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ABSTRACT

Realization of arbitrary transfer functions by a special class of

multiple loop feedback configuration has been investigated. The nth

order system consists of n nominally identical single-pole active stages

with arbitrary but constant interconnections and feedbacks. The con

straints on the sensitivity functions with respect to the active stages of

such a system have been obtained, and conditions have been derived for

the minimum of the multiparameter sensitivity index, defined in the

companion paper. For second order systems, the optimal design has

been analytically obtained. For higher order systems, a general opti

mization scheme, employing steepest descent from an initial design, has

been outlined. The optimal design of a fourth order stagger-tuned

bandpass filter has been presented as illustration.
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1. INTRODUCTION

With the advent of integrated circuits the philosophy of electronic

circuit and system design has changed drastically. First, active circuit

elements which used to be an order of magnitude more expansive than

passive components are often cheaper and easier to obtain. Thus with

the exception of possible stability considerations the number of active

elements employed is in general of no concern to designers. Secondly,

integrated circuit elements are more sensitive to temperature and

enviromental variations. The designer is forced to consider the possible

change of performance of a system due to perturbations in its parameters.

Therefore certain multi-parameter sensitivity measure must be intro

duced in order to compare circuits and to optimize the design. Thirdly,

because of complicated fabrication techniques which is usually involved

in the manufacturing of integrated circuits it is desirable to design circuits

with dominant symmetry such as circuits employing many identical com

ponents. For these reasons we propose to investigate a special class of

multiple loop feedback systems. The feedback system is to realize an

arbitrary transfer function by means of n identical active stages and is

to be optimized in the sense that a multi-parameter sensitivity index

is minimized.

Even though in the discussion above we give our motivation to

the proposed problem in terms of integrated circuits, the multiple-loop

feedback configuration has obvious application in the optimum synthesis
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of linear systems. As a matter of fact the problem is related to the

familiar problem of minimal realization of a transfer function by means

(2, 3)
of state variables.

In Section 2 we will describe the proposed multiple loop feedback

configuration and its properties. In Section 3 we will illustrate the use

of the multiple loop configuration to the synthesis of a second order

transfer function. The optimum sensitivity measure is derived in Section 4.

In Section 5 we will indicate the method of synthesis of high order systems

by means of computer and give an illustration design.
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2. A MULTIPLE LOOP FEEDBACK MODEL

Consider a single -input, single output, multiple-loop feedback

system which is represented by the vector signal flow graph repres-

4 5entation of Fig. 1. ' In the figure u and y are, respectively, the

scalar input and output of the system related to each other by the transfer

function w, according to the equation

y = wu (1)

X is an n X n diagonal matrix

X = diag (x., x2, ... , x ) (2)

The n xJs are the transfer functions of the n active stages and are

assumed to be nominally identical. Typically, x, may correspond to

a transistor having a single-pole transfer function of the form

Yk
xl = —=- (3)
*k 8 + 1 l

where y, represents the gain of the stage and the bandwidth is normal-

ized to unity. We further assume that n y 's are the only parameters

which are sensitive to change. We will optimize the transfer function

with respect to a sensitivity index which is a function of the n y 's . Note

that the sensitivity function of the transfer function w with respect to y^

is the same as that with respect to xl . For convenience, we will use
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x,'s as the sensitive parameters from here on.

The other elements in the signal flow graph are all assumed to

be constants and are insensitive. Thus d is a scalar which represents

a direct transmission from the input to the output. c_ and b are constant

n-vectors. A is a constant n X n matrix which may represent a general

frequency independent feedback connection. In terms of the elements of

the vector signal flow graph the transfer function w is given by

w = d +cTW (X) b (4)

where

W(X) = (X"1-A)"1 (5)

If x^ is assumed to have single pole as in Eq. (3), then with n

xJs, the general configuration can realize a transfer function w with n

poles. The synthesis problem can be described as the determination of

the quadruple {A, b, c,d} from the given transfer function w and the

given diagonal matrix X« The optimum synthesis problem can be des

cribed as finding a particular quadruple which not only realizes the given

transfer function w but also minimizes a specified sensitivity index.

The advantage of the signal flow graph model is in its generality.

