Copyright © 1967, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

INTERNAL AND EXTERNAL STABILITY OF LINEAR SYSTEMS

by
Leonard H. Haines and Leonard M. Silverman

Memorandum No. ERL-M 204
14 March 1967

ELECTRONICS RESEARCH LABORATORY College of Engineering University of California, Berkeley 94720

Manuscript submitted: 14 February 1967

The research reported herein was supported in part by the Joint Services Electronics Program (U. S. Army, U. S. Navy, and U. S. Air Force) under Grant AF-AFOSR-139-66 and by the National Science Foundation under Grant GK-716.

INTERNAL AND EXTERNAL STABILITY OF LINEAR SYSTEMS

 byLeonard H. Haines and Leonard M. Silverman
Department of Electrical Engineering and Computer Sciences
Electronics Research Laboratory
University of California, Berkeley 94720

1. Introduction. This paper is concerned with the relationship between various types of stability in time-variable linear systems. Initially, we will consider equations of the type

$$
\begin{equation*}
z^{(n)}+\sum_{i=0}^{n-1} g_{i} z^{(i)}=0 \tag{1}
\end{equation*}
$$

where the g_{i} are real valued functions defined and bounded by some constant C on the entire real line. In Section 2 we will prove Theorem 1 stated below.

For any function f defined on (possibly infinite) interval I let

$$
\|f, I\|_{p}=\left[\int_{I}|f|^{p}\right]^{1 / p}, \quad 1 \leq p<\infty
$$

and let

$$
\|f, I\|_{\infty}=\sup _{I}|f| .
$$

Theorem 1. Given any $\epsilon>0$ and any $p(1 \leq p \leq \infty)$ there exists a constant K such that for each solution f of (1) defined on an interval I

$$
\left\|f^{(i)}, J\right\|_{p} \leq K\|f, J\|_{p}, \quad 1 \leq i \leq n
$$

for all subintervals J of I of length at least ϵ.
In Section 3 this result is used to prove the equivalence of the external concept of bounded-input, bounded-output stability and the internal concept of exponential stability for a large class of linear systems, solving in part a question posed by Kalman [1].

An immediate corollary of Theorem 1 is a result of Esclangon [2] and Landau [3]:

Corollary 1. If f is a bounded solution of (1) on the entire real line then the $f^{(i)} \quad(1 \leq i \leq n)$ are also bounded.

This corollary was extended in various ways by von Neumann and Halperin [4] and Beckenback and Bellman [5]. However, in contrast to these earlier generalizations, note that in Theorem 1 above the derivatives $f^{(i)}$ are explicitly bounded by the solution f. Moreover, the bounding constant K is independent of particular solutions f and intervals I. This stronger form is essential for the results of Section 3.

2. Proof of Theorem 1.

Lemma 1. Let g and h be any functions defined on an interval I. If $\left\|g, J_{0}\right\|_{\infty} \leq\left\|h, J_{0}\right\|_{\infty}$ for all subintervals J_{0} of I of length ϵ_{0}, then $\left\|g, J_{1}\right\|_{\infty} \leq\left\|h, J_{1}\right\|_{\infty}$ for all subintervals J_{1} of I of length $\epsilon_{1}>\epsilon_{0}{ }^{\circ}$

The proof of this lemma is a simple exercise and will be omitted.

Lemma 2. If g is differentiable on a closed interval I of length ϵ and $\|g, I\|_{\infty}>2\left|g\left(u_{1}\right)\right|$ for some u_{1} in I then $\left\|g^{(1)}, I\right\|_{\infty}>\frac{1}{2 \epsilon}\|g, I\|_{\infty}$.

Proof. Since I is compact there is a point u_{0} in I such that $\left|g\left(u_{0}\right)\right|=\|g, I\|_{\infty}$. Then, by the law of the mean

$$
\left\|g^{(i)}, I\right\|_{\infty} \geq \frac{\left|g\left(u_{0}\right)-g\left(u_{1}\right)\right|}{\left|u_{0}-u_{1}\right|}>\frac{1}{2 \epsilon}\|g, I\|_{\infty}
$$

Theorem la. Given any $\epsilon>0$ there exists a constant K such that for each solution f of (1) defined on an interval I

$$
\left\|f^{(i)}, J\right\|_{\infty} \leq K\|f, J\|_{\infty}, \quad 1 \leq i \leq n
$$

for all subintervals J of I of length at least ϵ.

