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ABSTRACT

A nonlinear analysis procedure and a design procedure are

given for the tunnel-diode oscillator with a parallel RC load (TDRC).

For most tunnel diodes the maximum-frequency..of oscillation of the

tunnel-diode oscillator with a series RL load (TDRL) is obtained for

a nonharmonic mode of oscillation. The TDRC achieves its maximum

frequency of oscillation for a nearly harmonic mode. In addition,

the maximum oscillation frequency of the TDRC is usually higher

than that of the TDRL. Thus, if maximum "frequency is important,

the TDRC usually has an advantage over the TDRL. The conditions

are derived to achieve maximum frequency of harmonic oscillation

for the TDRC. This frequency is only slightly less than the maximum

oscillation frequency of the TDRC.

The TDRC is described by a third order, nonlinear, differential

equation. The analysis technique used for the third order equation

is a perturbation method. The results can be used to obtain the

amplitude, frequency, dc component, and an indication of the amplitude

of the second harmonic for many oscillators described by a third

order equation.
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I. INTRODUCTION

The tunnel-diode oscillator with a series RL load (TDRL) has

been studied extensively. "* Pepper has found the minimum period

of oscillation of the TDRL and has shown that the minimum period is

obtained for a nonharmonic mode of oscillation. Sterzer and
2 1Nel sen and Pepper indicate that for many tunnel diodes a shorter

period of oscillation can be obtained with a parallel RC load (TDRC).
This is indeed the case, and in addition the TDRC achieves its

minimum period for a nearly harmonic mode of oscillation. Thus,

for many tunnel diodes, the TDRC has a shorter period and an

output which is more nearly a pure sinusoid than can be obtained

with the TDRL.

The TDRC is described by a third order, nonlinear, differential

equation. Nonlinear analysis techniques are available for many
1 4-6second order oscillator equations. ' Third and higher order

equations are often solved by numerical methods. For analytic re

sults, one usually has to be content with the results of an approximate

linear analysis. The purpose of this paper is to perform a nonlinear

analysis of the TDRC equation and to obtain a design procedure from

the results. The design procedure realizes specified values of period

and amplitude. In addition, it is shown that a close approximation to

the maximum frequency of oscillation for the tunnel-diode can be ob

tained with the TDRC. (Throughout the remainder of this paper the

term frequency will be used in place of reciprocal period. For

nonsinusoidal waveforms, the frequency referred to is the frequency

of the fundamental Fourier component).

The analysis assumes that the oscillator waveform is nearly

harmonic. However, the experimental work and the numerical analysis

which are presented indicate that the analysis is valid for rather

nonharmonic oscillations.
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II. THE OSCILLATOR EQUATION

The tunnel-diode can be represented by the circuit model

shown in Fig. 1. " All dc bias sources are included in F^v).
The characteristic equation of the TDRC shown in Fig. 1 is

GT R ,ii 1 + R G. G

, , GT R 1 + ReG

(1)

where

d

S=dF

R = R. + R0
s 1 2

L = LL + L2 (2)

It is convenient at this stage to approximate the tunnel diode

nonlinearity with a polynomial. The method used is given in the

Appendix. As indicated, for purposes of analysis the following can

be used

Ft(v)= - a'v+.(313v3 (3)

The TDRC equation becomes

J3 +,GL+Rs a'.2.rl,I , 1+RsGL, a' (GI» , *s n.S +. ( -p— + -5 - -75— ) S + [ -Y~ { -p?— + 3* J - 75— It; t -j— J J s
1 CL L CD L CD CL CD CL L

G.-a1 (1+R. G. ) ^ p.- 7 GT RG 1+r«Gt ' 3

(4)
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For convenience, we write (4) as

lAf +M3v3 =0 <5)

where

3 2M. = s + as + a^ + aQ

M3 =b32s2 +b3la+b30 (6)

III. STARTING CONDITION

When the oscillator equation is written in the form of (5)

all linear terms are included in M v. That is, the "small signal"

equation, linearized about the operating point v = 0 (the variational

equation) is

MjV =<s3 +a2s2 +axs +aQ) v=0 (7)

