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PERTURBATIONS OF OPTIMAL AND SUB-OPTIMAL

CONTROL PROBLEMS*

L. Forys ' and P. Varaiya'

Introduction

Computational convenience and measurement limitations prevent

the use of exact equations representing physical phenomena. For this

reason, it is important to ask under what conditions can we be confident

that the approximations that are made will yield solutions which are close

in some sense to those of the actual system.

This paper will examine two classes of optimal control problems

and define suitable perturbations for which the infimums of the costs will

be close for small perturbations. An investigation is also made to

determine to what extent do the sets of admissible trajectories corre

sponding to a certain cost range of the perturbed problems differ from

that of the original problem.

Problems similar to the above have been investigated by Markus [7],

Cullum [1], and Hermes [5]. Markus considers the stability of a time

Department of Electrical Engineering and Computer Sciences, and
the Electronics Research Laboratory, Berkeley, California.

*
The research reported herein was supported in part by the National

Aeronautics and Space Administration under Grant NsG 354, Supplement
3, and by the National Science Foundation under Grant GK-716.



optimal cost in cases where the system and its perturbations are linear,

time-invariant and the optimal costs exist. The more general case of

a nonlinear system and cost functional is considered by Cullum. She

limits her class of perturbations so that the optimal costs exist for the

original and perturbed problems. Then, under more restrictive con

ditions than those considered here, * she shows that perturbations of a

given problem yield optimal costs which are close to that of the original

problem. Cullums' primary investigation.is concerned about the close

ness of the optimal trajectories and controls. Hermes's results on

these problems are special cases of the results of Cullum.

The investigations of these researchers suffer from a common

defect in that they require the existence of an optimal control for the

original as well as the perturbed problems. It seems evident, on looking

at the available existence results, that "very few" problems have an

optimal solution. Furthermore, because of computational difficulties,

the actual control used is generally only an approximation to the "true"

optimal control. In this paper, the existence requirements are removed

and instead the stability of sub-optimal controls and trajectories is

studied.

Cullum requires that the perturbed control constraint sets cover the

control constraint sets for the original problem. She also assumes a

local controllability condition which in general is difficult to verify. We

develop sufficient conditions for the local controllability of perturbed

problems.
-2-



L Definition of Stability

Given a system of n equations (in vector notation)

x =f(x, u, t), f :RnX RmX R^R11

where u(t) is the control parameter which, for any given t can take on

values in a given set U(t).

The optimal control problem consists of the following: for a

given initial set X , a final set X , find a measurable control u(t)e U(t)

on some interval t < t < t such that x(t ) c X , x(t ) € X and the cost

x = x (tf) determined by x = f f (x,u,t)dt is minimized. For
t0

convenience, we will consider the augmented system

x = f (x, u, t)

where x = (x ,x), f(x,u, t) = (f (x, u, t),^(x, u, t)).

An optimal control problem P is then specified by the following

data:

P = {f(x,u,t), U(t), XQ, Xx>

Remark: If the target set X is all of Rn, P will be called a free end

point problem.

We will define a distance d between P and a perturbation of P,

p={g(y»v,t), V(t), Y , Y} and denote it by d(P, P).
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Definition: The problem P will be called stable if given any positive

number €, there exists a positive number 6 such that

| inf x - inf y | < e

A

whenever d(P, P) < 6.

In the sequel, we will consider subclasses of the problems P

and define classes of admissible perturbations under which the problems

P are stable.