Proof. Suppose the contrary. Then there is a smallest integer k $(1 \leq k<n)$ and an $\epsilon_{1}>0$ such that the theorem fails. Choose $\epsilon_{0}>0$
such that

$$
\begin{equation*}
\frac{1}{\epsilon_{0}}>\max \left\{2 \mathrm{nC}, 2, \frac{1}{\epsilon_{1}}\right\} . \tag{2}
\end{equation*}
$$

By definition of k there exists an $M>0$ such that

$$
\left\|h^{(i)}, J\right\|_{\infty} \leq M\|h, J\|_{\infty}, \quad 0 \leq i<k
$$

for any solution h of (1) defined on any interval J of length ϵ_{0}. Again by the definition of k there exists a solution f of (1) defined on an interval I of length ϵ_{1}, such that $\left\|f^{(k)}, I\right\|_{\infty}>N\|f, I\|_{\infty}$ where

$$
N=\left[\frac{2^{n+1} n}{\epsilon_{0}}\right]^{n+1} 2 M
$$

Therefore, by Lemma 1 there must be a closed subinterval J_{0} of I of length ϵ_{0} such that

$$
\begin{equation*}
\left\|f^{(k)}, J_{0}\right\|_{\infty}>N\left\|f, J_{0}\right\|_{\infty} . \tag{3}
\end{equation*}
$$

Since $N>M$,

$$
\begin{equation*}
\left\|f^{(k)}, J_{0}\right\|_{\infty}>M\left\|f, J_{0}\right\|_{\infty} \geq\left\|f^{(i)}, J_{0}\right\|_{\infty}, \quad 0 \leq i<k \tag{4}
\end{equation*}
$$

We assert that there exists w_{i} in J_{0} such that

$$
\begin{equation*}
\left|f^{(i)}\left(w_{i}\right)\right|<\frac{1}{2}\left\|f^{(k)}, J_{0}\right\|_{\infty}, \quad k \leq i<n \tag{5}
\end{equation*}
$$

This assertion will be proved below. But first, by repeated application of Lemma 2 with $g=f^{(i)}, I=J_{0}$ and $u_{1}=w_{i}$ we get
(6) $\quad\left\|f^{(i+1)}, J_{0}\right\|_{\infty}>\frac{1}{2 \epsilon_{0}}\left\|f^{(i)}, J_{0}\right\|, \quad k \leq i<n$.

Since $\epsilon_{0}<\frac{1}{2},(4)$ and (6) imply
(7) $\quad\left\|f^{(n-1)}, J_{0}\right\|_{\infty}>\left\|f^{(i)}, J_{0}\right\|_{\infty}, \quad 0 \leq i<n$.

Furthermore (6) and (7) imply

$$
\begin{aligned}
\left\|f^{(n)}, J_{0}\right\|_{\infty} & >\frac{1}{2 \epsilon_{0} n}\left(n\left\|f^{(n-1)}, J_{0}\right\|_{\infty}\right) \\
& >c \sum_{0}^{n-1}\left\|f^{(i)}, J_{0}\right\|_{\infty} \\
& \geq\left\|\left(\sum_{0}^{n-1} g_{i} f^{(i)}\right), J_{0}\right\|_{\infty},
\end{aligned}
$$

a contradiction which proves the theorem.
We will now prove the assertion (5).

Case 1. $f^{(k)}$ has at least n zeros in J_{0}. Then by Rolle's Theorem $f^{(k+j)}$ has at least $n-j$ zeros in $J_{0}, 1<j<n$. Let w_{i} be a zero of $f^{(i)}$ in J_{0} so that

$$
\left|f^{(i)}\left(w_{i}\right)\right|=0<\frac{1}{2}\left\|f^{(k)}, J_{0}\right\|_{\infty}, \quad k \leq i<n .
$$

Case 2. $\mathrm{f}^{(\mathrm{k})}$ has less than n zeros in J_{0}. Then there exists a subinterval J_{1} of J_{0} of length ϵ_{0} / n such that $f^{(k)} \neq 0$ in J_{1}.

