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1. Introduction. Of the many types of stability which may be defined

for dynamical systems, at least two are of special importance when

the systems are linear. These are bounded-input bounded-output sta

bility and exponential stability, defined below. The aim of this paper

is to establish an equivalence between these two types of stability for

a large class of linear time -variable systems.

The basic system description we shall consider is an impulse

response matrix H which maps the system inputs u into the system

outputs y via the formula
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(1) y(t) =J H(t,T)u(T)dT ,
0

when the system is in the zero state at time t . An alternate description

is provided by a set of state equations of the form

(2 a) x = Ax + Bu

(2b) y = Cx ,

where A, B and C are time-variable matrices, and x is the state

vector associated with the coordinate basis used in setting up (2). The

dimensions of the vectors x, u and y will be taken to be n, r and m ,

respectively. The well-known [1] relationship between the two repre

sentations is given by

(3) H(t, t) = C(t) $ (t, t) B (t) , t > t

where $ is the transition matrix of the homogeneous part of (2a).

A system is termed bounded-input bounded-output (BIBO) stable , if

for any input u satisfying

(4) ||u(t)|| < Cl, for all t

with the system initially in the zero-state, there is an associated con

stant c_ = c?(c ) such that the output y of the system satisfies
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(5) ||y(t)|| <c2, for all t

(||* || denotes the Euclidean norm)

This type of stability, whose physical significance is obvious, may be

very simply characterized in terms of the impulse response matrix [2-5],

Theorem 1. The system described by (1) is BIBO stable if and only if

there exists a positive constant c- such that

(6)
~-co

f ||H(t, T)||dr<c , for all

In contrast to BIBO stability, which emphasises the external

characteristics of a system, exponential stability emphasises the internal

characteristics. The realization (2) of the impulse response matrix H

is termed exponentially stable [6] (uniformly asymptotically stable [5])

if there exist positive constants c and c5 such that for any x satisfying

the homogeneous part of (2 a) ,

(7) IMt)|| <c4||x(t0)||e
-c5(t-tQ)

for all t and for all t > t . A well known [5] criterion for exponential

stability is given by the following theorem.

Theorem 2. The system realization (2) is exponentially stable if and

only if there exist positive constants c, and c_ such that
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-C (t-T)

(8) ||*(t.T)|| < c, e

for all t and for all t > t.

It is important to note that exponential stability is a property

determined solely by the matrix A in (2) by virtue of (8), while it is

clear from (3) and (6) that BIBO stability reflects properties of A, B

and C.

In the time-invariant case (A, B and C constant matrices),

relations between the two types of stability are well known. Exponential

stability implies BIBO stability, while BIBO stability, together with

complete controllability [l] and complete observability [1] implies exponential

stability. Unfortunately, no such simple and analogous statements can

be made in the time-variable case. Indeed, as was observed by Kalman [7],

and discussed in the next section, it is impossible to conclude the exist

ence of any sort of relation between the two types-of stability without

further constraints on the realizations (2).

For certain special classes of time-variable systems, relation

ships between the two types of stability have been established. The best

known of these results is that of Perron [8], [2] :

Theorem 3. Consider the system realization (2 a) with the state x as

output. If the matrices A and B are bounded, and if B contains an

n X n submatrix B with the property that
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(9) |detB(t)| >d>0, for all t

then the system is BIBO stable if and only if it is exponentially stable.

Recently [9], [10] it has been shown that in several classes of

systems the two types of stability are equivalent with the major constraint

(9) replaced by more meaningful and less restrictive constraints.

Jn the present paper, a much more general class of such systems

is described, and it is shown that all previous classes are special cases.

2. Stability Difficulties of Linear Time-Variable Systems. Given a

separable (i. e. , realizable [1]) impulse response matrix

(10) H(t, t) = *(t) ® (t) ,

where ^ and ® are m X n and n X r matrices., respectively, it is

immediately possible to construct a realization which is Lyapunov stable,

but not exponentially stable [1] :

(11a) x = («) u

(lib) y = tfx

Actually, more than this is true. It is in fact possible to construct a

realization of the form (2) with an essentially arbitrary n X n A matrix:

with T any fundamental matrix solution [11] of z = Az , it is easily

verified that
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(12 a) x = Ax + T ® u

(12b) y = *T-1x

is a realization of the impulse response matrix (1 0).