II. An Approximation Theorem

A

For the problems P and P we define the "velocity sets" of P

/\

and P at the phase (x,t) as follows:

F(x,t) = { z|z= f(x,u,t) for some ueU(t)}

G(x,t) = { z|z = g(x, v,t) for some veV(t)}

In this section we assume that the following conditions are satis-

A

fied for the problems P and P :

(1) f(x, u,t) is continuously differentiable in x, and continuous in

u and t

g(y»v, t) is continuously differentiable in y and continuous in u and t

(2) X , Y are compact subsets of R
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(3) te [t , t ] C T = a fixed finite open time interval in R'

i.e. , T =(T^T^

(4) <^x, f(x,u,t))> < C[|x| +1] for all ueU(t), teT

<Cy, g(y,v,t)> < C[|y|2+1] for all v€V(t), t€T

where || denotes the Euclidean norm <»> denotes Euclidean inner

product and T denotes the closure of T

(5) U(t) and V(t) are compact subsets of R for each t eT , and the

maps t -*• U(t), t -»• V(t) are upper semi-continuous.

Remarks

(i) Conditions 2, 3, 4 imply boundedness of the solutions of x = f(x,u,t)

and y = g(y, v,t) i.e. ,

l*(t)|2 <[|x0|2+l]exp[2C(T1-T())] <a*

|y(t)|2 1 [|y0|2+l]exp[2C(TrT0)] <b*

or x(t)€B(0, a) = a closed ball of radius a about 0, and y(t)eB(0,b)

(ii) Condition 4 may be replaced by the following condition:

(4') there exist functions uc L [T , T ] and y • R -> R such that y

is bounded on bounded sets and y(s) = 0(s) as s -*• co such that

-5-



|f(x,u,t)| < u(t)y(|x|) for all u€ U(t), teT

|g(y.v,t)| < M-(t) v(|y|) for all veV(t), tef

If 4' is satisfied, then there exist constants M and B such that for all

x with |x|>B, y(IxI)£M|xI» We can then show that
T

|x(t)| < BexpM/T M(t) dt +1=a' and likewise that |y(t)| < b'
0

(iii) Conditions 1-4 imply that there exists a constant K such that

|f(x,u,t) -f(z,u,t)| < K|x-z|

and

|g(x,v,t) - g(z,v,t)| < K|x-z|

for all x and z in B(0,a)U B(0,b) and teT.

We are now in a position to define a metric on the problem space.

Definition:

d (P,P) = sup d [F(x,t), G(x,t)] + cLJX Y )
xeB(0,a)uB(0,b) n u u

teT

where for any two compact subsets A, D of R

cy^D) =inf{6|AC U B(x, 6) and DC (J B(x, 6)}
xeD xeA
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A

It is easy to show that cL(P, P) is a metric.

Having defined a metric on the subclass of problems satisfying

II. (1) -(5) we can now prove the following theorem regarding "admissible

trajectories." A trajectory x(t) for te [t ,tf] C T will be called an

admissible trajectory for a problem P if x(t) = f(x(t), u(t), t) for some

measurable u(t) e U(t) and x(t ) e X .

Theorem I.

Let conditions II. (1) - (5) be satisfied for the problem P and its

A

perturbations P. Then, given any admissible trajectory x(t), te [t ,t ]CT

corresponding to the problem P and any e > 0, there exists a 6 > 0 such

/s.

that for every problem P for which d (P, P) < 6 there exists an admissible

trajectory y(t) which satisfies |x(t) - y(t) | < e for all te [t ,t ] .

Proof: Given any measurable x(t)eF(x, t), te[t ,tf]C T such that x(t)

is an admissible trajectory for problem P, let w(t) = {w.(t), w, (t)) • • • , w (t)}
0 i- n

e G(x(t),t) be defined in the following manner. For each te [t , t ] choose

w(t) such that |x(t) -w(t)| < 6, i.e., w(t) eB(x(t), 6). There exists at

least one such value if d (P, P) < 6 . If there is more that one such w(t),

for each value of t choose that w(t) for which w (t) has the smallest

value. This exists since B(x(t),6)Pl G(x(t), t) is compact for each te [t ,t ].

