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ABSTRACT

An algorithm is presented to determine a multicommodity flow

pattern which maximizes the objective function ) or. f. for graphs
L. i .-,11

1=1

having n sources and a common terminal where f. is the amount of

flow of the jLth commodity and {a.} is a given set of nonnegative con

stants. The algorithm can also be used to minimize the function

y p. |r. -f. | for a given set of nonnegative constants {r.} and {p.} ,
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I. INTRODUCTION

In this paper we investigate an important special case of the

general multicommodity flow problem.L * The networks to be con

sidered consist of a finite set of nodes, n of which are source nodes and

one of which is the common terminal node. Between pairs of nodes are

directed branches having nonnegative capacities. The flow of any

commodity must be conserved at all nodes except its source and the

terminal. The sum of all flows through an arc cannot exceed the capac

ity of that arc.

Let f. denote the amount of flow of commodity i from the ith

source node, i, to the terminal node t. We will present methods for

solving the following problems:

(i) For a given set of nonnegative constants, {a.} , find a flow

pattern which maximizes ) a. f .
^i=ix x

(ii) Test the simultaneous feasibility of a given set of flow

requirements, {r.} .

(Hi) Given a set of flow requirements and a set of nonnegative

constants, {p.} , find a flow pattern which minimizes

X"=1Piiri-fii-
For the general multicommodity flow problem, necessary and

sufficient conditions for the feasibility of a set of simultaneous flow
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requirements are unknown. However, for networks with a common

terminal, we can given a simple procedure for testing feasibility, and

also perform the optimizations indicated in (i) and (iii). This network

model corresponds to many practical situations. Some examples are:

(i) n warehouses each shipping a commodity having a specified

relative value to a common destination through a given road

network, and

(ii) a communication network with a headquarters requiring

simultaneous communication with certainfield locations having

different priorities.

II. ALGORITHM FOR OPTIMIZING THE OBJECTIVE FUNCTION

We first consider the problem of finding a flow pattern which

maximizes the linear objective function ) a f. . In applications this
^1=1 * X

function usually represents some performance criterion such as profit.

It is convenient to represent those <*fs with the ith largest numerical

value by a single constant a. • More explicitly^

or. = max a. , a = max a. , . . . , a. = max a
* . 1 £ . #«•» i a . »-. •*• -" i

i laar.^a. l^a.^or., a_, 0 .., a, .
i 1 l 1 2 d-1

where d is the number of distinct values in the set {a.} . The algorithm

below presents a method for maximizing the objective function:
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COMMON-TERMINAL MULTICOMMODITY FLOW ALGORITHM

(1) For each a- , create a new node s. . Direct branches of

infinite capacity from s. to all source nodes, j, for which

a. = a. . Also create a new source node s.
J i

(2) Direct branch of infinite capacity from node s to node s ,

where initially i = 1.

(3) Maximize the s-t flow using the single-commodity labeling

[11algorithm „

(4) If i < d, increase i by one and return to step (2). If i = d,

go to step (5).

(5) Perform an arc-chain decomposition on the flow pattern.

Assign to commodity i those flow chains using that branch

created in step (1) which is incident to the jLth source node.

We now prove that the flow values obtained from the algorithm

maximize the objective function ) a. f. . Let f. be the sum of those

flow values whose coefficients in the cost function are equal to a. , i. e.,
•k mk X

f. = > f. „ Define F, = ) f. and C. = > a. f. and denote
i L., * J k /_, - l k Lj i l

i9a.=a. 1=1 i-l

by F, and C, the respective maximum values of these sums. The sub-

script "o" will be used to denote values obtained from the algorithm.

In successive repetitions of step (3) of the algorithm, F, is maximized

in the order k = 1, 2, . . ., d. Thus

fko = Fk - Fk-1 for k = 2, 3, . . ., d (la)
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and

f, =i\ . (lb)
lo 1

We will now show by induction on k that the algorithm maximizes

C . For k =1, C1 =a, f . Therefore to maximize C we need only
xC XXX X

maximize f . Thus from (lb) C1q =(^ and the statement is true for

k =1.

We now assume

Cko =«k (2)
and show that C +1 =£k+1» From the definition of C(k+1)0 we have

Cy1 ,,. = C. + a. . f . ,lx • (3)
(k+l)o ko k+1 (k+l)o

Combining (la), (2), and (3) gives

c<k+i)°= £k+ sk+A+i - sk+ifk- (4)

We will prove that C fc _ = Ck+1 by showing that if ffc+1 is either

smaller or larger than *,k+1*0» the resulting Cfc+1 is less than C k+^Q.

Case A. In (3) C, = C, by the inductive hypothesis (2). Thus an
x ' ko k

f, , < f/i .i* results in a C. .. < C.. ,,. •k+1 (k+l)o k+1 (k+l)o

<* •*• ,

Case B. Next consider a flow pattern for which f >^/ic+i)o» x# e*'

?k+i =K+i - K+ p- p>0- (5)
By definition we have F =Ffc+1 - ?k+1, which together with (5) yields

Fk = <Fk+i - fk+i>+ fk - ?• <6)
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Since Fk+1 S Fk+1> (6) gives

Fk£Fk"P- (?)