Accordingly, it is impossible to conclude anything concerning

the internal stability of particular realizations of a BIBO stable impulse

response matrix without some restrictions on the class of admissible

realizations. Such a set of restrictions, motivated by physical as well

as mathematical considerations will now be examined.

If (2) is to represent a practical physical system (e. g. , an

analog computer) then an immediate restriction is that the elements

of the coefficient matrices A, B, and C be bounded functions of time.

Consequently, it will be assumed that a constant K exists such that for

all t

(13a) ||A(t)|| < K

(13b) ||B(t)|| < K

and

(13c) ||C(t)|| < K.

Such a system will be termed a bounded realization of the impulse res

ponse matrix H.

From the known results for time-invariant systems, it is also
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clear that some type of controllability and observability conditions

must be imposed on (2). As shown by the following example [7],

however, complete controllability and observability does not suffice

even in bounded realizations.

Example. Consider the system realization

X = X + g(t) u

y = g(t) x ,

-2|t|
where g(t) = e . It is certainly completely controllable, completely

observable and bounded for all t, yet it is simultaneously BIBO stable,

and unstable in the sense of Lyapunov.

A more stringent but physically reasonable degree of controllability

and observability does provide a connection between the two types of

stability. These constraints will be discussed in the following section.

3. Uniform Complete Contollability and Observability. The concepts of

complete controllability and complete observability are by now well known,

as is their importance in correctly formulating systems problems. Less

well known, however, are the ideas of uniform complete controllability and

uniform complete observability introduced by Kalman [12] in order to

guarantee the solution of certain time-variable quadratic variational

problems.
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The system representation (2) is termed uniformly completely

controllable if any two of the following three conditions hold for some

2
6 > 0 (any two imply the third)'

(14) or (6 ) I < M (s - 6 , s) < <*- (6 ) I
v ' 1 c — c — 2 c

(15) or_(6 )I < $(s -6 ,s)M(s -6 , s)*(s -6 , s) < a (6 )
j c — c c C •* t.

(16) ||$(t,T)|| < a5(|t-T|), for all t, t ,

where

(17) M(s-6,s) = f $(s,t)B(t)B» (t)$» (s,t)dt ,
s -6

c

and the a. are positive constants depending only on 6 and |t-*r|,
l c

respectively.

As shown by Kalman [12], these conditions imply that it is always

possible to transfer a state x to the origin or the origin to a state x,

in a time 6 independtly oi* the starting time. Moreover, the energy

required to effect such a transition can never become arbitrarily large,

nor can it become arbitrarily small.

The criteria for uniform complete controllability greatly simply

if only bounded realizations are under consideration.

First note that (13a) is a sufficient condition for (16) [12] . Thus,

for bounded realizations, one need only consider condition (14).
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Furthermore, the right hand side of the inequality (14) is always satisfied

since (13b) and (16) imply

||M(s-6c,s)|| < J ||$(s,t)B(t)||2dt
s-6

c

< f arc2(|s -t|)K2dt < 6 K2 at (6 ).
— J-> — C DC

s-6
c

which in turn implies

M(s -6 ,s) < 6 K2a2(6 )I ,
C — C DC

since the Euclidean norm of a matrix is equal to its maximum eigenvalue

Hence, we have the following:

Lemma 1. A bounded realization (2) is uniformly completely controllable

if and only if there exists 6 > 0 such that
c

(18) M(s -6c,s) > «1(6C)I »

or equivalently,

(19) det M(s -6 , s) > ot, (6 ) .
C — DC

If (2) is a bounded realization, uniform complete controllability

can also be redefined in the following useful way.
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Theorem 4. A bounded realization (2) is uniformly completely con

trollable if and only if there exists 6 > 0 such that for every state

§€Rn and for any time s , there exists an input u defined on (s -*>» s)

such that

(i) if x(s -6 ) = 0 then x(s) = g

and

(ii) ||u(t)|| < y(& ,£) for all te(s-6 , s) ,

where y (6 , £) is a finite positive number.