Consider a given quadruple {A, b, c_, d} which realizes a specified trans

fer function w with a given X. Then if we let T be any nonsingular

real n X n matrix, the quadruple
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{A, b,c,d} = {T^AT, T^b, TTc,d} (6)

also realizes the same transfer function w. This is easily proven since

W = (X"1-A)"1= T-1WT (7)

Substituting Eqs. (6) and (7) in (4), we can easily see that w = w. Since

T is arbitrary, we can then optimize the transfer function synthesis by

starting with any quadruple realization of w and then minimizing a

sensitivity index with respect the elements of the transformation matrix

T. It can be shown that all possible quadruple realizations may be

obtained by such a transformation, i. e., given any two quadruples

{A, b, c_, d} and {A, b, c_, d} realizing the same transfer function w

according to Eqs. (4) and (5), a real nonsingular transformation matrix

T can always be found so as to satisfy Fig. (6). The problem is similar

to that of finding all equivalent minimal realization of a given transfer

(2)
function as proposed by Kalman. In Kalman's problem the matrix X

is — 1 .
s —

-6-



3. A SECOND-ORDER EXAMPLE

Before going into the optimum synthesis of a general transfer

function, we first consider a second-order example. Let the transfer

function be

2k s

w(s) = -^ :—2" (8)
s +2|s + o>

and let

*i =*2 - rh (9)

Thus the two identical stages correspond to unity-gain single-pole trans

fer functions with unity bandwidth. The synthesis problem is to determine

any quadruple {A, b, c_, d} which realizes the specified w(s). The

scalar signal flow graph is shown in Fig. 2, where the elements

an " fn+ h a22 = f22+ h \r a2i- V V ci and c2 are to be deter"
mined. It is obvious that since w (oo) = 0, the direct transmission path d

which is in the general signal flow graph of Fig. 1 is not needed.

The matrix W is given by Eq. (5)

/
f -+1-U "al2

w =

\
^ "a21 S+1"a22

-\ , , v -1
8"*11 "ai2

-a21 S"f22
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, S'f22 a12
1 / I (10)

A(s) \ a21 s -fn

where

A(.) =s2 - (fu+ f22) s+fuf22 - a12a21 (ID

and is to be identified with the denominator polynomial of w in (8).

From Eq. (4), we can express the transfer function as

w(s) = £ Wb = -^| (Cj c2)

°21 " "11

..... , . ,,*"'22 VU>L

Thus the numerator polynomial of w is given by

S"f22 ai2 \ / b
N(s) = (cx c2) •

a21 S-fll^Xb2

s-f../ >b2

= 8<Vl +b2c2> "blClf22 " b2C2£ll+blC2a21+b2Clal2

(12)

(13)

Identifying A (s) of (11) and N (s) of (13) with the given transfer function

w(s) of (8), we obtain

f + f = - 2£ (14a)
11 22 5

2
f f - a a = to (14 b)
hi 22 al2a21 0
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Vl+b2C2 = 2k 04C)

bl Clf22 +b2C2hi - bl C2a21 " b2 Cla12 = ° (1 4d)

Any solution of the above four equations represents a realization of the

given transfer function w. One set of solutions is given below

21

f = f00 = -£ (15a)
11 22 b

a,, =k(±co0-6). ai2 = k(+W0"e) (15b)

bx =c2=l (15 c)

b2 =c1 =k (15d)

It will be seen in the following section that these elements as given by

Eq. (1 5) also satisfy the minimum sensitivity condition and therefore

represents an optimum synthesis.

A lumped electronic circuit realization of the system is shown

in Fig. 3 b with k =l, g =.2 and a normalized w = 1 which corresponds

to an actual frequency of 231kHz. For simplicity, the two local feedback

circuits as given by x= x =—- and a =a^2 =1-6 = .8 are realized

by the transfer function ——r without feedback as shown in Fig. 3 a. The
S T . "

required time constant is realized by an external RC combination with R = 5kS2

and C = 690pF as shown in Fig. 3 b. The measured and the designed

magnitude curves are shown in Fig. 4. The discrepancy between the

two curves can be eliminated by adjusting the feedback resistance R-.

