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SMALL SIGNAL BEHAVIOR

OF NONLINEAR NETWORKS

C. A. Desoer and K. K. Wong

Abstract - This paper develops two theorems concerning the small-

signal behavior of nonlinear time-varying networks whose state equations

are of the form x = f(x, u, t). The conclusions of the theorems are sup

ported by experiments. The input is of the form U(t) + u(t), where the

bias, U(t), is allowed to be time varying (typically, slowly varying) and

u(t) is the small signal. The bias induces a moving operating point

X(t). Given some simple assumptions concerning the linearized small-

signal equivalent circuit it is shown that provided u(t) is sufficiently

small on [0, oo), the state trajectory about the operating point is bounded

on [0, oo) and tends to zero as u -*0. The method of proof also shows

that this result applies to some distributed circuits. The second

theorem shows that the push-pull connection reduces the distortion due

to the nonlinearities of both resistors and energy storing elements.

The third part of the paper describes numerical experiments that sup

port the conclusions of the theory.
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I. Introduction

The purpose of this paper is to present new results on the small-

signal behavior of nonlinear time-varying lumped networks. The need

for such results arises from two developments: many of the new devices

have a rather small region of linear operation so that the question

naturally arises as to what happens if they are operated further into

their nonlinear regions. The first part of this paper is a first step in

this direction: it discusses the difference between the response of a

nonlinear time-varying network /* and that of its linearized small-

signal equivalent circuit. Also the second part shows that this difference

is further reduced by the push-pull configuration. The second develop

ment is the speed and convenience of digital computers: now engineers

can calculate and plot easily and cheaply the responses of nonlinear

networks. To back up such computation, theoretical results are neces

sary and this paper is a contribution in this direction.

In contrast to the somewhat restricted models of the classical

literature [l] -[6] we take as our model the equations in the normal form:

x = f(x, u, t). Note that x is not necessarily linearly dependent on u,

as is usually assumed. We also allow a varying operating point. The

reasons for these two departures are the following: fundamental studies



of the equations of nonlinear time-varying lumped networks have shown

that the usual model is not general enough [7] -[10] . Also recent

developments in the study of constant resistance networks made of non

linear time-varying elements raise the hope that one might envisage the

design of electronically adjustable filters, equalizers and delay lines

by cascading sections of constant resistance two-ports whose elements

are nonlinear [ll] and which would be operated in the small-signal

mode with, in practice, slowly-varying operating points. These are

the motivating thoughts for the first part of the paper. The first part

of the paper also illustrates a number of fundamental techniques of

nonlinear theory: Taylor expansions, manipulation of inequalities, a

basic bootstrap technique, use of the Bellman-Gronwall inequality and

iterations. The results of the first part generalize in several directions

some previous perturbational analysis performed by the authors [12] .

The second part gives a rigorous proof of the fact that by mount

ing two identical nonlinear time-varying dynamical networks in push-

pull, the behavior of the push-pull connection is much closer to that of

the linearized small-signal equivalent network. It should be stressed

that in contrast to previous analyses, the networks mounted in push-pull

may have an arbitrary number of nonlinear time-varying energy storing

elements.

The last part of the paper describes in some detail one of the

experiments carried out by the authors. Incidentally, it gives also a

design method for electronically adjustable filters.
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Notations

Following numerous authors, we define

R : set of all real numbers

R : set of all nonnegative real numbers
+

R (with k integer): space of k-tuples of real numbers.

C : class of continuous functions.

3
C : class of functions that have a continuous third derivative,

.. n •»%***% j
In the following we shall encounter scalars, vectors (in R or R ) and

elements of function spaces. The symbol | • | is used to denote the mag

nitude of a scalar and the norm of a vector in R or R . The develop

ments that follow are valid independently of the choice of norm in R

because all norms in R are equivalent. The symbol ||* J| is used as

follows: let w map R into R (or R ), then by definition

w|J = sup Iw(t) J
t>0

II. Small- signal Behavior

It is well known that a large class of nonlinear time-varying

networks can be described by equations in the normal form [7] -.[10] .