Proof. If the system (2) is uniformly completely controllable, then the

input

u(t) = B»(t)*I(s,t)M"1(s -6 ,s)£

will transfer the system from the zero state at time s-6 to the state

| at time s . From (13b), (14) and (16) it is clear that a constant y

independent of s and t exists such that ||u(t)|| < y for all t€(s-6 , s).

The converse will be established by contradiction. If the system

is not uniformly completely controllable, then Lemma 1 implies that for

each 6 > 0 and for any a > 0 there is vector \eR , with || \\\ =1, such

that for some s, VM(s - 6, s) X. < a
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or equivalently, for some s ,

(20) f ||\'*(s,T)B(T)||2dT < a
Js-6

Suppose that a bounded control u exists which transfers the zero state

at time s - 6 to the state X. at time s . Then,

which implies

X = f $(S,T)B(T)u(T)dT ,
Js-6

2 rs\\\\\ < \ ||V$(S,T)B(T)u(T)||dT,
Js-6

and by the Schwarz inequality,

1/2- ni/2

s-6 ^-^s-d
(21) INI2 £ T ||V$(s,T)B(T)||2dTj I f ||u(T)||2dTj

LJS-6 LJs-S

If ||u(t)|| < y for all te(s -6,s) and for all s then (20) and (21) imply

that for some s, y J<x6 > 1, a contradiction, since a can be made

arbitrarily small. This completes the proof.

The dual [1] of uniform complete controllability is uniform com

plete observability and it has a similar definition in terms of the matrix

(22) W(s-6Q,s)= J ®'(t,s-60)C'(t)C(t)«(t,s-60)dt.
s-6o
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The realization (2) is termed uniformly completely observable if any

two of the following three conditions hold for some 8 > 0 (again, any

two imply the third) :

(23) W1- W<s-6o>s) 1 fVV1

(24) IW1- *,(s-60,s)W(s-6(),s)$(s-60,s) < P4(6Q)I

(25) ||®(t,T)|| < P5(|t-T|), for t,r

By appealing to the duality theorem of Kalman [l], results similar to

Lemma 1 and Theorem 4 may be obtained and need not be stated explicitly

here.

It will be shown in the following sections that under the constraints

of uniform complete controllability and uniform complete observability,

BIBO and exponential stability are equivalent in bounded realizations.

4. Application of Uniform Complete Controllability. If the system (2 a)

is BIBO stable with x considered as the output, it will be said that the

system is bounded-input, bouded-state (BIBS) stable. The following

theorem establishes a connection between BIBS stability and exponential

stability in uniformly completely controllable, bounded realizations.

Theorem 5. If (2 a) is bounded and uniformly completely controllable,

then it is BIBS stable if and only if it is exponentially stable.
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Proof. It is well known, and straightforward to show [5] that if B is

bounded, then exponential stability implies BIBS stability.

Let X be any unit norm vector in R . It follows from Theorem 4

that if (2 a) is uniformly completely controllable and bounded there exists

a 6 > 0 such that for all s , an input u exists which satisfies

(26) \= f $(s,T)B(T)U(T)dT ,
Js-6

c

and ||u(t)|| < y (6 ) for te(s-6 , s). Multiplying both sides of (26)

