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ABSTRACT

It is shown how a frequency domain criterion can be used to

obtain meaningful bounds on the responses of nonlinear feedback

systems. If the system is disturbed by a known input or nonzero

initial condition from its state of equilibrium, bounds are obtained on

overshoot and settling time as the system returns to its state of

equilibrium. The method presented also permits to compute bounds

for responses to bounded inputs which do not bring the system to a

state of equilibrium. The bounds have a graphical interpretation in

the Nyquist-plane which is similar in concept to M-circles for linear

systems. This graphical interpretation can be used advantageously

in the design of nonlinear feedback systems.
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I. Introduction

The problem of stability of nonlinear control systems has

received much attention in recent years. Of great interest in the theory

of nonlinear systems is not only their stability but also the transient

behavior of a system as it returns to its state of equilibrium. While in

the theory of linear feedback systems the various methods for testing

stability have also been widely exploited to obtain qualitative as well as

quantitative information on the transient behavior of the system (e.g.,

root locus methods, Nyquist plots, Bode plots), hardly any use has
1 2been made in this respect of V. M. Popov's ' relatively new and simple

frequency domain stability criterion for nonlinear systems. Only
3

Naumov and Tsypkin have recently shown how the information gained

from the Popov stability test can be used in the design of compensating
networks for stabilizing unstable systems, and how one can determine,

what they call, "the degree of stability" of a system, which gives the

rate at which the transient dies out. Naumov and Tsypkin do not obtain

a bound on the settling time or overshoot.
4 5Very recently Siljak ' published a number of papers on the

transient behavior of nonlinear systems. His method combines linear

ization techniques, describing function methods and analysis in the

parameter plane. The nonlinearity must be described precisely, cannot

be time-varying and must be suitable for linearization. Frequently
such assumptions are not satisfied.

This paper shows how an extended version of the V. M. Popov

Theorem can be used to obtain meaningful bounds on the responses of

nonlinear feedback systems and how this information can aid in the

design of these systems. The nonlinear element of the system may be
time-varying and must only be described to the extent that it is con

tained within a certain sector in its input-output plane.



II. Description of System and Notation

The system under consideration is the single input, single output

unity feedback system S shown in Fig. 1.

Assumption 1. The nonlinear, time-varying element N is characterized

by a piecewise continuous, single-valued function <p{<r, t), <r e (-00, 00),

t e [ 0, 00), such that

a < £(SjJ1 < b <a,, \/<r*0, Vt 2 0 (1)

and

<p(0, t) = 0 , Vt > 0 . (2)

Denote the output of N by

u(t) = ?[o-(t), t] . (3)

Assumption 2. The linear plant is assumed to be nonanticipative,

time-invariant and completely controllable and observable and is char

acterized by its transfer function W(s). W(s) is a rational fraction in

s with its numerator polynomial of lower degree than the denominator.

W(s) has poles only in the left half s-plane (principal case) or has some

poles on the joo-axis (particular cases). z(t) is the zero input response

of the linear plant.

Notation. A system S satisfying the above assumptions for specific

numbers a and b will be referred to as a system S e N(a, b, t) .

Notation. The system S is the linear companion system of the system

S with the nonlinear element N replaced by a constant linear gain K.

For a specific gain K the output of S is denoted by y^(t) ;
L K

eK(t) = r(t) - YK(t) is called the error of the linear companion system
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III. Preliminaries

Our aim is to establish bounds on the responses of the system S

when it is disturbed from its state of equilibrium, which is the zero

state. This disturbance may be a non-zero initial state, a load disturb

ance at the output, or a deliberate disturbance in form of an input. Of

particular interest is the transient behavior of the system as it returns

to the equilibrium point after the disturbance has occurred. However,

the results can also be used to obtain bounds on the responses to

bounded inputs when the system does not return to its equilibrium point

at the origin. Since the only assumption about the time-varying non-

linearity is that it be contained in a sector [a, b], some of the bounds

are accordingly conservative if compared with the transient response of

the linear companion system, especially if the sector containing the

nonlinearity is large. This should not be surprising since the system

is quite free in its possible behavior. However, with relatively little

effort useful bounds on the transient response can be obtained. With

somewhat more computational effort these bounds can be improved

considerably.

