
 

 

 

 

 

 

 

 

 

Copyright © 1967, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



HOMOMORPHISMS BETWEEN STOCHASTIC

SEQUENTIAL MACHINES AND RELATED PROBLEMS

by

A. Paz

Memorandum No. ERL-M221

23 August 1967

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



«*.

Homomorphisms Between Stochastic
Sequential Machines and Related Problems*

A. Pazf
Electronics Research Laboratory

and

Department of Electrical Engineering
and Computer Sciences

University of California, Berkeley

ABSTRACT
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INTRODUCTION

The problem of reducing the number of states of a given

stochastic-sequential machine has been studied by several authors

[l] -[3] . A full and effective solution to the problem of finding a

machine with minimal number of states in an equivalence class of

machines has been given in the above-mentioned papers, although the

algorithms devised do not lead in general to a unique solution to this

problem. In the previous year it occurs to both the author and to Ott

[5] -[7] that further reduction is possible if the equivalence restriction

is weakened in a certain sense.

The study here has been prompted by the pioneering work of

Ott [5], [6], who investigates the above questions very thoroughly. Un

fortunately the work of Ott is obscured by the introduction of too many

newly-defined entities and theorems of minor importance. Some of the

most important theorems of Ott are reproduced here (Theorems 1 through

4 in Part II and Sec. IV-B), and, as the organization of our work differs

from the organization of Ott's, new proofs are provided to these theorems.

The content of our work is as follows: The first part, the exposi

tion, contains most of the known facts and theorems on the basis of which

the consequent parts are developed. The first part also contains an

explanation of the problems to be considered in the consequent parts.

In parts II and III we study some problems introduced by Ott and some
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new, related problems, in several aspects. In the last part the unique

ness of minimal machines is studied in the light of the concepts devel

oped in the previous parts.

An attempt has been made to simplify matters as much as

possible and to put the whole work under a common geometrical frame.

The work is self contained but; familiarity with one of the refer

ences [2], [6] or [7] is recommended.

I. EXPOSITION

M
A. The Set K

Definition 1. A stochastic sequential machine (S. S. M) is a quadruple

M = (S, X, Y, {A (y/x)}) where S, X and Y are finite sets (the internal

states, the inputs and the outputs respectively) and {A (y/x)} is a

finite set containing |x| X |y| square matrices of order |s| (| U |

denotes the number of elements in a set U ) such that A (y/x) =

[a (y/x)] with m..(y/x) > 0 and

|S|

I I mi^x> =1
yeY j=l

The superscript M is used for identifying the specific machine M

and will be omitted from here on if context is clear.

The pair (v, u) denotes any output-input pair of words over Y

and X respectively,such that the length of u equals the length of v
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(i (u) = i (v)), e.g., u = x1 . .., x^ v = y , ..., y ) x. e X, y. e Y. We

assume that the pairs (v, u) are ordered in a way such that A(v-) < i(v7)
J. £

=> (v , u ) < (v2, u_) and that this order is kept fixed.

When two or more machines are under consideration, we assume

that all of them have the same X and Y sets, and the pairs (v, u) are

ordered in all of them by the same order.

With every S. S. M., M, we associate an infinite set of

n-dimensional (n = |s|) column vectors K defined as follows;

KM= {ti(v, u) : ve Y*, ueX*}

where X and Y are the sets of all words over X and Y, respectively,

t| = r\(\, \) is a vector all the entries of which are equal to 1 (\ denotes

the empty word) and

T](yv, xu) = A(y/x)Ti(v, u) •

The vectors ti(v, u) are thus defined recursively and we assume that

they are ordered according to the order of the corresponding pairs (v, u).

M M*
Let K and K be two sets as shown above corresponding to two

S. S. M. *s,M and M* respectively. K is stochastically homomorphic
M* M ~ M*

to K (K -* K ) if there is a stochastic matrix B such that

M M*
B ti (v, u) = -n (v, u) for all (v, u). (1)
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Theorem 1. The relation (1) is equivalent to the following relation (2)

(provided that B has the due dimensions).

BAM(y|x) tiM(v, u) =AM (y|x) BW, u) for all (v, u)
(2)

and all (y, x)

Proof: Consider Fig. 1.

The figure shows that (1) implies (2). If (2) holds then:

Bti (X, X) = r\ (X, X), by the fact that both nM(\, \) and nM (\, X)

have all entries equal to 1 and B is stochastic.

Furthermore, if (1) holds for the pair (v, u) then:

Br!M(yv, xu) =BA^ylxJt^v, u) =AM*(y|x) BnM(v, u) =
M* , M* M*

= A (y|x)r| (v, u) = t| (yv, xu), by the definitions and by (2). The

theorem follows by induction.

B. The Matrix H1^

With every S. S. M., M, we associate a finite matrix Ji

having the following properties:
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The first column of H is r| . (3.1)

All the columns of H are elements of K , are linearly

independent and every other element of K is a linear combina

tion of them. (3. 2)

The (v, u) pairs corresponding to the columns of H are the

smallest pairs (in the order of the (v, u) pairs) such that H

satisfies the above conditions (3.1) and (3.2). (3.3)

It has been shown by Carlyle that given M one can find effec

tively HM (see [2],[5],

Theorem 2. The relation (2) is equivalent to the following relation:

BAM(y|x)HM =AM*(y|x)BHM (4)

Proof: Clearly (2) implies (4). That (4) implies (2) follows from the

fact that every vector t) (v, u) is a linear combination of the columns

of h".

C. The Covering Property

Let M be a given S. S. M.. With every n-dimensional

(n = |s|) probabilistic row vector it we associate a function

P^ : {(v, u)} -* [0, 1] defined as follows:

P^ (V, U) = TTTl (V, U)

Two functions as above, p and p , are equal if
TT TT

-6-



M M*p^ (v, u) = p^, (v, u) for all pairs (v, u) (5)

This requirement is equivalent to:

ttti (v, u) = tt1 t| (v, u) for all pairs (v, u) (6)

If the functions are induced by the same machine M then (6)

is equivalent to:

TTM i TTM
tt H = tt H (7)

because of the property (3.2) of H .

Definition 2. For a given S. S. M., M, we define the set of functions

(P induced by M as

^M , Mx
P = {p }

TT

Definition 3. Let M and M* be two given S. S. M. 's. The machine M

covers the machine M*(M>M*) if fiM~DpM .

