Copyright © 1967, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

CAPACITY OF CLASSES OF GAUSSIAŃ CHANNELS

 PART II: CONTINUOUS-TIMEby
W. L. Root
P. P. Varaiya

Memorandum No. ERL-M 212
29 May 1967

ELECTRONICS RESEARCH LABORATORY
College of Engineering University of California, Berkeley 94720

Capacity of Classes of Gaussian Channels
Part II: Continuous-time

by
W. L. Root
University of Michigan
Ann Arbor, Michigan
P. P. Varaiya
University of California
Berkeley, California

1. Introduction

A coding theorem and (weak) converse are proved for classes of continuous -time channels with additive white Gaussian noise in which a different time-invariant linear operation is performed on the transmitted signal in each channel. The proof is accomplished by reducing the problem to one involving discrete-time Gaussian channels with matrix operators, which is solved in Ref. 1. The development in this paper rests heavily on Ref. 2-4. The paper of Blackwell, Breiman and Thomasian ${ }^{2}$ provides the clue that the capacity of a collection of channels to be considered simultaneously may be defined as sup inf [expected p b

The research reported herein was supported in part by the National Aeronautics and Space Administration under Grant NsG-2-59 to the University of Michigan and by the National Science Foundation under Grant GK-716 to the University of California, Berkeley.
value of the mutual information], where the infimum is over the class of channels, and the supremum is over input probability distributions. The work of Gallagher ${ }^{3}$ effectively provides the formula for the mutual information, and the paper of Kac, Murdock and Szego ${ }^{4}$ provides an essential asymptotic relation for the eigenvalues of integral operators of an appropriate type.

2. Description of the Problem

We consider communication channels and classes of channels that can be described as follows. By a transmitted signal, or input signal, over the time interval $[-T, T]$ we mean a real-valued function x which is square-integrable with respect to Lebesgue measure on $[-T, T]$. If x is the input signal over $[-\mathrm{T}, \mathrm{T}]$, the received signal, or output signal, $y(t)$ over an interval [$a, b]$ is to be given by an expression of the form

$$
\begin{equation*}
y(t)=\int_{-T}^{T} h(t-\tau) x(T) d \tau+z(t), \quad a \leq t \leq b, \tag{1}
\end{equation*}
$$

where $z(t)$ is white Gaussian noise with average power density N and mean zero. * Unless otherwise stated we shall always assume $a=-T$, $\mathrm{b}=\mathrm{T}$. Since the communication channel is completely specified once the function h is specified, we may refer to a channel h, and to collections ℓ of channels h.

Footnote to page 2.

The noise term $z(t)$ in Eq. 1 must be interpreted symbolically since white noise cannot be parametrized with a time variable, but must properly be parametrized with an element of a space of "testing functions." However we deal only with functionals of $y(t)$ of the form

$$
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{y}(\mathrm{t}) \varphi(\mathrm{t}) \mathrm{dt}
$$

where $\varphi \in \mathrm{L}_{2}(\mathrm{a}, \mathrm{b})$, or with quantities derivable from these functionals. Hence we can define

$$
\int_{a}^{b} z(t) \varphi(t) d t
$$

to mean

$$
\int_{a}^{b} \varphi(t) d \zeta(t)
$$

where $\zeta(t)$ is Brownian motion and the operations to be performed are readily justified.

We say a channel has finite memory δ if $h(t)=0,|t|>\delta$, for some $\delta<\infty$. Obviously this definition distorts the language a little, because it also requires what might be called "finite anticipation." It is mathematically convenient, however, and includes the practical case of a non-anticipative channel with finite memory. All the results to be proved will hold, a fortiori, for non-anticipative channels with finite memory. We shall require in everything that follows that each class b of channels to be considered has the property that each $h \in \boldsymbol{\rho}$ has finite memory δ, where δ is some positive number fixed for the class \boldsymbol{b}; this condition will be referred to by saying that \wp has finite memory δ.

Let be a collection of channels. By a (G, ϵ, T) code for \wp we mean a set $\left\{x_{1}, x_{2}, \ldots, x_{G}\right\}$ of distinct signals over $[-T, T]$ and a set $\left\{B_{1}, B_{2}, \ldots, B_{G}\right\}$ of G disjoint sets of the output space (of realvalued functions over $[-T, T]$) such that
(i) $\quad \int_{-T}^{T} x_{i}^{2}(t) d t \leq 2 T, \quad i=1,2, \ldots, G$
and

$$
\begin{equation*}
P_{h}\left(y(t) \in B_{i}^{c} \mid x_{i}\right) \leq \epsilon, \quad i=1,2, \ldots, G, \quad \forall h \in \zeta \tag{ii}
\end{equation*}
$$

where $P_{h}\left(A \mid x_{i}\right)$ denotes the probability of the event A given that the input signal is X_{i} and the channel is h. Here (i) represents the average
input power constraint and (ii) the condition that the probability of error is to be less than ϵ uniformly for all code words $\mathbf{x}_{\mathbf{i}}$ and all channels $n \in b$.

We say that $R \underset{T_{R}}{\geq} 0$ is an attainable rate for if there is a sequence of codes $\left\{\left(e^{n}, \epsilon_{n}, T_{n}\right)\right\}$ such that $\lim _{n \rightarrow \infty} T_{n}=+\infty$ and $\lim _{n \rightarrow \infty} \epsilon_{n}=0$. The supremum of all attainable rates for ${ }_{n \rightarrow \infty}$ is denoted by $\widehat{C}(b)$.

As in Ref. 1 we define the capacity C of a class of channels formally in terms of quantities characterizing the class, and then prove that $C=\widehat{C}$. Usually when this is done C is defined first in terms of the mutual information. However it is inconvenient here to talk about the mutual information directly, so we go to an expression that is analogous to that for the expected value of the mutual information for a class of discrete Gaussian channels (see 1). Let $\tilde{h}(\nu)$ be the Fourier transform of $h(t)$, which will always exist because of conditions to be imposed on the channels. Let $\tilde{s}(v)$ be the spectral density of a real-valued stationary process with mean zero, variance bounded by one and integrable autocorrelation function (or, alternatively, $\tilde{s}(v)$ is a real-valued, nonnegative, even function satisfying

$$
\int_{-\infty}^{\infty} \tilde{\mathrm{s}}(v) \mathrm{d} v \leq 1
$$

and with integrable inverse Fourier transform) ; let \mathcal{E} be the set of
all such $\tilde{s}(v)$. Then the capacity of the class \boldsymbol{b} is defined to be

$$
\begin{equation*}
C(b)=\sup _{\tilde{s} \in \alpha} \inf _{h \in b} \int_{-\infty}^{\infty} \log \left(1+\frac{|\tilde{h}(v)|^{2 \tilde{s}(v)}}{N}\right) d v \tag{2}
\end{equation*}
$$

The object of this paper is to show that under certain integrability conditions on the functions h and certain compactness conditions on the classes \boldsymbol{b}, both of which are enunciated in the next section, $\hat{C}(\boldsymbol{b})=C(b)$.
3. Notation and Further Conditions on b

Let L_{p} denote $L_{p}(-\infty, \infty)$, for $1 \leq p \leq \infty$, where $L_{p}(a, b)$ is the L_{p} space of complex-valued functions p-integrable Lebesgue on the interval (a,b). Let $L_{p}(T)$ denote $L_{p}(-T, T)$, for $1 \leq p \leq \infty$. If $f \in L_{p}$ or $L_{p}(T)$, then $\|f\|_{p}$ denotes the norm of f in that space. If $f, g \in L_{2}$ or $L_{2}(T)$, their inner product is written (f, g). An operator on a space
 denote the projection operator on $L_{p}, 1 \leq p \leq \infty$, defined by

$$
\begin{align*}
\left(P_{T} x\right)(t) & =x(t), \quad|t| \leq T \tag{3}\\
& =0,|t|>T
\end{align*}
$$

for all $x \in L_{p}$.
Let $f \in L_{1}$. Then its Fourier transform f is given by

$$
\tilde{f}(v)=\int_{-\infty}^{\infty} f(t) e^{i 2 \pi v t} d t
$$

and \tilde{f} is a continuous, bounded function. If moreover $f \in L_{2}$, then $\tilde{f} \in L_{2}$ and the operator $f \rightarrow \tilde{f}$ is an isometry of L_{2}. For each $T<\infty$, f defines a compact (actually Hilbert Schmidt) operator F_{T} on $\mathrm{L}_{2}(\mathrm{~T})$ given by

$$
\begin{equation*}
\left(F_{T} x\right)(t)=\int_{-T}^{T} f(t-T) x(\tau) d T, \quad-T \leq t \leq T . \tag{4}
\end{equation*}
$$

Also f defines an operator F on L_{2} given by the convolution

$$
\begin{equation*}
(F x)(t)=\int_{-\infty}^{\infty} f(t-\tau) x(\tau) d \tau, \quad-\infty<t<\infty . \tag{5}
\end{equation*}
$$

With a slight abuse of notation we identify the operators F_{T} and $\mathrm{P}_{\mathrm{T}} \mathrm{F} \mathrm{P}_{\mathrm{T}}$. If f has finite memory δ, then

$$
\begin{equation*}
P_{T} F=P_{T} F P_{T+\delta} \quad \text { and } \quad F P_{T}=P_{T+\delta} F P_{T} \tag{6}
\end{equation*}
$$

If A is an operator on $L_{2}(T)$ or L_{2} then A^{*} will denote its adjoint. The operator A^{*} is defined by

$$
(x, A y)=\left(A^{*} x, y\right)
$$

for all $x, y \in L_{2}(T)$ or L_{2}, since it is required that A be bounded. If A is a compact symmetric operator its trace, $T_{r}(A)$, is defined if the sum of the eigenvalues of A converges, and is equal to that sum.

There are certain conditions required on the classes \boldsymbol{b} of channel weighting functions h which will be needed in the proof of the coding theorem. These are enumerated in the definition to follow and some immediate implications of them are noted. We shall say \mathfrak{b} is an admissible class of channels if
(i). Lo has finite memory δ.
(ii) Each $h \in L_{2}$, and $\|h\|_{2} \leq 1$
for all $h \in \boldsymbol{\zeta}$ (It would be sufficient to take any bound, but there is no loss of generality in taking the bound to be 1.)
(iii) If \tilde{h} is the Fourier transform of h, then

$$
\int_{-\infty}^{-A}+\int_{A}^{\infty}|\tilde{h}(v)|^{2} d v \rightarrow 0 \quad \text { as } \quad A \rightarrow \infty
$$

uniformly for all $h \in \boldsymbol{b}$.
Now, since each h vanishes outside the interval $[-\delta, \delta]$ by (i), it follows from (ii) that $h \in L_{1}$ and $\|h\|_{1} \leq \sqrt{2 \delta}$ for all $h \in \boldsymbol{b}$. Therefore the Fourier transform \tilde{h} exists not only in the sense of the Plancherel theorem, but also as a bounded continuous function on R^{1}. It also follows from (i), (ii) and (iii) that b is a conditionally compact subset of L_{2}. In fact we show that the functions $\widetilde{h}(v), h \in \mathcal{b}$, form a conditionally compact subset of L_{2}. Necessary and sufficient conditions
for this are (Ref. 5, p. 298) that the set $\{\tilde{h}(\nu) \mid \mathrm{h} \in \boldsymbol{b}\}$ is bounded, that the condition (iii) stated above is satisfied, and that

$$
\int_{-\infty}^{\infty}|\tilde{h}(\nu+\mu)-\tilde{h}(v)|^{2} d v \rightarrow 0
$$

as $\mu \rightarrow 0$, uniformly in \boldsymbol{b}. But

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|\tilde{h}(\nu+\mu)-\tilde{h}(\nu)|^{2} d \nu=\int_{-\infty}^{\infty}\left|h(t) e^{i 2 \pi \mu t}-h(t)\right|^{2} d t \\
& \quad=\int_{-\delta}^{\delta}|h(t)|^{2}\left|e^{i 2 \pi \mu t}-1\right|^{2} d t \leq\left. 4 \pi^{2} \mu^{2} \delta^{2}| | h\right|^{2} \leq 4 \pi^{2} \mu^{2} \delta^{2}
\end{aligned}
$$

