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ASYMPTOTIC STABILITY IN THE LARGE

OF A CLASS OF SINGLE-LOOP FEEDBACK SYSTEMS'

H t
R. A. Baker1 ' and C. A. Desoer'

The purpose of this paper is to obtain some sufficient conditions

for asymptotic stability in the large of a large class of systems. The

basic idea is due to O'Shea [l]„ We consider a system whose block

diagram representation is shown in Fig. 1. Our results extend those

of O'Shea in several directions: (a) the linear time-invariant sub

system, denoted by G in Fig. 1, is required to belong to a much

broader class. By describing G by a convolution operator we allow

in the class not only systems described by differential equations but

also systems discussed by difference differential equations [ 2, p. 189;

3]. Also allowed are systems whose internal dynamics require partial

differential equations, say, because of diffusion process or wave
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propagation, (b) The conditions on the nonlinearity <p are less restric

tive. (c) The results are stated more sharply in terms of the dis

turbance T|.

The input-output relation of the linear time-invariant subsystem

is

(1) cr (t) = \ g(t-r) e(r) dr t > 0
J0

and that of the nonlinearity is

(2) c(t) = (j>[o-(t)] .

The specific assumptions which apply throughout are the

following.

(Nl) (N): <|>:R -»R; <|>(0) = 0

For some finite k,

(N2) |<M°-)| < |k<r| for all cr * 0

4> (<r,) - cj) (cr )
(N3) 0 < < k for all cr,, crn and cr, t cr,.

cr - cr 12 12

(Gl) g€ L2(0, oo)

The distributional derivative g of g is of the form
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CO

(G2) g=^ +Y at ^"V
i=l

where

(G3) gl€ Lx(0, oo), S|a.| < oo

(El) ricL^O, oo)

(E2) rj is differentiable and f| € L'(0, oo).

Observe that (G2) and (G3) imply that g is bounded on [ 0, oo),

and that g(t) -*- 0 as t -* oo. The same holds for t). Call

^M = SUP \VW\> SM = sup |g(t)|.
t>0 t>0

In some manipulations to follow, it is useful to consider the functions

g, e, cr, tj and c to be defined for all t, all of them being identical to

zero for t < 0. We use ~ to denote Fourier transforms: e. g.,

C -icotg(M = \ g(t) e dt .
J0

We use ||# || to denote L norms: e.g.,

pCO
Ihll = hwi dt.

We come now to the main result of the paper.
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Theorem. Consider the system shown in Fig. 1. Suppose that

assumptions (Nl) to (N3), (Gl) to (G3), (El) and (E2) hold. Let y be

any real-valued function which has a Fourier transform y and such

that y(t) = 0 for t < 0, y(t) < 0 for t > 0 and ||y|| < 1. Under these

conditions, if for some a > 0

(3) ReJ[l +icoa +y(io))] [g(ico) +1/k] > ^ 0 for all co e (-oo, oo) ,

then,

(i) sup |o-(t) | < co,
t>0

(ii) cr(t) -*• 0 as t -»> co,

(iii) as ||r||| + \\r\\\ -*• 0, the corresponding cr has the property

that sup |cr(t) | -*• 0 .
t>0

Notes. 1) By (N3), the output c has the same properties.

2) If c|> is identically zero, the conclusions are immediate

consequences of (El) and (E2). From now on, (j> is assumed not iden

tically zero.

The proof of this theorem is somewhat involved. In order to

simplify it we quote a lemma (see Ref. [5]).

Lemma. Let x and y be in L?(-oo, oo). Let, for each t € R,

(x(t), y(t)l € <p where <p is a monotonically increasing relation

{i.e., iv e2e R implies [^(^ - <p(iz)] (^ - £2) ^ 0} , then for

all t e R
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(5)

oo />00

\ x(t) y(t) dt > \ x(t) y(t - t) dt .
-oo -oo

If, in addition, <p is odd (i.e., (£, tj) e <p implies (-£, -t|) e <p), then

the inequality above holds with absolute value signs on both integrands.

Proof.

I. The system shown in Fig. 1 is characterized by the equation

(4) cr(t) = ri(t) - f g(t-t') *[<r(t')] dt1 t >0.
J0

The given function T| is continuous and bounded, g is bounded and,

by (N3), <p satisfies a Lipschitz condition; then solving (4) by iteration

we can apply the standard arguments to show that the resulting sequence

coverges uniformly on every bounded interval, and that (4) has a unique

solution which is continuous. For brevity, let L be the class of
7 ooe

all measurable functions which are bounded on every bounded interval.