Theorem 3. M>M* if and only if KM ^ KM* .

Proof: This is lemma 1 of Ott [6] .

D. Two Covering Problems

The following problem has been investigated by Ott [5], [6]

(See also Paz [7] ).
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Problem 1. Given an S. S. M., M, find a machine M > M which has

the least number of states possible.

Ott's investigation, although giving deep insight into the problem,

is far from providing a general effective solution to it. Also the example

given by Ott, in order to show that the problem is not trivial, is a degen

erate example, and one may ask whether there are nondegenerate

machines which admit a solution to this problem.

Our concern here is to suggest and investigate the following

related problem.

Problem 2. Given an S. S. M., M, find a machine M* which has the

least number of states possible such that M > M* .

We shall show by examples that this second problem is not trivial

and not equivalent to the first problem, specifically:

1. There is an S. S. M., M, which admits a solution to the

second problem, with M having less states than M, but no M having

less states than M is such that M > M.

2. There is an S. S. M., M, which admits a solution to the

first problem, with M having less states than M, but no M having

*
less states than M is such that M > M .

3. There is an S. S. M., M, which admits a solution to both

the first and second problems, with M having less states than M.

4. There is an S. S. M., M, such that there are equivalent

machines to M with the same number of states, but there is no machine
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M having less states than M such that M > M , or M > M.

All the examples, to be shown, are nondegene rate and this will

provide an answer to the above posed question concerning the first

problem. Furthermore, we shall show that the second problem is

simpler, in a certain sense, than the first one, and we shall generalize

a previous result of the author [Ref. 7, Theorem 6] .

E. Reduced and Minimal State Form

Another question to be considered arises from the follow

ing considerations:

Definition 4. Two S. S. M.'s, M and M*, are equivalent if <PM =O^1

(M >M* and M* >Mor KM * KM* and KM* 3 KM).

Definition 5. An S. S. M., M, is in reduced form if no two extremal

functions induced by M are equal (an extremal function is a function

p^ such that tr is an extremal vector, i.e., a vector having one entry

equal to one, all the other entries being equal to zero).

Remark 1. The above definition and (7) imply that M is in reduced form

iff no two rows of H are equal.

Definition 6. An S. S. M., M, is in minimal state form if no extremal

function of M is a convex combination of other extremal functions of M.
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Remark 2. The above definition and (6) imply that M is in minimal

form iff no row of H is a convex combination of its other rows.

The problem of checking whether a given S. S. M. is in reduced

form or in minimal state form has been solved effectively in the litera

ture [l] - [3], [5] and algorithms have been found for reducing a given

S. S. M. to an equivalent machine in one of these forms [l] -[3] . The

resulting machines have, in general, less states than the source ma

chines. On the other hand, the reduced form or the minimal state form

of a given machine (these forms differ in many cases [l], [2] ) is not

unique [3] in general. In the last section of this paper we shall give a

decidable condition which implies the existence of a unique minimal

(reduced) form of a given machine.

II. GEOMETRICAL INTERPRETATION

A. Machines of Common Rank

Notation. Let M and H be an S. S. M. and its related HM matrix.

Then m = rank M = rank ri = # of columns in H (as these columns

are independent).

In the sequel we shall need the following theorem of Ott.

Theorem 4. Let M and M be S. S. M. 's of common rank such that

* M M
M > M with ti (v, u) = Bti (v, u) for every pair (v, u). Then

M* MHm = B H .
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Proof: Let J be the matrix such that JM = BH^ . Denote the

columns of H by t^ ... T] and the corresponding columns in J
, # # M Mby T|1 ... tj . Let r\ (v, u) be any vector in K . Then

m

T| (v, u) = 2, ai \ (property (3.2) of HM).
i=l

This implies that

tj (v, u) = B r) (v, u) = > a. Bti. = > a. r|. . (8)

It follows that any vector in K is a linear combination of vectors in
M* * M*

J and therefore, as M and M have common rank, rank J =

rank H = rank H . Furthermore, the columns of H*^ must also
u i TM*/be columns in J (arranged in the same order), for if this is not true,

then let T) (Vq, uq) be the first column in rl " which is not a column

of J . Then t| (vq, uq), the corresponding vector in K , is not

in H and therefore is a linear combination of.the columns of rl

preceding the vector r\ (v , u ) in KM (property (3.3) of H3^). It is
M* TVyT*

implied by (8) that r\ (v , u ), a column of H , is a linear combina-
o o

M* TVyT*tion of other columns in H contrary to the property (3.2) of H

This proves the theorem, for the columns of ri cannot be a proper

M* M* M*subset of the columns in J (as rank J = rank H ) and therefore

JM =HM =BHM.
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B. Geometrical Interpretation of H

Let M and H be, as before, an S. S. M. and its

related H matrix,and assume that H has m columns and n rows

(m < n necessarily). The rows of H will be considered as points in

m-dimensional space and the notation h, .. . h will be used to refer to
1 n

these points. All the machines under consideration from here on will

be assumed in minimal state form (this is not a restriction as one can •

construct effectively an equivalent minimal state form machine for any

given machine). It follows from remark 2 in the previous section that

iff M is in minimal state form then the points h, ... h are vertices
1 n

of a convex polyhedron.

A substochastic vector tt = (tt, ... tt ) is a vector such
1 n

that tt. > 0 and ) tt. < 1. With any such nonzero vector we associate

TT
a point in m-dimensional space defined by H and denoted by

K
h(ir). Clearly, h(ir) e conv(h ... h ). If A is a matrix with substo

chastic rows A. then H(A) denotes the set of nonzero points (h(A.)} .

Two substochastic vectors tt and p are similar (~ ) rela

tive to H if h(ir) = h(p) and they are equivalent y, relative to ri if

JA M
ttH = pH . Note that tt ~ p iff there is a constant a such that

tt ^f ct p (provided that tt and p are nonzero vectors).

Two substochastic matrices A and B are similar (^),

M
relative to H if their corresponding nonzero rows are similar rows

-12-



and they are equivalent (~), relative to H if their corresponding

rows are equivalent.