Let $\delta=\epsilon_{0} / \mathrm{n} 2^{n}$. By induction we will show that for $k \leq i<n$ there are finite subsets A_{i} of J_{1} such that
(a) A_{i} consists of $2^{n+k-i-1}$ elements
(b) $|r-s|>\delta$ if r, s in A_{i} and $r \neq s$
(c) $\left|f^{(i)}(r)\right|<\frac{1}{2}\left\|f^{(k)}, J_{0}\right\|_{\infty}\left(\frac{\delta}{2}\right)^{(n+k-i)} \quad$ if r in A_{i}.

Suppose that $\left|f^{(k)}\right| \geq \frac{\delta^{n}}{2^{n+1}}\left\|f^{(k)}, J_{0}\right\|_{\infty}$ on any subinterval [u,u+ $]$ of J_{1}. But then by the definition of M
(8) $2 M\left\|f, J_{0}\right\|_{\infty} \geq\left|f^{(k-1)}(u+\delta)\right|+\left|f^{(k-1)}(u)\right|$

$$
\geq\left|f^{(k-1)}(u+\delta)-f^{(k-1)}(u)\right|=\left|\int_{u}^{u+\delta} f^{(k)}\right| .
$$

Since $f^{(k)} \neq 0$ on $[u, u+\delta]$

$$
\begin{equation*}
\left|\int_{u}^{u+\delta} f^{(k)}\right|=\int_{u}^{u+\delta}\left|f^{(k)}\right| \geq\left[\frac{\epsilon_{0}}{2^{n+1}{ }_{n}}\right]^{n+1}\left\|f^{(k)}, J_{0}\right\|_{\infty} \tag{9}
\end{equation*}
$$

From (3), (8) and (9), therefore, $\left\|f, J_{0}\right\|_{\infty}>\left\|f, J_{0}\right\|_{\infty}$,
a contradiction.

Therefore,

$$
\left|f^{(k)}\right| \nsucceq \frac{\delta^{n}}{2^{n+1}}\left\|f^{(k)}, J_{0}\right\|_{\infty}
$$

on any subinterval of J_{1} of length δ. Since the length of $J_{1}=2^{n} \delta$ there is a set A_{k} of 2^{n-1} points such that

$$
\left|f^{(k)}(r)\right|<\frac{\delta^{n}}{2^{n+1}}\left\|f^{(k)}, J_{0}\right\|_{\infty}
$$

and $|r-s|>\delta$ for r, s in $A_{k}, r \neq s$. Hence (a), (b) and (c) hold for $i=k$.

Now assume there exists $A_{p}(k \leq p \leq n-2)$, such that (a),
and (c) hold. Let $A_{p}=\left\{u_{1}, u_{2}, \cdots, u_{q}\right\}$ where $\left|u_{j+1}-u_{j}\right|>\delta$, $1 \leq j<q=2^{n+k-p-1}$.

By the law of the mean there exists v_{j} in $\left[u_{2 j-1}, u_{2 j}\right]\left(1 \leq j \leq \frac{q}{2}\right)$ such that

$$
\left|f^{(p+1)}\left(v_{j}\right)\right|=\frac{\left|f^{(p)}\left(u_{2 j}\right)-f^{(p)}\left(u_{2 j-1}\right)\right|}{\left|u_{2 j}-u_{2 j-1}\right|}
$$

Since $u_{2 j}$ and $u_{2 j-1}$ are in $A_{p}(b)$ and (c) imply

$$
\left|f^{(p+1)}\left(v_{j}\right)\right|<\frac{1}{2}\left(\frac{\delta}{2}\right)^{n+k-(p+1)}\left\|f^{(k)}, J_{0}\right\|_{\infty}
$$

Hence (a), (b) and (c) hold for $A_{p+1}=\left\{v_{j}: 1 \leq j \leq q / 2\right\}$ and therefore the induction hypothesis is valid for $\mathrm{k} \leq \mathrm{i}<\mathrm{n}$.

