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ABSTRACT

Recent developments in the theory of linear dynamical systems have

generated an interest in efficient ways for calculating the Jordan canonical

form of a matrix. The present paper presents a computational method for

finding the Jordan canonical form, based on three subprocedures, each of

which performs elementary row operations. The advantage of the method is

that it is simple to program and is computationally more efficient than

methods based on the computation of elementary divisors.
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Introduction

Among the recently raised questions in system theory are those of

controllability, observability, equivalence and the minimality of a system

representation. For dynamical systems represented by a set of linear

first order differential and algebraic equations, these questions are

closely related to the nature of the invariant subspaces of a certain

matrix entering the differential equations [U]. Since in order to construct

completely controllable or completely observable or equivalent subsystems

one must eventually obtain descriptions for these invariant subspaces [k],

there is a great deal of interest in efficient methods for constructing

the Jordan canonical form of a matrix.

This paper presents an algorithm for constructing Jordan forms which

is conceptually very simple and computationally quite efficient. The pro

gramming of this algorithm is considerably expedited by the fact that it

consists of only three straightforward subprocedures. The method presented

is based on a derivation of the Jordan canonical form given by Godement [l],

whose proofs have been modified so as to reveal the exact computations one

must perform in the construction of a Jordan canonical form. Finally, it

might be of interest to point out that since the method presented performs

elementary row operations on matrices whose elements are numbers and not

polynomials, it is simpler and faster than the ones described in [2], [3].



I. Nilpotent Transformations fromC" intoCn

1 Definition: Let T be a linear map from£n intoC*1. T is said to be

nilpotent with index of nilpotency p if T^x = 0 for all x zCJ1 and

there is ax e£n such that T^1 x^0.

2 Remark; All the eigenvalues of a nilpotent transformation must be zero,

since otherwise there would be an eigenvector e with eigenvalue A ^ 0

such that T^e =Ake ^0for k=0, 1, 2, ...

3 Lemma; Let T: Q -*C be nilpotent with index p, and let
i *it\± - {x: T x = 0) be the null space of T with i = 0, 1, 2, .,

Then,

P.

T 1i+l C 1i i= °> lj '••» v"1

and

5 {°)=»loC,IlCtl2C-C,lp-lC:1p={/n

is a strictly increasing sequence.

Proof; Let i be an integer in (0, 1, 2, ..., p-1), let x e M . , then

i+1 iT x = 0, i.e., T (Tx) = 0, and therefore Tx eJ] .. Thus Tf| . cf| .

for i = 0, 1, 2, ..., p-1, which proves (k).
i i+1Now if T x = 0, then T x = 0, and hence fl. ^ . for i = 0, 1, 2, ...,

p-1. Suppose therefore that for some i in {0, 1, 2, ..«,, p-1), fl . = fl .,

Then, for any x £ Q,n

6 TPx =0=T^V"1"^)

Thus for any x££n, TP**1"1x ef|i+:L» but if t|i+1 =1I\±> we must nave

7 Ti(Tp"i""1x) = TP_1x =0
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for all x £ Cs which contradicts the assumption that p is the index

of nilpotency.

Lemma: Let T and fl., i =1, 2, ..., p-1, be defined as in lemma (3).

Let fy! be a linear subspace of £ such that for some i £ {1, 2, ...,

p-1), jf( n « =(0). Then (l 1/l{) (\ f\ ±_± =(0) and Tis nonsingular on %.
Proof: Let x£(T w[) PI f|. , be arbitrary. Then there exists ay£

such that Ty = x and T1" (Ty) = 0. Hence y eftffl 1/\ . and therefore

y = 0, so that x = 0. We therefore conclude that (T#() 0 f| = {0),

Now suppose there is ay £ "( >y^ 0 such that Ty = 0. Then T^y - 0.

also and y £ )){ft ^ .. But then y=0 which contradicts our assumption

that y ^ 0, and hence T is nonsingular on //[.