C. Comparison of the Two Covering Problems

We have seen in the previous sections that M > M* for

two given machines is equivalent to the following conditions:

There is a stochastic matrix B such that

•a M. M' .
15 *1 (v, u) = n (v, u) for every pair (v, u) (9)

or, equivalently, such that

BA (y/x) H =A (y/x) BHM for all pairs (y, x) (10)

Assume now that the machine M is given and it is required to find a

machine M having less states such that M > M*. If.no more infor

mation is given about the machine M then the relation (10) is of little

help for the solution to the above problem, as the matrix H^ is not

known.

If we assume that rank M= rank M* then, because of

theorem 4 and the relation (9) (with B a stochastic matrix), one can

begin with any matrix H such that

convOif, ..., h^1) 2 <*K....$*). n<n*
and having the usual properties (0 <h™ <1, h™ =h^ ... h*? =1) and

— ij — 11 21 nl '

then try to find nonnegative matrices which will satisfy Eq. (10) (B is
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M M
determined by the choice of H ). If one H fails to provide a solution

then another H can be assumed and so on. Note, however, that even

if no solution can be found under the assumption that rank M = rank M ,

this does not mean that no solution exists, for there is no reason to

believe that the above assumption is necessary for the existence of a

solution.

Assume now that the machine M is given and it is re-

quired to find a machine M having less states such that M > M .

Considering again the relation (10) we see that a solution

to this problem depends upon the finding of a stochastic matrix B

having less than n rows such that nonnegative matrices A (y/x) can

be found which will satisfy the relation (10). Any matrix B, as above,

can serve as a starting point for calculation and this does not depend

upon the assumed rank of M . This is why we claimed that the second

problem is simpler than the first one. Note, however, that any solution

to the second problem is restrictive in the sense that not all the func-

tions p induced by M have equal functions induced by M . On the

other hand, it will be shown that this problem is not trivial. Moreover,

there are machines to which only this problem admits a solution.

D. The Second Covering Problem

The purpose of the following theorem is to provide a

geometrical interpretation to the second covering problem. The

meaning of this interpretation as well as its possible uses will be
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illustrated by examples in the following sections.

Theorem 5. Let M be an n-state S. S. M. There exists a machine

M with n < n states such that M > M iff there exists a stochastic

n X n matrix B with n rows such that

U HM(BAM(y/x))C convHM(B) (11)
(y» x)

A machine M as above can be constructed effectively if a matrix B

satisfying (11) is given.

Proof: Assume that M > M with n <n. Then (10) is satisfied by a

stochastic matrix B with n rows. Let f = (£....€*) be any non-
1 n

zero row of A (y/x) for a given pair (y, x). Then —S— B H is a

convex combination of the rows of B H. This means that —— B H e

conv H (B). Let p=(p ... p ) be the row corresponding to f in

the matrix B A (y/x). It follows from (10), and from the fact that B

is stochastic and because the first column of H**1 is a column of

that pH=?BH => £ p. S^B).8^.t Therefore
h(p) =—£— H=-i BHe Conv H^B)

In Ih
.'. (J HM(B AM(y, x)) C Conv HM(B)

(y, x) -

ones,
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Assume now that there is a stochastic n Xn matrix B with

n <n such that Uh (B A (y, x)) C Coriv H^B) then any point
(y»x)

in the left-hand side is a convex combination of the points in Ji(B).

The points in the left-hand side are of the form apH where a is a

normalizing constant and p is a row in a matrix B A (y, x) for some

pair (y, x).

We have therefore

<x pH = ttBH (12)

where tt is a stochastic vector.

It is easy to see that the relation (10) will be satisfied if the matrices

M*
A (y, x) are defined as follows:

(a) If a row in B A (y, x) is a zero row, then the cor-

M*
responding row in A (y, x) is a zero row.

(b) Let p be a nonzero row in B A (y, x). Then the

corresponding row in A (y, x) will be - it where tt and a are as in (12),

The theorem is thus proved.

Example 1. Let M be the 4-state machine described as follows

(X= Y= {0,1}):
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A(0/0) =

A(0/1) =

±. L L 01 1 1

4 8 8

3 3 3

8 16 16

1 1 1

4 8 8

0 0 0

4- 4- 4- 0

L 0

0 0 0

o 4 4-

o 4 .4 .4

1 1 1

4 8 8

3 3 3

4 16 16

1 1 1

4 8 8
0 4" ^ •="

A matrix ^ for this machine is:

M
H

1 4r

1 4-

1

2
0

3 1

4 2

1 3

2 4

n 1
u

2

1 4: 4-

Let B be the stochastic matrix:

B =

1 0 0 0

00 I I
2 2

0 0 0

A(l/0) =

A(l/1) =

0 4-4-

o~4-

0 4- 4-

0 -4- 4-

1

2

1

4

1

8

1

L 4

•r 0 0 =-

4-0 0 4-

4-0 0 4-

4-0 0 4-

Consider now Fig. 2. The rows of H^", h , h_, h, and h
JL Cd j 4_

represented in that figure as two-dimensional points (as the first

are
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coordinate of these points is equal to 1, one can consider the two-

dimensional subspace as having the first coordinate equal to 1).

The set of points H(B) is represented by little circles, while the set of

points (J H (B A(y, x)) is represented by crosses (the points are
(7. x)

easily computed). It is seen that the condition of the theorem holds for

this case and therefore a 3-state machine M exists such that M > M*.

Using the procedure suggested in that theorem we find the matrices
*

M
A (y, x) which are the following:

AM(0/0) =

AM (0/1) =

t 4- o

T7 0
16 16

0 0

5 5

16 16

•L I
4 4

0 -4 .4

0 4-4-

M"*AM(l/0) =

AM (1/1) =

• ! •
0 1 0

1

2

3

16

1

4

4-0 4-
i_
2

3

16

1^
4

T, 0 ~

4-0 4-

*
It can be shown that there is no machine covered by M and having less

states (see the examples which follow). On the other hand, we shall

show now that there is a machine M having less states than M and

covering it.

We first observe that if M as above exists then, as in the proof of

Theorem 4, the columns of ri must also be columns in B ti .

H has 3 columns and therefore Hr" must have at least 3 columns
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and at least 3 rows (the columns of HT are independent). Now M

M+
has less states than M (which has 4 states) so that H must have 3

rows and 3 columns (otherwise the columns will not be independent).

