
 

 

 

 

 

 

 

 

 

Copyright © 1967, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



A MULTI-PARAMETER SENSITIVITY MEASURE
FOR LINEAR SYSTEMS

by

t

R. N. Biswas

E. S. Kuh

Memorandum No. ERL-M217

10 July 1967

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A MULTI-PARAMETER SENSITIVITY MEASURE
FOR LINEAR SYSTEMS

R. N. Biswas and E. S. Kuh

Department of Electrical Engineering
and Computer Sciences

Electronics Research Laboratory
University of California, Berkeley

ABSTRACT

A scalar sensitivity measure for linear, time-invariant, single-

input, single-output, multiparameter systems has been defined in terms

of the generalized root and gain sensitivities and the fractional pertur

bations of the parameters. The definition works equally well whether

the transfer function of interest has simple or multiple poles and zeros.

Based on this definition, a multi-parameter sensitivity index independent

of the parameter perturbations has been introduced, taking the statistics

of the random parameters into account. Application of this sensitivity

index for optimal design is given in the companion paper.
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1. INTRODUCTION

The problems of analyzing the change of performance of a system

due to perturbations in its parameters and the optimum synthesis of a

system for minimum sensitivity have always been of considerable interest

and importance to engineers. The first systematic approach to these

problems was made by Bode whose theory on return difference and

sensitivity has been the basis for analysis and design of linear feedback

systems. While in the old days one considered the effect of a single

parameter in a feedback system, such as the gain of an amplifier; now

one frequently deals with systems which contain multi-parameters that

are subject to variations. For example in integrated circuits all circuit

elements are sensitive to temperature and environmental changes. There

fore, it is crucial in the analysis and design of such systems to introduce

the concept of multi-parameter sensitivity and to propose a sensitivity

measure which is not only convenient for comparison of various systems

but also useful for optimization.

In linear time-invariant lumped systems the conventional single -

parameter sensitivity function is a rational function of the complex fre

quency variable, and is a measure of the relative change of the transfer

function of interest with respect to the change of a particular parameter.

Extensions of the scalar sensitivity function to multi-parameters have

been made by various people. For example, a multi-parameter vector

2 3
sensitivity function can be introduced ' by using the gradient of the

-2-



transfer function with respect to a parameter vector. However, from

the designer's viewpoint the vector sensitivity function is not particularly

attractive since it is a vector-valued function of complex frequency

variable and hence it is difficult to use for comparison and for optimum

design. Other extensions such as the use of sensitivity matrix formu

lation, while useful in some control problems, have limitations for

4
general analysis and synthesis.

In this paper we propose a general scalar sensitivity measure

which is hot a function of frequency. It is related simply to the con

ventional single-parameter gain and root sensitivities. Moreover, it

is flexible in that simple weighting factors are incorporated in the

definition for specific design purposes. An additional feature is that it

can take into account the statistics of the multi-parameters. This is

especially useful since, in general, the perturbations of various para

meters are functions of some random variables with certain correlations

among them.

In Section 2 we will review some important aspects of the sensi

tivity function and its relation to gain and root sensitivities. In Section 3

we will introduce the sensitivity measure and derive some useful prop

erties. In Section 4 we will present the statistical considerations and

define a sensitivity index. The application of the proposed measure is

5
given in a companion paper.

-3-



2. THE SENSITIVITY FUNCTION

Consider a linear time-invariant, single-input, single-output,

lumped system. Let the transfer function be w :

n (s-Zjg)
w(s) =K^ (1)

n (s-p)

j=i 3

where s is the complex frequency variable, z and p. are, respectively,

the zeros and poles of the transfer function, and K represents the gain.

Let x, , k = l,2, ... , n be the n parameters whose effects on the trans

fer function are of interest. Then the conventional scalar sensitivity

function of the transfer function w with respect to the parameter x, is

ww
denoted by S and is defined as

w . . a 8lnw(s) _ 9lnw(s) _ Jc 9w(s) .~.
xk(S) " ainXk ~*k 8^ " w(s) dx^ [ )

For simplicity, we assume that x^ is not a function of the complex fre

quency variable s . Combining Eqs. (1) and (2), we obtain

9z, 8p.

q a

V 8Xk l~l S-Zi j"l S"Pj•i'-^^Z-?-^ (3)
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Thus the sensitivity function has been put in the form of partial fraction

expansion. For convenience, we rewrite (3) as follows:

m h.
w

Sx.(S) = I s-^+lWl,k <4>
k i=l x

Note that the sensitivity function of w with respect to any x^ is a

rational function whose poles, s., i = l,2, .. . , m, are the poles and

w
zeros of w. The residue of S at the pole s., denoted by h., is given

by

8s.

h„ = + x. tt-^ (5)lik = t *k 8*k

The + sign is used if s. is a pole of w, and the - sign is used if s. is

a zero of w. Equation (5) indicates that the residue at a pole s. is

6-8simply the root sensitivity " or its negative. The constant term in

Eq. (4) denoted by h is from (3)
m+1, k

_ 8lnK K ...
h ,_ . = x. — = S (b)m+1, k k 8x, x^

and is recognized as the gain sensitivity.

