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1. Introduction. This paper is concerned with the relationship between

various types of stability in time-variable linear systems. Initially, we

will consider equations of the type

n-1

(1) z(n)+ £ g.z(i> =0
i=0

where the g. are real valued functions defined and bounded by some

constant C on the entire real line. In Section 2 we will prove Theorem 1

stated below.

For any function f defined on a (possibly infinite) interval I let

Mil
p

L,/I.f '"
1/P

1 < p < CO



and let

Hf, l|| = sup|f| .
I

Theorem 1. Given any e > 0 and any p (1 < p < co) there exists a con

stant K such that for each solution f of (1) defined on an interval I

f(l\ J11 < K||f,j|| , 1<i< n"p — " "p __ _.

for all subintervals J of I of length at least € .

In Section 3 this result is used to prove the equivalence of the

external concept of bounded-input, bounded-output stability and the

internal concept of exponential stability for a large class of linear

systems, solving in part a question posed by Kalman [1] .

An immediate corollary of Theorem 1 is a result of Esclangon [2]

and Landau [ 3 ] ',

Corollary 1. If f is a bounded solution of (1) on the entire real line then

the P ' (1< i < n) are also bounded.

This corollary was extended in various ways by von Neumann and

Halperin [4] and Beckenback and Bellman [5]. However, in contrast

to these earlier generalizations, note that in Theorem 1 above the deri

vatives f are explicitly bounded by the solution f. Moreover, the

bounding constant K is independent of particular solutions f and intervals

I. This stronger form is essential for the results of Section 3.
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2. Proof of Theorem 1 •

Lemma 1. Let g and h be any functions defined on an interval I. If

llg»J0ll £ llh»J0ll for all subintervals J of I of length e

then llg»J1llcol Hh,JlHco f°r a11 subintervals ^ of I of length

€i>€o

The proof of this lemma is a simple exercise and will be omitted.

Lemma 2. if g is differentiable on a closed interval I of length € and

!lg'Ill00> 2lg(^)l for some ux in I then || g(1), l|| ^ >^- || g, l|| ^ .

Proof. Since I is compact there is a point u in I such that

|g(uQ)l = llg*1!! • Then, by the law of the mean

m Ig("-n) - gK)l i
s{1)-ik>-t—r^"8,1'1-

u - u
1 0 1'

Theorem la. Given any € > 0 there exists a constant K such that for

each solution f of (1) defined on an interval I

HfW.Jll^ < Kllf.jH^, l<i<n

for all subintervals J of I of length at least e .

Proof. Suppose the contrary. Then there is a smallest integer k

(1 < k < n) and an e > 0 such that the theorem fails. Choose c > 0
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such that

(2) — > max{2nC, 2,— }

By definition of k there exists an M > 0 such that

h(i),j|| < M||h,j||
CO — ' ' M 00

0 < i < k

for any solution h of (1) defined on any interval J of length € . Again

by the definition of k there exists a solution f of (1) defined on an interval

I of length e . such that ||f^,l|| > Nllf, ill where
1 ' "oo CO

N =

0n+l
2 n

n+1

2M

Therefore, by Lemma 1 there must be a closed subinterval J of I of

length e such that

(3) HfN.Joll^ Nllf.Jjl^.

Since N > M,

(4) IU(k).Joll00> "IKJolLiH^.'olL-

We assert that there exists w. in J„ such that
i 0
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<5> |f(1)(w.)| < i||f(k),J0Moo , k<i<„.

This assertion will be proved below. But first, by repeated application

of Lemma 2 with g = f , I = J and u = w. we get

(6) llf(i+1).J0IL > 2rllf(i)'J0H' k£i<n-

Since € < —, (4) and (6) imply

<7> 11 ^'Jo 11 co > Hf<i)'JolL' 0<i<n

Furthermore (6) and (7) imply

f(n)'Jollo0>^(«l|f(n-1).Jollj

n-1

>

0

"̂(!>)"0Moo '
0

a contradiction which proves the theorem.

We will now prove the assertion (5) .
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(k)
Case 1. f has at least n zeros in J . Then by Rolle's Theorem

f has at least n -j zeros in J , 1 < j < n. Let w. be a zero of

f in J so that

f(i)(w.)| =0< i l|f<k)» JqII^ • k<i< n.