Thus B H = ri . As B is stochastic it must be true that

M M M+ M+ M+
(h. , .. . h. ) C conv (h , h_ , h-- ) and, as seen in Fig. 2, the only

possible choice is

H
M+ =

1 1

The machine M is now easily found using a procedure described by

Ott [5]

M+AM(0/0) =

AM (0/1) =

5 1 1

16 8 16

5 1 1

8 4 8

0 0

1^
4

1_
8 16 16

"-

AM+(l/0) =

1

8

0

1

4

0

1

8

0

1

_ 4
1

2

1

4

AM (1/1) =

'1

2

0

0

0

1

2

0

1

4
0

1

4

From the above examples two facts can be learned:
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(a) There is a nondegenerate machine M (i.e., a machine such

its next state is not a deterministic function of its present state and input

's*
output pair) which can be covered by a machine M having less states.

# +
(b) The configuration M < M < M , where all three machines

* +
are nondegenerate but M and M have less states than M, is possible.

E. A Sufficient Condition for the Second Problem

Theorem 6. Let M be an n-state machine. Let h, .. .h & be a set.of.
1 n

n < n points in m-dimensional space such that (m = # of columns of

UM M * *H (A (y/ x)) C conv (1^ h *) C conv {hy ..hn) (13)

Then there is a matrix B with n rows satisfying the condition (11) of

Theorem 5.

Proof: If B is any stochastic matrix then any point in the set

U H (B A (y/x)) is a convex combination of points in the set
(y» x) / h*

(J Ji (A (y/x)). Let B be the matrix such that B H*^ =f .'
(y, *) \

Then clearly conv (h ... h ) = conv H (B). This shows that the

condition of Theorem 5 is satisfied so that this theorem holds true.

To make the content of the above theorem clear, consider

again the example in the previous section and Fig. 2. It is seen in that

figure that conv(h.. . .h ) is the simplex whose vertices are the four
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points ly . .h4 and U H (A (y/x)) is the set containing the four
(y»x)

crossed points denoted by u....n . The choice h* = h„ h* = i(h + h )
14 112 2l 2 3

h3 = h4 ^the only Possible choice for this example) will satisfy the

relation (13) and the required matrix B is determined by this choice.

It is thus seen that Theorem 6 may be useful in the case

where the set conv U H (A (y/x)) is a proper subset of the set
(y.x)

conv (h1#. ,hn), a condition which is decidable. Unfortunately, even in

this case, to find the required matrix B which will satisfy the conditions

of Theorem 5 one must be able to solve a nontrivial geometrical problem,

namely:

Given two convex polyhedra V, and V„ such that V r Int V
1 2 1-2"

Find a polyhedron V3 with minimal number of vertices such that

Vl C V3 c Int V .

As far as we know, this problem is not yet generally

solved, but any solution to this problem in some particular case (as in

the previous example) with V =conv UhM(AM(v/x)), V, =conv (h ...h )
* * <**> l nand V3 - conv (hj .. .h^ ) will lead to a matrix B as required, provided

that conv V is a proper subset of conv V .

F* The Second Covering Problem is Independent

The purpose of the following example is to show that the

conditions of Theorem 6 are not necessary conditions. Specifically,

we shall show that a machine M exists such that conv U H(A(y/x)) =
£ (y, x)

conv(hr ..., hj but there is M < M such that M has less states than M.
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We will also show, using the same example, that there is an n-state

machine M such that there is an n -state machine M < M with n < n,

but no machine with less than n-state covers M. This will demonstrate

that the second covering problem does not depend on the first one.

Example 2. Let M be the 5-state machine described as follows

(X= {0,1}, Y= {0,1,2}):

A(0/0)=

A(0/1) =

0-000

0 i 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
-J

0 0 0 0

0 0 0 0

0 0 0 0 0

•| 0 0 0 0

0 0 0 0 0

A(l/0) =

A(l/1) =

0 0 0 0 0

0 0 0 0 0

1 1
0

4

1

0
4

1

0

0
4

0
4

0

0 0 0 0 0

0 0 0 0 0

\ o \ o 0
J o I 0 0
0 0 0 0 0

0 0 0 0 0

An IT matrix for this machine is the following:
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A(2/0)=

A(2/l) =

0 0 0^0

0 0 0 i 0

0 0 0^0

0 0 0 i 0

0 0 0 0 1

0 0
2

0 0

0 0
1

2
0 0

0 0
1

2
0 0

0 0
1

2
0 0

0
1

2
0 0

1

2



1_
2

4-0 4

o 4 4

o o l

One finds easily that for this machine

U H(A(y/x)) ={hr h2, h3, h4, h5, |(h2 +h4), i(hx +h3), i(h2 +hg)}
(y» x)

and therefore:

conv U H(A(y/x)) = conv (h_, .. ., h_).
(y,x) l 5

*Yet a machine M < M having only 4 states can be found. The machine

M is simply the machine which is obtained from M by deleting the

5th column and the 5th row in all the matrices of M. This fact is easily

verified using the transformation matrix:

B =

10 0 0 0

0 10 0 0

0 0 1 0 0

L 0 0 0 1 0

We shall now show that there is no machine M > M having less than

5 states.

Using an argument similar to that used in the analysis of the

previous Example 1, one can show that if there is an M > M with less
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. '

than 5 states, then it must have 4 states and necessarily rank M = rank M.
M+

This will lead to a single possible choice for H and B, namely:

M
H

• • i
o . I

. ..i
0 0 1 J

B =

1

2

1^
2

0

0

L o

4: o 4- 0

0

0

0

1 J

with the consequence that the required matrices A and A satisfy.

M+
the relation (10) with H and B as above. Let us check this relation

M
for the matrix A (1/0). We have

1_ 1
"• - »—

1 1 I*1
0 0 0 0 0 0 0 1

2 2 2 2 2

1 1 1 1
0 0 0 0 0 0 0 1 0 T7

2 2 2 2

0 1

1

0

1

0
M+ M+A™ (1/0) H^ = 0

1

4

1

0
1

4

1

0 1 0

1 1
0

2 2
0 0

4
0

4
0 1 0

2 2

0 0 0 1 _ 0 0 0 0 0_ J 0 0 1_

The first, second and fifth rows in the right-hand side are zero rows.