by §?(t, s) yields the inequality

(27) ||*(t,8)\|| <Yl f ||*(tfT)B(T)||dT -
Js-6

c

Integrating both sides of (27) from an arbitrary t to t then gives the

relationship

(28) J ||*(t,s)\||ds <Yl J /J ||*(t,T)B(T)||dT >ds

Letting r = t - s + 6 , and interchanging the order of integration on the

right hand side of (28) it is clear that

-13-



(29) f ||$(t,s)\|| ds < y \ ( fll$(t,s+r-6 )B(s+r-6 )|| ds) dr
*o J°l4o C C J

For 0 < r < 6 ,
— — c

t+r-6
c

6 r t+r-6

= y \ \\ ||$(t,T)B(T)||d^dr .
r-6

6 r t+r

(30) f ||®(t,T)B(T)||dT < C ||$(t,T)B(T)||dT,
Jt^+r-6 Jt +r-6

0 c 0 c

and since (2a) is assumed BIBS stable, there exists (by Theorem 1) a

finite constant y such that

(31) C ||*(t,T)B(T)||dT <v2, for all t
-co

Equations (29) - (31) imply that for all t,

(32) J ||$(t,s)\||ds <Y1Y2S(,.
-co

Hence, if the supremum of (32) over all || X.|| =1 is taken, the bound

(33) f ||*(t,s)||ds <Vlv26(
-co

is obtained. But (33) together with the bound (13 a) on A suffices to imply

-14-



exponential stability [8], [2]. This completes the proof.

5. Application of Uniform Complete Observability and Main Result. To

complement the result of the previous section, it will now be shown that

BIBO stability is equivalent to BIBS stability in uniformly completely

observable, bounded realizations.

Theorem 6. If (2) is bounded and uniformly completely observable, then

it is BIBO stable if and only if it is BIBS stable.

Proof. Suppose that BIBO stability does not imply BIBS stability, i. e. ,

there exists a bounded input u which produces both a bounded output and

an unbounded state. Then, corresponding to an arbitrary positive number

N, there is a value of time s-6 for which

(34) ||x(s-60)|| > N.

Set u equal to zero over the interval (s - 6 , s). Then the output

y over this interval is given by

y(t) = C(t)$(t,s-60)x(s-60).

Consequently, using (23) and (34)

f y'(t)y(t)dt =x'(s -6n)W(s -6rt,s)x(s -6J > p, (6JN2 .
Js-8o
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Hence, at some point t in (s-6-, s)

(35) ||y(t)|| >./JT^- N-

Since N is arbitrary, while u is bounded?(35) contradicts the assumption

of BIBO stability.

To prove the converse, it suffices to observe that in the class of

systems under consideration, y(t) = C(t)x(t) and C (t) is abounded

matrix.

Following immediately from Theorems 5 and 6 is the main result:

Theorem 7. If (2) is bounded, uniformly completely controllable and

uniformly completely observable, then it is BIBO stable if and only if

it is exponentially stable.

A valid question at this point is whether the boundedness con

straint of Theorem 7 is essential to the conclusion. It is clear that the

constraint on the matrix A can be relaxed since (16) holds under some

what weaker conditions [12] than (13a) • However, as shown by the

following example, the constraints on B and C are essential.

Example 2. Consider the system realization

X = -X + u

y = g (t) x ,

-16-



where g(t) = k for t€(k, k +—•) (k =l, 2, • • • ) and is zero elsewhere.

It is easily verified that this system is uniformly completely controllable

and observable, yet it is simultaneously exponentially stable and BIBO

unstable.

6. Classes of Uniformly Completely Controllable Systems. In this

section, it will be shown that several broad classes of system structures

have the uniform complete controllability property. Included in this

development are all classes of systems for which it has previously been

established that BIBO and exponential stability are equivalent.

The first such class to be considered is that treated in Theorem 3.

Theorem 8. If the matrices A and B satisfy (13) and if B contains an

n X n submatrix B with the property that

(36) |det B(t)| > d > 0 for all t

then (2 a) is uniformly completely controllable.

Proof. Under the hypothesis of the theorem it is clear that

(37) det[$(s,T)B(T)B'(T)$'(s,T)] > d2 [det $(s, t)]2

Also, (13a) implies that |tr A(t)| < IC for all t. Using the relationship [5]

det $ (s, t) = exp I tr A (t) dt ,
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it can be shown that for all 6 > 0

(38) det $(s,t) > e , for tc(s-6, s)

Consequently, if \ is an arbitrary constant vector, (37) and (38) imply

2 -2K16 2
\'M(s-6, s)k > 6d e ||x||

Hence, by Lemma 1 the system is uniformly completely controllable.