If w(t) is still not unique, choose that w(t) for which w (t) has the smallest

value etc.
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We shall first prove by induction that each of the functions

wn(*)» w-i(*)» *** j w (t) is measurable so that w(t) is measurable.
0 1 n

Let us suppose that wrt(t), • • •, w ,(t) are measurable (if s =1, nothing
0 s -1

need be assumed) and let us show that w (t) is measurable.
s

By Lusin's Theorem [4], since x(t), -w.(t), ••• w ,(t) are
0 s -1

measurable, for each e > 0 there exists a closed set E (e )C \t ,tj
0 x 0 L 0 f

of measure greater than tf - tQ - e such that the functions x(t), w (t),

• • *» ws-i(t) are continuous. We will show that for any real number a,

the set of teE(e J for which w (t) < a is closed.
0 s —

Suppose the contrary, then there exists a sequence It }C° C E(e )
1 nJn=l x Cr

such that t converges to t, and

(1) w (t ) < a < w (t)
sx n — sw

Since G(x(t),t) is upper semicontinuous in x and t with respect

to inclusion, G(x(t),t) is uniformly bounded. By the Bolzano-Weierstrass

Theorem, a subsequence t can be chosen from the t such that w(t )
m n m

converges to w (t) with w(t ) e B(x(t ),6)f|G(x(t ),t ). Since x(t) is
m m m m

continuous for teE(eQ), B(x(t), 6) is upper semicontinuous in t for teE(e ),

Hence, w(t)e B (x(t), 6) 0 G(x(t), t).

It follows from (1) and the continuity of the functions w.(t),

i = 0, • * • , s -1 that

w.(t) = w.(t) i = 0, • • • , s-1
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and

(2) wc (t) < a < w (t)

But (2) implies that w (t) is not the smallest w (t) which lies in
s s

B(x(t), 6) D G(x(t), t). This contradicts the definition of w (t) and hence

w (t) is measurable on E(e ). By defining the sequence
s u

wn(t) = w(t) for teE(l/n)

= 0 otherwise ,

it is easy to show that w(t) is measurable for all t e [t ,t ] . (see [4],

p. 93)

Having shown that w(t) is measurable , a lemma by Fillipov [3]

may be used to show the existence of a measurable control r(t)eV(t) such

that w(t) = g(x(t), r(t), t). We now show that if y(t) is the solution of the

equation y = g(y, r(t),t) for some y(t ) e Y_, |x(t) - y(t) | < e for all

t«[t0.tf].

|x(t)-y(t)| <| J [x(T)-y(T)]dr| +|x(tQ) -y(tQ) |
t0

< J |x(t) -w(T)|dr+ J |w(t) -y(T)|dr+ |x(tQ) -y(tQ)

(cont'd)
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<6(t-t0) +J |g(x(r), r(r), t) -g(y(T), r(T),r)| dr +|x(tQ) -y(t0)

< 6(t-tQ) + K

^0

J |x(t) -y(T)|dT+ |x(tQ) -y(tQ|

Using the Bellman-Gronwall inequality ( [9] p. 11) :

|x(t)-y(t)| < [6(t-tQ) +|x(t0)-y(t0)|]expK(t-t0)

< [6(TrT0) +|x(t0)-y(t0)|] expK(TrT0) .

If dx (P, P) < 6 , then we can find a y(t )eY such that

|x(t0)-y(t0)| < 6. Hence,

|x(t) -y(t)| < e for all te[t0,tf] ,

where

e = 6[(TrT0) +1] expK(TrT0)

Note that this result holds uniformly for all admissible x(t) for problem

P, since e is independent of x(t).

Corollary 1

Let P and its perturbations P satisfy conditions II. (1) - (5) with

the targets sets X and Y being all of Rn. P is then a stable problem.
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A

Proof: Let I(P), I(P) denote the infimums of the costs for problems

P and P respectively. Choose an admissible trajectory for the problem

0 AP so that |x -I(P)| < e/2. By Theorem I, for d (P, P) sufficiently

small, we can find an admissible trajectory y (t) for problem P such

that |x - y | < e/2, which implies that | I(P) - y | < e . By

symmetry, there exists an admissible trajectory x (t) for problem P

such that | I(P) - x°| < e . Thus, | I(P) - I(P) | <e .