M+ M+
This implies that all the rows in A (1/0) H are zero rows (all the

+ +
M M

entries are nonnegative and every row of A (1/0) HT contributes to

the formation of the first, second and fifth rows of the right-hand side).

But this is impossible as there are nonzero rows in the right-hand side.
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G. The Second Covering Problem is Not Trivial

The purpose of the example in this section is to show that

not every n-state machine M has a machine M < M with n < n states,

even if rank M < n. Moreover, the same example will show that there

is an n-state machine M such that there is another machine M > M

with n < n states, but no machine M with n < n states is such that

*
M > M

Example 3. Let M be the 4-state machine defined as follows

(X= Y= {0, 1}):

A(&/o) =

A(0/1) =

1 1

4 4

0 0

3 3

8 8

1 1

4 4

0 0

0 0

0 0

0 0

1 1

4 4

1 1

4 4

3 3

8 8
0 4-4

A(l/0) =

A(l/1) =

An H matrix for this machine is:

-25-

1 1
0 0

4 4

1 1
0 0

2 2

1 1
0 0

8 8

1 1
0 0

4 4

1 1
0 0

2 2

1 1
0 0

4 4

1 1
0 0

4 4

1 1
0 0

8 8



HM =
l 4- 4

l 4 4-

l o 4

Thus, rank M=3<4=#of states of M. Using a procedure described

by Ott [5] one finds easily that the following 3-state machine M+ is

such that M > M where the defining matrices of M are

1 1
o

4 4
, A
M .A1Vi (0/0) = 0 0 0

1 1
0

2 2

AM (0/1)

0 0

1 1 1

8 8 4

1 1 1

4 4 2

Am (1/0) =

AM (1/1) =

3
0

1

8 8

3
0

1

4 4

0 4-4
3 1

4 4

3 1

8 8

o o

To prove our second assertion (that there is no M < M with

less than 4 states), we shall first display the set U HM(AM(y/x))
(y,x)

the form of a table T as follows:

-26-
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H^Wo)) HM(AM(l/0) HM(AM(0/1» HM(AM(1/1))I

2 (hl +h2) 2(hl +h3> O 2<h2 +V

2(hl +h3> 2<h3 +h4> t(h2 +V

2<hl +V 2<hl +h3> 2<h3 +h4> |(h2 +h )

2(hl +V 2(hl +h3> |(h3 +h4> 2(h2 +V
_L_.

where Sj... s4 are the states of M and h.. ..h. are the rows of H

(the table also contains the points corresponding to zero rows in the

matrices AM). Let B be any stochastic matrix with 4 cdumns and

m<3rows. The table T' corresponding to U HM(B AM(y/x», will
(Y.x)

have only m rows. A nonzero entry in any box, in a column of T1,

will be a convex combination of the nonzero entries in the corresponding

column of T. As all the nonzero entries in the same column of T are

equal, any convex combination of these entries will result in an entry

having the same value as the combined entries. If the matrix B has

nonzero entries in three different, or in all its columns, then the table

T' will have nonzero entries in all its columns which will be equal to

the nonzero entries in the corresponding columns of T (this follows

from the above remarks and from the definitions). This implies that,

for this case

-27.



U H^B AM(y/x)) = U H^A^y/x)) (14)
(y»x) (y, x)

On the other hand, as B has m < 3 rows, we have that H (B) has only

m points which are seen in Fig. 2(the different points in UHM(AM(y/x))

are denoted by u .. . u in the figure), no set containing less than 4 points

in the interior of conv (ly . ,h4) can have the set vl. . .u in the interior

of its convex closure, so that the relation (11) cannot hold true in this

case (because of (14)).

If the matrix B has nonzero entries in two columns or one column

only, then the table T* will have nonzero entries in at least 3 columns.

In this case, the set U H (B A (y/x)) will contain three of the four
(y,*)

points \iy .. u4, with any three of these points not collinear. On the

other hand, the set H (B) will contain at most three collinear points

so that the relation (11) cannot hold for this case either. Our assertion

is thus proved.

H. Two Additional Examples

The following machine M (this example has been used

by Even in [3] for a different purpose) is a 5-state machine such that

no machine M exists with less than 5 states and such that M > M

or M < M, but rank M = 4 < 5. The method for proving these

assertions is similar to the one used in the previous examples (although

the actual proof is more complicated) and is left to the reader.
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Example 4: The machine M with the above-mentioned properties is

defined as follows (X = {0, 1} , Y = {0, 1, 2} ):

0-000

0 i 0 0 0

0 0 0 0 0

0 0 0 0 0
in0 0 0 0 ^

0 0 0 o i

0 0 0 0 i

0 0 0 0 i

A(0/0) =

A(0/1) =

0 0 0 0 0

0 0 0 0 0
J

•^ 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 0 0 0 0

0 0 0 0 0

A(l/0) =

0 0 0 0 0

0 0 0 -r 0

0 0 0^0
0 0 0 0 0

[0000

A(l/1) =

0 0^00

0 0-00

0 0 0 0 0

0 0 0 0 0

~ 1 1 1
1 mm—

2 2 2

1 1
1

2
0

2

„M 1
H = 1 0 0

1

2

1
1 0

2 2

1 0 0 1

A(2/0)=

A(2/l) = A(2/0)

It is worth mentioning that the above machine is strongly connected and

it has equivalent monisomorphic strongly connected machines. (Its

minimal state form is not unique.)
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Our next example is concerned with the degenerate case of

deterministic machines. The following theorem has been proved by

Ott [6] .

Theorem. If M is a reduced deterministic S. S. M., then no S. S. M.

which covers M has fewer states. The example below shows that if the

word "covers" in the above theorem is replaced by the sentence "is

covered by, " then the transformed implication is false.

Example 5. Let M be the (deterministic) 4-state machine defined as

follows (X = {0, 1, 2} Y = {0, 1} ):

A(0/0) = A(0/1) = A(0/2) =

A(l/0) = A(l/1) = A(l/2) =

For this machine the matrix H is:

M
H

1111
1110

110 0

10 0 0
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Thus rank M= 4 = # of states of M. Nevertheless, it is easy to see

that with B = (1000), the 1-state trivial machine M , which associates

the probability 1 with every input-output pair, is such that M > M .