If the oscillator described by (5) is to be self starting, (7) must

have an unstable solution, i. e., the operating point must be a point

of unstable equilibrium.. This in turn requires that the polynomial

in s, (7), be non-Hurwitz:

or

°--a£0 (8a)
2

a < 0 (8b)
2

In addition, (7) has an unstable solution if

aQ < 0 (9a)
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or

a < 0 (9b)

If the oscillation is to be nearly harmonic, M.(s) must have a pair

of complex zeros. With (9a), the real zero is in the right half

plane (RHP). This leads to bistability or very nonsinusoidal

oscillations. If (9b) is satisfied, the real zero has a large

negative value and (7) can be reduc ed to an approximate second

order equation. From an inspection of this second order equation,

it is clear for the third order equation that the conditions of (9)

are not satisfied; i. e.,

a^ > 0 (10)

With (10), (8a) and (8b) can be combined and the complete starting

condition becomes

aQ - ata2 » 0 (11)

From (4) and (11), the TDRC starting condition is

GT R , G. R - 1+RG_ . fti R
a' , L , s x2 . L . s , , ,2 s L , . J . a _L\ > nC^<C^ +— > "<C— +— ><* +-LC^-)+LC^(C^ L>*°

(12)

IV. THE MAXIMUM FREQUENCY OF HARMONIC OSCILLATION

OF THE TDRC.

The tunnel diode can be a harmonic oscillator only when

F.(v) is a linear function of v, i. e., if F.(v) can be replaced with

its small signal value linearized about the operating point v=r 0.

F^v)-* a 'v (13)
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For the assumed, linear, tunnel-diode circuit the maximum frequency

of harmonic oscillation of the TDRL is given by either of the
1 2

following, whichever is less. '

2 a' , 1
0) <i--a') (14)

R C 2 RsCD S

2 1 a'2
"L = LC^ ' 7TT (15)

D CD

The quantity wR is found by setting ReZ (jw) = 0; w is found by
setting ImZD(jw) = 0, where Z is defined in Fig. 1 for a linearized
F.(v). A tunnel-diode oscillator can never oscillate harmonically

at a frequency greater than w_. If

WL ><dR

series inductance can be added until the circuit has natural frequencies

at + jo) and the circuit will oscillate harmonically with frequency
— R

WR- If

<°R>WL

which is usually the case, series capacitance can be added until the

circuit has a pair of natural frequencies at + jwR« However, this
circuit has a third natural frequency which lies on the positive real

axis. This introduces a growing exponential term in the solution

which must be limited by the nonlinearity of the circuit, and the circuit

cannot oscillate harmonically.. If a parallel RC load is used, the

third natural frequency can be kept in the LHP. It is shown below

that the linearized TDRC can oscillate harmonically at a frequency

ox. where

coT < o>. < w_ (16)
ij n k.
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provided

2 . 2
CO > «•> * (17a)

R L

2
CO

R
> 0 (17b)

In the following it is assumed that the conditions of (17) are

satisfied since the TDRC then has the previously mentioned

frequency advantage over the TDRL. (if (17a) is not satisfied a

simple inductive load can be used to realize the maximum frequency

of harmonic oscillation. If (17b) is not satisfied the tunnel diode

will not oscillate harmonically).

The problem can be stated as follows: for a given tunnel-

diode ( R., L., a' and CA are fixed), find the values of RT and
8

C that produce the maximum frequency of harmonic oscillation
L

(R?, L? = 0). Alternately, we must find the values of R.. and CL
that provide a pair of jco axis natural frequencies which lie at a

maximum distance from the origin and still keep the real natural

frequency in the LHP.