The bounds that will be established are based on the following

theorem which is a special case of the Main Lemma established by

Bergen, Iwens and Rault in Ref. 6. A statement, similar to that in

Ref. 6, can be found in Ref. 7.

Theorem 1. If for a principal case of the system S € N(0, k, t) there

exists a positive 6 and an a ^ 0 such that for all o> £ 0 the inequality

Re{W(jco-c*)} +^ > 6 > 0 (P)

holds and W(s - a) has all its poles in the left half s-plane, then the

following inequality is satisfied for all t t 0 :
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,1/2 . t \l/2
n\ZaTnZ(T) drj Sm e2afT[r(r) -z(t)]2 dxj . (L)

The proof of Theorem 1 follows directly from the proof of the

Main Lemma in Ref. 6.

The following theorem plays an important role in obtaining the

main results of this paper.

Theorem 2. Consider a principal case of the system S e N(0, k, t).

Define the quantity

/ t \1/2/ t \1/2p(«. 6, t) =IK e2aT w2(r) drj Me-2a{t~T) [r(T) -z(r)]2 dxj
(4)

where w(t) is the impulse response corresponding to W(s). If there

exists an a ^ 0 and a 6 > 0 such that

(i) Re{W(jto-<*) +-} > 6 > 0, Vco > 0 (5)

(ii) W(s - a) has all its poles in the left half s-plane,

then cr(t) is bounded by the inequality

r(t) - z(t) - p(flr, 6, t) < cr(t) < r(t) - z(t) + p(or, 6, t) . (6)

Before proving Theorem 2 it is noted that condition (ii) of

Theorem 2 assures that

\ e ar w (t) dT < oo , Vt ^ 0 . (7)

-4-



Moreover, it follows directly from the Nyquist criterion that condition

(ii) of the theorem is implied by condition (i) if the locus of W(jw - a)

lies entirely in the finite complex plane. For at the value of a where

the locus of W(jco - a) leaves the finite complex plane, at least one pole

of W(s) has been shifted onto the jco-axis. In effect one must then only

satisfy condition (i) of Theorem 2 provided W(jco - a) lies only in the

finite complex plane.

Furthermore we note the following properties of p(a, 6, t) :

(a) p(ff, 6, t) > 0, Vt £ 0, a > 0, 6 > 0 (8)

(b) For [r(t) - z(t)] e L2(0, oo) and a =0, p(a, 6, t) is uni
formly bounded for t e [ 0, oo) and

lim p(or, 6, t) = constant < oo .
t->oo

(c) For [r(t) - z(t)] e L (0, oo) fl L (0, oo) and a > 0
Li OO

p(or, 6, t) is uniformly bounded for t e [ 0, oo) and

lim p(or, 6, t) = 0 . This follows directly from the Schwarz
t-*oo

inequality and the Riemann-Lebesgue lemma as shown in

Appendix A.

(d) For [r(t) - z(t)] e1^(0, oo) and a =0 , lim p(<*, 6, t) - oo,
t-*-oo

(e) For [r(t) - z(t)] e L (0, oo) and a > 0 ,
oo

p(o?, 6, t) < constant < oo , Vt > 0.