Remark: Theorem 1 clearly holds for fixed time problems, where the

fixed time interval lies in T .

III. A Local Controllability Condition

In order to prove stability results for problems in which the

target set is not all of R , a local controllability condition must be

imposed. We first prove a controllability result which is an extension

of the work of Markus [8],

A

In this section, we will assume that the problems P and P

satisfy II. (1) - (5) and in addition, that

(1) f (x,u) and g (y_, v) do not depend explicitly on t and are continuously

differentiable in (x,u) and (y_,v) respectively

(2) u(tjeU where U is a compact subset of R

v(t)e V where V is a compact subset of R

*

Markus proves a controllability result for unperturbed problems about

a single point, the origin.
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(3) for each point x e X there exists a point w eU such that

(i) Ifx^Wj) = 0

(ii) U contains m + 1 vectors u_, u0, • • •, u which span an
1 c. m+1

m-simplex with w in its interior and U also contains

w +e (u-w ),♦••, w+e (u ,,-w) for arbitrarily small

e > 0, and

2 n-1(iii) for every such pair (x ,w ), rank [B, AB, A B, •••,A " B] =n

where

df 3f

A= 8ifel'Wl) • B= it^vV

We also impose a stronger metric on the problem space, namely

d (P, P) = sup|f(x,u) -g(x,u)| + sup
9f(x,u) 8g(x,w)

3x 3x

+ sup

8f(x,u) 9g(x,u)

9u 9u + dH<X0'Y0)+dH(Xl'Yl>+dH^V)

where O = {(x,u) | xe B(0,a)U B(0,b), ueUU V}

Remark: d^P, P) < d2(P, P).

Theorem 2 .

If conditions II. (1) - (5) and IH. (1) - (3) are fulfilled by P and
A

its perturbations P, given r\ > 0 there exists a 6 > 0 such that if
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d?(P, P) < 6 then there exist open neighborhoods about X , Y such
A

that each point in these neighborhoods can be steered by P and P to

X. and Y respectively in time not exceeding n.

Proof: Consider any point x e X and choose w to satisfy HI (1-3).

Observe that the responses x (t) of the linear approximating system
~—L

<£:x_ = A(x - x ) + B(u-w ), x (0) =x , to controls u(t) eU for
—L ~~ L ~~1 1 ~~L ~-*l

which |u(t) - w | < e < 1, defined on 0 < t < 1 * satisfy the bound

|x (t) - xj < K e for some K < co, K independent of e .
""* L 1 "-• 0 0 0

Construct an m-simplex W about w, with vertices u,, • • • , u ,,
^ 1 1 m+1

satisfying III. 3(ii). Let A, De tne set °* attainability for ©C at time

t =l for solutions starting at x , with controls u(t) in W. 9Cis a convex

set which contains x in its interior. By the theory of bang-bang controls

[6], every point of /\, can be attained by responses of <?0 to controls

which assume only the m + 1 values of the vertices of W . Note that these

controls are admissible. We will call this set of measurable controls

U_. Let u , (t), • • • , u ,,(t) be such controls whose corresponding linear
w 1 n+1

responses determine the vertices x (1), • • • , x , (1) of an n-simplex
L,1 L, n<1

S which contains x in its interior. Denote the inscibed radius of S by

c > 0.

The interval 0 < t < 1 is chosen for notational convenience, 0 < t < n/2

could be chosen as well.
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Take barycentric coordinates a - {a , • • •, a ) in S . Using a

lemma by Markus [8] we can obtain a mapping u (t, a) of S into U—

which is continuous in the L .[0,1] topology. Markus also shows that

the composite mapping a -*• x (1, a) of S into U— and U— into R by

0\^ is the identity map.

We can repeat this entire construction with the simplex W defined

by the vertices w. + e (u -w.),•••, w.+ e (u - w.), e > 0 being arbi-
111 1 m+1 1

trarily small. The control family u(t, a) = w + e(u(t,ar) - w ) determines

linear responses x (t, a) = x + e (x (t, a) - x. ). If a are the barycentric

coordinates ofS=x+e(S-x), we find that a -*• x (1, a) is the identity
~"1 —"1 "—L

map of S into itself.