The Laplace transform of the characteristic equation of the

linearized TDRC shown in Fig. 1, with F.(v) given by (13) is

GT R , 1+R GT , G_ R3 . # L a. s a' . 2 , r 1 . 1 . s L , a' , L . s » •,

CL L CD L CD CL CD CL L

G_ - a' (1+R G_ )
+ LTr, r ?-± = 0 (18)

LCLCD

The solution of the maximum frequency of oscillation problem is

obtained using root locus arguments with (18). This equation can be

rearranged as
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where

™<p>-i+?r S3--° (l9)
L

2 R«+RT. a' l-aHR+KJ
Q(P) =P2 +( 8 . L - £— >P+ LC s—-

L CD °D (20)

D(p> =p[ P2+(^ --^-> P+lc^" ] (21)
The zeros of Q(p) are

, , R + RT / R+ R

1,2 " 2 { C L - V* CD

The zeros of D(p) are

= 0

> LCD>
(22)

1 , a' s . "\ /# a * x s\ 4
( 7?- " T5- + V< 7T~ + TJL- } " ^~ } (23)p2,3 "2"lC^""L~- VVC^ L ' " LC

D

We will examine the root locus of (19) as CL is varied. First
it will be shown that py - must be complex for harmonic oscillation.

Assume p_ - are real. From (22) it is seen that (z. > are also
2, 3 •*•».£

real. Fig. 2 shows the locations of ,p~ - and z. - for p~ 3 real (z. _
can lie anywhere on their respective dotted segments, depending on

the value of R_ ).

Now from (14), (15), and (17a)

a' s

CD ^ (24)
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Therefore, p must be in the RHP. Then for ^- = 0 the two
farthest to the right on the real axis are pi and z1^, and the segment
of the real axis between p. and z is part of the root locus.

Therefore, there is always a real natural frequency in the RHP

when p , are real and the circuit can not oscillate harmonically.
For the problem at hand, p0 0 must be complex, and because

of (24) p7 %must be in the RHP. The root locus of (19) as ^- is
2, 3 . Xi

varied is shown in Fig. 3. (where for clarity the construction in

detail for only the upper half plane is shown). The zeros of Q(p),
z 7 lie somewhere on the dotted lines depending on the value of R^.

If 2
The jco axis crossing of the locus is denoted by co .

Next it will be shown that the maximum value of co is obtained
a

with the maximum permissible value of R., (a larger value of R^
moves the real zero into the RHP). It can be seen from Fig. 3 that

Q(jco )

Ars dO^T= -90° -<90°+V - (90°+v2) +P1 +P2=-i80°
pi +p2 = 90° + Vl + v2 (25)

If 6 + 6_ is decreased by changing R , co must increase since
' l 2 La

this in turn increases Pi + P2 and decreases V^ + "Y2' The next step
is to show that p + p2 is a monotonically decreasing function of R^.
Let Q(jco ) = D + jN. From (20) and Fig. 3,

a

(26)

1- a ' (R + RT ) co 2 coa Rs + RT _, a 5co

dRL " [i +(§-)2]D2
(27)
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The denominator of (27) is always positive. The numerator is

40 •? -y

f'^L- "a > <28)

Define co, as Im p2«

From (23) and (24)

2 1 1 , a' Rs ,2 > 1 , a' . 2_ 2

(29)

2 2
Next we show that co„ > co,

a 1

Ar§ §fer =pi +p2 - <W - 270° (30)

Arg -=p is a monotonically increasing function of to since (p. + p", )
is monotonically increasing and (7. + y,) is monotonically decreasing.

Q«0) _
Ars S(6) = - 45° <31>

Ar« sn^r = -180 (32)

QU^)
Ar^ DtfoTT = ^l +P2^2"360 (33)

0 < PL+ p2 < 180° (34)

-90 < - v2 < 0 (35)
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Combining (33), (34), and (35),

Q(Jo3,)
-450 < Arg -7. \ < - 1806 Dfjco^

Therefore

2 2 2 ,oZXcoa > Wj > coL (36)

and from (27), (28), and (36),

d(p +p )

dL < ° for a11 RL

The maximum allowable value of R_ therefore provides the maximum
L

frequency of harmonic oscillation.