From properties (d) and (e) it can be concluded that, in general, bounds

for responses to inputs belonging to L (0, oo) can only be obtained if
a> 0 .
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Proof of Theorem 2. The system S e N(0, k, t) (see Fig. 1) is described

by the equation

,t

'0

or equivalently

tr(t) = r(t) - z(t) - \ w(t -t) u(t) dr (9)

cr(t) = r(t) - z(t) - \ e^*"^ w(t -t) e'^'^ u(t) dT (10)•I''-
From (10) it follows by the Schwarz inequality that

/ t \1/2 / t \1/2r(t) -z(t) -h e2aT w2(r) drj e~atK e2<XT At) drj
< cr(t) < r(t) - z(t)

1/2 , ^ \l/2
(C* Zar 2. . , 1 -at/f* 2ar 1, . , ]
( \ e w (t) d-H e I \ e u (t) dTJ

(11)

Using inequality (L) of Theorem 1 and also equation (4), inequality

(II) becomes

r(t) - z(t) - p(a, 6, t) < cr(t) < r(t) - z(t) + p(ff> 6, t) (12)

Q.E.D.

IV. Main Results

The results of Theorem 2 are restrictive in the sense that they

only apply to principal cases of the system S and that the time-varying

nonlinearity must be contained in a sector of the type [0, k]. It is
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desirable to obtain results which are equally well applicable to principal

and particular cases and where the time-varying nonlinearity is con

tained in a sector [a, b] , where b > 0 and a need not necessarily be

positive. In order to apply Theorem 2 to the system S € N(a, b, t) the

system is first transformed into an equivalent system S € N(0, b - a, t)

by the following change of variable:

(p{(T, t) = <p(or, t) - acr (13)

The system S is shown in Fig. 2. To obtain S substitute equation (13)

into equation (9) and take Laplace transforms. The corresponding

quantities of the two equivalent systems are then related by

W(s) =
W(s)

1 + aW(s) (14)

s(t) =£'
-1 Z(s)

1 + aW(s) (15)

:(t) =£
-1 R(s)

1 + aW(s) (16)

where ^£ denotes the Laplace transform operator and Z(s) and R(s)
are the Laplace transforms of z(t) and r(t) respectively. In this trans

formation it is assumed that the number a is such that W(s) has all its

poles in the left half s-plane, which does not mean that W(s) must have

all its poles in the left half s-plane. Observe that the transformation

(13) does not affect the quantity cr(t); also, for a = 0 the systems

S e N(a, b, t) and S € N(0, b - a, t) are identical.

Theorem 2 may now be applied to the system S € N(0, b - a, t)

and an inequality for the quantity o-(t) can be obtained. But <r(t) has

not been affected by the transformation and is thus also the cr(t) of the
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original system S e N(a, b, t). Hence one obtains that the output

y(t) = r(t) - o-(t) of the original system S e N(a, b, t) is bounded by the

inequality

r(t) - [-r(t) - z(t)] - p(a, 6, t) < y(t) * r(t) - [r(t) - z(t)] + p(a, 6, t)
(17)

where now

a/2/ t \l/2
P<«. 6, t) =m\2ar w2(x) dxj (f e"2*^ [r(T) -z(t)]2drj

(18)

By Theorem 2 inequality {Jj) is valid if W(s - a) has all its poles in the

left half s-plane and if there exists a positive 6 and an a ^ 0 such that

for all a) ^ 0

Re{, 7<£:a) . +=-1-1 >6>0. (19)
11 + aW(jco- or) b -a I

Observe now that by (15) and (16)

r(t) - z(t) = e (t)
ct

where e (t) is the error of the linear companion system S with con-
a L

stant gain K = a and with the same initial conditions as the system

S € N(a, b, t). Then inequality (17) becomes

y (t) - p(or, 6, t) < y(t) < y (t) + p(af 6, t) (20)
cL a.

or equivalently,

|y(t) -yjt)| < p(ff, 6, t) (2i)
a
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where y (t) is the output of the linear companion system S with gain
a L

K = a in response to the same input r(t) and with the same initial con

dition as for the nonlinear system.

From (19) it is evident that for narrow sectors [a, b], i. e.,

b - a is small, 6 becomes large, and thus p(ar, 6, t) is small (see (18)),

and the response of the nonlinear time-varying system differs little

from the response of the linear time-invariant system. In the limit as

(b - a) -*• 0, the quantity 6 -*• oo, and thus for all t ^ 0, p(a, 6, t) -> 0

and y(t) -*- y (t) . This was expected, since (b - a) -»» 0 implies that the
a

time-varying nonlinearity in the sector [a, b] has become a constant

gain K = a. Therefore the function p(ar, 6, t) may be looked upon as a

"penalty function" for the uncertainty introduced by the time-varying

nonlinearity of which it is only known that it is contained in a sector

[a, b].