III. INITIALIZED STOCHASTIC SEQUENTIAL MACHINES

Following Ott [5], we define an initialized stochastic sequential

machine (I. S. S. M. ) as an S. S. M. together with an a priori fixed

initial distribution it . Thus, when we consider an I. S. S. M., (M, ir),

M
we are interested only in the designated function P induced by M

TT

with initial distribution tt .

In his thesis, Ott considered the following problem: Given an

I. S. S. M., (M, tt), find an I. S. S. M., (M ,-it ), with a minimal

M M*
number of states such that p = p $ . He showed that this problem

TT IT

can be reduced to the first covering problem (Sec. I-C here). This

fact, although providing insight into the nature of the problem, does not

lead to a solution, as the first covering problem does not have as yet

an efficient solution either. One is therefore compelled to seek other

approaches to this problem, which may lead effectively to a full or

partial solution (in some particular cases). One such approach has been

made by the author elsewhere [ Ref. 7-Theorem 6] and our scope here

is to generalize that result. This is done in the following:

Theorem 7. Let (M, tt) be a given I. S. S. M. with n-states. If there

is a stochastic matrix B with n < n rows such that:
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(a) U H (B AM(y/x)) C conv H(B)
(y,x)

(b) h(ir) £ conv H(B)

Then there is an I. S. S. M., (M , tt ) with n states, such that

M M* #w ,
Pu =P7r* • (M, tt) can be effectively constructed if a matrix B, as

above, is given.

Proof: Condition (a) is identical to condition (10) and it implies therefore

that there is an S. S. M., M with n < n states such that M> M*,
M M*

or B tj (v, u) = T| (v, u) for all pairs (v, u). If B is given, then M

can be constructed effectively as in Theorem 5. Condition (b) implies

that the point ttH is a convex combination of the rows of B H , which

means that there is a probabilistic vector it* such that ttHM = /bH^

and, as the columns of H are a basis for all vectors of the form

M M, * Mti (v, u), we have txt\ (v, u) = tt Bti (v, u) for all pairs (v, u). Combining

the two results we have

M. , M, % * M # M* MP (V, U) = TTT| (V, U) = TT Bt] (V, u) = TT t\ (v, u) = p # (v, u)
TT

as required. The theorem is thus proved.

Remark: It is easy to see that Theorem 6 in [7] is a particular case

of this theorem with B a degenerate stochastic matrix (having one entry

equal to 1 in every row, all the other entries being equal to zero).

Corollary 8. Let (M, tt) be a given I. S. S. M. with n-states. Let

* * sfie

1 **'^n* ke a set °* n < n points in m-dimensional space (m = # of

columns of H) such that
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UM M * *
H (A (y, x)) c conv (h. ...h *) C conv (h_...h )

in in

(b1) h(-rr) e conv (h, ...h )
1 n

* * *
Then there is an I. S. S. M., (M , tt ) with n states such that

M M
p = p * .
^ TT r TT

Proof: As in the proof of Theorem 6, the conditions (a1) and (b1) of the

corollary imply the conditions (a) and (b) of Theorem 7 for a matrix B

uniquely determined by the set of points (h . . .h ).
1 n

The following example will illustrate an application to the above

corollary.

Example 6. Let (M, tt) be the I. S. S. M. defined as follows

(X= Y= {0, 1}): tt =(^o|o)

A(0/0) =

A(0/1) =

0 0 0 0

;' 1 1
0 0

2 2

1 1
0 0

2 2

0 0 0 0

0 0 0 0

0 0

1 1 1
_ 0
4 2 4

1 1 1
— 0
4 2 4

A(l/0) =

A(l/1) =

-33-
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0 0 0

L

0 0 0



M
A matrix H for this machine is:

HM =

1 0 0

1 1 0

1 1 1

1 0 1

"1

!

J

It is seen that the convex body whose vertices are the rows of ri in

two-dimensional space is the unit square (the first coordinate of all the

rows of H is omitted) so that there is no M > M (with less states).

The points in U H(A(y, x)) are:
(y>x)

(I 0)' (l 1]> {\ !>• (0 b and h(*> =<1 J) •
The conditions of Corollary 8 will be satisfied if we choose h = (— 0)

h2 = (1, 1) and h3 = (0 -). The resulting matrix B will be:

B =

r

2 2 ° °

0 0 10

and the required I. S. S. M. is found to be (using the methods of the

previous sections): it* = (-- — —)
7 12 6 12'

AM (0/0) =
2 ° °

10 0

0 0 0

AM(l/0) =

-34-
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0 0 0

ui I «
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0 0 0 0 0

AM(0/1) = AM (1/1) 0 0 0

o 4- 4- 0 0 -

A closer examination of the above example will show that Theorem 6

in [7] is not applicable to it so that Theorem 7 and Corollary 8 are a

proper generalization of that theorem.

IV. UNIQUENESS OF REDUCED FORM AND MINIMAL STATE

FORM

A. Reduced Form Machines

Given an S. S. M., one can construct an equivalent

reduced form and an equivalent minimal state form. In general, the

resulting machine is not unique and may depend upon the sequence of

reductions applied to the source machine. The problem of the existence

of nonisomorphic equivalent reduced forms, or minimal state forms,

has been discussed by Carlyle [2], Even [3] and others. In the follow

ing sections we give a geometric interpretation, in the light of the

previous sections, to most known, and some unknown common proper

ties of classes of machines, and to the uniqueness problem.

The final section points to the Gale-transform method of investi

gation which may have uses in the theory of stochastic sequential

machines.
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Proposition 9. Let M and M be two equivalent S. S. M. 's with n

* * M M
and n states, respectively. Then rank M = rank M , conv (h. , ...,h )

* * In
MM** *= conv (h , . . ., h >!c ) and there are stochastic matrices B and B such

that W = B H and H = B H

Proof: M = M implies that M > M* and M > M. By Theorem 3 there

* M * M '*
are stochastic matrices B and B such that r\ (v, u) = B t) (v, u)

♦
M

and r| (v, u) = B r\(v, u) for all pairs (v, u). This implies that rank M

> rank M and rank M > rank M or rank M = rank M . By Theorem 4

,M* M M # M*
H = B H and H = B H . The meaning of the above

M
equations is that every row of H is a convex combination of rows of

uM" a i /t_m .M, .,M* ,M*H and conversely, i.e., conv (h. ...h ) = conv (h, ,...,h#.
in i n^).