Lemma: Let T and 1/1., i = 1, 2, ..., p-1, be defined as in lemma (3).

Then there exist subspaces ]/L, j|(?, ..., U[ of £,n such that

^i = ^i-1 ® *[ i for i=X> 2> "> P

and, for i=2, 3, ^, ...} P> Imaps j/l/[. into /(L-, one-to-one.
Proof: Suppose that for any i £ {2, 3» ...> p)> we have found a sub-

space yl^. such that

13 Obviously 11. 0 W^ =(0)

and hence, by lemma (8),

I1* \_2 ntI. ={o}

and T maps ty{. onto T jj{. one-to-one.

The symbol © denotes the direct sum operation.
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Now, since 1/l/i c \j., it follows from lemma (3) that Tf{± c ^^5
it also follows from lemma (3) that f| ._c f| . Let Cr ., be the

orthogonal complement of T%. @ t] .g (which is well defined because

of (Ik)) in t] i-;L, i.e.,

Now let

^i-rti® T*i

Then, T maps K(. into j}(. _-, one-to-one, and because of (15),

hence, /ft-.i satisfies the postulates of the lemma. Now, let m, be

the orthogonal complement of )| , in 111 = Q, . Then (15) and (l6)

define the subspaces >ff ,, j/l/[ _p, ..., /yf, uniquely and they satisfy

the conditions of the lemma. This completes our proof.

18 Theorem: If T: £/ ~* (y is a linear, nilpotent transformation, with

index of nilpotency p, then there exists a basis in Qy with respect

to which T has a representation

0 d 0 0 0

0 0 d2 0 0

• o

• .

• •

0 0 o dn_2 0

0 0 0 0 6

0 0 0 0 0

n-1

where 6. = 0 or 1,
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Proof: With fl .,ffl . defined as in lemmas (3), (8) and (9), we find

V^p* Vi-»Hpa"lp-ia Mp-2
1P=£n-

Now, by the proof of lemma (9), we may take fj/l to be to the orthogonal

complement of t] -n in W .

Let £ _-, £ ,.,..., £ . be a basis for I'M and let, £ n n,
P,l' P,2' ' sp,k "lp ' T>-1,1'

£ t p'» °•*» ^n-1 k be a basis for Cf «i >'the orthogonal complement

of T^p Q J| in f| . Then, by lemma (9),

«ndTep,i' TS,2' •••' TS,y W* W« ••" Vi,Viis a
basis for |W .. Continuing this construction, we obtain the following

result. For i = 1, 2, .„., p-1, let £ . , 6 . 9, ..., £ . .

be a basis for (^ ., the orthogonal complement of Tffl _. _ © 11B.i«,

in fl _. then the resultant bases for f/l > 7t( -, 9•••>fl/( ,a^e

and
P

? <& ••• ® „L1
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%: %,1* ^P>2' ••" ^p,kp

|fjp-l: TCp,l> '••' T^p,kp> *p-l,l* "' ^'Vl
2 2

Wp-2: T%,1> "> T^p,k 'TW,1' ••*' T^P-l,k 'V-2,1' •*•' ep-2,ko-;
22 <

J. j' •*•

23 <

>-3,^ V-2,1* •••' T' S-2,k -2J •'•' ^1,1' ^1,2* '••' ^1,^

Now, proceeding in the array (22) from bottom to top and from left to

right, we make the following substitutions:

Cl " ^ %,V C2=T? %,1> "", S ' S,l

_ mP-1 _ mP-2

(v1^!= T W c(yl)p+2 =T Vy *~; V= ^>s

Ck p+1
p

-2= TP
p-l,lJ ; ck (P+i)-i " V-1,1

{• n-^ " ^1,1; Vk^l " ^1,2; ••'; Cn " ^1,^ 8

Note that each vector C ±(i =1, 2, ..., k)is in /^ but not in
tfo-l'i for this reason it is called a generalized eigenvector of order p,

To each such generalized eigenvector corresponds a chain of p basis

vectors; to each such chain corresponds (in the Jordan form) a Jordan

block of order p. Similarly, for a generalized eigenvector of order k,



say £ 3 corresponds a chain of k basis vectors and a Jordan block of
k,i

order k (k = 2, 3, •••>?)•

Then, by inspection, C,* C2* •••> 5 is the desired basis. This

completes our proof.

