperplanes P(v(s'), s'), and

VqV)
P V,

II VqV) ||

for the set ft . This wedge contains the set ft and serves as a satis

factory local approximation to ft for our purposes.

P4. Computation of s from s. .

Suppose we have'computed s., i = 0, 1, 2, ... in T, and let M

be a given positive integer.

Step 1. Compute M points (equally spaced) y , y_, ..., yM in cr(s.)

(or or (s.)) using P2 or P3.
€ 1

Step 2 Compute c(y.) (or c (y.)) for i = 1, 2, . . . , M and find j e{1, 2,.. . , M}

such that

-28-

99 c(y) > c(y) ie {l, 2, ... , M}
j

or

100 c (y.) > c (y.)
€ wj — € wl

Step 3 Set

101 s.xl = y.
l+l 7j

In the flow chart given, M is first taken to be one, and is only increased

if an increase in the "surrogate cost" c is not obtained in the first try.

P 5. Verification of Feasibility.

If for any seT, the plane P(v(s), s) (or P(v (s),s)) separates

strictly the set -£? ('vN) from ft , then, obviously, there is no feasible

solution.

Step 1 Compute v(s) (or v (s)) by P 2.

Step 2 Compute X * < 0 such that

10 2 | < X*s, r. > | > 1 for i = 1, 2, ... , k

If

10 3 /d + y sat <X#s, r.> r. - v(s), s\ >0
i=l

-29-

then there is no feasible solution to the optimal control problem.

P6. Verification of Optimality of s

When the interior of ft / c^(n/n) is empty, but ft / 1o(Vn~~) t 0,

i. e., there exist feasible solutions, it may happen that s is an optimal

solution in the sense that

104 u. = sat< Xs , r. > , i = 1, 2, .. . , k
i i

is an optimal control sequence (for a suitably chosen X), but

10 5 w(s) £ v(s)

Nevertheless, any convergent sequence {s.} generated by the algorithm

a(») defined in (59), will converge to an optimal s, whether this s

satisfies w(s) = v(s) or not. However, if s is optimal, and v(s) ^ w(s),

s will not be optimal and hence, after the initial guess s is computed,

we should verify its optimality as follows.

Step 1 Find if there is more than one root X to the equation

106 /

i=l

d+ y sat<Xs0,ri>r.- v(s0), sQ)> = 0

Step 2 If the answer is yes then s is optimal. If there is exactly one

solution to (3), check if v(s) = w(s). If there is only one X satisfying

(10 6) and v(sQ) ± w(sQ) then sQ is not optimal.

-30-

This procedure is not shown in the flow chart.

Example: The behavior of the algorithm may be judged to some extent

by its performance in the following case: a 50 sampling period process

for a tenth order system with two quadratic constraints on the terminal

state.

Thus, A = (a..) is a diagonal 10 X 10 matrix with a.. = 0 for

i ^ j and a.. = 0.9, a00 = 0.9, a„„ = 0.5, 3. = 0.5, a__ = 0.9, a,, = 0.9,
11 22 33 44 55 66

a?7 = 0.6, ag8 = 0.6, a^ = 0.9, and a^Q =0.9.

b = (7.60, 7.60, 0.10, 15.20, 15.20, 0.10, 0.10, 7.60, 7.60)

x = (3000.0, 3000.0, 1000.0, 6000.0, 6000.0, 1000.0, 3000.0,3000.0).