We shall also have occasion to consider the set of functions

$$
\mathcal{H}(b)=\left\{|\tilde{h}(v)|^{2} \mid \tilde{h}=\text { Fourier transform of } h \in b\right\}
$$

Since each $\tilde{h} \in L_{2}, \mathcal{Z}(b)$ is a subset of L_{1}. As a subset of L_{1}, $q+(b)$ is conditionally compact. In fact, the necessary and sufficient conditions that this be so are (Ref. 5., p. 295): $\mathcal{A}(b)$ is a bounded subset of L_{1}; condition (iii) is satisfied, and

$$
\left.\int_{-\infty}^{\infty}| | \tilde{h}(v)\right|^{2}-|\tilde{h}(v+\mu)|^{2} \mid d_{v} \rightarrow 0
$$

as $\mu \rightarrow 0$, uniformly in the class. But

$$
\begin{aligned}
& \left.\int_{-\infty}^{\infty}| | \tilde{h}(v)\right|^{2}-|\tilde{h}(v+\mu)|^{2}\left|\mathrm{~d} v \leq \int_{-\infty}^{\infty}\right| \tilde{h}^{2}(v)-\tilde{h}^{2}(v+\mu) \mid \mathrm{d} v \\
& \leq 2| | \mathrm{h}| |\left[\int_{-\infty}^{\infty}|\tilde{h}(v)-\tilde{h}(v+\mu)|^{2} \mathrm{~d} v\right] 1 / 2
\end{aligned}
$$

which approaches zero as above.

4. Preliminary Lemmas

In this section we obtain certain results that allow us to extend the application of the Kac, Murdock, Szego (KMS) ${ }^{4}$ theorem on the asymptotic behavior of the eigenvalues of a type of integral operator on $L_{2}(T)$ as $T \rightarrow \infty$. We need to apply the KMS theorem to compact (in an appropriate topology) classes of operators, instead of single operators, and we need to apply it to certain truncated operators which do not meet the conditions of that theorem. For convenience we state the theorem we are referring to:

KMS Theorem. Let $\rho \in L_{1}$ be an even function and suppose that its Fourier transform $\tilde{\rho}$ also belongs to L_{1}. Let ρ define the self-adjoint operators R_{T} and R on $L_{2}(T)$, L_{2} respectively ($R_{T}=P_{T} R P_{T}$). Let $a, b, a<b$, be real numbers and let $N\left(R_{T}, a, b\right)$ denote the number of eigenvalues of R_{T} which lie in the interval (a, b). If
(i) $0 \notin(\mathrm{a}, \mathrm{b})$
and
(ii) $\mu\{v \mid \tilde{\rho}(v)=\mathrm{a}$ or $\tilde{\rho}(v)=\mathrm{b}\}=0$,
then

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} N\left(R_{T}, a, b\right)=\mu\{v \mid \tilde{\rho}(v) \in(a, b)\}
$$

$\mu\{E\}$ denotes the Lebesgue measure of E.
Throughout this section b will denote an admissible class of channels as defined in Section 3. Also throughout this section s will denote the covariance function of a stationary stochastic process with mean zero with the additional property that $s \in L_{1}$. By known properties (Ref. 6, Thm. 9) of positive semi-definite functions it follows that $\tilde{s} \in L_{1}$.

For each $T<\infty, h \in b$ and s as above let us define the operators $H_{T}=P_{T} H P_{T}$ and $S_{T}=P_{T} S P_{T}$ where H and S are defined in terms of h and s as in Eq. (5). H_{T} is then a compact operator, so the positive semi-definite operator

$$
\begin{equation*}
W_{T}=P_{T} H P_{T} S P_{T} H^{*} P_{T}=H_{T} S H_{T}^{*} \tag{7}
\end{equation*}
$$

is also compact. Finally we define

$$
\begin{equation*}
Q_{T}=P_{T} H S H^{*} P_{T}=P_{T} Q P_{T} \tag{8}
\end{equation*}
$$

Q and Q_{T} are positive semi-definite, and Q_{T} is compact by virtue of the fact that $Q=\mathrm{HSH}^{*}$ is a convolution operator with kernel in L_{2}. Indeed, let $q=h * s * \underset{\sim}{h}$, where $*$ means convolution, and $\underset{\sim}{h}(t)=h(-t)$. Then $q \in L_{1} \cap L_{2}$ (since $h \in L_{1} \cap L_{2}, s \in L_{1}$), and its Fourier transform is

$$
\begin{equation*}
\tilde{\mathrm{q}}(v)=|\tilde{\mathrm{h}}(v)|^{2} \tilde{\mathrm{~s}}(v) \tag{9}
\end{equation*}
$$

which also belongs to L_{1} since $\tilde{s}(v)$ is bounded. We note, therefore, that the KMS theorem applies to Q_{T}. Lemmas 1,2 and 3 extend the application to W_{T}. Lemma 1 is included as a reminder of an essentially well-known fact.

Lemma 1.

Let A be a positive semi-definite compact self-adjoint operator, and P a projection operator on Hilbert space. Let $B=P A P$. Let $a_{1} \geq a_{2} \geq \ldots$, and $b_{1} \geq b_{2} \geq \ldots$ be the eigenvalues of A and B res pectively. Then $a_{i} \geq b_{i}, i=1,2, \ldots$.

Proof: Let $A^{1 / 2}$ be the positive square root of $A ; A^{l / 2}$ is compact. Let $C=P A^{1 / 2}$, so that $C C^{*}=B$. Now the eigenvalues $p f B=C C^{*}=P A P$ are the same as the eigenvalues of $C^{*} C=A^{1 / 2} P A^{1 / 2}$, although the invariant subspaces are different. Since $A=A^{1 / 2} A^{1 / 2}$ dominates $A^{1 / 2} P A^{1 / 2}$ the conclusion follows by a standard theorem (Ref. 7, p. 239).

Lemma 2.
Let the operators W_{T} and Q_{T} be as defined in Eqs. 7 and 8 and $\tilde{q}(\omega)$ be as defined in Eq. 9. Then
(i) $\frac{1}{T} \operatorname{Tr}\left(Q_{T}\right)=2 \int_{-\infty}^{\infty} \tilde{q}(\nu) d \nu \quad$ for all $T<\infty$
(ii) $\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \operatorname{Tr}\left(\mathrm{~W}_{\mathrm{T}}\right)=2 \int_{-\infty}^{\infty} \tilde{q}(\nu) \mathrm{d} v=2 \int_{-\infty}^{\infty}|\tilde{h}(v)|^{2} \tilde{\mathrm{~s}}(\nu) \mathrm{d} \nu$
uniformly for all $h \in \mathscr{C}$ and all $s \in \mathscr{A}$.
Proof. Since $\tilde{\mathbf{s}}(\nu) \geq 0$ one can take $\tilde{\mathbf{r}}(\nu)=\sqrt{\tilde{\mathbf{s}}(v)} \geq 0$; then $\tilde{\mathbf{r}}(v)=\tilde{\mathbf{r}}(-\nu)$, and $\tilde{r} \in L_{2}$. Let R be the convolution operator determined by r, the inverse Fourier transform of \tilde{r}, as in Eq. 5. R is positive semidefinite and $R^{2}=S$, so

$$
Q_{\mathrm{T}}=\mathrm{P}_{\mathrm{T}} \mathrm{HRRH}^{*} \mathrm{P}_{\mathrm{T}}=\left(\mathrm{P}_{\mathrm{T}} \mathrm{HR}\right)\left(\mathrm{P}_{\mathrm{T}} \mathrm{HR}\right)^{*}
$$

and

$$
\begin{equation*}
W_{T}=\left(P_{T} H P_{T} R\right)\left(P_{T} H P_{T} R\right)^{*} . \tag{10}
\end{equation*}
$$

One has,

$$
\left(P_{T} H R x\right)(t)=\int_{-\infty}^{\infty}\left\{I_{T}(t) \int_{-\infty}^{\infty} h(t-u) r(u-v) d u\right\} x(v) d v
$$

$$
\left(R H * P_{T} x\right)(t)=\int_{-T}^{T}\left\{\int_{-\infty}^{\infty} r(t-u) h(v-u) d u\right\} x(v) d v
$$

and

$$
\begin{aligned}
& \left(P_{T} H P_{T} R x\right)(t)=\int_{-\infty}^{\infty}\left\{I_{T}(t) \int_{-T}^{T} h(t-u) r(u-v) d u\right\} x(v) d v \\
& \left(R P_{T} H^{*} P_{T} x\right)(t)=\int_{-T}^{T}\left\{\int_{-T}^{T} r(t-u) h(v-u) d u\right\} x(v) d v
\end{aligned}
$$

where I_{T} is the indicator function of the interval $[-T, T]$.
If we let $k(t, w)$ be the kernel of the operator Q_{T}, it follows that
$k(t, w)=I_{T}(t) I_{T}(w) \int_{-\infty}^{\infty} \int_{-} h(t-u) r(u-v) h\left(w-u^{\prime}\right) r\left(v-u^{\prime}\right) d u d u^{\prime} d v$,
whence, using the fact that r is even,

$$
\begin{aligned}
\frac{1}{T} \operatorname{Tr}\left(Q_{T}\right)= & \frac{1}{T} \int_{-T}^{T} k(t, t) d t \\
& =\frac{1}{T} \int_{-T}^{T}| | h * r \|^{2} d t=2 \int_{-\infty}^{\infty}|\tilde{h}(v)|^{2}|\tilde{r}(v)|^{2} d v
\end{aligned}
$$

The existence of the integrals and interchanges of order of integration all follow from the conditions, $h \in L_{1} \cap L_{2}, \tilde{r} \in L_{2}$, and $\tilde{r}(v)$ bounded. This proves (i).