Since d (U, V) < 6, for each vertex w.+ e(u.-w.), i = l, *' •, m+1
rl 111

of W there exists a point v., i =1, 2, • • • , m+1 of V such that the euclidean

distance between these points is less than 6 . Let 6 be small enough,

so that these points are distinct. Let V be the space of measurable
w r

controllers which take on values only at these m + 1 points of V. Define

a mapping from U into V which is continuous in the L [0,1] topology

as follows: when u(t, <z)eU takes on the value w, + e (uT_ - w,), let
w 1 K 1

v (t, or)eV take on the value of v . Hence, the composite map from S

into V denoted by v(t,or) is continuous in the L [0,1] topology.

Let y(l, a) be the solution at t = l of the differential equation

y = g(y» v(*» a))» y (0) = x . It is easy to show that y_(l, a) is a continuous

function of a. We now show that this map approximates the identity map

-14-



on the boundary of the ball about x with radius e c (which is the

inscribed radius of S)

lyjt,*) -xL(t,<*)| < j |&(y_(T, <x), v(t, a)) - A(xl(t, a) - x^)

- B (u (t, a) - w )| dT

5 j I&.{z(T>a)> v(T»a)) -S.feL(T»a)» v(t, a))|d-

+ j Ig.(x_L(T'Q?) »v(T»a)) ~ A(x_l(t, or) - x_x)

- B (u(t, a) - w ) | dT

a 9£ a 9S.Define: A= "^(^.Wj), B = — (x^ w^

Then, for e , 6 small enough,

|y_(t,a) -xL(t,a)| <KJ |y_(r, or) - x^t, a) |dr

+ J lAfr^T,*)-^) + B(v(T,a) -W]L)

- A(xl(t,«) -xx) - B(u(t, a) - w )| dT

-15-
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where

+J lg.te.i- wi>ldT +J C2(6)[|xL(T,ar) -xj

lim C (e) = 0
e-0 L

+ |v(T,ar) - wj ]dT

Therefore,

|y_(t,a) -xL(t,<*)| < K j |y_(T,or) -x_L(T,a)| dT

+J lA-AHx^T.aJ-xJdT +J |B-B| |v(T,a)-Wl| dT

+ Vs.(-Twl)dT+ \ I3' h(T»«) "v(T,a)| dT

+ J C2(6)[ |xL(T,flr) -xj +|v(T,tf) - wJjdT

< K j IX.(t, or) - x (t, a) IdT +6 K e +6(6+e)

+ 6 + 6 | B | + C (e) [ K e + 6 + e ] for 0 < t < 1
£* U —— —"
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Using the Bellman-Gronwall lemma :

| £(!•«) -xL(l,a)| < {6[KQe +6+e +1 +|b| +C£ (e) ]

+ C2(e)[KQe +e]} exp K

Choosing e , 6 small enough, we have

| £(!,<*) - x (1, or) | < -=- e

By the Brouwer fixed point theorem [2] we conclude that the

image of S , by the nonlinear response y(l, a) covers an open ball of

x,, B in R •

Xl
AAA A

Now consider the system y_ = g^yjv) = - £(y, v) which also

satisfies the conditions of the theorem. Hence there exists an open

A

ball neighborhood B of x covered by the responses of this system

A A A A
starting at x . If v(t) steers y(t) from y(0) = x to some point y_(l)

A A A
in B , then v(t) = v (1 -t) steers y(t) = y (1 -t) by the original process

xl ~" ""1 a a
from y_(0) = y_(l) to y_(l) = x . Starting from points in B we can reach

. X]L
x in time 1 by the system y = g (y, v) with controls v(t) e V . Let

*%j A

B = B 0 B .
*1 Xl *1

Clearly, this construction can be repeated for each x e X by

choosing 6 appropriately small. Since X is compact, a finite number

CO

of the B 's will cover X, . Call this cover N. Let r be the minimum

xi x
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radius of the B 's which are elements of N. Let 6 be so small that

xi
Y C N and 6 < r . Starting from any point in N, we can reach a point

x e X^ in time 1. Since 6 < r , we can reach Y from this point in

time 1. Thus, starting from N we can reach Y in time 2 and X in

time 1 provided 6 is sufficiently small.