(k)Case 2. f has less than n zeros in J . Then there exists a sub-

interval J1 of JQ of length e /n such that f̂ jt 0 in J .
Let 6 = €0/n2 . By induction we will show that for k < i < n

there are finite subsets A. of J such that
l 1

(a) A. consists of 2 elements

(b) |r-s| > 6 if r,s in A. and r jt s
i

Wl ^ ft" ll,(k)

if r in A. .
l

Suppose that \f{ ' \ > —— \\r ,jj| on any subinterval [u,u+6]

of J . But then by the definition of M

(8) 2M||f.J || > If*"1) («+6)| +If^'Ml

> If^"1' (U+6) -f^-1* (U)| =

(k)
Since fv t 0 on [u,u+6]

-6-
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(9) r> = rv>i >
u u

0n+l
2 n

n+1

From (3), (8) and (9), therefore, ||f, jjl^ > ||f,J

a contradiction.

Therefore,

M
r 'I i-1f- 2n+1

6" llf(k,
0"oo

f(k),j,
oo

0Mco '

on any subinterval of J of length 6. Since the length of J = 2n 6 there
>n-lis a set A^ of 2 points such that

.n

?(k) :(k)|f-(r)| < _£_ ||fW,Jo,L

and |r-s| > 6 for r,s in A^, r ?£ s . Hence (a), (b) and (c) hold for
i = k .

Now assume there exists A (k < p < n - 2) , such that (a), (b)

and (c) hold. Let A = {u_,u '",u } where lu., ,-u.l > 6,
p 12 qJ J+l J

. . 0n+k-p-l
1 < J < q = 2 * .

By the law of the mean there exists v. in [ u^. ,, u„. 1 (1 < j < —)
J 2j -1 2j — J — 2

such that

-7-



,+n |f(p)(u2.)-f(p)(u2. )
|f<P+1)(v.)| = 5l ZlzL.

Since u0. and u_. are in A (b) and (c) imply
2j 2j -1 p

,*«>,>!< {(if-**" H,«,,0II
0"co

Hence (a), (b) and (c) hold for A = {v. :1 <j < q/2} and therefore
p+1 J — —

the induction hypothesis is valid for k < i < n.

Since 6 < 2 (c) implies w. can be any point of A. . This

establishes Case 2 of Assertion (5) .

Theorem lb. Given any € > 0 and any finite p > 1 there exists a con

stant K such that for each solution f of (1) defined on an interval I

||f(i),j|l <K||f.j|| , l<i<n
ir P

for all subintervals J of I of length at least €.

Proof. Suppose the theorem is false for a smallest integer i = k (Kk<n),

€ = « and some p = q .

By Theorem la, there is a constant N > — such that
€o

(i)(10) ||bw.j||flo<N||hfj|| . 1 < i < n
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for any solution h of (1) defined on any interval J of length € .

By the definition of k, there is a solution f of (1) defined on a

closed interval J of length e such that

(11) ||f,J0||q< Q||f(k),Jo||q

where Q is a constant to be suitably chosen below.

Since 1/2N < € there is a closed sub-interval J of J of

length 1/2 N. such that ||f,jj| = ||f,jj| .
1 0"co " l"co 1

Suppose that |f| > T||f,jJ| on Jn then if P= (4NJ q ,
— L 0 CO 1 1

clearly

(12) PUf.jJI^! Hi.jjl < l|f.J0ll

and

1

<13> llf<k)-Jollql'o?llf(k)'Jollro

Combining (10), (11), (12) and (13) we get

_1

Pllf'Jollco< QNl.^||f.J0||cD.
1

a contradiction since Q can be chosen equal to P/N € q .
10

Therefore, there exists u in J, such that ~ ||f, J II > |f(uj
1 1 2'1 l'co 1

But then by Lemma 2
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N1l|f,JoHCD=N1||f)Jl||oo<||f(1))Jl||oo<||f(1\Jo

a contradiction which establishes the theorem.

Theorem 1 indicates that the solutions of equations of type (1)

cannot fluctuate too rapidly. The following corollary makes this notion

precise. Furthermore, this corollary plays a key role in Section 3.

Corollary 2. Given any € > 0 there exists a 6 > 0 such that if f is

any solution of (1) defined on an interval I and J is any closed sub-

interval of I of length € then there is a subinterval J of J of length

6 such that |f| > t|I*>JJI on J,.
' ' — 2 " 0"co 1

Proof. By Theorem 1 there is a constant K such that llf , jjl <K||f,jJ| .
" 0"co— " 0Mco

Choose 6 =minj 2k»€ [ • Let t be a point at which |f| takes its maxi

mum on J and let J be any neighborhood of t of length 6 . Then by

the law of the mean if t is in J

U(t0)l - Uwl m
—2— 1 niello, ± Klf<Vl'

o

3. Stability in Linear Systems.

In this section, by application of Theorem 1, an equivalence between

two basic types of stability in linear systems will be established. The

class of systems to be considered are those which may be represented

in the form

(14 a) x (t) = A(t)x(t) + b(t)u(t)
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(14 b) y(t) = c(t)x(t)

where u and y are the system input and output respectively and x, an

n-vector, the internal state of the system. The coefficient matrices A,

b, and c of orders n X n, n X 1 and 1 X n, respectively, are bounded

on ( -oo, oo).