We actually prove (ii) under weaker conditions on \mathbb{b}, which will be stated below. Observe first that

$$
\frac{1}{T} \operatorname{Tr}\left(W_{T}\right)=\frac{1}{T} \int_{-T}^{T} d t \int_{-\infty}^{\infty}\left[\int_{-T}^{T} h(t-u) r(u-v) d u\right]^{2} d v
$$

For convenience, put

$$
A=\int_{-\infty}^{\infty} h(t-u) r(u-v) d u, \quad B=\int_{-T}^{T} h(t-u) r(u-v) d u
$$

Then

$$
\frac{1}{T}\left(\operatorname{Tr} Q_{T}-\operatorname{Tr} W_{T}\right)=\frac{1}{T} \int_{-T}^{T} d t \int_{-\infty}^{\infty}\left(A^{2}-B^{2}\right) d v
$$

and

$$
\begin{equation*}
\frac{1}{T}\left|\operatorname{Tr} Q_{T}-\operatorname{Tr} W_{T}\right| \leq \frac{1}{T} \int_{-T}^{T} d t \int_{-\infty}^{\infty}|A+B| \cdot|A-B| d v \tag{10}
\end{equation*}
$$

One has,

$$
\begin{equation*}
|A+B| \leq 2 \int_{-\infty}^{\infty}|h(t-u) r(u-v)| d u=\varphi(t-v) \tag{11}
\end{equation*}
$$

where φ, which is defined by this equation, belongs to L_{2}, and in fact satisfies

$$
\|\varphi\|_{2} \leq\|h\|_{1}\|r\|_{2}=\|h\|_{1}\|\sqrt{\widetilde{s}}\|\left\|_{2} \leq\right\| h_{1} \|_{1}
$$

Also,

$$
\begin{align*}
|A-B| & \leq \int_{|u|>T}|h(t-u) r(u-v)| d u \\
& \leq\left[\int_{|u|>T}|h(t-u)| d u\right]^{1 / 2}\left[\int_{|u|>l^{\prime}}|h(t-u)||r(u-v)|^{2} d u\right]{ }^{1 / 2} . \tag{12}
\end{align*}
$$

The second factor on the right side of Eq. 12 is dominated by $|\alpha(t-v)|^{1 / 2}$ where

$$
\alpha(t-v)=\int_{-\infty}^{\infty}|h(t-u)||r(u-v)|^{2} d u
$$

and

$$
\left\|\alpha^{1 / 2}\right\|_{2}^{2}=\|\alpha\|_{1} \leq\|h\|_{1}\left\|r^{2}\right\|_{1}=\|h\|_{1}\|s\|_{1} \leq\|h\|_{1}
$$

Hence, from Eqs. (10), (11) and (12),

$$
\begin{align*}
& \frac{1}{T}\left|\operatorname{Tr} Q_{T}-\operatorname{Tr} W_{T}\right| \leq \frac{1}{T} \int_{-T}^{T} d t \int_{-\infty}^{\infty} d v \varphi(t-v) \alpha^{1 / 2}(t-v)\left[\int_{|u|>T}|h(t-u)| d u\right]^{1 / 2} \\
& \leq \frac{1}{T} \int_{-T}^{T} d t\left\{| | \varphi| |_{2}| | \alpha^{1 / 2}| |_{2}\left[\int_{|h(t-u)| d u}^{|u|>T}\right]^{1 / 2}\right\} \tag{cont'd}
\end{align*}
$$

cont'd.

$$
\begin{equation*}
\leq\|h\|_{1}^{3 / 2} \frac{1}{T} \int_{-T}^{\cdot T} d t\left[\int_{|u|>T}^{1}|h(t-u)| d u\right]^{1 / 2} \tag{13}
\end{equation*}
$$

Now, given $\epsilon>0$, suppose there is a number $A(\epsilon)>0$, not depending on h such that

$$
\begin{align*}
& \left\{|h(\tau)| d \tau \leq c^{2}\right. \tag{14}\\
& |\tau|>A(\epsilon)
\end{align*}
$$

for all $h \in \mathscr{C}^{6}$. If \mathscr{C}^{∞} is admissible this condition is satisfied a fortiori since the integral vanishes on the set $|\tau|>\delta$. Then, for $|t|<T-A(c)$,

$$
\left\{\begin{array}{l}
|h(t-u)|>T
\end{array}\right.
$$

and we have from Eq. 13 and 14

$$
\begin{aligned}
& \frac{1}{T}\left|\operatorname{Tr} Q_{T}-\operatorname{Tr} W_{T}\right| \leq\|h\|_{l}^{3 / 2}\left\{\int_{-(T-A)}^{T-A} \frac{\epsilon}{T} d t+\int_{-T}^{-(T-A)}\left[\|h\|_{1}^{1 / 2} \frac{d t}{T}\right]\right. \\
& \left.\quad+\int_{T-A}^{T}\left[| | h \|_{1}^{1 / 2} \frac{d t}{T}\right]\right\}=\|h\|_{1}^{3 / 2}\left\{\frac{2(T-A(\epsilon)) \epsilon}{T}+\frac{2 A(\epsilon)}{T}\|h\|_{1}^{1 / 2}\right\}
\end{aligned}
$$

If T is taken greater than $\frac{A(\epsilon)}{\epsilon}$, then

$$
\frac{1}{T}\left|\operatorname{Tr} Q_{T}-T_{r} W_{T}\right| \leq\|h\|_{1}^{3 / 2}\left(2+2\|h\|_{1}^{1 / 2}\right) \epsilon
$$

Since $\|h\|_{1}$ is less than a fixed constant, this proves the lemma. Wo have proved in fact the stronger result:

Lemma 2 a.

Let \mathscr{l}^{\prime} be a set of functions $h(t),-\infty<t<\infty$, such that \mathscr{f}_{0}, is a bounded subset of L_{1} and such that

$$
\lim _{A \rightarrow \infty} \int_{|\tau|>A}|h(\tau)| d \tau=0
$$

uniformly in \boldsymbol{C}^{\prime}. Then, with the notations of Lemma 2,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \operatorname{Tr}\left(W_{T}\right)=2 \int_{-\infty}^{\infty} \tilde{q}(v) d v
$$

uniformly for $h \in \bigotimes^{\prime}$ and $s \in \mathscr{L}$.

Lemma 3.

Let $0<\mathrm{a}<\mathrm{b}<\infty$ and suppose that

$$
\mu\{v \mid \tilde{q}(v)=\mathrm{a}\}=\dot{\mu}\{v \mid \tilde{q}(v)=\mathrm{b}\}=0 .
$$

Then
(i) $\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \mathrm{~N}\left(\mathrm{Q}_{\mathrm{T}}, \mathrm{a}, \mathrm{b}\right)=\mu\{v \mid \tilde{\mathrm{q}}(v) \in(\mathrm{a}, \mathrm{b})\}$
(ii) $\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}}\left[\mathrm{~N}\left(\mathrm{~W}_{\mathrm{T}}, \mathrm{a}, \mathrm{b}\right)-\mathrm{N}\left(\mathrm{Q}_{\mathrm{T}}, \mathrm{a}, \mathrm{b}\right)\right]=0$
(iii) $\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \mathrm{~N}\left(\mathrm{~W}_{\mathrm{T}}, \mathrm{a}, \mathrm{b}\right)=\mu\{v \mid \tilde{\mathrm{q}}(v) \mathrm{c}(\mathrm{a}, \mathrm{b})\}$

Proof: The assertion (i) is given by the KMS theorem, and (iii) follows from (i) and (ii), so it is sufficient to prove (ii).

Since h has finite memory δ,

$$
\begin{align*}
Q_{T} & =P_{T} H S H^{*} P_{T}=P_{T} H P_{T+\delta} S P_{T+\delta} H^{*} P_{T} \\
& =P_{T}\left[P_{T+\delta}{ }^{H} P_{T+\delta} S^{S} P_{T+\delta} H^{*} P_{T+\delta}\right] P_{T} \\
& =P_{T} W_{T+\delta} P_{T} \tag{15}
\end{align*}
$$

If $w_{1} \geq w_{2} \geq w_{3} \geq \ldots$ are the eigenvalues of $W_{T+\delta}$ and $q_{1} \geq q_{2} \geq q_{3} \geq \ldots$ are the eigenvalues of Q_{T}, then by Lemma 1 ,

$$
\begin{equation*}
\omega_{i} \geq q_{i} \tag{16}
\end{equation*}
$$

It is evident that

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \operatorname{Tr}\left(W_{T}\right)=\lim _{T \rightarrow \infty} \frac{1}{T} \operatorname{Tr}\left(W_{T+\delta}\right)
$$

so that from Lemma 2 we obtain

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \operatorname{Tr}\left(Q_{T}\right)=\lim _{T \rightarrow \infty} \frac{1}{T} \operatorname{Tr}\left(W_{T+\delta}\right) . \tag{17}
\end{equation*}
$$

From Eqs. 16 and 17 it follows [see Gallager ${ }^{3}$, Lemma 8.5.3] that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} N\left(Q_{T}, a, b\right)=\lim _{T \rightarrow \infty} \frac{1}{T} N\left(W_{T+\delta}, a, b\right) . \tag{18}
\end{equation*}
$$

But evidently,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} N\left(W_{T}, a, b\right)=\lim _{T \rightarrow \infty} \frac{1}{T} N\left(W_{T+\delta}, a, b\right) . \tag{19}
\end{equation*}
$$

Combining Eqs. 18 and 19 gives Part (ii) of the lemma.
The next two lemmas build on Lemmas 2 and 3. to give the results needed for obtaining a limiting expression for the average mutual infor mation for the class $\sqrt[b]{ }$.

Lemma 4.
Let $h \in \mathscr{C}$, and H be the corresponding operator as given by Eq. 5. Let Q_{T}, W_{T} then be given as in Eq. 7 and 8 and denote their eigenvalues by $q_{1}(T) \geq q_{2}(T) \geq \ldots$, and $w_{1}(T) \geq w_{2}(T) \geq \ldots$, res pectively. Let f be a continuous monotone increasing real-valued function on the real numbers which satisfies $f(0)=0, f(x) \geq k_{1} x$ in some neigh borhood of 0 and $|f(x)-f(y)| \leq k|x-y|$ for all $x, y \in R$ for some $k<\infty$. Then,

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{i=1}^{\infty} f\left(q_{i}(T)\right) & =\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{i=1}^{\infty} f\left(w_{i}(T)\right) \\
& =\int_{-\infty}^{\infty} f\left(|\tilde{h}(v)|^{2} \tilde{s}(v)\right) d v .
\end{aligned}
$$

Proof. For any $\epsilon>0$, let

$$
S(T, \epsilon)=\frac{1}{2 T} \sum_{\left\{f\left(q_{i}\right)>\epsilon\right\}} f\left(q_{i}(T)\right)
$$

where the summation is over all i for which $f\left(q_{i}(T)\right)>\epsilon$. From a standard argument that involves bounding both the sums and the integral from above and below by the integrals of simple functions and using the KMS theorem, it follows that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} S(T, \epsilon)=\int_{E_{\epsilon}} f\left(|\tilde{h}(v)|^{2} \tilde{s}(v)\right) d v \tag{20}
\end{equation*}
$$

where

$$
E_{\epsilon}=\left\{v \mid f\left(|\tilde{h}(v)|^{2} \tilde{s}(v)>\epsilon\right\} .\right.
$$

(This argument is given in detail in Ref. 8 for a special case, and the extension is straightforward). One then has that
$\lim _{\epsilon \rightarrow 0} \lim _{T \rightarrow \infty} S(T, \epsilon)=\lim _{\epsilon \rightarrow 0} \int_{E_{\epsilon}} f\left(|\tilde{h}(v)|^{2} \tilde{S}(v)\right) d v$

$$
=\int_{-\infty}^{\infty} f\left(|\tilde{h}(v)|^{2} \tilde{s}(v)\right) d v
$$

$\therefore \quad$ since the conditions on f guarantee that $f\left(|\tilde{h}(v)|^{2} \tilde{s}(\nu)\right) \in L_{1}$. To get the limit relation asserted in the Lemma requires some additional argument, however.