Observe that Theorem (8) together with Theorem (5) implies

Theorem (3).

Two classes of single-input systems (let B = b in (2)) will now

be considered. The first may be defined in terms of the controllability

matrix [13]

Qc= tW"Pn-lJ'

where

pk+i= -Apk +pk:po= b*

This matrix yields a sufficient criterion for uniform complete con

trollability which does not require calculation of the transition matrix.

Theorem 9 : If (2 a) is a bounded, single-input realization and Q is a

4
Lyapunov transformation [5], then the system is uniformly completely

controllable.
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Proof. Let X. be an arbitrary constant vector, and let g(s, t) = \'$(s, T)b(T).

Also, let

M(S-6,S) = f $(S,T)Q (T)Q' (T)$'(S,T)dT
Js-6 C C

It may be shown by a simple induction argument that

so that

a1
—: g(s,T) = \'$(s,t)p(t)
al

n_1 s i
(39) MM(s-6,s)\ =Y f f-^rg(s,T)

f^ J8-6L8tX J

It is also a simple matter to show [9] that for all s, each element of

#(s,t)b(t), and hence g(s,t), is a solution of the differential equation

n-1

(40) z(n)(t)+ V a.(t)z(i)(t) = 0,
i=0

where,

(41) I*0al — an-lj'= -Qc"lp:n

By virtue of the assumptions on A and Q , the coefficients a .(t) are
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bounded for all t, so that the following lemma, which is a special case

of a theorem proved in [9] , is applicable.

Lemma 2. If for each s , g(s, t) is a solution of an equation of the form

(40) with bounded coefficients, then for each 6 > 0, there exists a

positive constant IC such that

(42) f -^-rg(s,T) dr < K \ g2(s,T)dr , for l<i< n.
•4-6 19T1 J • Js-6

for 1 < i < n.

From (39) and (42), therefore, it follows that

(43) \M(s-6, s) \> -~r \ M (s-5, s) \
"nKl

If Q is identified with B in Theorem 8 it is clear that a constant K (6)
c ^

exists such that

(44) \'m(s-6, s)\> K.||\||2.
- 2

Thus, (43) and (44) imply

\M(s-6, s)\ > -^ ||\||2 ,
— n rv.

which completes the proof.
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It should be noted that a canonical representation for the class

of systems satisfying the criterion of Theorem 9 is

0 0 0 - a
0

1 0 0 - a.

(45) A = - 0 -a b =

- a

n-1

where the coefficients a. are given by (41) , and can be obtained by the

transformation of coordinates z = Q x .
c

From Theorems 9 and 5 it follows that BIBS and exponential

stability are equivalent in all systems having the canonical representation

(45). (a result also established in [9])

Before deriving the second class of single-input, uniformly com

pletely controllable systems it is convenient to establish the following

lemma, which is a generalization of a result of Brockett's for constant

systems [14] .

Lemma 3. Uniform complete controllability in a bounded realization (2)

is invariant under state-variable feedback of the form

(46) u(t) = G(t)x(t) + r(t)

where ||G(t)|| < KL for all t,and r is the input to the closed loop

system.
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Proof. Let (2) be uniformly completely controllable. Then by Theorem 4

there is a 6 > 0 and an input u which takes x(s-6) = 0 to x(s) =g, such

that

(47) 11^)11'< V(S,6)

for all te(s-6, s) and for all x. It is readily verified that if

r (t) = u (t) - G(t)xL(t) is the input to the closed loop system, where

xl is the trajectory in the open loop system due to u^, then z^s-6) =0

and z (s) = g , where z is the trajectory of the closed loop system

due to r (in fact, z ^t) =x^t) for all t€(s-6, s)). Furthermore, for all

te(s-6, s) ,

llr (t)|| <||u (t)|| +||G(t)|| f ||»(t.T)B(T)Ul(T)||dT.
s-6

Hence, by (13b)> (16) and (47)

11^)11 £ (1 +K1K J ll*<t'T>HdT) Y
< (1 +1^X6^) y .