It is clear now that the numerical value of 6 plays an important

role in the bound (20). We shall now derive a geometric construction in

the W(j(o)-plane that permits us to read 6 directly from the Nyquist

plot.

5-Circles

From (19) we obtain

ReJl +aW+bW+ab|w|H> 6|l+aW|2(b-a) (22)

Let W = X + jY. Then,

1+[a+b - 26 ab - 26 a ] X+a[b -a6(b -a)] (X2+Y2) >6(b -a)
(23)

We now put the constraint on 6 that for given a and b

b-a6(b-a)>0 (24)
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For a > 0 (23) reduces then to

1 a +b - 2a6(b - a)
K +~2 2

ab - a 6(b - a)
+ Y2*

~12
a -b

ab - a 6(b - a)
(25)

which for fixed a and b represents a family of circles with their

centers on the real axis, of which each circle corresponds to a different

6. These circles are called 6-circles. In order to satisfy inequality

(19) for a certain 6, for a > 0 the locus of W = X + jY must stay out

side the corresponding 6-circle; for a < 0, the inequality sign in (25)

is inverted and the locus of W = X + jY must stay inside the correspond

ing 6-circle. The family of circles in (25) is more conveniently

described by their intersections with the real axis which determine each

circle uniquely. The intersections are given by

and

x =-I
1 a

= 1 - 6(b - a)
2 "b - a6(b -a)

(26)

(27)

Note that X is independent of 6 .

The constraint b - a6(b - a) > 0 becomes now meaningful, since

when b - a6(b - a) =0, |X | -»- co. It can be checked that for

b - a6(b - a) < 0 a different set of circles is obtained. As far as the

locus of W = X + jY is concerned, we must only interchange the words

"inside" and "outside". However, for the type of complex valued

functions W(jco) we are concerned with, this other set of circles is of

no interest.

The previous discussion can now be summarized in the state

ment of the following theorem which is the main result of this paper.
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Theorem 3. Consider the system S € N(a, b, t). Denote y (t) as the

output of the linear companion system S with constant gain K = a.

Let

/ t \1/27 t \1/2p(«, 6, t) =m e2ffT w2(x) drj (^ e-2^-T) [r(T) -~z(x)]2 dxj

where w(t) , r(t) and z(t) are as defined in (14) - (16). The response

y(t) due to a disturbance of the plant from its state of equilibrium

caused by the input r(t) or an initial state corresponding to the zero

input response z(t), is then bounded by the inequality

|y(t) -yjt)| * p(<*, 6, t) , (28)
d

if the following conditions are satisfied for a and 6 :

W(s - a)
1. z ^rrr,—•—r has all its poles in the left half s-plane1 + a W(s - a) v • *

b
0 < 6 <

a(b - a)

3. For all oo ^ 0 the locus of W(jca - a) satisfies one of the

following conditions:

(i) for a > 0, it lies outside the corresponding 6-circle

with center on the real axis of the W(jco)-plane which

intersects the real axis at X = -(1/a) and

x = 1 - 6(b-a) .
2 b - a6(b - a)

(ii) for a = 0, Re W(jco - a) + r- > 6 > 0 ;
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(iii) for a < 0, it lies inside the corresponding 6-circle which

has its center on the real axis of the W(jco)-plane and

, / , ,,. 1 - 6(b - a)
intersects it at X. = -1/a and X_ = ttt 4 .