The values of R and C required to achieve the maximum
JL» L

frequency of harmonic oscillation, co, , can now be determined along

with the value of co • With jco axis zeros at + jco , (18) becomes

3 2 2 2P + crxp + coa p+ cr^ = 0 (37)

if the real zero, -o"., is in the LHP

Oj 2> 0 (38)

o-^2 > 0 (39)

or, for the TDRC

G R ,

-1 ="C^ +-LT- "^-^° (40)
2 GL-a' (1+ RgGL)

fflWa = LU^ > ° (41)
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Then, from (41)

R <JL - R (42)
L ^ a s

The maximum allowable value of R-, L, is

RT1=—, -R (43)
Lh a' s

Therefore, cr. = 0. From (40) and (43), the required value of

CL is

C = K

Lh <HF- * T— >W- a'R«) (44>CD L s

Note that (14) and (17b) give

1 - a !R > 0 (45)
s

When (17) are satisfied, (24) and (45) are also, and

RLh' CLh > °

The frequency of oscillation is

-> i i 1 + R GT , R G_
2 1 1, sL a/S.Li /aA\

w0 = ~r / 7T + —p^ i - 7?— ( -? + -75 ) (46)
a L ( CD CL ) CD L ST

The maximum frequency of harmonic oscillation is found by

substituting (43) and (44) into (46).

2 2 a'2 Rs
"h = LCT " T~Z" ' T72 (47)D CD a L

This can be rewritten as co, = co, •+ —re ( 7* " i7" ^
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2 2 2Then with (24) and (45) co, < co^ < coR

RsCDNote that (47) has a maximum when L = f (48)
a

With (48), co, = coR and C =i oo, i. e., the TDRC has become
a TDRL. A value of L givenJ>yc(48), of course, violates assumption
(17a) (see (24)). For L > —^-, co is a monotonically de
creasing function of L.

It has been determined from numerical solutions and ex

perimental results that co, is only slightly less than the maximum

frequency of oscillation of the TDRC. Therefore, the maximum

frequency of oscillation of the TDRC is a nearly harmonic oscil

lation, and the maximum frequency is approximately co, .

V. PERTURBATION METHOD

If the second order equation

s2x + x +uf (x,sx) =: 0 (49)

has a periodic solution and if \l is a small parameter, the solution

can be obtained by a perturbation method known as the Lindstedt method.

For a given second order oscillator equation, the problem is to put

the equation into the form of (49). Pepper has shown how to do this

for a class of second order equations and has obtained the per

turbation

equation

1 9turbation solution for the TDRL. ' Similarly, if the third order

(s +0-.S+C0 s+ o-^co ) x + |if (x,sx,s x,s x) = 0 (50)
l a i a

has a periodic solution, it can be solved by the Lindstedt method.

Thus, the Lindstedt method can be used for the TDRC if (4) can be

put into the form of (50). This can be done provided the stable,
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steady-state solution of (4) is a pure sinusoid with zero amplitude

when the starting condition (12) is satisfied with the equal sign

(the reason for this will be seen below).

For the sake of generality, we will find the perturbation

solution of

IA{ x+M2 x2 +M3 x3 = 0 (51)

where

3 2
M. = s + a_s + a.s + a (52)

Mj = bj3s3 +bj2s2 +Djls +bjQ; j=2,3 (53)

The starting condition for (51) is (11). Equation (51) can be put

into the form of (50) as follows. First consider the linear part of

(51).

3 2M.x = (s +a2s + a.s + a0) x (54)

The zeros of (54) are labeled:

where

•'2

~°"3 ±3f>3 (55)

o - / 2 , 2.
a0 = <r2(<r3 + w3 >

2 2a. = <r_ + co, + 2(r2<r-

a2 = °"2 + 2(r3 ^56^
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If the oscillator is to be nearly harmonic

co.
< < 1 (57)

With (57)

w3 ~ al

2 —

Then

3 0 2(s +— s* +a^ +aQ) x

has approximately the same zeros as (54) but the complex pair are

on the jco axis. Let

x = hu (58)

Then (51) becomes

3.0 2 2 2 2 . ,2., 3
(s + s + a,s + an) u - \i s u + hM7u + h M^u = 0

where

2
u =

Now let

tr "a2

,2 2h = ji

(59) becomes

(59)

(60)

(61)
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(s3 +— s2 +a,s +a.) u+u (-usu +Mu2 +uM.u3) = 0
al l ° L 5 (62)

Equation (62) is of the form (50). The Lindstedt method can now
be used for (62) (e.g., see stoker ). The results are

where

x= u(AQ +uA ) cos cot +|x (-2D. sin cot +O^ cos 2cot +D^in 2cot +. E^
(63)