Definition 7. Two machines M and M' are state equivalent if for every

extremal function in <P there is an equal extremal function in <P

(see Definition 5) and conversely.

It is easy to show that state equivalence implies equivalence.

A consequence of the Definition 7 above is the following:

Proposition 10. Let M and M** be two state equivalent S. S. M's

with n and n* states, respectively. Then {hM, ...,hM} ={h^, . ,.,h** }
1 n 1 n

(i.e., the set of rows of H equals the set of rows of H ).

Proof: The entries in a row of the form h. are values of a function
i

p with tt an extremal vector (as the columns in H are columns in
TT

K ). The columns of K corresponding to the columns of H in
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M M
K are the columns of H (as the machines are equivalent, Proposi-

#
tion 9 applies here). As M is state equivalent to M there is an extremal

* *
* ._,._ M M ml M

vector tt with p = p * . Thus the values of p , corresponding to
TT TT ^ TT ^

" +1. r M . , M . , M"\ * .
those of p in h. are in some h. (tt is extremal), and are equal to

i J

the corresponding values in h. . The same argument holds true if M

*is replaced by M and the proposition is proved.

Proposition 11. Let M and M be two state equivalent and reduced

S. S. M*s with n and n states, respectively. Then n = n , the rows

r ttM * M ' Mof H are a permutation of the rows of H and, if A (y/x) and
v

A (y/x) are corresponding matrices of M and M*, respectively,
v

then A (y/x) siA (y/x), relative to H*^ (see Sec. II-B for definition of n ),

Proof: It follows from the definitions (see Remark 1 in Sec. I-E) that no
, . 1*

two rows of H and no two rows of H are equal (M and M' are

reduced). By the previous proposition {h. , ..., hM} ={h** , ..., h*i }.
1 n 1 n

Combining these facts we have n = n , and the ordered set of rows of

IT is a permutation of the ordered corresponding set of rows of H .

Let A (y/x) and A (y/x) be two corresponding matrices, and assume
#

that H = H (this is not a restriction as the above argument implies

that the equality will hold true if the states of Fi are ordered in such

a way that corresponding states will have the same index), then, as the

machines are state equivalent, and the equivalence is one-one, we have:

T| (v/u) = T) (v/u) for all pairs (v, u) so that

A (y/x) ~ A (y/x) relative to HM (or to HM ),

for -rtfyv, xu) = A(y/x) . ti(v/u).
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Remark. The last implication of Proposition 11 is due to Carlyle [2] .

M
Definition 8. Let M and H be an n-state S. S. M. and its correspond-

M
ing H matrix. A substochastic n-dimensional vector tt is simplicial

M
if h (tt) is a point in a face of conv (h_, . .., h ) which is a simplex.

1 n

Theorem 12. Let M be a reduced S. S. M. There is a reduced S. S. M.,

M which is state-equivalent but not isomorphic to M iff there is a

row ?.(y/x) in a matrix A (y/x) which is not simplicial (two machines

are isomorphic if they are equal up to a permutation of states).

Proof: Assume first that all the rows in the matrices A (y/x) are

simplicial. If there is a reduced machine M which is state-equivalent

to M then, by Proposition 11, we have A (y/x) Pi = A (y/x) rl

(after a proper rearrangement of states), for all pairs (y, x). As the

rows of A (y/x) are simplicial, this is possible only if A (y/x) = A (y/x)

up to isomorphism (for a point in the interior of a simplex has a unique

representation as a combination of its vertices). Thus M is isomorphic

* Mto M . Assume now that there is a row ?.(y/x) in a matrix A (y/x)

which is not simplicial. This means that h(?.(y/x)) = y a. h. whe:

the h. corresponding to nonzero coefficients a. are not a simplex. This

implies, by the classical theorem of Rado on convex bodies, that there

is a set of coefficients (p.) different from the set {a.) such that the

combination y p. h. is convex and equals the combination / a. h. .

Thus, there is a substochastic vector p. which differs from ?.(y/x)

ire
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such that h (f .(y/x)) = h (p). Let M be a machine derived from M

by replacing the vector £.(y/x) in A (y/x) by the vector p.. For any

pair (v, u) we have p (v, u) = p (v, u) as the columns r\ (v, u) are
TT TT

linear combinations of the columns of rl and the above replacement

does not affect the columns of H . Thus M is a machine which is

state-equivalent but not isomorphic to M.

Theorem 13. Let M be an S. S. M. The construction of a reduced

form through the procedure of merging equivalent states may lead to

resultant machines which are not isomorphic only if there are two rows

^(y/x) i ?.(y/x) in a matrix A(y/x) which are not simplicial such that

h. = h. and h(?.(y/x)) = h(?.(y/x)).

Proof: In the merging procedure, some rows are deleted and the cor

responding columns are added to other columns. After the reduced

machine M is obtained, a row ?. (y/x) in a matrix AM (y/x) will

represent the same point in conv (hj^, ..., h*i ) =conv (h,M, .. ., hM)
i n In

as the corresponding row in A (y/x) of M. If in the merging procedure

the original row I.(y/x) is deleted then another row, say ?.(y/x) such

that the states i and j are equivalent, is kept for M , and ?.(y/x)

will represent that same point in conv (h, , ..., h * ). Thus ? (v/x)
1 n * jw '

is simplicial if ?.(y/x) is. If f. (y/x) is simplicial then its representa-
J * *

tion as a convex combination of the distinct points (h^ , .. ., Yi%) is
—————— 1 n

unique and is therefore independent (up to isomorphism) upon the state

which is chosen to remain or the states which are chosen to be deleted.
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If two states i and j are equivalent but for some (y, x), f.(y/x) and

?.(y/x) are not simplicial and the condition of the theorem does not hold.

Then ?.(y/x) = €.(y/x) so that the resulting machine M is independent

(up to isomorphism) upon which of the two states are deleted. It follows

that if the condition of the theorem does not hold, then the resulting

reduced machine M is unique up to isomorphism.