Thus we assume for the network 7b under consideration the state de

scription

x = f(x, u, t) (1)
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where the n-vector x represents the state and the m-vector u repre

sents the input (which consists of m independent sources). We assume

throughout that the network is in the zero state at t = 0:

x(0) = 0 (2)

Since our purpose is to discuss the small-signal behavior of such net

works we take the input u to be the sum of a time-varying bias U

and a perturbational signal u. Throughout the following we shall have

|| u|| small.

Basic Assumptions

In order to proceed with the analysis we must make a number

of assumptions which we label Fl, F2, . . . . The first one is

(Fl) *(0» 0, t) =0 Vt> 0.

This will be the case, for instance, if all element characteristics go

through the origin at all times.

The second assumption is that the bias is a bounded continuous function.

For future reference we set

(Ul) sup | U (t)|= Um< oo
t>0

The operating point X(t) satisfies the equation

X =f(X(t), U(t), t), X(0)= 0. (3)
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We assume that X is bounded and we set

(F2) sup |X(t)|= Xm< oo
t>0

We restrict the behavior of f as a function of t as follows:

(F3) For each xcR* , u€Rm , f(x, u, •) : R+ -* Rn is a bounded

and regulated [13, see sec. 7. 6] function.

The next assumption requires more discussion and is related to

the fact that the network must maintain a "good" behavior as time goes

on. More specifically, for each fixed t > 0, f is a mapping of R X R

into Rn. Call D f(X(t), U(t), t) the derivative of f with respect to x and

evaluated at (X(t), U(t), t). This derivative is a linear map of R -* R ;
8f.

it is represented by a matrix whose elements are —-L
dXj (X(t), U(t), t)

with i, j = 1, 2, .. ., n. Similarly for D2 f(X(t), U(t), t), the derivative of
l

f with respect to u; its elements are «r^-
,Uk

and k = 1, 2, ..., m. By Taylor's expansion theorem we can write for

each t

f(X(t) +|, U(t) + u, t) = f(X(t), U(t), t) +Dl f(X(t), U(t), t) • £

(4)
+D2 f(X(t), U(t), t) • u + g(g, u, t)

Clearly g represents the second order terms, and its dependence on

X(t) and U(t) has been absorbed in its dependence on t. The next step

is to obtain bounds on g. In order not to get bogged down in notation

-5-
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we consider, for each fixed t, f as a mapping of R X R —R and

(2)we denote by f its second derivative. With these notations in mind

we have [13, sec. 8.14.3]

g(€, u, t) = C (1 - a) f(2) (X(t) +«?, U(t) +ffu, t) dor • (f +u) (2)

(5)

where in the expression "? + u" we consider £ to be a vector in

R X R (with its last m components zero) and u also in R X R

(with its first n components zero).

(2)
The representation of f involves terms of the form

82f. 82f. 82f.
(6)

8x, 8x, ' 8x, 8u. ' 8u. 8u
k i k j J P

where i, k, i = 1, 2, ..., n and j, p = 1, 2, ..., m .

In order to justify the above Taylor expansion and obtain suitable bounds

on g we impose the following requirements:

(F4) For the bias signal U(t) under consideration and for the result

ing operating point X(t) and for any finite numbers f and u , all the

second order partial derivatives of the form (6) are continuous in the

domain |X + ?|<X +? , |U + u|<U +u and t > 0; furthermore,
1 .' — m m ' '— m m —

they are bounded: more precisely this means that for any finite numbers

I and u , the following quantities are finite:
. m m
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a2f.
1

sup 8xk 8*,

82f.
1

sup
8x, 8u.

k J

82f.
1

sup
8u. 8u

J P

i, k, i = 1, 2, ..., n ; (7)

L, k = 1, 2, . .., n ; j = 1, 2, ..., m ; (8)

i = 1, 2, ..., n ; j, p = 1, 2, ..., m ; (9)

and where all the partial derivatives are evaluated at (X(t) + €, U(t) + u, t),

and all sup are taken over the set

|-X(t)+€|<X +C , |U(t)+u|<U +u . t>0 .
1 ' — m m ' ' — m m —

If this assumption F3 is satisfied, the bracket in the right-hand

side of (5) is bounded and for some finite number S (which depends on

U( •), X( -), €m and um)

|g(S, u, t)| <S(|C|+ |u|)2 . (10)

It is important to note that S is independent of t .