Since $\delta<2$ (c) implies w_{i} can be any point of A_{i}. This establishes Case 2 of Assertion (5).

Theorem 1 b . Given any $\epsilon>0$ and any finite $p \geq 1$ there exists a constant K such that for each solution f of (l) defined on an interval I

$$
\left\|f^{(i)}, J\right\|_{p} \leq K\|f, J\|_{p}, \quad 1 \leq i \leq n
$$

for all subintervals J of I of length at least ϵ.

Proof. Suppose the theorem is false for a smallest integer $i=k(1 \leq k<n)$, $\epsilon=\epsilon_{0}$ and some $\mathrm{p}=\mathrm{q}$.

By Theorem la, there is a constant $N_{1} \geq \frac{1}{\epsilon_{0}}$ such that
(10)

$$
\left\|h^{(i)}, J\right\|_{\infty} \leq N_{1}\|h, J\|_{\infty}, \quad 1 \leq i \leq n
$$

for any solution h of (1) defined on any interval J of length $\epsilon_{0^{\circ}}$
By the definition of k, there is a solution f of (1) defined on a closed interval J_{0} of length ϵ_{0} such that

$$
\begin{equation*}
\left\|f, J_{0}\right\|_{q}<Q\left\|f^{(k)}, J_{0}\right\|_{q} \tag{11}
\end{equation*}
$$

where Q is a constant to be suitably chosen below.
Since $1 / 2 N_{1}<\epsilon_{0}$ there is a closed sub-interval J_{1} of J_{0} of length $1 / 2 N_{1}$ such that $\left\|f, J_{0}\right\|_{\infty}=\left\|f, J_{1}\right\|_{\infty}$.

Suppose that $|f| \geq \frac{1}{2}\left\|f, J_{0}\right\|_{\infty}$ on J_{1} then if $P=\left(4 N_{1}\right)^{-\frac{1}{q}}$, clearly

$$
\begin{equation*}
P\left\|f, J_{0}\right\|_{\infty} \leq\left\|f, J_{1}\right\|_{q} \leq\left\|f, J_{0}\right\|_{q} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f^{(k)}, J_{0}\right\|_{q} \leq \epsilon_{0}^{\frac{1}{q}}\left\|f^{(k)}, J_{0}\right\|_{\infty} \tag{13}
\end{equation*}
$$

Combining (10), (11), (12) and (13) we get

$$
P\left\|f, J_{0}\right\|_{\infty}<Q N_{1} \in{ }_{0}^{\frac{1}{q}}\left\|f, J_{0}\right\|_{\infty},
$$

a contradiction since Q can be chosen equal to $P / N_{1} \epsilon_{0}^{\frac{1}{q}}$.
Therefore, there exists u_{1} in J_{1} such that $\frac{1}{2}\left\|f, J_{1}\right\|_{\infty}>\left|f\left(u_{1}\right)\right|$. But then by Lemma 2

$$
N_{1}\left\|f, J_{0}\right\|_{\infty}=N_{1}\left\|f, J_{1}\right\|_{\infty}<\left\|f^{(1)}, J_{1}\right\|_{\infty} \leq\left\|f^{(1)}, J_{0}\right\|_{\infty}
$$

a contradiction which establishes the theorem.
Theorem 1 indicates that the solutions of equations of type (1) cannot fluctuate too rapidly. The following corollary makes this notion precise. Furthermore, this corollary plays a key role in Section 3.

Corollary 2. Given any $\epsilon>0$ there exists a $\delta>0$ such that if f is any solution of (1) defined on an interval I and J_{0} is any closed subinterval of I of length ϵ then there is a subinterval J_{1} of J_{0} of length δ such that $|f| \geq \frac{1}{2}\left\|f, J_{0}\right\|_{\infty}$ on J_{1}.