II. Arbitrary Transformations from G into O

We shall now give without proof the remaining theorems which are

necessary to establish the existence of the Jordan canonical form for

a matrix.

2^ Lemma; Let T: C ~* 0 be a linear transformation and let

t|. = {x|T x =0) for i = 0, 1, 2, .... Then there exists apositive

integer p ^ n such that

25 <°) =floC ll^tls0"-'1 ?|p

is a strictly monotonic sequence and

26 y|p = yi, for all i1p,

i- ••• «]p

i

is invariant under T.

Furthermore, the dimension of |j is equal to the multiplicity of zero

as a root of the characteristic polynomial of T.

27 Definition: Let T: £,n -»• Q/1 be alinear transformation and let p

satisfy the conditions of lemma (2U). We shall call the subspace f\ ,

the generalized mall space of T.

28 Lemma; Let T: (* -+ Cs be alinear transformation; let its distinct

eigenvalues be A , A , ..., A , (s £ n). For i = 1, 2, .;., s, let
1 tL S

V| be the generalized null space of (T - A.I), where I is the identity

operator, then,



29

30

31

32

Theorem: Let T: C?n •+> C/1 be alinear transformation, let its distinct

eigenvalues be A , A , ..., A (s ^ n), and their respective multi

plicity as roots of the characteristic equation is m., i =1, 2, ..., s.

Then there exists a basis in C with respect to which T has a

representation of the form

Jx 0 0

0 J2 0

0 0 ....o... J

where, for i = 1, 2, ..., s, J. is a m. x m. matrix of the form
',,7i li

0

0 ... 0

62 ... 0

m.-l
l

A.
l

with 6. = 0 or 1 for j = 1, 2, ..., m.-l.
0 9 7 l

Proof: For i =1, 2, ..., s, let fl be the generalized null space
' pi

of (T - A.I). Then, by lemma (2^) the ra. dimensional subspace jl
I Pj_

is invariant under (T - A.I) and hence also under T, therefore the

restrictions of these operators to fl 1 are well defined. Now, let
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3^

9

(T - A.I), be the restriction of (T - A.I) to 1\ . Then (T - A.l).
11 v 1 ' I p. x l 'i

*i

is nilpotent with index p. and according to theorem (18) there exists

a basis in fl with respect to which (T - A.l). has a representation

N. =
l

0 .

V

0 .

0 .

m

i-1

0

where N. is a m. x m. matrix and 6. = 0 or 1 for j = 1, 2, ..., m. ,.
ill j ° 9 ' ' l-l

But then, with respect to the same basis, T., the restriction of T

to t| has a representation
pi

J. =
1

/h \ °
0 ^ 62

0

\.

0 . . . 0

0 . . . 0

0 A. 6
l m. ,

l-l ,

0 0 X. /

The existence of the representation (31) now follows from (29) and

(3*0. This completes the proof.

We shall now show how the above indicated calculations can be

mechanized.

III. Three Basic Procedures

We begin by describing three elementary procedures from which we

shall build up the algorithm for constructing Jordan canonical forms.