Analysis

In the following we consider U to be a given bias signal (and,

consequently, so is X, by (3)) and u to be arbitrary but small. The

exact equations of the nonlinear network /• are of the form
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x(t) = f(x(t), U(t) + u(t), t) x(0) = 0 (11)

or, since we think of its state as being an operating point X(t) plus

a small displacement ?(t) ,

X(t) + 5(t) = f(X(t) + €(t), U(t) + u(t), t) (12)

If we call

A(t) =Dxf(X(t), U(t), t) (13)

B(t) =D2 f(X(t), U(t), t) (14)

then, using (3) and (4), we may rewrite the exact equations of Tfc

in the form

|(t) =A(t) |(t) + B(t) u(t) + g(f(t), u(t), t) (15)

and

€(0) = 0 .

Since, for all t, the term g(?, u, t) is of second order in (C + u), the

differential equation

?0(t) =A(t) €Q(t) +B(t) u(t) ?0(0) =0 (16)

represents the small-signal equivalent network (linearized about the

operating point X(t)). We call this network ?£*. The results of this

paper compare ? and ? for small u.
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Since the small signal equivalent network is a linear time-

varying network, it is natural to introduce its state transition matrix

*(t, t»).

From (16), it follows that

*t

o(t)" [ *(t, tf) B(tf) u(tf) dt« t > 0 . (17)

Remark . The consequences of assumption (F4) were given in the

form of the inequality (10). This inequality implies that g also satisfies

the following condition:

For all e > 0, there is a 6 > 0 such that

|g(e. u, t)| < e( |t |+ |u|) (18)

for-all ( |£ | + |u|) < 26.

Note that in the new inequality the right-hand side is linear in

( |t | + |u|): it is this feature that allows e to be taken arbitrarily small.

The complete statement of our main result is:

Theorem I: Consider a nonlinear time-varying network whose state

equations are of the form (11) and assume that (Fl), (F2), (F3) and (Ul)

hold. Let t( *) a^d t n( *) De defined by (15) and (16) respectively.

Assume further that
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(i) there exists a finite constant M>0 such that for all t >0 ,

,t
\ |«(t, t')|dt' <

(ii) sup |B(t)| =Bm< oo
t>0

(iii) for all e > 0 there is a 6 such that

(|t|+|u|)<26 implies |g(t, u, t) |<e( 11 | +|u|)

Assumption (iii) allows us to pick e as small as we wish; in the follow

ing we consider only those e smaller than 1/M.

Under these conditions, if

then

||u|| < 1'cM , 6 d9)
'•' " - M(B + c)

m

(a) ||e0||<MBm ||u||<(l-cM)6

(b) |U || < 6

||6-eoll eM(H-MBm)
(C) ||u|| - 1-cM

The proof of the theorem is in Appendix I.
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Remarks I. Assertions (a) and (b) mean that the responses of both

7£n (the linearized small-signal equivalent network) and that of /%

(the given nonlinear network) are bounded on [0, oo). Furthermore, by

taking ||u|| small (hence 6 small), the responses % and t can be

made as small as we wish.

II. Assertion (c) states that the ratio of ||t - tft|| (i«e»f the

"peak" value of the difference t(*) - tn(t) ) to ||u|| (i-e»» *ne "peak"

value of the input) can be made as small as we wish by taking ||u||

sufficiently small. Indeed to take ||u|| small is equivalent to taking

6 small, and the smaller 6 is, the smaller the corresponding e.

III. It is important to stress the fact that nowhere shall we use

the group properties of the state transition matrix [14] . As a conse

quence the theorem also applies to the nonlinear integral equation

equivalent to (15), namely,

t(t)=t0(t)+ C 3(t, f) g(t(t»), u(t»), t') dt' t>0. (20)
J0

Therefore, the results above are applicable to some distributed circuits,

IV. At first sight one might believe that only the assumption

| $(t, t[) | < K for all t > tf > 0

(where K is a constant) is needed. However this is not the case as

shown by the following scalar example:
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t =t2 +u 6(0)= o.