Proof. By Theorem 1 there is a constant K such that $\left\|f^{(1)}, J_{0}\right\|_{\infty} \leq K\left\|f, J_{0}\right\|_{\infty}$. Choose $\delta=\min \left\{\frac{1}{2 K}, \epsilon\right\}$. Let t_{0} be a point at which $|f|$ takes its maximum on J_{0} and let J_{1} be any neighborhood of t_{0} of length δ. Then by the law of the mean if t is in J_{1}

$$
\frac{\left|f\left(t_{0}\right)\right|-|f(t)|}{\delta} \leq\left\|f^{(1)}, J_{0}\right\|_{\infty} \leq K\left|f\left(t_{0}\right)\right| .
$$

3. Stability in Linear Systems.

In this section, by application of Theorem 1, an equivalence between two basic types of stability in linear systems will be established. The class of systems to be considered are those which may be represented in the form

$$
\begin{equation*}
x^{(l)}(t)=A(t) x(t)+b(t) u(t) \tag{14a}
\end{equation*}
$$

$$
\begin{equation*}
y(t)=c(t) x(t) \tag{14b}
\end{equation*}
$$

where u and y are the system input and output respectively and x, an n-vector, the internal state of the system. The coefficient matrices A, b , and c of orders $\mathrm{n} \times \mathrm{n}, \mathrm{n} \times 1$ and $1 \times \mathrm{n}$, respectively, are bounded on $(-\infty, \infty)$.

The system (14) is said to be bounded-input, bounded-output (BIBO) stable if for each constant K_{1} there is a constant K_{2} such that if $|u|<K_{1}$ on any interval $\left(t_{0}, \infty\right)$ then $|y|<K_{2}$ on ($\left.t_{0}, \infty\right)$. A well known $[6,7]$ necessary and sufficient condition for BIBO stability when $x\left(t_{0}\right)=0$ is that a constant M exist such that for all t,

$$
\begin{equation*}
\int_{-\infty}^{t}|h(t, \tau)| d \tau \leq M \tag{15}
\end{equation*}
$$

where

$$
h(t, \tau)=c(t) X(t) X^{-1}(\tau) b(\tau)
$$

with $\mathrm{X}(t)$ a fundamental matrix for the homogenious part of (14a).
In contrast to the external constraint of BIBO stability are various types of Lyapunov stability, which are concerned with the behavior of the internal state in the absence of an input. We are interested in relating BIBO stability to the exponential stability of the state. The system (14) is said to be exponentially stable, if there exist constants $K_{3}>0$ and
$K_{4}>0$ such that for any vector function f satisfying the homogenious part of (14a)

$$
\|f(t)\| \leq K_{3}\left\|f\left(t_{0}\right)\right\| e^{-K_{4}\left(t-t_{0}\right)}
$$

for all t_{0} and for all $t \geq t_{0}$, where $\|\cdot\|$ denotes the euclidean norm. A necessary and sufficient condition for exponential stability [8] is that there exist constants P and N such that for all T, and for all $t \geq T$

$$
\begin{equation*}
\left\|X(t) X^{-1}(\tau)\right\| \leq P e^{-N(t-\tau)} \tag{16}
\end{equation*}
$$

The connection between the two types of stability is well understood in the case where A, b and c are constant matrices [8]. If the system is completely controllable [9] and completely observable [9], then (15) and (16) are equivalent. For time-variable systems no such result is available. In fact, as shown by Kalman [1], there are simple examples of completely controllable and completely observable systems in which the two types of stability are in no way related. It will be shown below, however, that under conditions somewhat stronger than complete controllability and complete observability (15) and (16) are equivalent.

Let us first introduce the controllability and observability matrices [10,11] of system (14):

$$
Q_{c}=\left[p_{0} p_{1} \cdots p_{n-1}\right]
$$

where

$$
p_{k+1}=-A p_{k}+d / d t p_{k} ; \quad p_{0}=b
$$

and

$$
Q_{0}=\left[r_{0} r_{1} \cdots r_{n-1}\right]
$$

where

$$
r_{k+1}=A^{\prime} r_{k}+d / d t r_{k} ; \quad r_{0}=c^{\prime}
$$

(' = transpose) . The main result to be established is summarized in the following theorem.