q'(x) = (x1 - 4)2 +(x2)2 +(x3)2 +(x4)2 +(x5)2 +(x6)2 + (X7)2 +(x8)2 +

(x) + (x) - 25

q2(x) =qV) - (x1-4)2+ (xX+4)2

The extent of possible ill conditioning that could occur in a

gradient method approach to the problem is indicated by the nature of

50
A , which is computed to be

A =Diag(0.51537738 X10~ , 0.51537738 X10~2, 0.88817842 X10"15,

0.88817844 X10"15, 0.51537738 Xlo"2, 0.51537738 X10_2,

0.80828110 X10"11, 0.80828110 X10U, 0.51537738 X10"2,

0.51537738 X10~2).

The resulting vector d is

d =(0.15461321 X102, 0.15461321 X102, 0.88817842 X10"12,

0.88817842 X10"12, 0.30922643 X1Q2, 0.30922643 X1Q2,

-31-

0.80828110 X10"8, 0.80828110 Xlo" , 0.15461321 X10 ,
2

0.15461321 X 10 ,

i _2
With e = 10 , it can be seen from the table below that it took 3 steps

3

to solve the problem, with ||v(s2) - w(s2) || = 0.24153891 X10 . The

optimal value of the surrogate cost, c(s?) = 0.36357584. The time

required to solve this problem on a CDC 6400 digital computer was

5 seconds.

-32-

CONCLUSION

This paper has presented an idea for coping with ill conditioning

effects which arise when standard gradient methods or nonlinear pro

gramming algorithms are applied directly to discrete optimal control

problems. The gist of the idea is to devise parametric methods which

do not suffer from ill conditioning effects and at the same time retain a

number of the most attractive features of nonlinear programming

algorithms. The result, for the case worked in detail, is seen to be

a very fast, and demonstrably convergent, large step, parametric

algorithm.

It is hoped that the approach presented in this paper will give

rise to a greater utilization of nonlinear programming ideas in control

engineering.

ACKNOWLEDGMENT

The authors wish to thank S. Winograd for his interest and con

structive comments.

-33-

REFERENCES

1. M. Canon, C. Cullum, and E. Polak, Constrained minimization

problems in finite dimensional spaces, J. SLAM Control 4

(1966), 528-547.

2. J. B. Plant, "An Iterative Procedure for the Computation of

Optimal Controls, " Ph.D. Dissertation, Dept. of Electrical

Engineering, MIT, June 1965.

3. G. Zoutendijk, Methods of Feasible Directions, A Study in Linear

and Non-linear Programming, Elsevier Publishing Co. ,

Amsterdam, I960.

4. H. W. Kuhn and A. W. Tucker, "Nonlinear Programming, Proc.

of the Second Berkeley Symposium on Mathematic Statistics and

Probability, " pp. 481-492, Univ. of Calif. Press, Berkeley,

Calif, 1951.

5. W. I. Zangwill, Applications of the Convergence Conditions, Working

Paper No. 231, Univ. of Calif. , Berkeley, August 1967.

-34-

Table 1. The computation of s* satisfying v (s*) = w (s*).

0

0

-14

-14

0

0

-10

-10

0

0

0.91892549 X 10

0.11892548 X 10

0.68316957 X 10

0.68316951 X 10

0.23785095 X 10

0.23785095 X 10

0.62171410 X 10

0.62171410 X 10

0.11892548 X 10

0.11892548 X 10

v(s0)

0.59462738 X 10

0.59462738 X 10

0.34158478 X 10

0.34158578 X 10

0.11892548 X 10

0.11892548 X 10

0.31085705 X 10

0.31-85705 X 10

0.59462739 X 10

0.59462738 X 10

-13

-13

c(s0)

0.35487401 X 10

-9

-9

0

0

0

0.91872677 X 10

0.11872676 X 10

-0.13492947 X 10

-0.13402047 X 10

0.23745353 X 10*

0.23745353 X 10

-0.16132870 X 10

-0.16132870 X 10

0.11872676 X 10

0.11872676 X 10

0

0

-1

-1

0

-1

-1

0

0

v(sx)

0.59363380 X 10

0.59363380 X 10

-0.67464734 X 10

-0.67464734 X 10

0.11872676 X 10

0.11872676 X 10'

-0.80664348 X 10

-0.80664348 X 10

0.59363380 X 10

0.59363380 X 10*

-1

-1

c(sx)