The system (14) is said to be bounded-input, bounded-output (BIBO)

stable if for each constant IC there is a constant K such that if |u| < K

on any interval (tQ, oo) then |y| < K on (t , oo) . Awell known [6,7]

necessary and sufficient condition for BIBO stability when x(t ) = 0 is

that a constant M exist such that for all t,

J |h(t,T)|dT<(15) \ |h(t,T)| dT < M
- oo

where

h(t, t) = c(t)X(t)X_1(T)b(T)

with X (t) a fundamental matrix for the homogenious part of (14a).

In contrast to the external constraint of BIBO stability are various

types of Lyapunov stability, which are concerned with the behavior of the

internal state in the absence of an input. We are interested in relating

BIBO stability to the exponential stability of the state. The system (14)

is said to be exponentially stable, if there exist constants K > 0 and
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K > 0 such that for any vector function f satisfying the homogenious

part of (14 a)

-K4(t-t )
||f(t)|| <K3||£(t)||e 4 °

for all t and for all t > t , where 11 * 11 denotes the euclidean norm.

A necessary and sufficient condition for exponential stability [8]

is that there exist constants P and N such that for all t, and for all

t > T

(16) HxroX-VHI < Pe"N(t"T).

The connection between the two types of stability is well under

stood in the case where A, b and c are constant matrices [8]. If the

system is completely controllable [9] and completely observable [9],

then (15) and (16) are equivalent. For time-variable systems no such

result is available. In fact, as shown by Kalman [l], there are simple

examples of completely controllable and completely observable systems

in which the two types of stability are in no way related. It will be shown

below, however, that under conditions somewhat stronger than complete

controllability and complete observability (15) and (16) are equivalent.

Let us first introduce the controllability and observability matrices

[10,11] of system (14) :

Qc= [p0Pl"'Pn-l]
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where

and

where

pk+i = "Apk + d/dt Pk : po = b

Q = [r r •• • r • ]
o 0 1 n-1

rk+l= ATk+d/dtrk; rQ = c<

(' = transpose) . The main result to be established is summarized in

the following theorem.

Theorem 2. If Q and Q are Lyapunov transformations [8] on (-00,00)

then the stability criteria (15) and (16) are equivalent.

Remark. For constant systems the conditions on Q and Q reduce to
c o

complete controllability and complete observability. For time variable

systems, if the first n derivatives of the matrices A, b and c are bounded

the conditions are equivalent to uniform controllability and observability in

the sense that the determinants of Q and Q are bounded away from zero.
CO

Before proving Theorem 2 several preliminary results will be

established. Let ijj (t) =c(t)X(t) and 9(t) =X'V) b(t) .
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Lemma 3. If Q is a Lyapunov transformation on ( -co, oo) then the

elements of *\> form a set of linearly independent solutions of an equation

of type (1) .

Proof. Consider the transformation of coordinates w = Q' x mapping

(A, b, c) into (A, b, c) . Since Q is a Lyapunov transformation the

matrices A, b, and c must be bounded on ( -oo, oo). Furthermore it

is easily shown [10] that A and c have the canonical form

A =

0

0

•

•

0

-a
L 0

0

-a.

c = [1 0 ••• 0 ]

-a
n-1

Since 4* is invariant under a transformation of coordinates it is clear

that the elements of ^ satisfy an equation of the type (1) with a. = g. ,

0 < i < n -1 .

Similarly, it may be shown that the following lemma is true.

Lemma 4. if Q is a Lyapunov transformation on ( -oo, oo) then the

elements of 9 form a set of linearly independent solutions of an equation

of type (1).
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Lemma 5. Let D and D be equations of type (1). For each t, let
———»••«•-«•—— _^ ^

h(t, t) be a solution of D and for each t, let h(t, t) be a solution of

D_ . If there exists a constant M such that for all t

f |h(t,T)|dT < M,
-oo

then there is a constant N such that for all t

where

f |h..(t,r)| dr <N,

a1 8J
h..(t,r) = —: r h(t,r).