1 2b- a6(b - a)

V. An Example

Consider the servo positioning system S e N(a, b, t) with a = 0.5,

b = 1.0 and

w<s> =ITsTI) <29>

The system is in the zero state when a unit step input

r(t) = l(t) (30)

is applied. From the Nyquist diagrams of W(joo - a) for various or's,

Fig. 3, it is observed that for several choices of a and 6 all the con

ditions of Theorem 3 are satisfied. If we are only interested in con

stant upper and lower amplitude bounds of y(t), we set a = 0 and see

that the corresponding 6 = 1.5. With a = 0, p(a, 6, t) is a bounded,

monotonically increasing function. Hence for- constant upper and lower

amplitude bounds we obtain from (28) that

inf [y (t)] - p(0, 1.5, oo) < y(t) < sup [y (t)] + p(0, 1.5, oo)
0<t<oo 0^t<oo

(31)

A fast calculation gives

p(0, 1.5, oo) = 0.817

Note that in this example encirclement of the cross-hatched circle
corresponding to 6 = 0 means by the Nyquist criterion that for a > 0
all the poles of (W(s - a)/(I + a W(s - a)) are in the left half
s-plane.
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The infimum of y (t) is clearly zero; the supremum of y (t) can easily
a a

be found by well known techniques of determining the peak overshoot

for second order systems in response to a unit step input. It is given by

y (t ) = 1.04. Hence, we have
7 a* max

- 0.817 < y(t) < 1.857, V t >0

Now choose a = 0.25 with the corresponding 6=1 (see Fig. 3). Other

values for a and 6 are possible, but since one likes both quantities to

be large for a good bound, these values seem a reasonable compromise

(observe that a and 6 are reciprocally related to each other).

With a ± 0, p(a, 6, t) -* 0 exponentially as t -*• oo. If one is just

interested in the settling time of the transient of y(t), one need only

calculate the value of p(0.25, 1.0, t) for one or two values of t at which

one expects the transient of y(t) to have decayed and thus try to con

firm one's estimate; that is, one certainly would pick t ^ T , where

T is the settling time of y (t). We have, for instance, that
as a

p(0.25, 1.0, 4tt) = 0.134

and

p(0.25, 1.0, 5tt) = 0.055

Hence, since T « 3tt sec, we have by (28) that the settling time T
a s s

of y(t) cannot be larger than 5ir, i.e.,

T ^ 5ir seconds,
s

For more,and less conservative?, information on the bound of the tran

sient one can plot the entire upper and lower bounds of y(t) as a function

The settling time of the response to a step input is the time required
for the transient to decrease to approximately 5% of the final value
and thereafter remain Less than this value.
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of time. This is done for a = 0.25 and 6 = 1.0, i.e., the bounds on

y(t) given by

y (t) - p(0.25, 1.0, t) < y(t) < y (t) + p(0.25, 1.0, t) (32)
a a

are plotted. We can also plot the bound with a = 0 and 6 = 1.5, i. e.,

the bounds on y(t) given by

y (t) - p(0, 1.5, t) * y(t) < y (t) + p(0, 1.5, t) . (33)
a ct-

Because of the larger 6, the second bound will give a better amplitude

bound. Both bounds, (32) and (33), are plotted in Fig. 4 and then com

bined to one bound. For comparison purposes the response yK(t) of

the linear companion system S with gain K = b (which is the upper

bound of the sector [a, b], with a = 0.5, b = 1.0) is also plotted. Con

sidering that we can predict for any time-varying nonlinearity contained

in the sector [0.5, 1.0] that the response of the system to a unit step

input is confined to lie between the indicated bounds, the results seem

to be quite good. Nevertheless, the combined bound shown in Fig. 4

is most likely not the optimum bound that can be obtained by this

method. One could, for instance plot an additional bound with an a and

6 such that 0.25 < a < 0.375 and 0 < 6 < 1.0. Because of the larger

a this bound would decay at a faster rate than the one obtained pre

viously; however, due to the smaller 6, its peak would be much higher,

so that improvement of the overall combined bound would depend on

where the three bounds have their crossovers.