Remark: Theorem 2 is valid for time varying problems, x =J[(x, u, t),

u(t) e U etc. if instead of assumption (3) (iii) we require that the linear

time-varying system x = A(t) (x -x ) + B (t) (u -w ) be totally controllable

for teT, where x , w satisfy ^(x, w , t) = 0 for all teT.

Theorems (1) and (2) can be used to yield a stability result for

the case where the target set is not all of R .

Corollary 2

A

If P and its perturbations P satisfy the conditions of Theorems 1

and 2 and in addition there exists at least one admissible trajectory x(t),

te [t ,t ]C T for problem P such that x(tf) eX , then problem P is

stable.

A

Proof: Let I(P), I(P) denote the infimums of the costs for problems

P and P respectively. Choose a trajectory x(t) for problem P so that

|x°- I(P)| < s/4

~ A
Let t < T be the final time for the trajectory x (t). Given any e > 0,
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there exists (by Theorem 1) a 6 > 0 and a trajectory y (t) for P such

that

|x(tf) -7(tf)| < ?

Choosing e and 6 small enough and using Theorem 2 we can insure

that y (t ) can be steered to Y in a time not exceeding e/K ,

K =— sup |g (y,v)| . Pick one such trajectory to extend the definition

of y (t) for t > t .

Hence,

I(P)-y°| < |l(P)-x°| + |x°-?°

<e/4+ |x -y (tf)| +|y (tf) -y

t-+e/K

< ^/4 +e +| f f g°(y,v)dt|
f

< e/4 + €+e/4 = €/2 + €

Let 6 > 0 be so small that e < e /2 , we then have

HP)-y° I < «

Likewise we can show that for 6 sufficiently small there exists

A

a trajectory x (t) for problem P such that

i a ao,|I(P) -xU < e
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Thus, |l(P)-I(P)| < e for 6 sufficiently small.

It is easy to find examples which violate the conditions of Theorem

2 and which are unstable.

Example: Let P be specified by

x = 1

x =u , x*(0) = 1

.2 2 2
x = X , x (0) = 0

A

with P given by

U = [-1, 1] , X1= {(0,0)}

y = 1

y = v , y (0) = 1

• 2 2 2
y = y % y (0) = 6

U= [-1, 1] Y = {(0,0)}

0 A
Notice that inf x =1, but P has infinite cost, since the target

point cannot be reached in finite time.

IV. Stability with Regard to Trajectories

A desirable feature of optimal control problems would be that

the sets of trajectories for a given range of costs of the perturbed
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problems are close to the of the original problem. To make this motion

precise, we define

(i) X (p»€) = {z(t)|z(t) is an admissible trajectory for problem P

satisfying all boundary conditions and z -inf z < e }

(ii) d(X (P,€), X (P,«)) = the Hausdorff distance between the sets *X(P, e)
v A a

and /L (P,e) relative to the following distance between elements
/S A

of X (P,e) and% (P,e): let x(t), te[t , t ] =T bean
0 f x

X X

element of % (P,e) and y(t), te [t , * ] = T be an element of
U I v

r,i A a y y y
% (P,e) then,

INtJ-yWH^ sup |x(t)-y(t)| +|tf -t | +|tn -t |
teTxOTy fx fy °x 0y

(iii) d((P,e), (P,e)) =dt(P,P) +|e - T| where d.(P, P) =d(P, P) for
free end point problems satisfying the hypotheses of Theorem 1

/\ A

^(P**3) =d2^>' P^ for fixed end point problems satisfying the

the hypotheses of Theorems 1 and 2.