1J at1 8r»

0 < i, j < n
XI — — —

-oo

Proof. For each t let h be the function such that h (t) = h(t, t) for

all t. Then by Theorem 1, there is a constant K such that for all t

^i1*' I"oo - K||hT,IIL' 'i1!11

on every interval I of length 1. Therefore,

(17) j"' |hW|dx <KJ* H^.lJI^d-
- OO -00
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where I = [t,t + l ]. By Corollary 2 there exists a 6 > 0 and subintervals

J, of I of length 6 such that |h (t)| > i llh ,1 II on J. Let k be the
t t ° ' T ' — 2 ' ' T t " 00 t

smallest integer such that 0 < k6 < 1 < (k + 1) 6 . But then (17) implies

J Ih^Wldr <KJ 2|hT(t +i!6)|dT
-oo - oo

for some integer S. such that 0 < I < k. Hence, reintroducing h(t, t), we

have

t t kJ |h.0(t,T)|dT <KJ V2|h(t+j6,T)|dT
-oo -co

< 2K(k + l)M.

It follows immediately from Theorem 1 with p = l that a constant K exists

such that

(19) J |hoj(t,r)|dT < I^M
*" - oo

Now observe that if h(t, t) is a solution of D for all t, then h (t, t) is

also a solution of D for all t and for all j > 1. It follows immediately

from (18) and (19) that
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f |h..(t, T)|dT < 2KK (k+l)M = N
-co

for 0 < i, j < n.

We are now ready to prove Theorem 2 .

As a consequence of Lemmas 3 and 4 the function h(t, t) as

defined in (15) satisfies the hypothesis of Lemma 5 . Hence, if (15) holds

there is a constant M such that for all t

f ||r(t,T)||dT <mx
-00

where T(t, t) is the n X n matrix with elements h..(t, t) . It may be

readily verified [12] that

T(t,T) = QWtJX^X'ViQ (t).
o c

Therefore, since Q and Q are Lyapunov transformations

J ||X(t)X_1(T)||dT <M.
- oo

for some constant M . Since A of (14) is bounded, it follows [8] that

(16) holds for some P and N.

Clearly (16) implies (15), and this completes the proof of

Theorem 2.
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It should be noted that if system (14) satisfies condition (16) then

the output is bounded for all initial states and all bounded inputs. Thus,

an immediate corollary of Theorem 2 is the following.

Corollary 3. If system (14) satisfies the hypothesis of Theorem 2 then

it is BIBO stable if and only if it is exponentially stable.

-18-



REFERENCES

1. R. E. Kalman, "On the stability of time-varying linear systems,"
IRE Trans, on Circuit Theory, Vol. CT-9, December 1962,
pp. 420-422.

2. E. Esclangon, "Nouvelles recherches sur les fonctions quasi -
periodiques, " Ann, de l'Observatioire de Bordeaux, Vol. 16,
1921, pp. 51-177.

3. E. Landau, "Uber einen satz von Heirn Esclangon, " Math. Am. ,
Vol. 102, 1929, pp. 177-188.

4. I. Halperin, "Closures and adjoints of linear differential operators,
Ann, of Math, Vol. 38, 1937, pp. 889-919.

5. E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag,
Berlin, 1961.

6. D. C. Youla, "On the stability of linear, systems, " IEEE Trans.
on Circuit Theory, " Vol. CT-10, June 1963, pp. 276-2 79.

7. C. A. Desoer and A. J. Tomasian, "A note on zero-state stability
of linear systems, " Proc. 1st Allerton Conf. on Circuit and
Systems Theory, 1963, pp. 50-52.

8. L. A. Zadeh and C. A. Desoer, Linear System Theory, McGraw-
Hill Book Co. , New York, 1963.

9. R. E. Kalman, "Mathematical description of linear dynamical
systems," J. SIAM Control, Vol. 1, 1963, pp. 152-192.

10. L. M. Silverman and H. E. Meadows, "Degrees of controllability
in time-variable linear systems, " Proc. of the National Elec
tronics Conf. , Vol. 21, 1965, pp. 689-693.

11. L. M. Silverman and H. E. Meadows, "Controllability and obser
vability in time-variable linear systems, " J. SIAM Control,
to appear.

12. L. M. Silverman and H. E. Meadows, "Equivalence and synthesis
of time-variable linear systems, " Proc. 4th Allerton Conf. on
Circuit and System Theory, 1966, pp. 776-784.

-19-


	Copyright notice 1967
	ERL-204