Application to Design Problems

In the design of nonlinear control systems it is usually impor

tant to assure specific bounds on the response of the system to a

certain class of inputs or a set of initial states. It is obvious from the
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plots of W(jco - a) and the 6-circles of Fig. 3, how one would have to

compensate the linear part of the system to obtain better bounds. Cas

cade lead or lag-lead networks can be used advantageously to bend the

loci of W(joo - a) away from the small 6-circles to the larger 6-circles.

This will result in an improvement of the bounds. If quantitative

information on the improvement is desired, one has to recompute the

bounds for the compensated linear plant. The order of the linear part

of the system has now been increased and the computations of

p(or, 6, t) and y (t) are more tedious. In general, for higher order
a

plants the aid of a digital computer is advisable for the calculation of

p(of, 6, t) and y (t).

The 6-circles of Fig. 3 appear similar in concept to M-circles

for linear systems. It should be kept in mind however, that design

by M-circles is only valid for second order linear systems while the

6-circles are valid for any order nonlinear system.

VI. Attainment of Bounds

After having established bounds on the behavior of the system S,

the obvious question to ask is, "can these bounds be attained?" That is,

is it possible for the response y(t) to touch the bounds at various

instants of time? The answer is equivalent to determining when equality

holds in the original inequality (6) of Theorem 2, restated here for

convenience:

r(t) - z(t) - p(a, 6, t) < o-(t) < r(t) - z(t) + p(a, 6, t) (34)

where we recall that

i(£ e2- w2(T) d^2^ a-**-* [r(t, -z(t)]2 dTj
(35)
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It is immediate that for a > 0, and r(t) €L2(0, oo) fl 1^(0, oo), equality
holds in (34) for t = 0 and t = oo. To determine if equality can hold

for other values of t, we must investigate the following inequalities

which were used to obtain (34).

(i) |\V(t-T) w(t-T)e-ff(t-T)u(T)dT|II0 •*•"
1/2 , , \l/2

/f* Zar 2, \ -tft/f* Zar Z. )( \ e w (T) d-rl e I \ e u (t) drj (36)

1/2 / * W2(ii) Q^e^uVjdrJ ^t^eZ<XT[r(r)-Z(r)]2dr
(37)

Inequality (36) is the Schwarz inequality for which equality holds if and

only if there exists a constant \ such that

w(T) = \u(t) (38)

Inequality (37) stems from inequality (L) of Theorem 1. It is

easy to check that a necessary condition for equality to hold in (37),

is that

Re |w(j« -a) +i >=6, Vo £0* (39)
This means that W(jco) must be of the form

W(joj) = c + j Im W(jco) (40)

If all the signals appearing in the system were band limited within a
frequency band u> ^ co ^ co. , then equation (39) would read

Re \W(jco- a) + r-j - 6 , for go. ^ go ^ oj_ . However, we need not con
sider such signals for even a sinusoidal signal will not produce band
limited signals because of start-up transients.

-16-



where c is a constant. But subsystems with this kind of a transfer

function are not permissible in the system S, since they do not satisfy

the condition that the numerator polynomial of W(s) be of lower degree

than the denominator. The only exception would be the case when

c = 0 in equation (40). But this would imply that W(s) is a particular

case (e. g., W(s) = 1/s , n odd) which is not permissible in Theorem 1.

Therefore it can be concluded that the bounds on the transient

response of y(t) cannot be attained except at t = 0 and as t -*• oo.

Bounds on the response to a bounded input which does not bring the

system to a state of equilibrium are only attained at t = 0. Note that

in the example of section V the system has been brought to a state of

equilibrium by an input which belongs to L . This situation will
oo

occur in general whenever r(t) is a member of L„ fl L even though
2 oo °

r(t) is not contained in L (1 L . As a matter of fact, r(t) must not
Cd OO

even be bounded. All that is required is that the linear companion

system S has a zero steady-state error for this particular input.