0.36352709 X 10

-35-

1

-1

-1

0

0

0.91872670 X 10

0.11872668 X 10

-0.13502530 X 10

-0.13502530 X 10

0.23745349 X 10

0.23745349 X 10

-0.16163510 X 10

0

-1

-1

0

0

-1

-1

0

-0.16163510 X 10

0.11872668 X 10

0.11872668 X 10
0

v(s2)

0

0

-1

-1

1

1

-1

0.59363091 X 10

0.59363091 X 10

-0.67573219 X 10

-0.67573219 X 10

0.11872618 X 10

0.11872618 X 10

-0.80796073 X 10

-0.80796073 X 10

0.59363091 X 10

0.59363091 X 10

-1

c(s2)

0.36357584 X 10
0

Table 2. The optimal control sequence,

= -0.21288059 X 10uo =
-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

= -0.23653399 X 10
Ul =

U2 =

u3 =

-0.26281554 X 10

-0.29201728 X 10

= -0.32446364 X 10
U4 =

= -0.36051516 X 10
U5 =

= -0.40057241 X 10
u6 =

U7 =
-0.44508046 X 10

= -0.49453384 X 10
U8 =

U9 =
•0.54948205 X 10

u

10
= -0.61053560 X 10

u, , = -0.67837290 X 10
11

12
u = -0.75374768 X 10

u10 = -0.83749742 X 10
13

14

15

16

17

18

19

20

21

22

23

24

25

u

u

u

u

u

u

u

u

u

u

u

u

-0.93055267 X 10

-0.10339474 X 10"

-0.11488305 X 10~

-0.12764784 X 10"

-0.14183093 X 10"

-0.15758992 X lo"

-0.17509992 X 10"

-0.194555546 X 10

-0.21617274 X 10"

-0.24019194 X 10"

-0.26687993 X lo"

-0.29653326 X 10~

-2

u

u

u

u

u

u

u

u

u

u

u

26

27

28

29

30

31

32

33

34

35

36

37

38

= -0.32948140 X lo"

= -0.36609045 X 10"

= -0.40676714 X lo'

= -0.45196350 X lo'

= -0.50218165 X 10

= -0.55797960 X 10

= -0.61997730 X 10

= -0.68986360 X 10

= -0.76540388 X 10

= -0.85044856 X 10

= -0.94494253 X 10

= -0.10499356 X 10

= -0.11665941 X 10

u

u

u„ = -0.12962140 X 10
39

u = -0.14402349 X 10

= -0.16002560 X 10u
41

u„0 = -0.17780535 X 10
42

u„, = -0.19755999 X 10
43

n „ = -0.21950844 X 10
44

mac = -0.24389356 X 10
45

™ , = -0.27098443 X 10
46

u = -0.30107871 X 10

n 0 = -0.33450454 X 10
48

u„„ = -0.371621269 X 10
49

0

0

-36-

EXITS

(T) Undriven response
inside torget set £i.
Optimol controls=0

(z) Torget set
not reochable.

(T) Problem solved.
Print optimol controls.

©

©

Yes

Yes

FLOW CHART

Reod in Data
Print Doto

Check Data

Compute the
map r()andon
interior point z

Use PI to
compute
v(s0),s0

UseP2
to compute
w(s0),c(s0)

s'=s0*w(so)-v(s0)
useP2orP3 to

compute v€ (s')

1

,

Set

s0ss'
v(s0)=ve(s')
w(s0)=we(s')
c(s0) c€ls'l

-37-

No

No

No

Set
s'=s0+-^(s'-s0).
Use P2orP3to

compute ve(s')

No

Set
s'=s0+y(s'-s0)
UseP2orP3to

compute v£(s').

NOTES

When v(s)is not on edge
setv€ls)=v(s)1w6(s)=w(s),c€(s)=c(s)

. . . . s0+w(s0)-v(s0)s0^(s0)-v(So)=[|Sotw(So!_v(v||

I w 0
0 I

A
-r

d
O

F
ig

.
1.

T
h

e
g

e
o

m
e
tr

y
o

f
th

e
p

ro
b

le
m

.

v(
-)

	Copyright notice 1967
	ERL-225