First, since Q_{T} has finite trace, we have for all $T>0$,

$$
\frac{1}{2 T} \sum_{q_{i}>\epsilon} q_{i}(T)+\frac{1}{2 T} \sum_{q_{i} \leq \epsilon} q_{i}(T)=\frac{1}{2 T} \sum_{i} q_{i}(T)
$$

By an argument like the one indicated just above,

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{q_{i}>\epsilon} q_{i}(T)=\int_{F_{\epsilon}}|\tilde{h}(v)|^{2} \tilde{s}(v) d v
$$

where

$$
F_{\epsilon}=\left\{\left.v| | \tilde{h}(v)\right|^{2} \tilde{s}(v)>\epsilon\right\}
$$

By Lemma 2,

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{i} q_{i}(T)=\int_{-\infty}^{\infty}|\tilde{h}(v)|^{2} \tilde{s}(v) d v
$$

(actually the left side equals the integral for all T). Hence,

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{q_{i}<\epsilon} q_{i}(T)
$$

exists. Furthermore, since

$$
\lim _{\epsilon \rightarrow 0} \int_{F_{\epsilon}}|\tilde{h}(v)|^{2} \tilde{s}(v) \mathrm{d} v=\int_{-\infty}^{\infty}|\tilde{h}(v)|^{2} \tilde{\mathrm{~s}}(v) \mathrm{d} v
$$

it follows that given arbitrary $\epsilon_{1}>0$, for all sufficiently small ϵ,

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{q_{i} \leq \epsilon} q_{i}(T) \leq \epsilon_{1} .
$$

Hence, by the conditions on f,

$$
\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \sum_{q_{i} \leq \epsilon} f\left(q_{i}(T)\right) \leq k \epsilon_{1}
$$

for all sufficiently small ϵ; and finally

$$
\begin{equation*}
\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \sum_{f\left(q_{i}\right) \leq \epsilon} f\left(q_{i}(T)\right) \leq k \epsilon_{1} \tag{21}
\end{equation*}
$$

for all sufficiently small ϵ. Then,
$\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \sum_{i=1}^{\infty} f\left(q_{i}(T)\right) \leq \varlimsup_{T \rightarrow \infty} S(T, \epsilon)+\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \sum_{\left\{f\left(q_{i}\right) \leq \epsilon\right\}} f\left(q_{i}(T)\right)$
for any $\epsilon>0$; hence by Eqs. 20 and 21

$$
\overline{\lim }_{T \rightarrow \infty} \frac{1}{2 T} \sum_{i=1}^{\infty} f\left(q_{i}(T)\right) \leq \int_{-\infty}^{\infty} f\left(|\tilde{h}(v)|^{2} \tilde{s}(v)\right) d v+k \in 1
$$

for arbitrary $\epsilon_{1}>0$. But

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{i=1}^{\infty} f\left(q_{i}(T)\right) \geq \int_{E \in} f\left(|\tilde{h}(v)|^{2} \tilde{s}(v)\right) d v \quad \forall \epsilon>0
$$

Hence,

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{i=1} f\left(q_{i}(T)\right)=\int_{-\infty}^{\infty} f\left(|\tilde{h}(v)|^{2} \tilde{s}(v)\right) d v
$$

The proof that

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{i=1}^{\infty} f\left(w_{i}(T)\right)=\int_{-\infty}^{\infty} f\left(|\tilde{h}(v)|^{2} \tilde{s}(v)\right) d v
$$

is identical, if one uses the extension of the KMS theorem given by Lemma 3.

Lemma 5.
Let $Q f(b)$ be the class of $|\tilde{h}(v)|^{2}, h \in b$, as defined in Section 3. Then it is a conditionally compact subset of L_{1}. Let f be a realvalued function satisfying the conditions imposed in Lemma 4. Since Q_{T}, and W_{T} depend on h, we can define functions $q_{T}: \mathscr{b} \rightarrow \mathrm{R}$ and $\mathrm{w}_{\mathrm{T}}: \boldsymbol{b} \rightarrow \mathrm{R}$ by

$$
\begin{equation*}
q_{T}(h)=\frac{1}{2 T} \sum_{i=1}^{\infty} f\left(q_{i}(T)\right) \tag{22}
\end{equation*}
$$

and

$$
w_{T}(h)=\frac{1}{2 T} \sum_{i=1}^{\infty} f\left(w_{i}(T)\right),
$$

where $q_{i}(T)$ and $w_{i}(T)$ are as defined in Lemma 4. Then,
(i) $\lim _{T \rightarrow \infty} q_{T}(h)=\int_{-\infty}^{\infty} f\left(|\tilde{h}(v)|^{2} \tilde{s}(v)\right) d v$
uniformly for $h \in \mathfrak{b}$.
(ii) $\lim _{T \rightarrow \infty}\left(w_{T}(h)-q_{T}(h)\right)=0$
uniformly for $h \in \mathfrak{b}$.
(iii) $\lim _{T \rightarrow \infty} w_{T}(h)=\int_{-\infty}^{\infty} f\left(|\tilde{h}(v)|^{2} \tilde{s}(v)\right) d v$
uniformly for $h \in \boldsymbol{b}$.

Proof: Clearly (iii) follows from (i) and (ii).
We first prove (i). It is pointed out above that HSH^{*} is a convolution operator whose kernel has Fourier transform $\tilde{q}(v)=|\tilde{h}(v)|^{2 \tilde{s}(v)}$. Therefore Q_{T}, and consequently q_{T}, may be regarded as a function of $|\tilde{h}(v)|^{2} \epsilon \mathscr{F}(\ell)$, and we sometimes write $q_{T}\left(|\tilde{h}(v)|^{2}\right)$, although it is an abuse of notation. Since it is already known from Lemma 4 that $\mathrm{q}_{\mathrm{T}}(\mathrm{h})$ converges to the indicated limit, and since $\mathscr{f}(\boldsymbol{\ell})$ is a conditionally compact subset of L_{1}, it suffices to show (by the Arzelà -Ascoli theorem) that the family of functions $\left\{\mathrm{q}_{\mathrm{T}}\right\}, 0<\mathrm{T}<\infty$, each q_{T} considered as a mapping from of $\left(\ell_{)}\right)$to R, is equicontinuous.

$$
\text { Let }\left|\tilde{h}_{1}(v)\right|^{2},\left|\tilde{h}_{2}(v)\right|^{2} \in \mathscr{Q}(b) \text { and let } T<\infty . \text { Define an } L_{1}
$$ function $\tilde{\varphi}$ by

$$
\tilde{\varphi}(v)=\min \left\{\left|\tilde{h}_{1}(v)\right|^{2} \tilde{s}(v),\left|\tilde{h}_{2}(v)\right|^{2} \tilde{s}(v)\right\}
$$

Let $\varphi(t)$ be the inverse Fourier transform of $\tilde{\varphi}(\nu)$. Let Φ be the convolution operator on L_{2} defined by φ. Put $\Phi_{T}=P_{T} \Phi P_{T}$, and denote the (real, nonnegative) eigenvalues of Φ_{T} by $\varphi_{1}(T) \geq \varphi_{2}(T) \geq \ldots$. The function q_{T} is defined for $\varphi(\mathrm{t})$ through Eq. 22, even though φ may not belong to b

Then, for $j=1,2, \Phi T \leq Q_{j}, T$ so that $\varphi_{i}(T) \leq q_{j, i}(T), i=1,2, \ldots$, where $Q_{j, T}$ is the operator defined by $\left|\tilde{h}_{j}(\omega)\right|^{2}$ and $q_{j, i}(T)$ are its eigenvalues. Therefore, for $\mathrm{j}=1,2$

$$
\left|q_{T}\left(\left|\tilde{h}_{j}\right|^{2}\right)-\mathrm{q}_{\mathrm{T}}(\tilde{\varphi} / \tilde{\mathrm{s}})\right|
$$

$$
\begin{aligned}
& =\frac{1}{T}\left|\sum_{i=1}^{\infty} f\left(q_{j, i}(T)\right)-f\left(\varphi_{i}(T)\right)\right| \\
& \leq \frac{1}{T} \sum_{i=1}^{\infty}\left|f\left(q_{j, i}(T)\right)-f\left(\varphi_{i}(T)\right)\right| \\
& \leq \frac{k}{T} \sum_{i=1}^{\infty}\left|q_{j, i}(T)-\varphi_{i}(T)\right| \\
& =\frac{k}{T} \sum_{i=1}^{\infty}\left[q_{j, i}(T)-\varphi_{i}(T)\right]=\frac{k}{T}\left[\operatorname{Tr}\left(Q_{j, ~}\right)-\operatorname{Tr}\left(\Phi_{T}\right)\right] \\
& =2 k \int_{-\infty}^{\infty}\left[|\tilde{h}(v)|^{2} \tilde{s}(v)-\tilde{\varphi}(v)\right] d v \\
& \leq\left. 2 k \int_{-\infty}^{\infty}| | \tilde{h}_{1}(v)\right|^{2}-\left|\tilde{h}_{2}(v)\right|^{2} \mid \tilde{s}(v) d v .
\end{aligned}
$$

An application of the triangle inequality then gives

$$
\begin{aligned}
\left|\mathrm{q}_{\mathrm{T}}\left(\left|\tilde{h}_{1}\right|^{2}\right)-\mathrm{q}_{\mathrm{T}}\left(\left|\tilde{h}_{2}\right|^{2}\right)\right| & \leq\left. 4 \mathrm{k} \int_{-\infty}^{\infty}| | \tilde{h}_{1}(v)\right|^{2}-\left|\tilde{h}_{2}(v)\right|^{2} \mid \tilde{\mathrm{s}}(v) \mathrm{d} v \\
& \leq 4 \mathrm{k} \max (\tilde{\mathrm{~s}}(v))\left\|\tilde{h}_{1}^{2}-\tilde{h}_{2}^{2}\right\|_{1}
\end{aligned}
$$

so the family of functions q_{T} on $\mathscr{\mathscr { L }}(\boldsymbol{b})$ is equicontinuous for $0<\mathrm{T}<\infty$.
To prove (ii) we recall that $Q_{T}=P_{T} W_{T+\delta} P_{T}$ and that therefore, by Lemma $1, \mathrm{q}_{\mathrm{i}}(\mathrm{T}) \leq \mathrm{w}_{\mathrm{i}}(\mathrm{T}+\delta)$ for $\mathrm{i}=1,2, \ldots$. Then

$$
\begin{aligned}
& \left.\left|w_{T}(h)-q_{T}(h)\right|=\frac{1}{2 T} \right\rvert\, \sum_{i=1}^{\infty}\left[f\left(w_{i}(T)-f\left(q_{i}(T)\right)\right] \mid\right. \\
& \leq \frac{1}{2 T}\left|\sum_{i=1}^{\infty}\left[f\left(w_{i}(T+\delta)\right)-f\left(q_{i}(T)\right)\right]\right| \\
& \\
& \quad+\frac{1}{2 T}\left|\sum_{i=1}^{\infty}\left[f\left(w_{i}(T+\delta)\right)-f\left(w_{i}(T)\right)\right]\right|
\end{aligned}
$$

The first term on the right side of this inequality is dominated by

$$
\frac{k}{2 T} \sum_{i=1}^{\infty}\left[w_{i}(T+\delta)-q_{i}(T)\right]=\frac{k}{2 T}\left[\operatorname{Tr}\left(W_{T+\delta}\right)-\operatorname{Tr}\left(Q_{T}\right)\right]
$$

which converges to 0 uniformly over b as $T \rightarrow \infty$ by Lemma 2. The second term obviously converges to 0 uniformly over \mathfrak{b}, so the lemma is proved.

As a corollary to Lemma 5 we have:

Theorem 1

Let be a collection of channels h with finite memory δ, such
that $\mathscr{\psi}(\zeta)$ is a conditionally compact subset of L_{1}. Let $s(t)$ be a covariance function belonging to L_{1} with Fourier transform $\widetilde{\mathbf{S}}(v)$. For each $\mathrm{T}<\infty, \mathrm{h} \in \boldsymbol{b}$, let W_{T} be the self-adjoint positive semi-definite operator

$$
W_{T}=P_{T}{ }^{H} P_{T} S P_{T} H^{*} P_{T}
$$

with eigenvalues $w_{1}(T) \geq w_{2}(T) \geq \ldots$ Let N be a fixed positive number. Then,
$\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{i=1}^{\infty} \log \left(1+\frac{w_{i}(T)}{N}\right)=\int_{-\infty}^{\infty} \log \left(1+\frac{|\tilde{h}(v)|^{2} \tilde{s}(v)}{N}\right) d v$
uniformly over $\sqrt[b]{ }$.