VII. Conclusions

Bounds on the responses of feedback systems containing a time-

varying nonlinearity have been obtained from a frequency domain

inequality. The nonlinearity must only be described to the extent that

it is contained at all times within a certain sector in its input-output

plane. The bounds have a graphical interpretation in the Nyquist-plane

which is similar in concept to M-circles for linear systems. It is also

shown that there is a strong relationship between a nonlinear feedback

system and its linear companion system: the smaller the sector that

contains the time-varying nonlinearity, the smaller is the absolute

value of the difference between the response of the nonlinear system and

its linear companion system. The results are obtained by generally

applicable tools of functional analysis and can thus be applied to any

-17-



order system. Indeed, it is easy to show that with certain additional

assumptions on the impulse response of the Linear subsystem the

results are also applicable to infinite dimensional systems. The bounds

derived cannot be attained except at t =. 0, and if the system goes to a

state of equilibrium,also at t = oo. Since the bounds are realistic

enough to be useful in design problems this is of no consequence.
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Appendix A

It is to be shown that for [r(t) - z(t)] e L (0, oo) fl L (0, oo)
£* OO

and a > 0, p[a, 6, t) is uniformly bounded for t € [ 0, oo) and

lim p(a, 6, t) = 0 .
t-»-oo

First let

f(t) =[r(t) - z(t)]2 (41)

Since [r(t) - z(t)] e L (0, oo) fl L (0, oo) , it follows that
Li OO

f(t) € L2(0, oo) fl L (0, oo). By definition (4) and using (41)

/ t \1/2/ t \1/2Via, 6, t) =m e2aT w2(T) drj fJ e"2"^ f(r) drj (42)
By equation (7) the first integral on the right of (42) is bounded for all

t £ 0. For the second integral note that by the Schwarz inequality

which is uniformly bounded for all t € [ 0, oo) since f(t) € L-,(0, oo),

To show that lim p(a, 6, t) = 0 it is noted that
t-*oo

P1 -2*(t-T) ft ^ 1 P°° 1 j\ e f T dr = — \ . , , F(jco) eJ
J0 2lT J-co JC° a

JO*dco

where F(jco) is the Fourier transform of f(t). Since the product of two

L2-functions is in ^ , it follows by the Riemann-Lebesgue lemma9,10
that
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lim -i- f . ]_ , F(jco) ejC0t da> =0
--~~ 2ir J jeo + 2o?
t->oo -00

Hence,

lim p(a, 6, t) = 0 .
t->co

Appendix B

Calculation of p(o;, 5, t)

The following integrals have to be evaluated in order to compute

values of p(a, 6, t) for the example in section V.

m ft ~ZaT ~zt ^A aC* (2«-1)t .2" ,(i) \ e w (t) dT = 4\ ev ' sm 0.5idT
J0 J0

P -2of(t-T) ~2. • -Zat P* (2or-l)T
\ e r (t) dT = e \ ex '

J0 J0

• [cos 0.5t + sin 0.5t] dT

Tables of values of p(a, 6, t) follow.
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Tables of Values of p(a, 6, t)

t

/ t y/2
(j0 ™2(T)dTJ

/ t \i/2
p(0, 1.5, t)

0 0 0 0

0.5ir 0.61 1.09 0.443

l.Oir 0.938 1.22 0.76

1.5tt 0.995 1.223 0.814

2.0ir « 1.00 1.225 0.817

2.5tt 1.00 1.225 0.817

3.0tt 1.00 1.225 0.817

oo lo00 1.225 0.817

t

: : —

( C* 0.5r -2,
I \ e w (t) dT f ((..-..,, "T,r2(T)dTJ p(0.25, 1.0, t)

0 0 0 0

0.5ir 0.825 0.88 0.725

l.Oir 1.48 0.732 1.085

1.5ir 1.728 0.489 0.845

2.0ir 1.752 0.328 0.575

2.5ir 1.756 0.235 0.412

3.0ir 1.777 0.15 0.266

4.0ir 1.786 0.075 0.134

5.0ir 1.789 0.033 0.055

oo 1.789 0.00 0.00
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