It follows from Theorem 4, therefore, that the closed loop system is

uniformly completely controllable.

The converse follows by a similar argument.
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Theorem 10. The (phase-variable) canonical form

(48) A =

0 10

0 0 1

0 0 0

0 1 2

, b =

n-lJ

where the coefficients a .(t) are bounded for all t, is uniformly com

pletely controllable.

Proof. The proof follows immediately from Lemma 3 and the observa<

tion that (48) can be represented as a constant completely controllable

system with state variable feedback of the form

u == - Ta a a^
L 0 1 2

•a ,] x + r ,
n-1

Theorem 10 implies that BIBS and exponential stability are equi

valent in systems represented in phase-variable canonical form (this

result was established previously in [10]). It should be noted that

any representation which can be transformed to this form via a Lyapunov

transformation also has this property. A general method for calculating

a transformation to phase-variable form was given in [15], and it is

clear from the form of this transformation that with some additional

constraints on the derivatives of the matrices A and b, the classes of
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systems considered in Theorems 9 and 10 are equivalent. Without such

constraints, however, they are distinct.

An interesting corollary to Theorems 9 and 10 is the following

result for nth order differential equations.

Corollary. Consider the equation

n-1

(49) y(n)+ Ya.y^ =u
i=0

where the a.(t) are bounded for all t(0 < i < n - 1). The system rep

resented by (49) is BIBO stable if and only if there exists positive con

stants c- and cy such that for any solution y of the homogeneous part
X u

of (49)

(50) |y(l)(t)| <c||7(t0)||c

for all t > t , where y = [y y • • • y ] .

Proof. If we let x. =y'1' (0 <i <n - 1) then (50) has the state repres
i — —•

entation (48), with

y = [1 0 ••• 0 ] x .

From Theorem (10), this representation is uniformly completely con

trollable and from the dual version of Theorem 10, it is uniformly
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completely observable. Hence, by Theorem 6, the two types of stability

are equivalent.

A weaker version of this result was established by Kaplan ([16]

Chapter 8, Theorem (25)), who showed that if the impulse response function

of (49) is exponentially bounded then the system is stable in the sense (50).

Finally, we shall consider the class of periodic systems (A, B,

C periodic with the same period). It appears to be known [17] to

researchers in stability theory that BIBO and exponential stability are

equivalent in completely controllable and observable periodic realizations.

However, the authors are not aware of any proof of this result in the

literature. A simple proof is provided by the following theorem which

establishes an equivalence between complete and uniform complete

controllability (observability) in periodic systems.

Theorem 11. If (2) is a periodic realization, then it is uniformly com

pletely controllable (observable) if and only if it is completely controllable

(observable) •

Proof. If (2) is completely controllable, there must exist a finite cr > 0

such that M(0, (r) > e I > 0. Let k be a positive integer such that kT > o- ,

where T is the period of the matrices A, B and C. Clearly, for

se(kT, 2kT), M(s-2kT, s) > el . It is easily verified, however, that

M(s-2kT, s) is periodic in s with period T. Hence, M(s -2kT, s) > cl
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for all s. By Theorem 3, therefore, (2) is uniformly completely con

trollable. Since the converse is obviously true, this completes the

proof.

In conclusion, we note that Theorems 9> 10 and 11 are. applicable

to the synthesis of impulse response matrices. Under appropriate

conditions [18] H can be realized as a member of one of the classes

discussed above. Thus the internal stability of the corresponding

physical realizations is guaranteed, if H represents a BIBO stable

system.
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FOOTNOTES

1. The way in which this type of stability is defined here is also referred

to as zero-state BIBO stability [5].

2. If A and B are symmetric matrices, A > B (A > B) means A - B

is positive (nonnegative) definite.

3. Equations (18) and (19) are equivalent because of the uniform bound on

the maximum eigenvalue of M(s -6 ,s).

4. For time-invariant systems, this condition on Q is equivalent to

complete controllability.
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