10

(Pl) Procedure for Computing a Basis for the Subspace {x[Ax = 0) of \S

Let A be a n x n matrix of rank m with real or complex components

(it may have any number of zero rows). Consider the subspace

35

36

L = {x|Ax = 0)

and let D by any n X n nonsingular matrix. Then x £ L if and only if

DAx = 0. We make use of this fact in the construction of a basis for

L. For i, j e {1, 2, ..., n). Let U.. be a n x n matrix which is

obtained from the n X n identity matrix by interchanging the i— and

th
j— rows. For i, j £ {1, 2, ..., n) let V. .(a) be a n x n matrix which

-*•J
+v<

is obtained from the n x n identity matrix by adding a times the i—

row to the j— row, and for i £ (1, 2, ..., n) let W.(p) be a n x n

matrix obtained from the n x n identity matrix by multiplying the i—

row by p, with p ^ 0. Thus,

1 0 0 .... 0 0

0 0 0 .... 1 0

0 0 0 .... 0 0

u.. =
10

•

• *

0 1 0 .... 0 0

0 0 0 .... 0 1



37 V..(a) =
10

w.(p) -

1 0 0 ... 0 0 0
I

I

0 1 0 ... 0 0 0

0 0 1 ... 0 0 0

0 0 a ... 1 0 0

0 0 0 ... 0 1 0

0 0 0 ... 0 0 1

10 0

0 10

0 0 1

. . . . 0 0

. . . . 0 0

0 . . . 0 0

0 0 o p . . . 0 0

0 0 0 0 ... 0 o

0

11

The matrices U. ., V. .(a), W.(p) are nonsingular. By inspection, the

premultiplication of A with any one of them will perform the corre

sponding elementary row operation (i.e., the one which was performed

on the identity matrix). Hence, if A is a n x n matrix obtained from

A by means of elementary row operations, i.e., by successive left

multiplication by matrices U.., V. .(a), W.(p), then x satisfies Ax = 0

if and only if Ax = 0.

To obtain a basis for L proceed as follows.
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Step 1: Use elementary row operations to obtain from A an upper

triangular matrix A

*!! ®12 * \n

A =

0 a
22 ' * *2n

0 0 . . a
nn

12

Step 2: Let i £ {1, 2, ..., n) be the smallest integer such that

*** +* "f"Vi +Vi

a.. = 0. If a. . =0, interchange the i— and (i+l)— rows to

make the element a. .,_ =0. If a.,, .,n f 0, subtract a multiple of
i,i+l i+l,i+l ' ' ^

the (i+l)— row from the i— row to make a. .^, =0. Proceed in a
i,i+l

similar fashion to make the rest of the i— row zero, with A remaining

upper triangular.

Step 3. Let j be the first integer greater than i such that a... =0

"f"Vi

after step 2 has been completed. Proceed as in step 2 to make the j—

row zero.

Step k: Continue the procedure implied by steps 2 and 3 to obtain a

triangular matrix A with the maximum number of (n - m) zero rows.

Note that the m nonzero rows are now linearly independent.

Step 5. Contract the matrix A by deleting the zero rows to produce an

m x n rectangular matrix A . Let K c {l, 2, ..., n) be the index set

characterized by i e K if a.. /Oin A after step k is completed, and

~ th ♦**
let c. be the i— column of A . Then, by inspection, the m columns

c^ i e K are linearly independent and form a m x m matrix. Now,

x £ L if and only if

A x = 0
c
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Rearrange the components of x and the columns of A in such a way

that (39) becomes

kO A'x, + A"x0 = 0
c 1 c 2

where A* is a m x m square matrix whose columns are c, i £ K, while
C J*

A" is a m x (n-m) rectangular matrix whose columns are {a .) i £ K, the

complement of K in {1, 2, ..., n). Then, from (UO),

iH x=-(A'i" A"x,*±=-\C*) V2

which is best, computed by back substitution in (^0).

Now, for i = 1, 2, ..., n-m, let xp. = (0, 0, ..., 0, 1, 0, ...0) i.e.,

the i— unit vector in C and let x1 .be the corresponding solution

of (Ul). Then the vectors (x1., xp.), i = 1, 2, ..., n-m, are a

basis for L. (The components must be rearranged again, of course.)