Theorem 2. If Q_{c} and Q_{o} are Lyapunov transformations $[8]$ on $(-\infty, \infty)$ then the stability criteria (15) and (16) are equivalent.

Remark. For constant systems the conditions on Q_{c} and Q_{o} reduce to complete controllability and complete observability. For time variable systems, if the first n derivatives of the matrices A, b and c are bounded the conditions are equivalent to uniform controllability and observability in the sense that the determinants of Q_{c} and Q_{o} are bounded away from zero. Before proving Theorem 2 several preliminary results will be established. Let $\psi(t)=c(t) X(t)$ and $\theta(t)=X^{-1}(t) b(t)$.

Lemma 3. If Q_{0} is a Lyapunov transformation on $(-\infty, \infty)$ then the elements of ψ form a set of linearly independent solutions of an equation of type (1).

Proof. Consider the transformation of coordinates $w=Q_{o}^{\prime} x$ mapping (A, b, c) into ($\bar{A}, \bar{b}, \bar{c}$). Since Q_{0} is a Lyapunov transformation the matrices $\overline{\mathrm{A}}, \overline{\mathrm{b}}$, and $\overline{\mathrm{c}}$ must be bounded on ($-\infty, \infty$). Furthermore it is easily shown [10] that \bar{A} and \bar{c} have the canonical form

$$
\overline{\mathrm{A}}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & \cdots & -a_{n-1}
\end{array}\right], \quad \bar{c}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]
$$

Since ψ is invariant under a transformation of coordinates it is clear that the elements of ψ satisfy an equation of the type (1) with $a_{i}=g_{i}$, $0 \leq \mathrm{i} \leq \mathrm{n}-1$.

Similarly, it may be shown that the following lemma is true.

Lemma 4. If Q_{c} is a Lyapunov transformation on ($-\infty, \infty$) then the elements of θ form a set of linearly independent solutions of an equation of type (1).

Lemma 5. Let D_{1} and D_{2} be equations of type (1). For each t, let $h(t, T)$ be a solution of D_{1} and for each τ, let $h(t, \tau)$ be a solution of D_{2}. If there exists a constant M such that for all t

$$
\int_{-\infty}^{t}|h(t, \tau)| d \tau \leq M
$$

then there is a constant N such that for all t

$$
\int_{-\infty}^{t}\left|h_{i j}(t, \tau)\right| d \tau \leq N, \quad 0 \leq i, j \leq n
$$

where

$$
h_{i j}(t, \tau)=\frac{\partial^{i}}{\partial t^{i}} \frac{\partial^{j}}{\partial \tau^{j}} h(t, \tau)
$$

Proof. For each τ let h_{T} be the function such that $h_{T}(t)=h(t, \tau)$ for all t. Then by Theorem 1 , there is a constant K such that for all τ

$$
\left\|h_{\tau}^{(i)}, I\right\|_{\infty} \leq K\left\|_{\tau}, I\right\|_{\infty}, \quad 1 \leq i \leq n
$$

on every interval I of length 1 . Therefore,

$$
\begin{equation*}
\int_{-\infty}^{t}\left|h_{\tau}^{(i)}\right| d \tau \leq K \int_{-\infty}^{t}\left\|h_{\tau}, I_{t}\right\|_{\infty} d \tau \tag{17}
\end{equation*}
$$

where $I_{t}=[t, t+1]$. By Corollary 2 there exists a $\delta>0$ and subintervals J_{t} of I_{t} of length δ such that $\left|h_{T}(t)\right| \geq \frac{1}{2}\left\|h_{T}, I_{t}\right\|_{\infty}$ on J_{t}. Let k be the smallest integer such that $0 \leq \mathrm{k} \delta \leq 1<(\mathrm{k}+1) \delta$. But then (17) implies

$$
\int_{-\infty}^{t}\left|h_{T}^{(i)}(t)\right| d \tau \leq K \int_{-\infty}^{t} 2\left|h_{T}(t+l \delta)\right| d \tau
$$

for some integer ℓ such that $0 \leq \ell \leq k$. Hence, reintroducing $h(t, \tau)$, we have

$$
\begin{align*}
\int_{-\infty}^{t}\left|h_{i 0}(t, \tau)\right| d \tau & \leq K \int_{-\infty}^{t} \sum_{0}^{k} 2|h(t+j \delta, \tau)| d \tau \tag{18}\\
& \leq 2 K(k+1) M
\end{align*}
$$