Proof: The function $f(x)=\log \left(1+\frac{x}{N}\right)$ satisfies the conditions required for Lemma 5.
5. The Coding Theorem

In this section we use Theorem 1 of the previous section and the results of [1] to prove that $\widehat{C}(b) \geq C(b)$ for an admissible class of channels b. Let $R<C(b)$ be fixed. Then it follows from Theorem 1 that there exists $T<\infty$ and $\tilde{s} \in \mathscr{S}$ such that

$$
\begin{equation*}
\frac{1}{2(T+\delta)} \sum_{i=1}^{\infty} \log \left(1+\frac{w_{i}(T)}{N}\right)>R \tag{24}
\end{equation*}
$$

uniformly over \mathfrak{b}, where $\delta<\infty$ is the memory of \mathfrak{b} and $w_{1}(T) \geq w_{2}(T) \ldots$ are the eigenvalues of the operator

$$
W_{T}=P_{T} H P_{T} S P_{T} H^{*} P_{T}=\left(P_{T} H P_{T}\right)\left(P_{T} S P_{T}\right)\left(P_{T} H^{*} P_{T}\right)
$$

Let $\left\{\varphi_{i} \mid 1 \leq i<\infty\right\}$ be a complete orthonormal basis in $L_{2}(T)$. Relative to this basis the operators $P_{T} H P_{T}, P_{T} S P_{T}$, and $P_{T} H^{*} P_{T}$ have a representation as infinite-dimensional matrices which we denote by $\mathrm{H}_{\mathrm{T}}, \mathrm{S}_{\mathrm{T}}$, and $\mathrm{H}_{\mathrm{T}}^{*}$ respectively. We note that $\mathrm{H}_{\mathrm{T}}^{*}$ is the transpose of H_{T} and the collection b_{T} of matrices H_{T} form a conditionally compact set in the Hilbert-Schmidt norm. Furthermore, S_{T} can be considered to be the covariance matrix of an infinite-dimensional random Gaussian vector, and the trace of S_{T} is less than or equal to 2 T . Finally the additive white noise $z(t),-T \leq t \leq T$, will have the representation

$$
z(t)=\sum_{i=1}^{\infty} z^{i} \varphi_{i}(t)
$$

where z^{1}, z^{2}, \ldots are independent identically distributed Gaussian random variables with zero mean and variance N.

Now consider the class of discrete, memoryless, infinite-dimensional Gaussian channels $\boldsymbol{b}_{\mathrm{T}}=\left\{\mathrm{H}_{\mathrm{T}}\right\}$. The input vectors to these channels are infinite-dimensional vectors $x=\left(x^{1}, x^{2}, \ldots\right)$ and the output $y=\left(y^{l}, y^{2}, \ldots\right)$ corresponding to the channel H_{T} and input x is given by

$$
\mathrm{y}=\mathrm{H}_{\mathrm{T}} \mathrm{x}+\mathrm{z}
$$

where

$$
z=\left(z^{1}, z^{2}, \ldots\right), \text { and } z^{1}, z^{2}, \ldots \text { are independent identically }
$$ distributed Gaussian random variables with zero mean and variance N. The n-extension of the channel H_{T} is defined in the usual manner so that it carries an n-sequence of input vectors $u=\left(x_{1}, \ldots, x_{n}\right)$ into an n-sequence of output vectors $v=\left(y_{1}, \ldots, y_{n}\right)$ with

$$
\mathrm{y}_{\mathrm{i}}=\mathrm{H}_{\mathrm{T}} \mathrm{x}_{\mathrm{i}}+\mathrm{z}_{\mathrm{i}} \quad \mathrm{i}=1, \ldots, \mathrm{n}
$$

where the z_{i} are mutually independent. If $x=\left(x^{1}, x^{2}, \ldots\right)$, we define

$$
\|x\|^{2}=\sum_{i=1}^{\infty}\left|x^{i}\right|^{2}
$$

and we impose the average input power constraint on an n-sequence $u=\left(x_{1}, \ldots, x_{n}\right)$ by requiring that

$$
\|u\|^{2}=\sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \leq n(2 T)=2 n T
$$

We define the capacity $C_{T}\left(\wp_{T}\right)$ of the class b_{T} of channels by the formula

$$
C_{T}\left(b_{T}\right)=\sup _{S_{T} \in \mathscr{L}_{T}} \inf _{H_{T} \in b_{T}} \frac{1}{2} \sum_{i=1}^{\infty} \log \left(1+\frac{w_{i}(T)}{N}\right)
$$

where $\mathscr{\&}_{\mathrm{T}}$ is the set of all covariance matrices S_{T} whose trace is dominated by $2 T$ and where $w_{1}(T) \geq w_{2}(T) \ldots$ are the eigenvalues of the matrix $\mathrm{H}_{\mathrm{T}} \mathrm{S}_{\mathrm{T}} \mathrm{H}_{\mathrm{T}}{ }^{*}$. From (24) it follows that

$$
\begin{equation*}
\mathrm{C}_{\mathrm{T}}\left(b_{\mathrm{T}}\right)>(\mathrm{T}+\delta) \mathrm{R} \tag{25}
\end{equation*}
$$

If $\hat{\mathrm{C}}_{\mathrm{T}}\left(\zeta_{\mathrm{T}}\right)$ denotes the supremum of the attainable rates for $\boldsymbol{b}_{\mathrm{T}}$ (for a precise definition of $\hat{\mathrm{C}}_{\mathrm{T}}$ see Ref. (1)), then by Theorem 4 of Ref. (1) we have $\hat{C}_{T}\left(b_{T}\right) \geq C_{T}\left(b_{T}\right)$ so that from Eq. 25 we obtain

$$
\hat{\mathrm{C}}_{\mathrm{T}}\left(b_{\mathrm{T}}\right)>(\mathrm{T}+\delta) \mathrm{R}
$$

Therefore there exists $\left\{e^{(T+\delta) R n}, \epsilon_{n}, n\right\}$. codes for ℓ_{T} with $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 6.

If there exists a $\left\{e^{(T+\delta) R_{n}}, \epsilon_{n}, n\right\} \quad$ code for b_{T}, then there exists a $\left\{e^{(T+\delta) R n}, \epsilon_{n},(T+\delta) n\right\}$ code for b.

Proof. Let $G=e^{(T+8) R n}$, and let the code words and decoding sets for b_{T} be $u_{1}=\left(x_{11}, \ldots, x_{l_{n}}\right), \ldots, u_{G}=\left(x_{G l}, \ldots, x_{G n}\right)$ and B_{1}, \ldots, B_{G} respectively. We have $\left\|u_{i}\right\|^{2} \leq 2 n T$ for each i and

$$
P_{H_{T}} \quad\left\{\left(y_{1}, \ldots, y_{n}\right) \notin B_{i} \mid u_{i}\right\} \leq \epsilon_{n}
$$

for all $i=1, \ldots, n$ and all $H_{T} \in \boldsymbol{l}_{T}$. Here $P_{H_{T}}\left\{A \mid u_{i}\right\}$ is the probability that the event A occurs when the sequence u_{i} is the input to the channel H_{T}. We now proceed to construct a code for b.

Corresponding to each vector $x_{i j}=\left(x_{i j}^{1}, x_{i j}^{2}, \ldots\right)$ define the function $\mathrm{x}_{\mathrm{ij}}(\mathrm{t}),-\mathrm{T} \leq \mathrm{t} \leq \mathrm{T}$ by,

$$
x_{i j}(t)=\sum_{k=1}^{\infty} x_{i j}^{k} \varphi_{k}(t) \quad i=1, \ldots, G . \quad \because j=1, \ldots, n
$$

Now for $i=1, \ldots, G$ define the function $\hat{u}_{i}(t), 0 \leq t \leq 2 n(T+\delta)$ by

$$
\begin{aligned}
\hat{u}_{i}(t) & =x_{i j}(t-T-2(j-1)(T+\delta)-\delta) \text { for } 2(j-1)(T+\delta)+\delta \leq t \leq 2 j(T+\delta)-\delta \\
& j=1, \ldots, n \\
& =0 \text { elsewhere. }
\end{aligned}
$$

Next define the functions $u_{1}(t), \ldots, u_{G}(t)$ on the interval $-\mathrm{n}(\mathrm{T}+\delta) \leq \mathrm{t} \leq \mathrm{n}(\mathrm{T}+\delta)$ by,

$$
u_{i}(t)=\hat{u}_{i}(t+n(T+\delta))
$$

From the construction of the function $u_{i}(t)$ (see Fig. 1) and the fact that C has memory δ it is evident that $u_{1}(t), \ldots, u_{G}(t)$ are the codewords

Theorem 2.

$$
\hat{c}(b) \geq c(b) .
$$

Proof. Let $R<C(b)$. Then by Lemma 6 there exists a $T<\infty$ and a sequence of $\left\{e^{(T+\delta) R n}, \epsilon_{n},(T+\delta) n\right\} \quad$ codes for b with $\epsilon_{n} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$. Therefore $\mathrm{R} \leq \hat{\mathrm{C}}(\boldsymbol{b})$.
6. Weak Converse of the Coding Theorem.

In this section we will prove that $\hat{C}(b) \leq c(b)$. The usual way of proving the weak converse to a coding theorem is the following: One starts with a sequence of codes which yield an attainable rate R. Then, a stochastic process is constructed from the codes with the probability measures determined by the empirical distribution. Next the logarithm of the number of codeword is essentially dominated by the value of the mutual information determined by this stochastic process and the channel. Finally it is shown that the rate of mutual information is dominated by the channel capacity so that R is less than or equal to the channel capacity. Unfortunately, in our case we cannot follow this program completely, because the empirical distribution obtained in the above manner gives rise to a non-stationary covariance function, whereas the capacity was defined by taking the supremum over stationary covariance.
functions only, so that one cannot immediately assert that the rate of mutual information corresponding to the empirical distribution is dominated by the capacity.

We now proceed to prove the converse in a sequence of steps.
(i) Suppose we are given a $\left(G, \frac{1}{2} \epsilon, T\right)$ code for \mathscr{C} i. e., G distinct functions $x_{1}(t), \ldots, x_{G}(t)$ defined on the interval $[-T, T]$, satisfying the power constraint

$$
\int_{-T}^{T} x_{i}^{2}(t) d t \leq 2 T
$$

for all i, and G disjoint Borel subsets B_{1}, \ldots, B_{G} of the output space of real-valued functions on $[-T, T]$ such that

$$
P_{h}\left\{y(t) \in B_{i}^{c} \mid x_{i}(t)\right\} \leq \frac{1}{2} \epsilon \quad i=1, \ldots, G, \quad \forall h \in b
$$

Now let $\boldsymbol{\zeta}_{\mathrm{f}}$ be a fixed finite subset of \boldsymbol{b}. Then it is clear that if $x_{i}^{n}(t), n=1,2, \ldots$ is a sequence of continuous functions which converges to x_{i} in $L_{2}(T)$ then

$$
\lim _{n \rightarrow \infty} P_{h}\left\{y(t) \in B_{i}^{c} \mid x_{i}^{n}(t)\right\}=P_{h}\left\{y(t) \in B_{i}^{c} \mid x_{i}(t)\right\}
$$

for each $h \in \boldsymbol{b}$ and hence the convergence is uniform over the finite set \mathbb{b}_{f}. Thus we can assume that there is a $\{G, \epsilon, T\}$ code for \mathscr{b}_{f} whose codewords, which we again denote by x_{1}, \ldots, x_{G}, are continuous

functions.