(P2) Procedure for Computing a Basis for the Orthogonal Complement of the

Subspace. (x|Ax = 0) in the Subspace (xJBx = 0)

Let A be a n x n matrix of rank m and let B be a n x n matrix

of rank i, with the components of A, B real or complex. Suppose that

the subspace

k2 jfk= {x|Ax =0)
is contained in the subspace

^3 J\f^ ={x|Bx =0}

Then Z ^ m. Note that there is no restriction on the number of zero

rows in A or B and hence B may be the zero matrix, i.e.Jt/|r = O .
J3
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To obtain the orthogonal complement of L in L proceed as follows.

Step 1. Use the procedure (Pl) to compute the m x n matrix Ac« Then,
f* _ _ . n n t

c'
the columns of (A ) span the orthogonal complement of L.. in \y .

,~ **
Step 2. Let C = B(A ) , i.e., C is a n X m matrix of rank I < m. Let

c

M be the m - I dimensional subspace of Cs defined by

kk M = {y £ Om|C y =0

Then the orthogonal complement, (/ ,of L.. in L? is obviously given by

k5 fr =(x e£n| x=(Ac)* y, yeM)

Use procedure (Pl) (modified trivially to account for the fact that C

is not square) to construct a basis for the m - i dimensional subspace

M, say y_, y , ..., y . Now compute a basis for \J x.., xp, ..., x .,

according to the formula x. = (A ) y., for i = 1, 2, ..., m-i.

(P3) Procedure for Computing a Basis for the Orthogonal Complement of the

Subspace {x|x = Ea v.} in the Subspace (x|Bx = 0)

Let B be a n x n matrix of rank Z and let vn, v_, ..., v be a
1' 2' ' m

set of linearly independent vectors in the subspace

k6 L = {x|Bx = 0)

kl

Let L, be the subspace defined by

r m "i
L^^ =ix|x = \ a1 v^ a1 £Qy >

i=l

To" obtain the orthogonal complement of L- in Lp proceed as follows.

Step 1. Form a m x n matrix V whose i— row is v.. . Use procedure (Pl)

to compute a basis for the complex conjugate of the orthogonal comple

ment of L, i.e., for the subspace

t
The symbol * denotes the complex conjugate transpose.
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kQ {x|Vx = 0)

Call this basis w,, w,., ..., w . Let W be a (n-m) x n matrix whose
1' 2 ' n-m N

i— row is w., then an alternate description for L1 is

k9 L1 = {x|Wx =0)

Step 2. Use procedure (P2) to find a basis for the orthogonal comple

ment of L., (^9) in L .

IV. Algorithm: Jordan Canonical form for Nilpotent Operators from Cs

into \s

Let T: Q, -* Q, be a nilpotent linear operator for which we

have a representation with respect to some basis in the form of a matrix,

say A. To compute the basis established in theorem (18) (see (22)) pro

ceed as follows.

Step 1. Compute A2, A3, ..., Ap"1 (where AP =0).

Step 2. Use procedure (Pl) to find bases for the null spaces

n± - {x|A x=0) i=1, 2, ..., p-1. Call these vectors 1/L.^

ti±29 ••*> fi±z > resPectively»
i

Step 3. Use procedure (P2) to find a basis for ftl , the orthogonal

complement of T| _-:L in (^n. Then /W = ^ . Call the basis con
structed spA, ep?2, ..., ep?kp.
Step k, (i) Compute the vectors A£ _, ..., A£ . Then

p,i p,K

^,1' "••» ^k >/Lp-2,1' &p-2,2> •*•» *p-2,k _are abasis for

T«lp© 1p-2-

(ii) Use procedure (P3) to compute a basis for (/ , the orthogonal

complement of T S © II 0 in fl . Call this basis f, _ _,
^-P 'IP-2 |p-1 p-1,1

S-1,2' •••» €p-i,k • Then
v ' P-1
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A^>,1> ^p,2' '•" A^p,kp' Sp-1,1' S>-1,2» ••'» Vl^p.!

is the required basis for jfl 1.

Step 5. Continue the construction of the vectors in (22) using the

procedure (P3) in the manner indicated above until the entire basis

is obtained.

Example: Consider the nilpotent matrix A given below.