In this instance, $(t, t1) = l(t - t1), where l(t) is the unit step. Now

if u(t) = e > 0 on [0, 1] and zero elsewhere, it is easy to see that the

solution increases monotonically and has a finite escape time!

Two Special Cases

A. We consider a class of nonlinear time-varying networks whose

state equations can be written in the form

x = f(x, t) + B(t) u x(0) = 0 . (21)

There is no easy way of describing the class of networks for which

state equations can be written in the form (21). For example, this will

be the^case for nonlinear time-varying RLC networks for which a proper

tree exists such that each fundamental loop defined by a link resistor

includes no tree-branch resistor; furthermore, the location of the inde

pendent sources are restricted in the following way: if a current source

is in parallel with a tree-branch resistor, that resistor is linear

(although possibly time-varying), and if a voltage source is in series

with a link resistor, that resistor is linear.

Manipulations similar to those of the previous case result in the following

equations: for the nonlinear network, J% ,

t(t) = A(t) t(t) + B(t) u(t) + g(t(t), t) 6(0) = 0 (22)
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and for the small-signal equivalent network, /%>§ *

tQ(t) =A(t) tQ(t) +B(t) u(t) 6Q(0) =0. (23)

Because u does not enter the higher order term g in (22) the results

of the main theorem may be sharpened.

Corollary I. Under the same assumptions as in Theorem I, (except for

that g depends now only on 6 a^d t, hence assumption (iii) must be

modified to read: |6 | ± 6 implies |g(g, t) | < e |g |> not only the con

clusions (a) and (b) hold but also

in -gi

(d)
lle-e0ll , eM

ngi - 1-cM

The proof of Corollary lis given in Appendix I.

In addition to the remarks following the previous theorem we wish to

stress the interpretation of (c*) and (d). Consider (d) for example. The

left-hand side is

1 sup |6(t) - 60(t)|
• • (sup taken over t > 0) (24)

sup |6Q(t)|

that is the ratio of the "peak" instantaneous deviation of 6 (*) from

t (t) to the "peak" value of 6Q(t); (d) asserts that this ratio goes to zero

as e -*0. Now if we consider a sequence of experiments where ||u|| is
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taken successively smaller and going to zero, then e can be taken to go

to zero. Thus (d) asserts that by taking the input sufficiently small we

can make arbitrarily small the ratio of the "peak" instantaneous devia

tion of the nonlinear system response from that of the small-signal

linearized system to the "peak" value of the linearized system response.

In short not only, 6 ~*60 (uniformly in t >0) as ||u||—0 but

iu-gi
ngi

0 : the relative deviation goes to zero.

B. Going back to the general case, i.e., to networks described by

(1), we can by sharpening the assumption on $ obtain an additional con

clusion on asymptotic behavior.

Corollary II. Let assumption (i) of Theorem I be sharpened to read

(i1) there exist positive constants K and o~ such that

for all t > t1 > 0

|<fr(t, t<)\<Ke-*{t~V)

Let (ii) and (iii) hold.

We pick £ so that <r-eK = crf>0 and ||u|| sufficiently small so that

Hell

Under these conditions, if u(t) -*0 as t -* oo , then tQ(t) "* ° and

t(t)-o.

The proof of the corollary is given in Appendix I.
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III. Distortion Correction by Push-Pull

In the first part of this paper, we considered the state trajectory

of a nonlinear network 1Z> and that of its linearized version, 7* ,

about a moving operating point X. We gave conditions under which if

the small-signal input u is sufficiently small, then the relative distance

between the states is uniformly small on [0, oo). Is there a way of re

ducing this distance by appropriate design? In the following we shall

prove rigorously that a push-pull connection will do just that. All the

studies of the push-pull connection of nonlinear networks known to the

authors assume a model consisting of a linear network driving a depen

dent source which has a memoryless nonlinear characteristic. Our

analysis allows an arbitrary number of nonlinearities in energy storing

elements as well as in resistors.