2 al
0 H

co =V^[i + -3-(boi - b«ai) "i4 *"31 33~1' if^l ,

H=̂ (aib 32+4f- b31 "b30 "a0b33> "kc "ijft k*
„ VtfelSl +3a0b20 - 24al3b23 - 12aoalb22)
ci = 3 11 2 (16 + 9aQ )

Dl =

A02^(2albao +9a0alb23 - Sa/b^ - 3aQb21)
3 2 ~\b** + 9aQ*

. b20A0
E. t

1 2a,

k = -4^-
C A 2

k = —T
S * 2

<C1 +2E1> (b20 " alb22} +^1D1 (b2ralb23>

V^(C1 +2El) (aib23 - b21) +D1 (b2Q -a^)

(64)

(65)

(66)

(67)

(68)

(&9)

(70)

(71)

The next term in the solution must be found to obtain A^.
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Equation (61) imposes an important restriction on the

perturbation analysis. If x,(t) is the stable steady state solution

of (51), (61) requires that

x(t)-^0 when n^O (72)

When |x = 0, the starting condition (11) is satisfied with the equal

sign, and a solution of (51) is a sinusoid with zero amplitude. This

is a stable solution when (72) is satisfied; it is an unstable solution

when (72) is not satisfied.

We will define a potentially hard oscillator as an oscillator

that has a non-zero amplitude when the starting condition (11) is

satisfied with the equal sign. Thus, the perturbation method is not

valid for a potentially hard oscillator. For very small amplitudes,

a potentially hard oscillator becomes "more unstable11 as the

amplitude increases, i. e., the net average ac power generated

by the circuit increases as the amplitude increases. A potentially

hard oscillator becomes a hard oscillator when the starting condition
10

is not quite satisfied. It can be shown by average power arguments

that if the following inequalities hold, the solution of (51) is not that

of a potentially hard oscillator.

3 20

T (alb32 +a2b31 " b30 " a0b33) ' a^" (aJb22 +a2b21 -b20-a0b23> >°
(73 a)

or

f- (aib32 +if- b31 "b30 "a0b33> "if"**!^ ^b2rb20-a0b22>°
(73b)

I. e., (73) must be satisfied for the perturbation method to be valid.
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2 2If (73b) is satisfied and Cj = DL = 0, \i AQ is always positive.
The validity condition (73) assures a positive value for the amplitude

squared except for the possibility of the second harmonic terms,

C. and D , altering the situation.

The results of the perturbation analysis can now be specialized

to the TDRC case. From (73a) and (4)- the TDRC is not potentially

hard if

P 13
GT R -j o^. i G_ R/ L , s .2 2a , L . s_

(ST ~ "CD CL L
) + LC,

D

> 0

(74)

The discriminant of (74) considered as a quadratic in (GT /CT + Re/L)

is

L' L V

4(Pl3_)2 (.•)
'D r2 LCnCD -v D

For most tunnel diodes. .arf,£/CD < 1/L, (74) is satisfied, and the
perturbation method can be used. The results are obtainedjby

comparing (8) and (63) to (66) (note that b,^, b . = 0)

v = uAn cos cot (75)

r b01 (

0) 55*/v
31 la, - V

•1 +

2^b32-h^-b31-b30>
(76)

u2AQ2 = 4( aQ - axa2)

3(alb32+l^-b31-b30) (77)

The ai, b.. are obtained from (4).
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VI. DESIGN PROCEDURE FOR THE TDRC

It will be assumed that (17) (i.e., (24) and (45)) are

satisfied so that the TDRC has a higher frequency of harmonic

oscillation than the TDRL. If (47) is used as a basis for

determining the design frequency, the design procedure can be

used to obtain a frequency near the maximum possible. If a

lower frequency is desired, series L or series R^ can be added.
Design requirements may dictate whether L2, R~ or both are to be
added. For example, it can be seen from (43) that R- can be

specified within limits by choosing the appropriate value of

R = R. + R~. Then L = L. + L_ is determined from the

frequency requirement. The value of L or R is determined

from (51)

or

Z~Z r-v/ R C^co
1 a /I \/l • x> s Dt— = P A (1-Vl-a'R, -t—L "BTC )

b°D 8 tt (78)

R„ = a»L( -§- - ^-^- -co2L) (79)
s •D CD

where co is the required frequency of oscillation. The negative

square root is taken in (78) in order that a'/CD > R/L* The
value of R is determined from (47)

L

RT = RT, = -V- R ^8°)
L Lh a' s

From (4) and (80) aQ = 0. Since a > 0, the starting condition
is a^ < 0.