It should be pointed out that when some of the poles or zeros of

the transfer function w are repeated, the root sensitivity in the con

ventional sense, as in Eq. (5), is not uniquely defined, since a multiple
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root is a branch point of the root locus. Consequently, Eq. (3) is no

longer valid. However, the sensitivity function S still has the partial
*k

fraction expansion form given by Eq. (4), where its poles s., i = l, 2, ... ,m

are now the m distinct poles and zeros of w. This can be shown by

considering, for example, the polynomial containing multiple roots at

s = z of order v :

P(s) = (s-z)V (7)

Let a first order perturbation be introduced so that the roots of the

polynomial are moved from s=ztos = z + 6z, A =1,2, ...,v. Then

v

6P(s) = n (s -z -6z ) - (s -z)V (8)
i=l

represents the perturbation of the given polynomial P(s). To a first

order approximation

v

- 2 6z

6P(6) 1=1 (9)
P(6) s -z

It is then straightforward to obtain Eq. (4) directly from Eq. (2), and it

w

is easily seen that the sensitivity function S still has simple poles.
\.

Thus the partial fraction expansion form of Eq. (4) is valid regardless

whether the given transfer function w has repeated poles and zeros or
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not. This suggests a logical extension of the definition of root sensitivity

for multiple roots, say s., to be the residue h of the sensitivity func

tion in Eq. (4) at the root location s.
1

Let us summarize the above properties as follows:

w(i) The sensitivity function S which is defined as the sensitivity
*k

of the transfer function w with respect to the parameter x, is a rational

function of the complex frequency variable s . It contains m simple

poles at s. which are the distinct poles and zeros of the transfer function w.

w(ii) The sensitivity function S usually has the same degree in
*k

the numerator and the denominator polynomials. The behavior at infinity

as given by h is the gain sensitivity with respect to xl .

(iii) The residue h at a pole s. which is a pole of the transfer

function is the pole-sensitivity with respect to x^.

(iv) The residue at a pole which is a zero of the transfer function

is the negative of the zero-sensitivity.

(v) The over-all sensitivity property of the transfer function w

with respect to the n parameters xl , k = l, 2, ..., n is characterized by

w w
n sensitivity functions S , k = l, 2, ..., n. Since the poles of S are

*k *k
s., i = l, 2, ... , m, which are specified by the transfer function w, we can

* 7
This is different from the definition used by Horowitz. However, with

our present formulation, we do not need to distinguish between simple

and multiple roots.
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say that the over-all sensitivity property of the complete system is

characterized by an (m+1) X n matrix

H = [h.k] (10)

w
where h is the residue of the sensitivity function S at the pole s. forIk Xj^ i

i = 1,2, .,., m, and is the constant term in the partial fraction expansion

W r i
of S when i = m+l [see Eq. (4)J.

*k

3. THE SENSITIVITY MEASURE

In the previous section we have given expression of the sensitivity

function for the transfer function with respect to the parameter x^ . Since

there are n parameters, xl, x , ... , x , an incremental transfer function

6w can be written in terms of incremental changes 6 x, , k = l, 2, ... , n.

Using the first order terms of Taylor's expansion, we have

n

r . v ^T 8 W(S) _ ., ,v

5w(s) =Z"4r 6xk (11)
k=i k

We can also express the incremental transfer function in terms of the n

sensitivity functions by means of Eq. (2) :

n a
OXL

6w(s) = ) w(s) SW(s) —— (12)
k=l k K
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Let us introduce the following notations:

4 Sw/X ____, a k

*k
f(s) = — (s) and €k = -— (13)

Then Eq. (12) becomes

n

f(S) =X S^(S)€k (14)
k=l **

and we call e 's the fractional parameter perturbations. The function f

measures the fractional change in the transfer function w. Knowing the

parameter perturbations and the n sensitivity functions we can calculate

the function f. From Eq. (14) we see that the function f has the same

poles as the sensitivity functions. They are poles and zeros of the trans

fer function. The partial fraction expansion of f is

f<s> = I 7Ti: +fm+l (15>

The scalar sensitivity measure ToL is now defined as follows:

m+1

m = ^ [a(s.)(Ref.)2 +(3(s.)(Im f.)2] (16)
i=l
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where a and (3 are positive weighting functions which may be chosen

arbitrarily by the designer to assign desired weights to the different

poles and zeros of the transfer function. For notational convenience,

let a - als.) and (3. = (3(s.). Furthermore we choose a = 1 and
i * i' ri i m+1

6 , = 0 since f ., is always real. In matrix notation, we denote
m+1 m+1

A = diag (a_, c*0, ... , a , 1) (17 a)
— 1 l, m

B = diag (P., P,,...,P ,0) (18b)

as the diagonal weighting matrices, and

iH-'j WT (17c)