0

0

0

50 A =

-1

1

-1

1

0

A =

1 1 0 0 1

1 -1 0 0 -1

1 1 0 0 1

0 0 0 0 0

0 0 0 0 0

; AJ = 0

51

The index of nilpotency p = 3.

a) To find fl

(i) interchange first and last rows of A, then add the first row to

the second row, then add the third row to the fourth row and subtract

the third row from the fifth row. We get in succession -

r- 0 -1 0 0

°

1 1 -1 0

0 -1 -1 1 0

1 °
1 1 0 1

\o -1 -1 1 0

We therefore get

1 0 -1 0 0

0 1 1 -1 0

0 0 0 0 0

0 0 0 1 1

0 0 0 0 0
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5^
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"J

Thus Tin is two dimensional.

12 12(ii) Letting x = 1, x =0, and x = 0, x = 1, we find that a basis

for y|x is (1, 0, 1, 1, -1) and (0, 1, 0, 1, -l).

b) To find tl 2
2

(i) add to the first row of A to the second and subtract the first

row from the third to get

Hence

1

1 1 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

= (x: (1 1 0 0 1)

This is obviously a four dimensional space.

= 0)
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(ii) We do not need a basis for fl
2*

c) From (5^) abasis for ff\ - is the vector (l, 1, 0, 0, l) =£
•if J)l

d) To find fj/l g:

55 (i) A basis for A J¥\ , is A£ = (-1, 0, -1, 2, l)

56

57

(ii) Combining the basis for fl .. with A^L l5 we get

( i\1 © A))(3)i= {x: /-l 0-12 1
10 11-1

0 1 0 1-1

= o)

This is a two dimensional space, for which we compute a basis by

putting x~= 1, x^ = 0 and x~ = 0, x^ = 1 to get

(1, 1, 0, 0, 1), (-1, 0, 1, 0, 0)

Thus, the orthogonal complement of fl © A flfl relative to t|

the set

{x: (110 0 1) = 0 and x =

is

i p l P
Our only choice for u,u is a = 1, u =3 (within a scalar multiple)

and hence abasis for ( f] -, © A#[ ) n 11 2 is tne vector
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58 £2jl =(-2, 1, 3, 0, 1)

Hence abasis for /y[ _is

59 A£3>1 =(-1, 0, -1, 2, 1), ^ -(-2, 1, 3, 0, 1)

e) To find Abasis for $/|

Since we have already found three vectors for our bases:

2
€_. , A£--,, and £P1, and since A $L 1, A£p •, must be part of the basis

60

for m., we find that we already have five basis vectors for our five

dimensional space, and hence /y[ 1must be spanned by

,2.

Ah,i= (3' ~3'3' °'0)> M2,i= ("u> 9> "^ 5j *5)

V. Algorithm: Jordan Canonical Form for Linear Operators for v^ n into L^n,

Let T: Q, ~+ C/ be a linear operator for which the n n matrix

A is a representation with respect to a given basis. To compute the

basis with respect to which T will have a Jordan canonical form repre

sentation proceed as follows to implement the proof of theorem (30)

Step 1. Compute the distinct eigenvalues A , A , ...,A of A.
x. c. S .

Step 2. Compute (A - A..I) = D. Use procedure (Pl) up to (39) to

*w 2 2 2
compute D . Compute D and (D ) as before. If (D ) has the same

number of rows as D , stop. If(ir) has fewer rows than D , compute D

and (D ) . Continue this until the first index p. such that (D •*•)
x c 1 v 'c

and (ITI -1-) have the same number of rows. Then p1 is the index of

nilpotency of (T - ^-,1)-, •

Step 3. Carry out the steps 2, 3> k} and 5 of algorithm (rv) to obtain

the desired basis for fl
lpi
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Step k. Compute (A - Apl) and repeat the above four steps. Continue

until the entire required basis is constructed.

This concludes our presentation of the algorithm for computing the

Jordan canonical form of a matrix.
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