With these definitions, we would like that % (P, e ) considered as a

mapping of sets into sets be continuous in e and P with respect to the

corresponding metrics. Unfortunately, this is in general not true.

Example 1: Let P be specified by
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x° = -xX+ JTl , x°(0) = 0
» X, = R

.1 1, , 1
X = u » x (0) = 0

U = [-1,1], te (-2 ./IT, 2*/i7)

and P is specified by :

y° = -y1 + -/IT y°(0) == 0
, Yx =Rn

y1 = v yX(0) =- 6 , 6> 0

V = [ -1, 1] , te(-2 VST , 2n/T7 )

Then, inf x = inf y = 0 . Consider the trajectory x =t, 0 < t < v 2e

generated by u(t) = 1, 0<t<V2e with cost x =x(V2e)= e.

Observe that for all 6 > 0, we cannot find an admissible trajectory y(t)

^ ii it 0 0for problem P such that ||x(t) - y(t)|| < e and y - inf y < e .

Example 2 :

Let P be specified by

x° =1 , x°(0) = 0

x1 =u , xX(0) = 0

U= [-1,1] , x1= {1}U {1 +c},

c is a positive constant.

Then, it is easily seen that there exists no 6 > 0 such that if

|c -e | < 6, e < c then d(%(P,c), % (P, e)) < c .
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Example 3 : Let P be a free end point, fixed time problem specified by:

x° = -2|u| +1 , x°(0) = 0

•1 l/«\ r\x = u , x (0) = 0

U = [-l/>/"2~, 1] , final time is 1

/s

with P specified by

y°= -2|v| +1 , y°(0) = 0

y = v , y (0) = 0

V = [-1/VT+ 6,1] , 6> 0

inf x°(l) = inf y°(l) = 0

Consider the trajectory x(%) * - 1/t^/lT, 0 < t < 1. Clearly,

there exists no 6 > 0 such that if d((P, 1/2), (P, 1/2)) < 6 then there

A

exists an admissible trajectory y(t) for problem P such that

||x(t) - y(t)|| < 1/10 and y° - inf y° < 1/2 .

The simplicity of these counter examples suggests that it will be

extremely difficult to find conditions under which % (P»€) is continuous.

A weaker type of stability with regard to trajectories can however be

easily demonstrated through the use of Theorems 1 and 2 .
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Theorem 3

Let the conditions of Theorem 1 (Theorem 2) be satisfied for the

free end point (fixed end point) Problem P. Given €2 > €i > ^ i e > 0

there exists a 6 > 0 such that 'X(P»€1) ^es in an e neighborhood of
A» A

X(P»€2) and %(P»€i) lies in an e neighborhood of ^C (P» €-) provided

d.(P, P) < 6.

Proof: By Theorem 1 (Theorem 2), for any admissible trajectory

x(t) e X(^»€i) there exists a y(t) for problem P satisfying all boundary

conditions and a 6 > 0 such that

^(-V1' €3J*(*) -y(t)IU < min

A

provided d. (P, P) < 6. Note that 6 can be chosen independent of x(t)

Moreover,

|y - inf y | < |y - inf x | + | inf x - inf y |

< |y - x | + |x - inf x | + | inf x - inf y |

^ ~2— + V-2—

i «2.
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Hence, y(t) e %(P, e2) and therefore 9^(P»€i) is in an e

neighborhood of ^C (P» e?) • By a similar argument, X (P, e ) is in an

e neighborhood of X (P, e ).

Conclusions

In this paper we have attempted to explore the dependence of the

solutions to suboptimal control problems upon the formulation of the

problem. We have indicated that terget requirements contribute heavily

to the instability of the posed problems, i. e. , if a system is not locally

controllable, instability may often result. It is the feeling of the authors

therefore, that as far as possible, target requirements should be replaced

by modifying the cost function because this usually makes the problem

stable and furthermore one is rarely interested in meeting target re

quirements exactly.
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