(ii) Next we construct a stochastic process $\xi(t),-T \leq t \leq T$ from the continuous codewords x_{1}, \ldots, x_{G} by:

$$
\begin{array}{r}
P\left\{\xi\left(t_{1}\right) \leq a_{1}, \ldots, \xi\left(t_{n}\right) \leq a_{n}\right\}=\frac{1}{G} \quad\left\{\text { number of codewords } x_{i}\right. \\
\text { such that } \left.x_{i}\left(t_{1}\right) \leq a_{1}, \ldots, x_{i}\left(t_{n}\right) \leq a_{n}\right\}
\end{array}
$$

for every finite subset $\left\{t_{1}, \ldots, t_{n}\right\} \subset[-T, T]$.
The ξ process is extended to the interval [$-\mathrm{T}+\delta, \mathrm{T}+\delta]$ by defining $\xi(t)=0$ for $T \leq|t| \leq T+\delta$. Finally the ξ process is extended to a periodic process on the real line, with period $2(T+\delta)$, as follows: we regard ξ as a random function, i.e., as a random variable whose values are real-valued functions defined on the interval $[-T+\delta, T+\delta]$. Let $\xi_{n}, \mathrm{n}=0, \pm 1, \pm 2, \ldots$ be a sequence of independent random func tions each of them having the same distribution as the random function ξ. Now define the ξ process on the line by (here ω is an element of the underlying probability space),

$$
\begin{array}{ll}
\xi(\omega, \mathrm{t})=\xi_{0}(\omega)(\mathrm{t}), & -(\mathrm{T}+\delta) \leq \mathrm{t} \leq \mathrm{T}+\delta \\
\xi(\omega, \mathrm{t})=\xi_{\mathrm{n}}(\omega)(\mathrm{t}-2 \mathrm{n}(\mathrm{~T}+\delta)), & (2 \mathrm{n}-1)(\mathrm{T}+\delta) \leq \mathrm{t} \leq(2 \mathrm{n}+1)(\mathrm{T}+\delta) \\
& \mathrm{n}=1,2,3 \ldots
\end{array}
$$

and

$$
\begin{array}{r}
\xi(\omega, \mathrm{t})=\xi_{\mathrm{n}}(\omega)(\mathrm{t}+2 \mathrm{n}(\mathrm{~T}+\delta)),-(2 \mathrm{n}-1)(\mathrm{T}+\delta) \geq \mathrm{t} \geq-(2 \mathrm{n}+1)(\mathrm{T}+\delta) \\
\mathrm{n}=-1,-2, \ldots
\end{array}
$$

(iii) For convenience, let $\widehat{T}=T+\delta$. For each integer $k \geq 1$ let $x^{k}(t)$ be the process defined on the interval [$\left.-k \hat{T}, k \hat{T}\right]$ by,

$$
\begin{aligned}
x^{k}(t) & =\xi(t), \quad \\
& =0 \quad|t| \leq(k-1) \hat{T} \\
& , \quad(k-1) \hat{T} \leq|t| \leq k \hat{T},
\end{aligned}
$$

and for each $\tau \in[-\hat{T}, \hat{T}]$ let x_{τ}^{k} be the translations of the x^{k} process defined on $[-k \hat{T}, k \hat{T}]$ by,

$$
\begin{aligned}
x_{T}^{k}(t) & =x^{k}(t-\tau) \quad \text { for } \quad|t-\tau| \leq k \hat{T} \\
& =0 \quad \text { elsewhere, see Fig. } 2 .
\end{aligned}
$$

Finally for each positive integer n let $z_{n}^{k}(t), t \in[-k \hat{T}, k \hat{T}]$ be the process defined by

$$
\begin{equation*}
z_{n}^{k}(t)=\sum_{i=0}^{n} \alpha^{i} x_{\tau_{i}}^{k}(t) \tag{26}
\end{equation*}
$$

where $\tau_{i}=-\hat{T}+\frac{i}{n} 2 \hat{T}$ and $\alpha_{n}=\left(\alpha^{0}, \ldots, \alpha^{n}\right)$ is a random vector, independent of the x^{k} process, and taking on values ($1,0, \ldots, 0$), $(0,1,0, \ldots, 0), \ldots,(0,0, \ldots, 0,1)$, each with probability $\frac{1}{n+1}$. Thus
z_{n}^{k} is the process obtained from x^{k} by n random, uniform shifts.
(iv) Now we let $h \in \boldsymbol{b}_{f}$ be any fixed channel. If $x^{k}(t), x_{\tau_{i}}^{k}(t), z_{n}^{k}(t)$ are the inputs to h, let the corresponding outputs (over the same interval [$-k \hat{T}, k \hat{T}]$) be denoted by $y^{k}(t)+n^{k}(t), y_{T_{i}}^{k}(t)+n^{k}(t), \quad w_{n}^{k}(t)+n^{k}(t)$ respectively. In these expressions $n^{k}(t)$ denotes the additive white noise on the interval $[-k \hat{T}, k \widehat{T}]$. It is important to note that since the channel in time-invariant, $y_{\tau}^{k}(t)=y^{k}(t-\tau)$; also

$$
w_{n}^{k}(t)=\sum_{i=0}^{n} \alpha^{i} y_{\tau_{i}}^{k}(t)
$$

where $\alpha_{\mathrm{n}}=\left(\alpha^{0}, \ldots, \alpha^{\mathrm{n}}\right)$ is the same random vector as in Eq. 26. Furthermore, with probability one, each of the processes $x^{k}(t), x_{\tau_{i}}^{k}(t)$, $y^{k}(t)$ and $y_{\tau_{i}}^{k}(t)$ have exactly $N=(G)^{k-1}$ equiprobable sample functions; whereas with probability one, the processes $z_{n}^{k}(t), w_{n}^{k}(t)$ have $(n+1) N$ equiprobable sample functions. In the following, when we refer to the sample functions of these processes we mean those which have nonzero probability.
(v) Let the sample functions of $x^{k}=x_{\tau_{0}}^{k}, x_{\tau_{1}}^{k}, \ldots, x_{\tau_{n}}^{k}$ be $\left\{\varphi_{1}, \ldots, \varphi_{N}\right\},\left\{\varphi_{N+1}, \ldots, \varphi_{2 N}\right\} \ldots,\left\{\varphi_{\mathrm{nN}+1}, \ldots, \varphi_{(\mathrm{n}+1) \mathrm{N}}\right\}$ respectively. Similarly let the sample functions of $y^{k}=y_{\tau_{0}}^{k}, y_{\tau_{1}}^{k}, \ldots, y_{\tau_{n}}^{k}$ be $\left\{\psi_{1}, \ldots, \psi_{N}\right\},\left\{\psi_{N+1}, \ldots, \psi_{2 N}\right\}, \ldots,\left\{\psi_{n N+1}, \ldots, \psi_{(n+1) N}\right\}$, respectively.

Finally let $\left\{\varphi_{(n+1) N+i}\right\} \quad i=1,2, \ldots$ be an orthonormal set of functions which span the orthogonal complement in $L_{2}[-k \hat{T}, k \hat{T}]$ of the space spanned by $\left\{\varphi_{1}, \ldots, \varphi_{(n+1) N}\right\}$, and similarly let the orthonormal set $\left\{\psi_{(n+1) N+i} ; i=1,2, \ldots\right\}$ span the orthogonal complement in $L_{2}[-k \hat{T}, k \hat{T}]$ of the space spanned by $\left\{\Psi_{1}, \ldots, \psi_{(n+1) N}\right\}$. Relative to these bases we have the following representations:

$$
\begin{aligned}
& x^{k}(t)=x_{\tau_{0}}^{k}(t)=\sum_{i=1}^{\infty}\left(x^{k}\right)_{i} \varphi_{i}(t), \\
& x_{\tau_{j}}^{k}(t)=\sum_{i=1}^{\infty}\left(x_{\tau_{j}}^{k}\right)_{i} \varphi_{i}(t) j=0, \ldots, n, \\
& z_{n}^{k}(t)=\sum_{i=1}^{\infty}\left(z_{n}^{k_{n}}\right)_{i} \varphi_{i}(t) ; \\
& y^{k}(t)=y_{\tau_{0}}^{k}(t)=\sum_{i=1}^{\infty}\left(y^{k}\right)_{i} \psi_{i}(t), \\
& y_{\tau_{j}}^{k}(t)=\sum_{i=1}^{\infty}\left(y_{\tau_{j}}^{k}\right)_{i} \psi_{i}(t) \\
& w_{n}^{k}(t)=\sum_{i=1}^{\infty}\left(w_{n}^{k}\right)_{i} \psi_{i}(t) ;
\end{aligned}
$$

and finally,

$$
n^{k}(t)=\sum_{i=1}^{\infty}\left(n^{k}\right)_{i} \psi_{i}(t)
$$

Remark

In these representations, the coefficients of the basis functions are random variables. For future reference, we note that with probability one $\left(x_{\tau_{i}}^{k}\right)_{j}=\left(y_{\tau_{i}}^{k}\right)_{j}=0$ for $j \notin\{i N+1, \ldots,(i+1) N\}$ and $\left(z_{n}^{k}\right) j=\left(w_{n}^{k}\right)=0$ for $j \notin\{1, \ldots,(n+1) N\}$. We also note that the random vectors $\left(\left(n^{k}\right)_{1}, \ldots\right.$, $\left.\left(n^{k}\right)_{(n+1) N}\right)$ and $\left(\left(n^{k}\right)_{(n+1) N+1}, \ldots.\right)$ are independent.

Now we define

$$
\begin{array}{r}
I\left(x_{T_{i}}^{k} ; y_{\tau_{i}}^{k}+n^{k}\right)=\underset{\ell \rightarrow \infty}{\lim } I\left(\left(x_{\tau_{i}}^{k}\right)_{1} ; \ldots,\left(x_{\tau_{i}}^{k}\right)_{\ell} ;\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\right. \\
\\
\left.\left(y_{\tau_{i}}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right)
\end{array}
$$

and

$$
\begin{array}{r}
I\left(z_{n}^{k} ; w_{n}^{k}+n^{k}\right)=\frac{\lim }{} I\left(\left(z_{\ell \rightarrow \infty}^{k}\right)_{1}, \ldots,\left(z_{n}^{k}\right)_{\ell} ;\left(w_{n}^{k}\right)_{1}+\left(n^{k}\right)_{1} ; \ldots,\right. \\
\left.\left(w_{n}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right)
\end{array}
$$

where for finite-dimensional random vectors ζ and $\eta \quad I(\zeta ; \eta)$ is the average mutual information between ζ and η; thus $I(\zeta ; \eta)=H(\eta)-H(\eta \mid \zeta)$
where H is the entropy function.

Lemma 7
(a) For each $\ell \geq(n+1) N$

$$
\begin{aligned}
& I\left(\left(z_{n}^{k}\right)_{1}, \ldots,\left(z_{n}^{k}\right)_{\ell} ;\left(w_{n}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(w_{n}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
& \quad \geq I\left(\left(x^{k}\right)_{1}, \ldots,\left(x^{k}\right)_{\ell} ;\left(y^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right)
\end{aligned}
$$

so that
(b) $I\left(z_{n}^{k} ; w_{n}^{k}+n^{k}\right) \geq I\left(x^{k} ; y^{k}+n^{k}\right)$.