-9-



4. OPTIMUM SENSITIVITY MEASURE

In this section we first derive some constraints of the sensitivity

functions and then use the sensitivity index introduced in the companion

paper^ to obtain the conditions for minimum sensitivity index.

The conventional scalar sensitivity of the transfer function w with

respect to the parameter x, is

x, 8w
SW =i rj- (16)
*k W 8Xk

In terms of the elements of the vector signal flow graph, we obtain from

Eqs. (4) and (5)

SW = JE- cT -r=- b
*k W " 8Xk "

^ T -1 -1— c WX XA, X lW b
w — — k—

1 2 2 c, w,,_ w,_. b, (17)

i J
x,w . . i ik kj j

where A is a diagonal matrix with unity in the kth term and zeros
—k

elsewhere, w., is the ikth element of W, c. and b are respectively
ik — i J

the i th and the jth elements of £ and b . We can express the sensitivity

function S W more conveniently by introducing the matrix
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D = IWbcT W (18)

The kth diagonal element of D is

<L, = - 2 2 c.w.. w. .b. (!9)
Wc w . . i ik kj j

Thus Eq. (17) becomes

sw =^kk (20)
Xk *k

and can be calculated from the matrix D. The trace of D can be written,

from (18) and (20),

tr D = 2 cL. = -i- cT W2 b = 2 x, S* (21)
~ k=l ^ W k=l k ^

It is interesting to note that Eq. (21) constitutes a basic invariant on the

sensitivity functions. Consider the transformation of the quadruple

{A, b, c, d} which corresponds to a realization of the given w by an

arbitrary nonsingular matrix T . We have shown that the resulting

realization { A, b , c_ , d } yields the same transfer function w . The

matrix D after the transformation becomes

B = -Wb £TW =T-1DT (22)
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Since the trace is invariant with respect to a similarity transformation,

we obtain

n

tr D = tr D = 2 x, SW (23)
k=l * *k

In our configuration, x^ is assumed to be the same for all k, we there

fore obtain the following constraint:

n

2 S is invariant (24)
k=l*Xk

Eq. (26) represents a basic invariant for equivalent realizations of the

transfer function w .

We can now pursue to the problem of optimum synthesis. We

will use the sensitivity index introduced in the comapanion paper for

optimization. Briefly, given the partial fraction expansion of the sensi.

tivity function

m h.,
sw = s _&- + h (25)

x, . , s - s. m+l,k
k. i=l l

where the s.'s are the distinct poles and zeros of the transfer function
i

w, the sensitivity index is

JL= S <r.n 2

k=l k

m+1 2 7
2 <*.(Reh.k) + (^(Im hik>

i=l

-12-
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A 6Xk
where the fractional perturbation parameters e = — (k = l, 2, • • • ,n)

are assumed to be mutually independent random variables having standard

deviations cr and a. and p. are weighting factors. Eqs. (24) and (25)
K 1 1

imply that at each pole s. and at s = oo ,

n

2 h. = H., i = 1, 2, ..., m +1 (27)
k=l 1K l

where H.'s are constants. The optimization problem is then to minimize

SSU in (26) subject to the m +1 constraints of (27). It is easily shown

by means of the Lagrange multiplier's rule that the optimum solution for

h., is given by :

1 Hih = —£• for i =l, 2, ..., m +1 (28)

^k 2 1/cr2
k=l k

The optimum sensitivity index becomes

I 1 m+1 2 7<4lmin= n 1 S1 ^**^ +P1(toH) ]
k=l k

(29)

Condition (28) can be stated alternately in terms of the n sensitivity

functions. Combining (28) and (25), we obtain the following result for

optimum synthesis:
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2_w 2w 2 w (30\or, S = or0 S = ... = cr b w"J1 x. . 2 x2 n x
m

If, as in our problem, all <r,'s are the same, then the optimum syn

thesis amounts to the synthesis which yields identical sensitivity func

tions for the n parameters x, .