Now Cy can be obtained from (4) and (77) noting that co «Vai

-18-



_ *'L (4o,2CD2 -3g-pi3tt2A02) CLh (81)
4a'o,2LCd2 - 3P13CLhll2A02(l-a'Rs)2

where uA_ is the amplitude across the nonlinearity. The starting

condition becomes C_ > C_ , .

VII. EXPERIMENTAL RESULTS

Tunnel-diode oscillators have been built using a Hoffman

type IN 2928 silicon tunnel diode. The static v-i characteristics
are shown in Fig. 4 along with the cubic approximations determined
by the method in the Appendix. The operating point is taken as
the point of minimum slope and is 0.125 volts. For this operating

point a' = 2. 2x10"3 mho, CD = 27 pf, Rj^ «1ohm, L^Sx 10"
henry. In order to have R determined accurately an external

series resistance of 24 ohms is added so that R = 25 ohms.
s

Two tunnel-diode oscillators were designed. The design or

predicted results are given in Table 1 along with the experimental

values of amplitude and frequency. The values of L, R_, and C^
are determined from (78), (80), and (81). The design procedure

calls for a load resistance of 429 ohms. A value of 400 ohms was

used to make certain that the linearized real natural frequency was

in the LHP. The circuit used is shown in Fig. 5. Since R »R^,
L» L. the voltage across the nonlinearity is very nearly equal to

v.. Table 1 shows excellent frequency agreement. The measured

amplitude is too low in both cases, being 35% below the design

value for the worst case. The accuracy of the amplitude is dis

cussed in the following paragraph.

In order to check the accuracy of the TDRC analysis the

amplitude and frequency were measured for several values of C_.
This procedure was repeated for several values of R._. In Fig. 6
the measurements are compared with values obtained from the
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F requency (mc) Amplitude •(rriv)
L CL RL

vl VL (H*) P' £2

Design Meas Design MeasDesign Meas

20 20 100 65 71.5 45 3.2 37 400

20 19. 8 150 100 79 63 3. 2 50 400

TABLE. 1
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perturbation method for RL - 400. The results are similar for
other values of RT . It can be seen that the perturbation solution

agrees quite well with the experimental results for amplitudes up

to about 0.18 volts (0. 36 volts peak to peak). This is relatively

large signal operation and the voltage across the tunnel-diode be

comes quite nonharmonic. An examination of Fig. 6 shows that

the predicted amplitude is too high for measured amplitudes below

about 0.15 volts; while the opposite is true for higher amplitudes.

This can be explained by examining,Fig. 4. In most of the negative

resistance region the slope of the cubic approximation is less

(more negative) than that of the actual characteristic. Thus for

voltages in this region an element with a cubic characteristic

would supply more energy to the passive elements than the actual

element does, so a larger amplitude is predicted. In most of the

positive resistance region the cubic has a greater slope. In this

region the cubic would dissipate more energy than the actual

nonlinearity. Thus for large amplitudes, use of the cubic approxi

mation should result in smaller predicted amplitudes. This is

borne out by Fig. 6.

For reference, designate the TDRC equation with the non-

linearity approximated by the cubic as the approximate equation.

This approximate equation was solved numerically with the aid of

a computer by a method similar to the phase plane analysis of Kuh

The results are also shown in Fig. 6. The amplitude and frequency

of the perturbation method are in excellent agreement with that of

the numerical solution. The perturbation solution is an excellent

approximation to the solution of the approximate equation. This

indicates that the limiting factor is the approximation of the non-

linearity rather than the method of solution.

VHI. GENERALIZATION

The perturbation results given in Section V.,. can be applied to
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a large class of oscillators described by a third order equation.