B. Minimal State Form Machines

*

Let M and M be two equivalent minimal state form

machines with n and n states respectively. It follows from the defin-

itions (see Remark 2 in Sec. I-E) that the rows of H and H are

distinct vertices of convex polyhedra. By Proposition 9 (M is equivalent
5^ TV >T \A \ K \ Jt^

to M ) we have conv (h .. ., h ) = conv (h. , . .., h * ). Combining
in in

these facts together we have n=n* and (hM, ..., h^) =(hf* , . .., hM* )
l c$ L n

with all elements in both sets distinct. This implies that there are per-

* M M
mutation n Xn matrices B and B such that H = BH and

M * M*
H = B H (this is another proof of a theorem of Ott [5] ). If only one

of the two machines, say M, is in minimal state form, then n < n for

the set (h , . .., h ) is the set of vertices of conv (h, , ..., h * )
i n In

(this is another proof of a theorem of Bacon [ 1-Corollary 1] . If both

M and M are minimal state forms, then there are permutation n Xn

matrices B and B1 such that t] (v, u) = Bn (v, u) and

M. * M #
n (v, u) = B ti (v, u), for (see Proposition 9) rank M = rank M and

there are stochastic matrices B and B satisfying these equalities
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(by definition, as M > M and M > M), this implies (Theorem 4) that

M * h/C M* M *
•" H = B H and H = B H , so that B and B must be permutation

matrices (the rows of H and H are distinct and the rows of one
s

matrix are a permutation of the rows of the second). The equalities

M',s. M, . M * M* *
r| (v, u) = B n (v, u), r\ (v, u) = B n (v, u) with B and B permuta-

tion matrices imply that M is state equivalent to M^ as is easy to see

(this is another proof of a known theorem of Bacon [l-Theorem l] ).

We have thus shown that if M and M are minimal form and equivalent,

then they are state equivalent. It is clear that M and M are also in

reduced form (the minimal state form is a restriction of the reduced

form). We have as a consequence that (Proposition 11) if A (y/x) and

aM*/ t ^ .... *A (y/x) are corresponding matrices of M and M respectively, then
TV * *

A (y/x) ci A (y/x) relative to HM (or to HM ). On the basis of the

above properties two theorems, parallel to Theorems 12 and 13, can be

proved (the proof is left to the reader), namely:

Theorem 14. Let M be a minimal state S. S. M. There is a minimal

1-

state M which is equivalent but not isomorphic to M iff there is a row

?.,(y/x) in a matrix A (y/x) which is not simplicial.

Theorem 15. Let M be an S. S. M. The construction of a minimal

state form machine equivalent to M may lead to resultant machines

which are not isomorphic only if there are two rows ?.(y/x) i ?.(y/x) in

a matrix A(y/x) which are not simplicial such that h. = h., h.(h ) is a
i J i J

vertex of conv (h^ ...,hn) and h(?.(y/x)) = h(f.(y/x)).
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s

Note that the additional requirement, that h.(h.) is a vertex of

conv (K, ..., h^), is necessary because all rows £.(y/x) such that h.

« is not a vertex, will be deleted in the minimization process (see Bacon [l] ).

Remarks: Carlyle introduced a particular class of sequential machines

called observer/state-calculable machines [2] . These machines have

the property that every row in any matrix A (y/x) has at most one

nonzero entry. Carlyle has shown that the merging of states procedure

for such machines leads to a unique reduced equivalent machine. This

property of the above class of machines is a result of the fact that the

merging procedure preserves the membership in the class. On the other

hand, an observer/ state-calculable machine may have a minimal state-

equivalent form which is not observer/ state-calculable (and is not unique).

Nevertheless, if in a particular case a machine in the above class is such

that its equivalent minimal state form remains in the class, indepen

dently of the sequence of reductions, then this minimal state-equivalent

form machine is unique. This follows from the fact that all rows in all

matrices of a minimal state form, observer/state-calculable machine,

are simplicial (all the rows of H are vertices and all nonzero rows of

the matrices have only one nonzero entry).

C. A Decision Procedure

We have seen in the previous sections that the uniqueness

of the reduced form or minimal state form of a given machine M depends

M
upon the nature of the points h (?(y/x)), where ?(y/x) in a row in a

-42-



s
4

M
matrix A (y/x). To find out the nature of these points one must be able

to extract from the set of points (h. ..., h ) to be denoted by V, all
In J

the subsets W such that conv (W) is a face of conv (V). After this is

achieved one must be able to decide whether the faces, conv (W), are

simplexes or not. A decision procedure for these questions, based on

a method introduced by Gale,has been pointed out by Perles (see

Grunbaum" [4] ). Here we shall give the theorems upon which the decision

procedure is based, without proof. The reader is referred to [4] for

proof.

Let M be an S. S. M. with corresponding n X m matrix

TTM ,,..,, XTM . . —M
H . With H we associate a new matrix H such that the columns of

H form a basis for the null space of the columns of H (i.e., if r\

—M — "*"
is a column of H , then tr(r|) H = 0, and any vector € such that

? H = 0 is a linear combination of the columns of H ). Clearly, H

is an n X (n - m) matrix. If V is the n-tuple V = (h. , ..., h ) of
1 n

points in m-space, then V = (h , ..., h ), the n-tuple of points in

(n - m)-space, which are the rows of H , is called the Gale-transform

of V. Many geometric properties of the n-tuple V have as counterparts

meaningful geometric properties of its Gale-transform V. The proper

ties relevant to the decision problem described above are listed below.

Let J = {i , .. ., i } be a subset at the set N = {l, ..., n} .

We shall denote by V(J) the k-tuple V(J)= (hM , ..., hM ) and similarly
1]l lk

V(J) denotes the k-tuple V(J) = (h. ,..., h. ). If W = V(J), then V~ W
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stands for V(N - J). A k-tuple W =V(JH is a coface of V if conv(V~W)

~ is a face of conv(V)(we shall say also that V^ W is a face of V).

« 1. W =V(J) C V is a coface of V iff either W = (j) or 0 e relative

interior of conv(V(J)). (The convex polyhedron conv(V) as a whole is also

considered as a face of itself.)

2. Let V(J) =W be a face of V. Then this face is a simplex iff the

dimension of conv(V(J ))equals the dimension of conv V(J) for every set

J,C J such that V(J1) is a nonempty coface of V(J).
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