In the second-order example of the previous section, it is easily

w w
shown that to set S = S , we need

*1 x2

and

f = f
TL1 22

be = b~ c~
11 2 2

The particular synthesis given satisfies the above equations, hence it

represents the optimum synthesis.
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5. OPTIMUM SYNTHESIS OF HIGHER-ORDER SYSTEMS

The optimum synthesis of high-order system cannot be done in

general as in the second-order system by equating coefficients. Instead,

we must depend on the method of finding an arbitrary initial design first

and optimize the sensitivity index Qj£ with respect to the elements of the

transformation matrix. The initial design can be, for example, a tandem

or a parallel connection of second-order systems. The sensitivity index

is calculated for the initial design and is to be minimized by employing

any of the standard techniques for steepest descent along the gradient of

JO. in the n -dimensional Euclidean space spanned by the elements of

the transformation matrix T . It is a straightforward task to program a

computer to calculate the gradient as well as the Hessian matrix (in

case zero gradient is encountered). A point where the gradient is zero

is the location of a minimum, a maximum or a point of inflexion of jOL .

In the first case, comparison of the value of the sensitivity index eSb at

the point with JQi I . as given by Eq. (29) will provide the information
mm

whether^ the minimum is global or only local. In the other two cases, to

continue steepest descent, we have to pick the eigenvector corresponding

to the lowest eigenvalue of the Hessian matrix to obtain the transformation

matrix. The details of the program will be omitted.

The following example indicates the optimum synthesis of a

fourth-order staggered-tuned bandpass filter. The specified transfer

function has two pairs of complex conjugate poles at s = -1 ± j • 9 and
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s = -1 ± jl.l . There are no finite zeros. The initial realization is

obtained by cascading two optimal second-order systems, each of

which realizes one of the two complex pole pairs. The realization is

given by

A =

1 -.81 0 0

L -.1 0 0

0 1.0 -.1 -1.21

0 0 1 -.1

b = (1, 0, 0, 0)

c = (0, 0, 0,1)

The flow graph representation is shown in Fig. 5. The sensitivity index

with weighting factors

a. = - — and 6. = 0
l Re s. ri

-16-

and a normalized cr, is chosen such that QSL, = 1 in Eq, (29). For
k mm

oL . =1 h
mm

the initial design, the sensitivity index has a value of 2 . After five

iterations in the minimization process, a sensitivity index of 1.001 has

been achieved and the resulting realization is given by



A =

-.1 -1.004 0 .04

1.0 -. 1 0 0

0 1.0 -. 1 -1.016

0 0 1 -.1

b = b and c_ = c_

The signal flow graph realization is shown in Fig. 6. The result indicates

that for minimum sensitivity to random perturbations in the nominally

identical stages, a 4th-order bandpass amplifier has to consist of two

identical optimal 2nd-order systems in tandem with an overall feedback

loop.
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6. CONCLUSIONS

In this paper we have presented a special class of multiple loop

feedback configuration which can realize arbitrary transfer functions.

An optimum synthesis is achieved in the sense that a multiparameter

sensitivity index is minimized. The basic result for minimum sensitivity

synthesis of our proposed configuration is that the conventional sensitivity

functions with respect to all parameters are the same. For transfer

functions of order two, the optimum synthesis can be obtained analytically.

For higher order transfer functions, a computer program has been written

to obtain the optimum synthesis by the gradient technique. We believe

that extensions of the proposed multiple loop configuration to more

general ones would be of considerable interest.

We are grateful to Y. F. Zai who designed and measured the

circuit in Fig. 3 b.
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Fig. 1. A general multiple loop feedback configuration which is rep
resented by a vector signal flow graph, u is the scalar input,
y is the scalar output, and X is an n X n diagonal matrix
whose individual elements represent n active stages.
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Fig. 2. A scalar signal flow graph which realizes a second-order
transfer function.
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S+0.2

S + 0.2

Fig. 3 a. The signal flow graph representation of the circuit in Fig. 3 b.
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Frequency (x 231 kHz)

Fig. 4. Measured and designed frequence responses for the circuit in
Fig. 3 b.
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-0.81 -1.21

Fig. 5. Initial design of a 4th order system. w(s) = —
K

s + 2s+ 1.81)(s +2S+2.21)

Pfe
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-1.004 1.01.6

Fig. 6. Optimum system with the same transfer function as in Fig. 5,
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