Proof. We first prove that

$$
\left.\left.\begin{array}{c}
H\left(\left(w_{n}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(w_{n}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
\geq \frac{1}{n+1} \sum_{i=0}^{n} H\left(\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
P\left\{\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1} \leq a_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell} \leq a_{\ell}\right\} \\
=P\left\{\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1} \leq a_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)\right. \\
(n+1) N
\end{array}\right]\left(n^{k}\right)_{(n+1) N} \leq a_{(n+1) N}\right)
$$

$$
\begin{aligned}
= & P\left\{\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1} \leq a_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)_{(n+1) N}+\left(n^{k}\right)_{(n+1) N} \leq a_{(n+1) N}\right\} \times \\
& P\left\{\left(n^{k}\right)_{(n+1) N+1} \leq a_{(n+1) N+1}, \cdots,\left(n^{k}\right)_{\ell} \leq a_{\ell}\right\}
\end{aligned}
$$

by the remark preceding this lemma. Therefore,

$$
\begin{align*}
& H\left(\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
& =H\left(\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)_{(n+1) N}+\left(n^{k}\right)_{(n+1) N}\right) \\
& \quad+H\left(\left(n^{k}\right)(n+1) N+1, \ldots,\left(n^{k}\right)_{\ell}\right) \tag{28}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& H\left(\left(w_{n}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(w_{n}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
& =H\left(\left(w_{n}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(w_{n}^{k}\right)_{(n+1) N}+\left(n^{k}\right)_{(n+1) N}\right) \\
& \quad+H\left(\left(n^{k}\right)_{(n+1) N+1}, \cdots,\left(n^{k}\right)_{\ell}\right) \tag{29}
\end{align*}
$$

Also,

$$
P\left\{\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1} \leq a_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)_{(n+1) N}+\left(n^{k}\right)_{(n+1) N} \leq a_{(n+1) N}\right\}
$$

(cont'd.)

$$
=\frac{1}{N} \sum_{j=1}^{N} P\left\{\left(n^{k}\right)_{1} \leq a_{1}, \ldots,\left(n^{k}\right)_{i N+j} \leq a_{i N+j}-1, \ldots,\left(n^{k}\right)_{(n+1) N}\right.
$$

$$
\leq a_{(n+1)} N^{\}}
$$

because $\left(y_{\tau_{i}}^{k}\right)_{j}=0$ for $j \notin\{i N+1, \ldots,(i+1) N\}$ and the process $y_{\tau_{i}}^{k}(t)$ has exactly N equiprobable sample functions. Similarly,

$$
\begin{aligned}
& P\left\{\left(w_{n}^{k}\right)_{1}+\left(n^{k}\right)_{1} \leq a_{1}, \ldots,\left(w_{n}^{k}\right)_{(n+1) N}+\left(n^{k}\right)_{(n+1) N} \leq a_{(n+1) N}\right\} \\
& =\frac{1}{(n+1) N} \sum_{j=1}^{(n+1) N} P\left\{\left(n^{k}\right)_{1} \leq a_{1}, \ldots,\left(n^{k}\right)_{j} \leq a_{j}-1, \ldots,\left(n^{k}\right)_{(n+1) N} \leq a_{(n+1) N}\right\} \\
& \quad=\frac{1}{(n+1)} \sum_{i=0}^{n} P\left\{\left(y_{T_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1} \leq a_{1}, \ldots,\left(y_{T_{i}}^{k}\right)_{(n+1) N}+\left(n^{k}\right)_{(n+1) N} \leq a_{(n+1) N}\right\}
\end{aligned}
$$

From the concavity of the entropy function we therefore have
$H\left(\left(w_{n}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(w_{n}^{k}\right)_{(n+1) N}+\left(n^{k}\right)_{(n+1) N}\right)$

$$
\geq \frac{1}{n+1} \sum_{i=0}^{n} H\left(\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)_{(n+1) N}+\left(n^{k}\right)_{(n+1) N}\right)
$$

Combining the above inequality with (28) and (29) we obtain (27) . Now since the noise is additive we also have that

$$
\begin{aligned}
& H\left(\left(w_{n}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(w_{n}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell} \mid\left(z_{k}^{n}\right)_{1}, \ldots,\left(z_{k}^{n}\right)_{\ell}\right) \\
&=H\left(\left(n^{k}\right)_{1}, \ldots,\left(n^{k}\right)_{\ell}\right) \\
&=H\left(\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell} \mid\left(x_{\tau_{i}}^{k}\right)_{1}, \ldots,\left(x_{\tau_{i}}^{k}\right)_{\ell}\right)
\end{aligned}
$$

Combining this result with Eq. 27 and using the fact that $I(\zeta ; \eta)=H(\eta)-H(\eta \mid \zeta)$ we see that

$$
\begin{aligned}
& I\left(\left(z_{n}^{k}\right)_{1}, \ldots,\left(z_{n}^{k}\right)_{\ell} ;\left(w_{n}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(w_{n}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
& \quad \geq \frac{1}{n+1} \sum_{i=0}^{n} I\left(\left(x_{\tau_{i}}^{k}\right)_{1}, \ldots,\left(x_{T_{i}}^{k}\right)_{\ell} ;\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right)
\end{aligned}
$$

But the processes $x_{\tau_{i}}^{k}(t), x_{\tau_{j}}^{k}(t)$ are identical except for a translation. Furthermore the channel is time-invariant and n is stationary so that

$$
\begin{aligned}
& I\left(\left(x^{k}\right)_{1}, \ldots,\left(x^{k}\right)_{\ell} ;\left(y^{k}\right)_{l}+\left(n^{k}\right)_{1}, \ldots,\left(y^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
& \quad=I\left(\left(x_{\tau_{i}}^{k}\right)_{1}, \ldots,\left(x_{\tau_{i}}^{k}\right)_{\ell} ;\left(y_{\tau_{i}}^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y_{\tau_{i}}^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right)
\end{aligned}
$$

and the lemma is proved.
(vi) Using a standard identity we have

$$
\begin{aligned}
& I\left(\left(x^{k}\right)_{1}, \ldots,\left(x^{k}\right)_{\ell} ;\left(y^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
& \quad=H\left(\left(x^{k}\right)_{1}, \ldots,\left(x^{k}\right)_{\ell}\right)-H\left(\left(x^{k}\right)_{1}, \ldots,\left(x^{k}\right)_{\ell} \mid\left(y^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
& \quad=\log G^{k-1}-H\left((x)_{1}^{k}, \ldots,\left(x^{k}\right)_{\ell} \mid\left(y^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
& \quad \geq(k-1) \log G-(k-1)[\epsilon \log G+\log 2] \\
& \text { since } x^{k} \text { has } G^{k-1} \text { equiprobable samples and since the error probability } \\
& \text { is bounded by } \in \text { (see Ref. 9, p. 187). }
\end{aligned}
$$

(vii) We now obtain a lower bound for $I\left(\left(x^{k}\right)_{1}, \ldots,\left(x^{k}\right)_{\ell} ;\left(y^{k}\right)_{1}+\left(n^{k}\right)_{1}\right.$, $\left.\ldots,\left(y^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right)$. An examination of the construction of the x^{k} process shows that the x^{k} process is obtained by transmitting a sequence (of length ($k-1$)) of codewords each obtained independently and with uniform probability so that

$$
\begin{aligned}
& I\left(\left(x^{k}\right)_{1}, \ldots,\left(x^{k}\right)_{\ell} ;\left(y^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y^{k}\right)_{\ell}+\left(n^{k}\right)_{\ell}\right) \\
& =(k-1) I\left(\left(x^{2}\right)_{1}, \ldots,\left(x^{2}\right)_{\ell} ;\left(y^{2}\right)_{1}+\left(n^{2}\right)_{1}, \ldots,\left(y^{2}\right)_{1}+\left(n^{2}\right)_{\ell}\right) \\
& =(k-1)\left\{H\left(\left(x^{2}\right)_{1}, \ldots,\left(x^{2}\right)_{\ell}\right)-H\left(\left(x^{2}\right)_{1}, \ldots,\left(x^{2}\right)_{\ell}\right) \mid\left(y^{2}\right)_{1}+\left(n^{2}\right)_{1}, \ldots,\right. \\
& \left.\quad\left(y^{2}\right)_{\ell}+\left(n^{2}\right)_{\ell}\right\} \\
& =(k-1) \Delta, \text { say. }
\end{aligned}
$$

Now the x^{2} process consists of G equiprobable sample functions so that $H\left(\left(x^{2}\right)_{1}, \ldots,\left(x^{2}\right)_{\ell}\right)=\log G$. An application of two results of Fano (Ref. 9, p. 185, 187) shows that

$$
\begin{aligned}
& H\left(\left(x^{2}\right)_{1}, \ldots,\left(x^{2}\right)_{\ell} \mid\left(y^{2}\right)_{1}+\left(n^{2}\right)_{1}, \ldots,\left(y^{2}\right)_{\ell}+\left(n^{2}\right)_{\ell}\right) \\
& \geq \in \log G+\log 2 \quad \text { so that }
\end{aligned}
$$

$$
\Delta \geq(1-\epsilon) \log G-\log 2
$$

and therefore

$$
\begin{gathered}
I\left(\left(x^{k}\right)_{1}, \ldots,\left(x^{k}\right)_{\ell} ;\left(y^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y^{k}\right)_{\ell}+\left(n^{2}\right)_{\ell}\right) \\
\geq(k-1)\{(1-\epsilon) \log G-\log 2\}
\end{gathered}
$$

Combining the above inequality with Lemma 7 yields

$$
I\left(z_{n}^{k} ; w_{n}^{k}+n^{k}\right) \geq(k-1)[(1-\epsilon) \log G-\log 2]
$$

If the process z_{n}^{k} is replaced by a zero-mean Gaussian process \bar{z}_{n}^{k} with the same covariance function as z_{n}^{k} and if $\bar{w}_{n}^{k}+n^{k}$ denotes the corres ponding output of the channel h then (see Ref.1, Corrollary to Lemma 9)

$$
\begin{equation*}
I\left(\bar{z}_{n}^{-k} ; \bar{w}_{n}^{k}+n^{k}\right) \geq(k-1)[(1-\epsilon) \log G-\log 2] \tag{30}
\end{equation*}
$$

Let $Z_{n}^{k}(t, s)=E\left\{\left(z_{k}^{n}(t)-E z_{k}^{n}(t)\right)\left(z_{k}^{n}(s)-E z_{k}^{n}(s)\right)\right\}=E\left(z_{k}^{n}(t) z_{k}^{n}(s)\right)$ be the covariance function of z_{k}^{n}, and similarly let $X^{k}(t, s), X_{\tau_{i}}^{k}(t, s)$ and $\because(t, s)$ be the covariance functions of $x^{k}, x_{T_{i}}^{k}$ and ξ respectively. Then

$$
\begin{aligned}
x^{k}(t, s) & =\Leftrightarrow(t, s) \text { for }-(k-1) \hat{T} \leq t, s \leq(k-1) \hat{T} \\
& =0 \quad \text { for } \quad|t| \geq(k-1) \hat{T} \text { or }|s| \geq(k-1) \hat{T}
\end{aligned}
$$

and

$$
X_{i}^{k}(t, s)=X\left(t-\tau_{i}, s-\tau_{i}\right)
$$

Consequently,

$$
\begin{aligned}
Z_{n}^{k}(t, s) & =\frac{1}{n+1} \sum_{i=0}^{n} X\left(t-\tau_{i}, s-\tau_{i}\right) \\
& =\frac{1}{n+1} \sum_{i=0}^{n} X\left(t-\frac{i}{n} \hat{T}, s-\frac{i}{n} \hat{T}\right) .
\end{aligned}
$$

Since X is piecewise continuous, the Z_{n}^{k} are a convergent sequence of Riemann sums, and we may write

$$
z^{k}(t, s)=\lim _{n \rightarrow \infty} Z_{n}^{k}(t, s)=\frac{1}{2 \hat{T}} \int_{-\hat{T}}^{\hat{T}} X(t-\tau, s-\tau) d \tau=\frac{1}{2 \hat{T}} \int_{-\hat{T}}^{\hat{T}}(t-\tau, s-\tau) d \tau
$$

Thus if $\bar{z}^{\mathbf{k}}$ denotes the zero-mean Gaussian process with covariance function $Z^{k}(t, s)$ we see from Eq. 30 that

$$
\begin{equation*}
\mathrm{I}\left(\mathrm{z}^{-\mathrm{k}}, \overline{\mathrm{w}}^{\mathrm{k}}+\mathrm{n}^{\mathrm{k}}\right) \geq(\mathrm{k}-1)[(1-\epsilon) \log G-\log 2] \tag{31}
\end{equation*}
$$

Here $\bar{w}^{k}+n^{k}$ is the output of the channel h due to the input $\bar{z}^{\mathbf{k}}$. Finally from Eq. (31) we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{k} I\left(\bar{z}^{-k}, \bar{w}^{k}+n^{k}\right) \geq(1-\epsilon) \log G-\log 2 \tag{32}
\end{equation*}
$$

