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ABSTRACT

A combinatorial theorem about finitely generated free monoids

is proved and used to show that the set of all subsequences (or super-

sequences) of any set of words in a finite alphabet is a regular event.
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INTRODUCTION

Let 2 be the free monoid with null word € generated by

*

a finite alphabet 2. Let < partially order 2 by embedding

(i.e., x<y iff x = Xlx2...xn and y = Yl ^ yz *2 ...

v x y for some integer n where x. and y. are in 2
'n n 7n+l l J

for 1 < i < j < n+1).

•«•

THEOREM 1. Each set of pairwise incomparable elements of 2 is

finite.

For any AC^ define

*>,

A = (x in iTi y <x for some y in A)

and

A = [x in S : x<y for some y in A)

THEOREM 2. Let A C s\ Then there exist finite subsets F

and G of 2* such that A = F and A = 2 - G.

*

THEOREM 3. A and A are regular sets for any A(.S.

In Section 2 we will show that Theorem 1 =^ Theorem 2 =4>

Theorem 3. For ease of reading the proof of Theorem 1 is deferred
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until Section 3.

An easy corollary of Theorem 1 is a well known result of

Konig"- 2\

COROLLARY (Kbnig). Each set of pairwise incomparable elements

of (Nk, <) is finite (where N , the set of k -tuples over the non-

negative integers N, is partially ordered so that (u^ u2» ..., i^)

< (vr v2, ..., vk) iff u.<v. for l<i<k).
Note that Theorem 1 fails if 2 is partially ordered by sub-

words, i.e., if <j is defined so that x <x y iff y = Yx * Yz for

some y. and y in 2 then, for a and b in 2,
1 ^

(a bn a : n >1} is an infinite set of pairwise incomparable elements of

(2 , < ). Similar counter examples exist for (2 , <k), where

x<ky iff x = xxx2 ... Xj^. andy=y1x1y2x2 ... ykxkyk+1 £qt

some x. and y. in 2* (1 <i <j < k+1). Any necessary and suffi

cient conditions on partial orderings which insure Theorem 1must

exclude (2*, < ) which shares many formal properties with (2,<).

Theorem 3 is unexpected. One might suppose that A can be

non-recursive for suitably chosen A (e. g. A the domain of a partial

recursive function defined by a Turing Machine which accepts an input

word w iff every subsequence of w satisfies an appropriate

predicate. Evidently no such predicate exists).

The proof of Theorem 3 (and therefore Theorem 2) is necessar

ily non-constructive for recursively enumerable A. This is clear
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since A is empty iff A is empty iff A is empty but the ques

tion of whether a set is empty is undecidable for arbitrary recursively

2
enumerable sets and decidable for arbitrary regular sets. Indeed,

for the very same reason, given a context-sensitive grammar G one

cannot effectively construct the regular events which represent L(G)

and L(G). Given a context-free grammar G it is simple exercise

to construct context-free grammars G^^ and G2 such that

L(G ) = L(G) and L(G2) = L(G). Whether Gj and G£ can be

effectively transformed into the regular events (or finite automata or

right linear grammars) which specify L(G) and L(G) is an interest

ing open problem. Ullian'" *has shown that one cannot effectively

transform a context-free grammar G which generates a regular

language into a regular event which represents L(G). In fact, one
*** 2&

cannot effectively determine whether L(G) is 2 or 2 - (w)

for some non- € word w even when these are known to be the only

possibilities.

PROOF OF THEOREMS 2 AND 3

THEOREM 2a. Let AC 2 • Then there exists a finite subset F

of 2 such that A = F .

Proof, Let F be the set of all minimal elements of A . Clearly

A = F . By Theorem 1 F must be finite.
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THEOREM 2b. Let ACS. Then there exists a finite subset G

of 2 such that A = 2 - G .

Proof. Let B = 2? - A* By definition BCB. Now suppose that

B(f B, i.e., suppose that there is a word x in B f|A . Then since

x is in B , x>y for some y in B . On the other hand, since

x is also in A, y is also in A = A = 2"* - B which is absurd.