We formulate the problem as follows. Let T% be a nonlinear

network whose state and output description is of the form

x = f(x, G, t) x(0) = 0 x (25)

v = h(x, u, t) (26)

where x(t) € R and u(t) c R . For simplicity, we assume that the

output v is scalar valued, i.e., v(t) € R. The smoothness conditions

on f and h will be specified later.
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Suppose that Tt and 7£2 are two networks identical to it and that
we connect them in the manner shown on Fig. L We denote this push-

pull configuration as (P . The state description of (H is then

Kxx =f(xr 51 , t), xx(0) =0 x2 =f(x2, u2, t) , x2(0) =0

/ vx =h(xr Gx, t) v2 =h(x2, u2, t) (27)

u= U + u u = U - u
V. 1 L

The output voltage is

v =v - v2 =h(xx, u1# t) - h(x2, u2, t) (28)

Intuitively we expect that the symmetry of the push-pull configur

ation (P and the antisymmetry of the small-signal sources would lead

to cancellation of second order terms in ||u|| : in other words, the

push-pull configuration is more linear. This intuition is made precise

by the following theorem.

Theorem II. Consider the push-pull configuration Cr shown on Fig. 1

and described by Eqs. (27) and (28). Suppose that

m(i) for each t and each ueR , f(«, u, t) is Lipschitz,

3 3(ii) for each t, f(-, •, t) e C and h(-, ., t) € C (with respect

to both arguments),

(iii) for each x €Rn and each uc Rm, f(x, u, •) €C and h(x, u, •) €C.

The functions X( .) and tQ( •) are defined by
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X = f(X, U, t) , X(0) =0 (29)

t0 =A(t) tQ +B(t) u, tQ(0)=0 (30)

where, as before, A(t) =Dx f(X(t), U(t), t), B(t) =D£ f(X(t), U(t), t).

It is assumed that for all T >0, the matrices A( •) and B( •) are

bounded on [0, T] .

Let h denote the derivative of h with respect to its ith argument and
i

z(t) =h^X, U, t) t0(t) +h2(X, U, t) u(t) (3D

Under these conditions, for any T >0, the output voltage of the push-

pull configuration can be written in the form

v(t) =2z(t) +0(||u|J) 0<t<T (32)

where ||u|| = sup |u(t)|
0<t<T

The proof of this theorem is given in Appendix II.

Comments

(I) The function z( .) defined by (31) is the zero-state response

of the linear network obtained by linearizing 7t^ about the operating

ppint X. Whereas the response of 7^ differs from the response of its

linearized version by aterm 0(||u||^), the zero-state response of the
push-pull configuration (P differs from that of 7%l by aterm 0(||u||T).
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(II) It is a fact that the output v of the push-pull configuration

is an odd function of u : the even part of the dependence of v. and v2

on u cancels out.

IV. Experimental Results

Since by their very nature the results above give bounds whose

scale factors are hard to calculate; experiments are required to find

out how these theoretical claims turn out in practice. Several experi

ments were carried out: some with sinusoidal inputs, some with square

wave inputs, some with fixed bias and some with varying bias. In all

cases the experiments confirmed the expectations of the theory. We

shall report in detail on one experiment. In doing so we shall tie

together a number of the ideas developed in the theory, we shall verify

that the claims do apply to networks which have nonlinear energy storing

elements and we shall exhibit a design procedure for nonlinear networks

to be operated in the small signal mode.

Design

We propose to design a Butterworth low-pass filter whose 3-db

cutoff frequency can be adjusted electronically by varying the bias. The

circuit is shown in Fig. 2. A linear time-invariant Butterworth low-pass

filter with co as 3 db cutoff frequency has the following state and output

equations:
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0!

02

= co.

0 ! -"
,

q

3

"4
0 0 *i

3

- 4
0 -2_

v0= 2"o*2

-H-
(35)

(36)

4 3 TT ,
where the capacitor is -— F and the inductances are - H and

- H, respectively. The design requirement is that, about any
• 0

constant operating point created by the dc bias E, the small-signal

response must be described by equations of the form (35) and (36).