It follows immediately from Theorem 1 with $p=1$ that a constant K_{1} exists such that

$$
\begin{equation*}
\int_{-\infty}^{t}\left|h_{0 j}(t, \tau)\right| d \tau \leq K_{1} M \tag{19}
\end{equation*}
$$

Now observe that if $h(t, \tau)$ is a solution of D_{1} for all t, then $h_{0 j}(t, \tau)$ is also a solution of D_{1} for all t and for all $j \geq 1$. It follows immediately from (18) and (19) that

$$
\int_{-\infty}^{t}\left|h_{i j}(t, \tau)\right| d \tau \leq 2 K K_{1}(k+1) M=N
$$

for $0 \leq i, j \leq n$.
We are now ready to prove Theorem 2.

As a consequence of Lemmas 3 and 4 the function $h(t, \tau)$ as defined in (15) satisfies the hypothesis of Lemma 5. Hence, if (15) holds there is a constant M_{1} such that for all t

$$
\int_{-\infty}^{t}\|\Gamma(t, \tau)\| d \tau<M_{1}
$$

where $\Gamma(t, \tau)$ is the $n \times n$ matrix with elements $h_{i j}(t, \tau)$. It may be readily verified [12] that

$$
\Gamma(t, \tau)=Q_{0}^{\prime}(t) X(t) X^{-1}(\tau) Q_{c}(\tau)
$$

Therefore, since Q_{o} and Q_{c} are Lyapunov transformations

$$
\int_{-\infty}^{t}\left\|x(t) X^{-1}(\tau)\right\| d \tau<M_{2}
$$

for some constant M_{2}. Since A of (14) is bounded, it follows [8] that (16) holds for some P and N.

Clearly (16) implies (15), and this completes the proof of Theorem 2.

It should be noted that if system (14) satisfies condition (16) then the output is bounded for all initial states and all bounded inputs. Thus, an immediate corollary of Theorem 2 is the following.

Corollary 3. If system (14) satisfies the hypothesis of Theorem 2 then it is BIBO stable if and only if it is exponentially stable.

REFERENCES

1. R. E. Kalman, "On the stability of time-varying linear systems," IRE Trans. on Circuit Theory, Vol. CT-9, December 1962, pp. 420-422.
2. E. Esclangon, "Nouvelles recherches sur les fonctions quasipériodiques, " Ann. de l'Observatioire de Bordeaux, Vol. 16, 1921, pp. 51-177.
3. E. Landau, "Über einen satz von Heirn Esclangon," Math. Am., Vol. 102, 1929, pp. 177-188.
4. I. Halperin, "Closures and adjoints of linear differential operators," Ann. of Math, Vol. 38, 1937, pp. 889-919.
5. E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin, 1961.
6. D. C. Youla, "On the stability of linear systems," IEEE Trans. on Circuit Theory," Vol. CT-10, June 1963, pp. 276-279.
7. C. A. Desoer and A. J. Tomasian, "A note on zero-state stability of linear systems," Proc. 1st Allerton Conf. on Circuit and Systems Theory, 1963, Pp. 50-52.
8. L. A. Zadeh and C. A. Desoer, Linear System Theory, McGrawHill Book Co., New York, 1963.
9. R. E. Kalman, "Mathematical description of linear dynamical systems," J. SIAM Control, Vol. 1, 1963, pp. 152-192.
10. L. M. Silverman and H. E. Meadows, "Degrees of controllability in time-variable linear systems," Proc. of the National Electronics Conf., Vol. 21, 1965, pp. 689-693.
11. L. M. Silverman and H. E. Meadows, "Controllability and observability in time-variable linear systems," J. SIAM Control, to appear.
12. L. M. Silverman and H. E. Meadows, "Equivalence and synthesis of time-variable linear systems," Proc. 4th Allerton Conf. on Circuit and System Theory, 1966, pp. 776-784.