Then

Ml =(Re£T)A(Re^) +(ImfT)B(Imf) (18)

The sensitivity measure can be expressed in terms of the fractional

parameter perturbations €k, k=l, 2, . .. , n and the residues h^'s of the

sensitivity functions. Comparing Eq. (14) with (15) and using Eq. (4), we

obtain

n

f. = Y h., €, , i =1, 2, ..., m+1 (19)
i £j lk k

k=l

Thus (16) can be written as
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m+lp n n

i=l

ai Z(Rehik£/+pi ^^w
k=l

In matrix notation, Eq. (15) is

where

f = He

€ = (S* €...,€ )
— 12 n

k=l

is the fractional parameter perturbation vector and

5=[h.k]

Eq. (1 9) can now be written as

(20)

(21a)

(21b)

(21c)

TflZ = £_T |"(Re ST)^(Re S) +(Im HT)B(ImH)l e_ (22)

Or, more conveniently, by defining a sensitivity matrix

S = (Re H )A(Re H) + (Im H ) B(Jm H) (23)

we can express the scalar sensitivity measure as

m< l) = V Lit (24)

Thus it can be easily calculated from the sensitivity matrix S_ and the
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fractional parameter perturbation vector j^.

The sensitivity measure Tf\> defined in Eq. (16) represents a norm

in the n-dimensional parameter perturbation vector space. This fact can

be easily established. First, it is obvious that 7TL > 0, and Tfi= 0 only

when € = 0. Second, for an arbitrary real constant k, it is a fact that

yyi(k€_) =kiT?(€_). Third, it can be shown that Tfl satisfies the triangular

inequality, that is, V7l(e_+ 6_) < Wi(0 +&Tl(6_).

4. STATISTICAL CONSIDERATIONS

The fractional parameter perturbations € , k = l,2, • .. , n are n

random variables with zero mean and may be correlated with one another.

We are at liberty to pick any stochastic index of the spread in the value of

our sensitivity measure tfTl. The simplest choice is the variance of the

sensitivity measure, i. e. , the expectation of 00l , and we will call it the

sensitivity index

£<f= E{fll?} (25)

The sensitivity index can be expressed directly in terms of the correla

tion coefficients among the e 's . Let R be the n X n covariance matrix

of the n random variables e, €,...,€ , that is,
i l, n

E{Vi> = rki

and
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E{±±T] =R= [ru] (26)

From Eq. (24), we have

= E{tfYT} = E{€XS c} = tr[SR] (27)

where tr designates the trace of a matrix. Thus the sensitivity index

can be computed easily from the sensitivity matrix S^ as given by Eq. (23)

and the covariance matrix R .

We now consider the two extreme cases of the correlation among

the perturbations of different parameters. One extreme corresponds to

complete mutual independence of the random variables € . This is

typical in the synthesis of lumped passive circuits when the main source

of perturbations is the random manufacturing tolerance on element values.

At the other extreme lies the totally degenerate case where all €^ depend

on one random variable only. This is typical in the design of integrated

circuits, where all components are subject to the systematic error due to

change in temperature or some similar environmental condition.

When the random variables €, , k = 1, 2, . .. , n are mutually
k

independent, the covariance matrix R is diagonal with the diagonal element

2
r = cc , the variance of € . Hence, from (27), we obtain

n

di= E{!Hfl2} =tr[SR] = Y
k=l

-13-
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where s is the kth diagonal element of the matrix S_. In terms of the

element of matrix H , we can write

n H m+1

2=E{m?} =£ £ £ ^(Reh./ +p^finh^
k=l i=l

(29)

When € , € , ... , e are all deterministically related to only one

random variable, the rank of the covariance matrix R is unity, so that

its elements are given by

rki=ork°i» k,i =1, 2, ..., n (30)

2
where a: is the variance of e, . Then it follows from Eqs. (23) and (27)

sL= E{Klfl2} = crT S a (31)

T
where <r = (or , or., •.. , o* ) is the standard deviation vector.

~~ 1 & n

5. CONCLUSION

In this paper we have introduced a scalar sensitivity measure for

a linear, time-invariant, single input, single-output, multi-parameter

system. The sensitivity measure is dependent upon the parameter

perturbations and is related to conventional gain and root sensitivities.

The advantage of this sensitivity measure is that it is a scalar and it

is frequency independent. Based on this, a sensitivity index independent
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of the parameter perturbations has been defined by taking into account

the statistics of random parameters. In a companion paper the optimal

synthesis of a transfer function by means of a special signal flow graph

5
configuration which minimizes the sensitivity index is described.
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