We assume that the nonlinear elements have characteristics that are

monotonically increasing, differentiable functions that go through zero

and that map the real line onto the real line in a one-to-one fashion.

We call them

q = ^(v)

0t = \(\)

H = ¥iz)

The state equations of the nonlinear network are

q= ijj"1^) - ^1(02)

\ =- ^(q) +E+e

-19-
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-1 -1
02 =+ (q) - +2 (02> (40c)

It can be shown that, for any constant E, the resulting operating point

is asymptotically stable in the large [12] . The operating point can be

calculated from Eqs. (40a-c) by setting q=\ =02 =0. Using obvious

notations, the operating point (V, ^ , I.,) is characterized by

V =I1=I2=E (41)

About each operating point specified by E, the linearized small-signal

equivalent network has the following equations

t = A t +be
(42)

where

t =(q - iKE), <f>x - ^(E), 02 - t|>2(E) )'

r 0
1 -.

^'(E) i|*2*(E)

A = +f(E)
(43)

L- ^(E) vp'(E)-J

and

b= (0, 1, 0)'.

Comparison of (42), (43) with (35) shows that a>Q will depend on E and

that ijj'(E), iL»(E) and i|>2'(E) will be related. For convenience we
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introduce a new function h(») defined by

co (E) = l/h'(E) for all E. (44)

The comparison and the requirement that the characteristic go through

the origin give

+(•)= |mo; \(-)= |h(-)» *2(') =2h(,)'
(45)

When the three nonlinear characteristics are thus related, then, for all

values of the bias E, the linearized small-signal equivalent network

about the corresponding operating point is a Butterworth filter whose

3 db cutoff is l/h'(E).

The corresponding push-pull configuration is shown in Fig. 3.

The state of the network (q, ^ , 02 , q, ^ , 02) is related to the

inductor currents and capacitor charges by

V=h'\ | q) v=h"X( | q)

\=h"1(! *i> *i=h"1( I *il (46)
-1 -1

i2 = h (2 02) iZsh ( 2 *2*

The output is given by

v =h"1^ 0.) - h"^ £_) . (47)
•p c, c
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Results

We choose

h(E) = E + tanh E

consequently, the small-signal cutoff frequency is

2
to. (E) = 1 + sech E.

Thus as E increases from 0 to oo, to decreases from 2 to 1 rad/s.

The responses shown in Figs. 4, 5 and 6 correspond to a square wave

input of amplitude A with period 2 sec, and to a bias of E = IV.

(Hence to (1) = 1.7708 rad/s.). The amplitude A varies from figure to

figure: for Fig. 4, A = 1.00; for Fig. 5, A = 0. 316; for Fig. 6, A = 0.100,

The curves are the output voltages of the network and are labelled as

follows:

v for the nonlinear network
N

v for the linearized small-signal equivalent network
L

v for the "pull" part of the push-pull connection.
N1

In each figure, we subtracted the contribution of the bias. These curves

show clearly how v.T - v decreases as the amplitude A of the input
In L

decreases. The lack of symmetry of v^ in Fig. 4 can easily be related

to the curvature of the characteristics.

Figures 7, 8 and 9 (with A = 1. 00, A = 0. 316 and A = 0.100,

respectively) show the differences between the nonlinear network
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ponse and the push-pull response and that of the linearized small-

signal equivalent network:

res

AN = VN " VL

*P=<VN-VN')-2VL

What is particularly notable is not only the absolute decrease of the

distortion (both A and A ) as the input amplitude A decreases, but

also the relative decrease of the ratio — . These dramatic decreases
N

calculated in Table I. A final point: this calculation requires high
are

s shown by the ratio ||v_ ||/||A || which is 10 (for A = 0.100)precision as

and noise is not visible in the curve of Ap ! Such computation could not

be done on an analog computer.