Now let $u(t)$ be a zero-mean Gaussian process defined on the line and with covariance function $U(t, s)$ given by

$$
U(t, s)=\frac{1}{2 \hat{T}} \int_{-\hat{T}}^{\hat{T}} \hat{\bar{T}}(t-\tau, s-\tau) d \tau
$$

We note that since \Longleftrightarrow is doubly periodic with period $2 \hat{T}, U(t+\tau, s+\tau)=$ $=U(t, s)$ so that U is stationary. Furthermore $Z^{k}(t, s)=U(t, s)$ for $-(k-1) \hat{T} \leq s, t \leq(k-1) \hat{T}$. Thus if $v+n$ is the output process of the channel h corresponding to the input v then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{k} I\left(u^{k} ; v^{k}+n^{k}\right)=\lim _{k \rightarrow \infty} \frac{1}{k} I\left(\bar{z}^{k} ; \bar{w}^{k}+n^{k}\right) \tag{33}
\end{equation*}
$$

where u^{k}, v^{k} and n^{k} are the restrictions of u, v and n to the interval $[-k \hat{T}, k \hat{T}]$. But by the Appendix,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{k \hat{T}} I\left(u^{k} ; v^{k}+n^{k}\right)=\int_{-\infty}^{\infty} \log \left(1+\frac{|\tilde{h}(v)|^{2 \tilde{s_{u}}(v)}}{N}\right) d v \tag{34}
\end{equation*}
$$

where $\tilde{s}_{u}(v)$ is the Fourier transform of $s_{u}(\tau)=U(0, \tau)$. Combining this equality with Eq. (32) and (33) gives us (35).

$$
\begin{equation*}
\int_{-\infty}^{\infty} \log \left(1+\frac{|\tilde{h}(v)|^{2} \tilde{s}_{u}(v)}{N}\right) d v \geq \frac{1}{\widehat{T}}[(1-\epsilon) \log G-\log 2] \tag{35}
\end{equation*}
$$

Taking the minimum of both sides over $h \in \boldsymbol{\zeta}_{f}$ we obtain

$$
\inf _{h \in b_{f}} \int_{-\infty}^{\infty} \log \left(1+\frac{|\tilde{h}(v)|^{2 \sim} \tilde{s}_{u}(v)}{N}\right) d v \geq \frac{1}{\hat{T}}[(1-\epsilon) \log G-\log 2]
$$

The left-hand side can be dominated by taking the supremum over all $\tilde{s}_{u} \in \mathscr{L}$ so that we get

$$
C\left(b_{f}\right) \geq \frac{1}{\hat{T}}[(1-\epsilon) \log G-\log 2]=\frac{1}{T+\delta}[(1-\epsilon) \log G-\log 2]
$$

We have therefore proved Lemma 8 :

Lemma 8.

If there exists a $(G, 1 / 2 \epsilon, T)$ code for b then for every finite subset $\mathfrak{b}_{\mathrm{f}}$ of \mathfrak{b},

$$
\frac{1}{T+\delta}[(1-\epsilon) \log G-\log 2] \leq C\left(l_{f}\right)
$$

Theorem 3.

$$
\hat{c}(b) \leq c(b) .
$$

Proof. Let $R<\hat{C}(b)$ so that there is a sequence of $\left(e^{R T}, \epsilon_{n}, T_{n}\right)$ codes for b with $T_{n} \rightarrow \infty$ and $\epsilon_{n} \rightarrow 0$. For each finite subset b_{f} of be get

$$
c\left(b_{f}\right) \geq \frac{1}{T_{n}+\delta}\left[\left(1-2 \epsilon_{n}\right) R T_{n}-\log 2\right]
$$

Taking limits as $n \rightarrow \infty$ this yields

$$
C\left(b_{f}\right) \geq R
$$

Taking the infimum over all finite subsets \boldsymbol{b}_{f} of \boldsymbol{b} this gives us

$$
b_{f}^{\inf } \subset b^{c\left(b_{f}\right) \geq R}
$$

It remains to show that

$$
\begin{equation*}
\inf _{f} \subset b^{c\left(b_{f}\right)}=c(b) \tag{36}
\end{equation*}
$$

Clearly, the left-hand side is not less than the right-hand side. Now
since the set $\{\tilde{h}(\nu) \mid h \in \mathscr{C}\}$ is a conditionally compact subset of L_{2}, and since the Fourier transform is an isometry, the set $\left\{h(t) \mid h \in \mathscr{C}_{0}\right\}$ is a conditionally compact subset of L_{2}. Also if $h \in \mathscr{b}$ then $h(t)=0$, $|t| \geq \delta$, so that $\{h(t) \mid h \in \mathcal{b}\}$ is a conditionally compact subset of L_{1} and therefore $\left\{\tilde{h}(v) \mid h \in \ell_{\mathcal{l}}\right\}$ is a conditionally compact subset of L_{∞}. Hence given $c>0$ there is a finite subset b_{f}^{ϵ} of b such that for each $h \in \mathcal{L}_{0}$, there is an $h_{f} \in \mathscr{b}_{f}^{c}$ such that

$$
\left\|\tilde{h}-\tilde{h}_{f}\right\|_{\infty} \leq \epsilon
$$

Therefore for all $\tilde{s} \in \mathcal{L}$,

$$
\begin{aligned}
& \left|\int_{-\infty}^{\infty} \log \left(1+\frac{|\tilde{h}(v)|^{2} \tilde{s}(v)}{N}\right) \mathrm{d} v-\int_{-\infty}^{\infty} \log \frac{\left(1+\left|\tilde{h}_{f}\right|^{2 \tilde{s}(v))}\right.}{\mathrm{N}} \mathrm{~d} v\right| \\
& \left.\quad \leq\left.\frac{1}{\mathrm{~N}} \int_{-\infty}^{\infty}| | \tilde{\mathrm{h}}(v)\right|^{2}-\left|\tilde{h}_{f}(v)\right|^{2} \right\rvert\, \tilde{s}(v) \mathrm{d} v \\
& \quad \leq \frac{1}{\mathrm{~N}} \epsilon^{2} \int_{-\infty}^{\infty} \tilde{\mathrm{s}}(v) \mathrm{d} v \leq \frac{1}{\mathrm{~N}} \epsilon^{2}
\end{aligned}
$$

It follows that $C\left(\boldsymbol{b}_{\mathrm{f}}^{\epsilon}\right) \leq \mathrm{C}(\boldsymbol{b})+\frac{1}{\mathrm{~N}} \epsilon^{2}$ which proves Eq. 36.

APPENDIX

In this appendix we prove Eq. (34). Recall that $u(t)$ is a stationary Gaussian process with zero-mean and covariance function $s_{u}(t) . \quad v(t)+n(t)$ is the output of the channel h corresponding to input $u(t), u^{k}, v^{k}, n^{k}$ are the restrictions of the processes u, v, and n to the interval $[-k \hat{T}, k \hat{T}]$.

Lemma.

$$
I\left(u^{k} ; v^{k}+n^{k}\right)=\frac{1}{2} \sum_{i=1}^{\infty} \log \left(1+\frac{\lambda_{i}^{k}}{N}\right)
$$

where $\lambda_{1}^{k} \geq \lambda_{2}^{k} \geq \ldots$ are the eigenvalues of the operator

$$
\Delta_{T}=P_{T} H P_{T} S_{u} P_{T} H^{*} P_{T}
$$

where
(i) $T=k \hat{T}$
and
(ii) H and S_{u} are the operators defined by the kernels h and s_{u} respectively.

Proof. $\Delta_{T}=H_{T} S_{T} H_{T}^{*}$ where $H_{T}=\left(P_{T} H_{T} P_{T}\right)$ and $S_{T}=P_{T} S_{u} P_{T}$. Furthermore, S_{T} is a positive semi-definite self-adjoint compact operator and hence can be expressed as $S_{T}=S S$ where S is positive
semi-definite, self-adjoint and compact. Thus $\Delta_{T}=A A^{*}$ where $A=H_{T} S$. The operator $\hat{\Delta}_{T}=A * A$ is also positive semi-definite, self-adjoint and compact, and has the same eigenvalues as the operator Δ_{T}. Therefore there is a complete orthonormal basis $\left\{\delta_{i}\right\}_{i=1}^{\infty}$ of $L_{2}(T)$ such that $\hat{\Delta}_{T}=A * A$ is defined by the kernal

$$
\hat{\delta}(t, \tau)=\sum_{i=1}^{\infty} \lambda_{i}^{k} \delta_{i}(t) \delta_{i}(\tau)
$$

Let

$$
\eta_{i}(t)=\frac{1}{\sqrt{\lambda_{i}^{k}}}\left(A \delta_{i}\right)(t)
$$

Then

$$
\left(\eta_{i}, \eta_{j}\right)=\frac{1}{\sqrt{\lambda_{i}^{k}} \sqrt{\lambda_{j}^{k}}}\left(A \delta_{i}, A \delta_{j}\right)=\frac{1}{\sqrt{\lambda_{i}^{k} \lambda_{j}^{k}}}\left(\delta_{i}, A{ }^{*} A \delta_{j}\right)
$$

$=\delta_{i}^{j}$ - the Kronecker delta; so that $\left\{\eta_{i}\right\}_{i=1}^{\infty}$ is also a complete orthonormal basis of $L_{2}(T)$. Finally, relative to these basis functions we have the representations.

$$
u^{k}(t)=\sum\left(u^{k}\right)_{i} \delta_{i}(t)
$$

$$
v^{k}(t)=\sum\left(v^{k}\right)_{i} \eta_{i}(t)
$$

$$
n^{k}(t)=\sum\left(n^{k}\right)_{i} \eta_{i}(t)
$$

where $\left(u^{k}\right)_{i},\left(v^{k}\right)_{i}$ and $\left(n^{k}\right)_{i}$ are appropriate Gaussian random variables. Furthermore the variance of $\left(v^{k}\right)_{i}$ is λ_{i}^{k} and variance of $\left(n^{k}\right)_{i}$ is N. It is easy to check that with the various independance relations

$$
\begin{gathered}
I\left(\left(u^{k}\right)_{1}, \ldots,\left(u^{k}\right)_{\ell} ;\left(y^{k}\right)_{1}+\left(n^{k}\right)_{1}, \ldots,\left(y^{k}\right)_{\ell}+\left(n^{k}\right) \ell\right) \\
=\frac{1}{2} \sum_{i=1}^{\ell} \log \left(1+\frac{\lambda^{k}}{N}\right),
\end{gathered}
$$

and the lemma is proved.
Finally, combining this lemma with Theorem lestablishes Eq. (34) -

REFERENCES

1. Root, W. L. and Varaiya, P. P., "Capacity of Classes of Gaussian Channels. Part I: Discrete-Time," Tech. Memo M-208. Electronics Res. Lab., Univ. of California, Berkeley, (1967).
2. Blackwell, D., Breiman, L. and Thomasian, A. J., "The Capacity of a Class of Channels," Ann. Math. Stat. 30 (1959) p. 1229.
3. Gallager, R. G., "Continuous Time Channels," Chapter of a book in preparation.
4. Kac, M., Murdock, W. L. and Szego, G., "On the Eigenvalues of Certain Hermitian Forms," Jour. of Rat. Mech. and Anal. 2 (1953) p. 767.
5. Dunford, N., and Schwartz, J. T., Linear Operators Part 1, Interscience, New York (1958).
6. Bochner, S. and Chandrasekharan, K., Fourier Transforms, Ann. of Math. Studies No. 19, Princeton Univ. Press (1949).
7. Riesz, F. and Sz-Nagy, B., Functional Analysis, (translated from the French) Ungar, New York (1955).
8. Root, W. L., "Estimation of ϵ-Capacity for Certain Linear Communication Channels," Willow Run Laboratories Report, Univ. of Michigan, (1967).
9. Fano, R. M., Transmission of Information, M. I. T. Press and Wiley, New York (1961).