Hence B = B and therefore by Theorem 2a B = G for some finite

set G so that A = 2 - G .

Proof of Theorem 3. For any word w in 2 w is obviously

regular since

w = 2 w. 2 w, . . . 2 w 2
12 n

where w =Wj*2 ... wn for w. in S U[« } , l<l<n. Since
a finite union of regular sets is regular, W= U [w : w in W} is

regular for any finite subset W of £ . Now if F and G are

as in Theorem 2 then A = F and G are regular as is A = 2 - G

since the complement of a regular set is regular.

, 3
PROOF OF THEOREM 1

Lemma. If Theorem 1holds for an alphabet 2 then every infinite

subset of 2 possesses an infinite chain.

Proof. Let A be an infinite subset of £ and suppose that every
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chain in A is finite. The totality of maximum elements of maximal

chains in A is identical with the maximum elements of A and is

therefore, by hypothesis, finite. Since A is infinite, infinitely many

distinct chains have the same maximum element u . But then infinitely

many and therefore arbitrarily long elements of 2 precede u , con

tradicting the definition of < .

The proof of Theorem 1 is by induction on the size of 2. For

1 - letter alphabets the theorem is trivial. Suppose that Theorem 1

holds for all n-letter alphabets and fails for an n+1 letter alphabet

2.

For each infinite set of pairwise incomparable elements

Y = (y, Yo» ... } of 2 there is shortest x in 2 such that

x ^y. holds for all i . Without loss of generality we may suppose

that Y is chosen so that x is of minimal length. Clearly x ± e.

Let

x = x x ... x^, x. in 2, 1< j <k .

If k = 1 then y. is in (S-x_)* for all i>l which contradicts
i l

the induction hypothesis. Because of the choice of x ,

X1X2-'- Vl^yl

holds for all but finitely many i and therefore by relabeling subscripts

we may assume it holds for all i > 1 . Hence for each i > 1 there

exist unique words y.^ y.2» ... yik such that



yi = yilXlyi2X2-" yik-lXk-lyik

and x < y.. holds for 1 < j < k . Furthermore the choice of x
jf ij ~

guarantees that x < y., holds for all i > 1 .

We now assert that there are infinite index sets N , N , ..., N

such that N.lN. , (1 < j < k) and y . < y . whenever p and
j j+1 — PJ - qj

q are in N. (1 < j < k) and p<q. Let N = {i:i>l). We will

establish the existence of N. from the existence of N ^ 1 < j < k .

Let

Y. = fy.. : i in N. .} .

If Y. is finite then at least one of the sets {i in N : y . = w]
j J" J

is infinite for some fixed word w and we may choose N^ to be any

such infinite set. Alternatively, if Y. is infinite, the induction

hypothesis (applicable since Y.C (2 - x.) ) and the lemma imply

that Y. possesses an infinite chain ys^<ys^<•*• " Now if

t , t?, ... is any infinite strictly increasing subsequence of s^ s2, ...
J. w

then we may choose N. = {t. : i > 1} . Hence the assertion is valid.

But then if p < q are in N then p and q are also in

N (1< j < k) so that v . < y . (1 < j < k) and therefore
j -J yPJ - 'qj - ~

yp = ypl Xl yP2 X2 *** yp k-1 Xk-1 ypk

^ yql Xl yq2 X2 ' *' yqk-l Xk-1 Yqk = Yq '

a contradiction which establishes the theorem.
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FOOTNOTES

1. Theorem 1 can be reformulated as an amusing combinatorial

property of real numbers: no matter how one partitions an infin

ite n-ary expansion of any real number into blocks of finite

length one block is necessarily a subsequence of another.

2. See Ginsberg*- •" for the definition and properties of regular

sets, regular events, context-free and context-sensitive grammars,

3. I am indebted to Robert Solovay for his help in extending a

previous proof of Theorem 1 beyond the special case of 3-letter

alphabets.
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