Table I

1.00 0.316 0.100

1.161 0.367 0.116

VI 1.96 10
-1 -2

1.98 10 1.93 10
-3

5.1 10
-2 -3

2. 36 10 1.0 10
-4

VI
VI

3.8 8.4 19
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Conclusion

This paper has shown that given a nonlinear time-varying lumped

network subjected to a time-varying bias, it is possible to predict that

its response to small signals would remain bounded only on the basis of

properties of the linearized small-signal equivalent network. Further

more, it showed that the nonlinear distortion can be further reduced by

the use of the push-pull connection. Finally, it should be stressed that

the theorems above are not restricted to nonlinear networks but apply

also to differential nonlinear time-varying systems.
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Appendix I

Proof of Theorem I.

1 - £M
For the proof e is fixed and assumed smaller than 1/M. Also M(fi +z)

m

may be assumed to be <1; indeed it can be always made so by taking

B larger. This proof is based on a bootstrap technique: more pre-
—L

ely, for the purpose of the proof, we assume temporarily that for the
m

cis

under consideration and for all (£, u, t) € R X R X K+

|g(t,u, t)|< e(|t|+|u|). (A-1*

Taking the norm of (20) and using the properties of the norm and (A. 1),

we obtain

|t(t)|< |tn(t)| +e \ |«t, t')|(|t(f)| +u(t')|)df (A.2)
0 JQ

Let us majorize the right-hand side by replacing |£(t«)| and |u(t')|
by ||t II and ||u|| respectively. Finally, with assumption (i) we obtain

|t(t)|< Ht0ll +cM(||tH+ ||u||) t>0. (A.3)

Note that at this point ||t || may perfectly well be infinity. Since

inequality (A. 3) holds for all t and the right-hand side is independent

of t, we may write

ll£ll<lle0ll +«M(||ell +ll»ll) (A-4)
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and, using similar steps on (17) we have

||g|<MBm||u|| (A.5)

Using (A. 5) into (A. 4), and transposing the term eM| 1111 <we obtain

(1- eM) ||t II f M(B_ +e) ||u|| (A. 6)
m

Since eM <1 and since ||u|| < oo, it follows that ||||| < oo. In fact

using (19), we obtain

||t || < "6 (A. 7)

Therefore |t(t)|<6 for all t >0 ; similarly, from (19) |u(t)|<6

for all t > 0. Therefore, the inequality (A. 1) need only hold for

11 | < 6, |u| < 6 and t > 0, but this is guaranteed to be so by (iii)

which asserts that (|t | + |u|)< 26 implies |g(6, u, t) | < e( |g | + |u|).

Therefore (A. 5) and (A. 7) hold under the assumptions of the theorem,

hence (a) and (b) have been proven.

From (20) we obtain successively

(t
|t(t) - tn(t)| <e \ |*(t, t«)| ( |u(f)| +. |t(f)|) df (A.8)

J0

<eM(||t||+ ||u||) (A. 9)

<eM(iu -e0||+||e0ll +ll»ll) <A-10)

hence

lis -*oll±rr7M eM<lli0ll+llu||) (A.ii)
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< sM(l +MBm) ||u|j (A#12)
1 - eM

From which (c) follows.
Q.E.D.

Alternate proof [12, see Appendix] . Conclusion (b) can also be estab

lished as follows: first obtain (A. 5); then solve (20) by iteration.

Observe that if \\£.\\ (the norm of the kth iterate) is < 6 then

lit II < &. Now with (F4)» 8 satisfies a Lipschitz condition in t»

hence the sequence t, converges to the unique solution t of (20), and

llell<6.

Proof of Corollary I.

The derivation is the same as that of the theorem except that assumption

(iii) reads: for all e >0 there is a 6 >0 such that for |t I1 6 we

have |g(t» t)| < e |t |. Hence instead of (A.4) we obtain

||e||<||t0H+cM||C|| (A.13)

from which (c') follows immediately. Assertion (d) is obtained by using

the triangle inequality in (A. 13) to obtain

llell<ll60ll +«M[||e-60ll +lle0in <a.m>

from which (d) follows.
Q.E.D.

-27-



Proof of Corollary II.