As an intermediate step we now use (7) to show that the corresponding

C, must satisfy
k

cks£k-AP (8)
Suppose to the contrary, i. e., Cfc >Ck - o^P . Since by (7) we could

increase F, by |3, we could increase C by at least o^p since

a > i for j < k. But then the new value of C. would be greater than
J k K

C, • This contradiction establishes (8).
k

Combining the definition Ck+1 =Ck +a^+1 f fc+1 with (8) gives

Ck+l"ek +ik+lfk+l-«k^ (9)

Substituting (5) into (9) we have

s[£k +hck+is ck+ ttk+i Fk+i - \+i Fk - <«k - Wp (10)

Comparing (4) and (10) and noting that a^ > afc+1 gives Ck+1 <C(k+]^0 •

Case A and Case B establish that the algorithm yields the opti

mum value of f, , . Since C, was assumed maximum, we have
k+1 ko

C,, 1v = Q ,i and, in particular, C, = C . Noting that
(k+l)o k+1 do a

Zd rin
a f = ) a f , it follows that the algorithm maximizes the

i=l i=l

given objective function.
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We now illustrate the algorithm by maximizing the objective

function 14f + 14f + 13f + 6f + 15f for the graph of Fig. la, where
12 3 4 5

f. denotes the amount of flow from source node i. The set {a.} cor-

responding to this cost function is: ck =15, a = 14, a = 13, a. = 6.

The added nodes and branches specified in step (1) and an s-t flow pat

tern obtained by the initial execution of step (3) are shown in Fig. lb.

The dashed line indicates a saturated s-t cut set. Figure lc shows the

result of a second iteration of step (3). The third iteration increases

the flow by one unit along the path s, s , e, f, a, b, c, d, t and the

final iteration increases the flow along the path s, 4, d, t. The result

ing flow pattern is shown in Fig. Id. In Fig. le an arc-chain decomposi

tion has been used to identify commodity 5. Note that the order of the

identification process is arbitrary. The final flow pattern is shown in

Fig. If and the maximum value of the objective function is seen to be

490.

It is important to note that the validity of the algorithm depends

upon waiting until the final step to identify the flows of the individual

commodities. Simply sending maximum amounts of each commodity in

priority order will not in general yield an optimum solution. For

instance, if in the above example we had initially sent a maximum

amount of flow of commodity 5 according to the pattern shown in Fig. lb,

an optimal solution could not result without subsequent rearrangement
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of this pattern. In fact, it can be shown that every optimum solution to

the above example has 3 units of commodity 5 in the branch from f to e

and 4 units of commodity 5 in the branch from f to a.

IV. NETWORKS WITH FLOW REQUIREMENTS

The algorithm suggests a simple procedure for testing the simul

taneous feasibility of a set {r.} of flow requirements, where r is the

flow required from source node i. We modify the network by forming a

node s and directing from s to each source node i a branch, called a

requirement branch, having capacity equal to r. .

The requirements {r.} are feasible if and only if the require

ment branches form a minimum s-t cut set. If these branches do form

a minimum s-t cut set, then they are saturated by every maximal s-t

flow. The flows of the individual commodities can be identified by per

forming an arc-chain decomposition and assigning to source node i those

flow chains which use the requirement branch from s to i. On the other

hand, if the requirement branches do not form a minimum s-t cut-set,

then an s-t flow equal to the sum of the requirements cannot be

achieved and the set of requirements is not feasible.

We consider next the situation where in addition to the given

set of flow requirements we have a penality, p. , associated with the

j/th commodity. Specifically, p. represents the loss incurred for
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each unit of the _ith requirement left unfulfilled. We seek a flow pattern

which minimizes the function ) p. |r. ~ f | . The common-
^i=l

terminal multicommodity algorithm can be applied here, with the fol

lowing modifications.

(i) The set {a.} is replaced by {p.} •

(ii) The branches from the nodes s. to the source nodes are

now given capacities equal to the source requirements

instead of infinite capacities.

As an example, we use the network of Fig. la with the require

ments r. = 10, i =1, 2, 3, 4, 5 and the penalities ^ = P2 =10, P3 = 5,

6 = 3, 6 = 70. For these 6 's , the commodities have the same
r4 5 i

relative priorities as in the previous example. However, the introduction

of the requirements changes the solution to that shown by Figs. 2a and 2b.

The minimum value of the penality function is seen to be 65.

V. DISCUSSION OF RESULTS

The class of graphs treated in this paper includes those which

contain undirected branches. Such branches pose no new problems

since all the technqiues used in the algorithm can be applied without

modification. In addition, the algorithm can be used to solve the

reverse problem: given a network ha ring a common source and n
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in

is maxi-terminals, find a set of flows, {f.} , such that ) a f ii
1 ^i=l

mized. An optimum solution can be found by first reversing the direc

tion of all branches and interchanging the roles of source and terminal,

then applying the algorithm, and finally reversing the flows thus

obtained.

The algorithm presented is very efficient for both hand computa

tion and computer implementation. In particular, only one execution of

the single commodity labeling algorithm is, in effect, required, and

only two commodities need be simultaneously considered when perform

ing the arc-chain decomposition.
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