Specifically, the results can be used for any oscillator which

a) can be described by three dynamically independent

variables,

b) have frequency independent nonlinearities that are

all single-valued functions of one and the same

variable, and

c) are not potentially hard.

Due to b) the oscillator can be described by a single third order

equation. As shown previously, property c) is required if the

perturbation method is to be valid.

The TDRC equation (1) can be written as MQv + MLF^v) = 0
where Mn and M. are linear differential operators. Generalizing,
we can write the characteristic equation of any oscillator satisfying

conditions a) and b) above as

n

M„x + Y. * M.F. (x) = 0 (82)
1=.

n

Lx+ Y * M.F. (x) = 0
0 1=1 ' l X

where M„ and the M. are linear operators of order three or less, i. e.,
0 i

M. = a..s3 +a.0s +a.,s +a ; i = 0, 1, ... , n (83)
1 i3 i2 ll lO

As is done for the TDRC, the use of a transformation of variables is

assumed in (82) so that the dc operating point is x = 0 and

n

E a.0F.(0) = 0 (84)
i=l

Due to (84) the constant terms of the F.(x) do not affect (82). For
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convenience the constant terms will be omitted. If the nonlinearities

in (82) are approximated by third degree polynomials

F.(x) = a.x+ B x2 +B., x3 (85)
1 i r i2 r i3

With (85), (82) becomes

M^ +M2x2 +M3x3 =0 (86)

where

3 2M. = s + a2s + as + a

M. = b.,s3 + b.~s2 + b..s + b.n; j=2,3
3 j3 j2 jl j0

n

a. = an + Y a.a.,
3 0 k i i3

»k =a^ (a0k + Zx a0aik)

jk~ a3 Pij ik
(87)

Equation (86) is the equation analyzed in Section V. Thus, the

results of Section V can-be applied directly to (86) provided the

oscillator described by (88) is not potentially hard, (i.e., provided

(73) is satisfied). Some oscillators described by (82) (therefore,

by (86) approximately) are the Colpitts, Hartley and some phase

shift oscillators provided the active device can be considered frequency

independent.
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APPENDIX: APPROXIMATION OF THE TUNNEL-DIODE

CHARACTERISTIC

For the tunnel-diode nonlinearity F^v) the value of -a1
is chosen as the slope of the actual characteristic at the operating

point. This is necessary if the small-signal operation of the
oscillator (e. g., the starting condition) is to be accurately described.

A third degree polynomial has odd symmetry about its point

of minimum slope, but the tunnel-diode characteristic does not, as
can be seen from Fig. 1. A better fit to the tunnel-diode characteristic
can be obtained if, instead of a conventional third degree polynomial,

the following approximation is used

F1 (v) = -a'v+ 613+ v3 , v> 0

=-a'v +B13" v3 , v <0 (88)

B + and B " are chosen so that the maximum and minimum values

of (88) coincide with those of the actual tunnel-diode characteristic.

Then

B + - 2-^-
Pl3 - ~2

3V2

S13 = —2 <89>
3vl

where v. and v_ are defined in Fig. 1.

To the accuracy obtained in Section V., the perturbation
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solution can be obtained when the nonlinearities are approximated by

F.(x) = a.x+B_ + x3 , x>0
1 1 ri3

= a.x+ B " x3 , x< 0 (90)
i i3

The results are (63), (64), (65) and (66) where the B.3 are given
by

6i3=T- (Pi3+ + Pi3">

and the Pi2 = ° (hence, theB^ = 0).

This can be shown as follows. Equation (62) can be written as an

integral equation. The first perturbation term can be obtained by
following the method used by Stoker to establish existance of the
perturbation series for a second order oscillator equation. This
involves definite integrals in which x is replaced by its first
approximation, xQ = AQ cos cot. These integrals can be evaluated
when the F.(x) are given by (90). The amplitude and frequency can

then be determined; the results are given above.
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Figure 3. Root Locus of (19) as 1/C is Varied.
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Figure 4. Tunnel Diode Static v-i Characteristics together with Cubic
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Figure 5. Tunnel-Diode Oscillator Circuit
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