Define

i|i(t) = |B(t) u(t)| (A. 15)

0(t) i K C e'vlt'V) «f)df (A. 16)

Using these definitions and assumptions (i1) and (iii) in (20), we obtain

Jt J|t(t)| <K C e'v{t'V) «t')dt' +eK £ e"0"**"*'* |£(tf)|dtf
or

4)
e<rt |t(t)| <e'S(t)+sK f e'^letfJldf

J0

Using the Bellman Gronwall inequality [3]

where ct, = o"-eK>0.

Now iJj defined in (A. 15) is bounded on [0, oo) and ij;(t) -*- 0 as t -*• oo;

this is a consequence of (ii) and the assumption u(t) -*• 0 as t -*-oo. It

can be checked from (A. 16) that 0 is bounded on [0, oo) and 0(t) -+ 0

as t -*oo. Repeating this implication in the second term of (A.17), we

conclude that the right-hand side of (A.17) is bounded and -* 0 as t —oo.

Q.E.D.

|t(t)| <0(t)+ eK f e^^^df (A.17)
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Appendix II

Proof of Theorem II.

Conceptual clarity requires us to view the vector-valued functions

x(-), x_(.), u(-)» u\>('), ••• as points in linear function spaces:

x ( •), x_( •) are points in the Banach space (& of functions mapping

[0, T] into Rn with sup |x(t)| as norm. The same holds for u(-)
0<t<T

and u ( •) except that they are continuous functions mapping [0, T]

into Rm, hence they are points in the corresponding Banach space

which we call (B •
m

In view of the assumptions (i), (ii) and (iii) on f, the differential

equation x = f(x, u, t), x(0) = 0 has a unique continuous solution on

TO, Tl for each u c (8 . This solutionis defined implicitly by the
L ' J m

integral equation

x(t) - \ f(x(f), u(t'), f) dt' = 0 0< t< T.

From the function space point of view, this equation is of the form

F(u, x) = 0 (A. 20)

where F : & X & -*• & . This equation defines implicitly a
m n n

map ^: #_ -* Sn such that F(u, ^(u)) = 0. Thus

x =^(ux) (A. 21)

x2 =*(^2* (A# 22)
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3
"We assert that ^ e C on a sufficiently small neighborhood of U. We

shall obtain this conclusion by showing that the assumption of the impli

cit function theorem are satisfied [13, see 10. 2.1 and 10. 2. 3] . First by

(ii), F € C . Next consider D_ F(U, X), the Fre'chet derivative of F

with respect to its second argument, evaluated at the point (X, U):

it is a linear map of uB into uA given by
n n

(D2F(U, X)) 6x = 6x(t) - \ D, f(X(t'), U(t«), t') 6x(t») dt' (A.23)•i°>

(Note that the kernel is A(t'), as in (30).) Furthermore, the linear

map D_ F(X, U) is one-to-one, onto and has a continuous inverse:

indeed for any £ € 6i , the linear integral equation

'•t6x(t) - \ A(t') 6x(t«) dt' = £(t) 0<t<T (A.24)

can be solved by successive approximations. It is well known that,

for each £ e (Q , it has one and only one solution and that the solution

6x depends continuously on t since A( •) is bounded on [0, T] . Thus

F € C and D_ F(U, X) is a homeomorphism of CQ onto (o » conse-
n n

3
quently, by the implicit function theorem, \& € C .

In terms of >& we have

X + x = *(U + u)

tQ= ^(U) • u (A. 25)
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and

v = h[ *(U + u), U + u] - h [ *(U - u), U - u]

or, using obvious notations

v = k(U + u) - k(U - u). (A. 26)

3 3Note that k( •) e C since both h and * € C [13, see 8.12.10] .

By Taylor's theorem [13, see 8.14.3], we obtain

v= 2k'(U) • u+ 0( ||u||* ) (A. 27)

Using the rule for differentiating a composition of two functions

k»(U) • u=hx [*(U), U] • *!(U) . u+h2 [#(U), U] • u

or

k'(U) • u= h^X, U) ' tQ +h2(X, U) • u (A.28)

Thus we see that k'(U) • u is the zero-state response of the linearized

network, i.e., z. Thus from (A. 27) and (A. 28), Eq. (32) follows.

Q.E.D.
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Fig. 8. Distortion corresponding to Fig. 5: A = 0.316V.
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