Thus cr € L ; clearly c € L and e € L
ooe ooe ooe

II. Let T be an arbitrary positive number. Let cr = cr + cr*y,
7 m '

c = c + c *y, and, in general, given any function x, we define
m

x =x+x*y. Then
m J

T

'o " ~0

T

'0

\ (cr - c /k) c dt = \ (cr - c/k) c dt
J mm J

+J (y*(<r - c/k))(t) c(t) dt,
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where all integrals are finite since y € L,, cr e L , and c € L
B y V ooe* ooe

Now let the subscript T denote the truncation of a function to the

interval [ 0, T]: thus, f (t) = f(t) on [ 0, T], and f (t) = 0 elsewhere,

Considering the second integral in (5), we define

pOO
(5a) R(t) =J [crT(t - t) - cT(t - x)/k] cT(t) dt ,

and observe that by Fubini's theorem

oo

(6) " dT-C (y *(o- -c/k)) (t) c(t) dt =j y(T) R(r)

Observe that, for each t, the real numbers c (t) and cr (t) - c (t)/k

are monotonically related: indeed, denoting c (t.) by c. and cr (t.)

by o\f

[(o-1-o"2)-(c1-c2)/k](c1-c2) =(o-1-cr2)(c1-c2)[k-(c1-c2)/cr1-o-2)]k >0,

where the inequality follows from (N3). Consequently by Lemma 1,

R(t) ^ R(0); and since y ^ 0, (6) gives

/•»CO

(6a) I y(T)R(T)dT > -R(0) ||y||.

Thus, the left-side integral of (5) is larger or equal to (1 - ||y ||) R(0) ^ 0

In other words, for each T > 0, there is a finite b(T) > (1 - ||y ||) > 0

such that

(7) J [<rm(t) - cm(t)/k] c(t) dt =b(T) R(0) > 0.
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III. From the block diagram, cr = cr + r\, hence

\ [cr (t) +ffo-(t) - c (t)/k] c(t) dt =f [cr (t) +ever (t) - c (t)/k] c(t) dt
U* m m j em e m

(8) + f [r| (t) +^(t)]c(t) dt .

In order to show by Fourier methods that the first integral in (8) is

nonpositive, observe that if cr' = -g * c and cr' = -g * c then, on
G J. c X

[ 0, T], cr = cr" , cr = cr' , and cr = cr' . Similarly, c maybe
L J e e em em e e J 3

replaced by c_ . Now c e L , hence cm € L, fl L0 . With g € L->,
7 T ooe T 1 2 & 2

this implies cr1 € L., ; hence, since g and y € L,, cr € L^ and cr1 € L„
e 2 °yle2 em 2

[4], Therefore the first integral in (8) is the product of two L -

functions. Using Parseval's theorem, and noting that odd functions of

co contribute nothing to the integral, we obtain

T

'0

\ [cr' (t) + orcr' (t) - c' (t)/k] c(t) dt
J_ em e m J

=^j Rej[l +cnco +y(ia))][g(ico)+l/k]lcT(icu) c^(ico) dco ^ 0,

where the inequality follows by (3). Thus (8) implies that, for all

T > 0,

(9) J [(rm(t)+ad'(t)"*Cm(t)/k]c(t) dt " J [V(t)+afl(t)]c(t) dt

This is the fundamental inequality.
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IV. Using (7) in (9), we conclude that, for all T > 0,

(10)

Let c
TM

that

(11)

aj <r(t) c(t) dt <j [tim(t) +*T)(t)] c(t) dt

sup |cT(t) Since lhmll ~ Ihll + llyll Ihll* we conclude

"1 b(t) c(t) dt < c
TM i+IIyII Ihll + «lh = c__,M

TM

rxCall $(x) = \ <|>(cr) dcr, then, with a > 0, (11) implies that for all

T > 0

(12)
-1*[<r(T)] S *[<r(0)] +cTMMa

The slope condition (N3) on cj> implies that $(x) > [cj)(x)] /2k, hence

for all T > 0

-1-— |c(T)|2 <*[er(0)] +cTMMc

This inequality implies that c € L , recalling that c is continuous

this is easily shown by contradiction. In fact

(15) sup |c(t)| ^(kMof1) +2k$[cr(0)] \ +kMof .
t>0
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Since cr (0) = 0 by (1), as |h || + |h ||-»0 both M and (3 tend to zero and

so does sup |c(t) | .
t>0

V. Let us show that

»T

J (cr - c/k). , cdt
'0

is bounded. By (5a), this integral is R(0). If we let c = sup |c(t)
t>0

then (7), (9) and (11) give

T

'0

Observing that c{) is monotonic and that cr(0) = r|(0), we obtain

b(T) \ (cr - c/k) c dt < c M + a$[<r(0)] .

<[<r(0)] * ti(0) c(0) ^ 114)11 cM < McM .

Hence,

J (cr - c/k) cdt <cM M(l +a)U - ||y IN"1 .

Since the integrand is nonnegative by (N3) and since the right hand

side is independent of T, we have

(16) J (cr -c/k) cdt <cM M(l +or) f1- Hyllj'1 .

Note that as ||tj|| + |h||~*0, the bound on the right-hand side of (16)

tends to zero, because both c^, -*» 0 and M -*• 0 .
M
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VI. To complete the proof we must consider the several possible

behaviors of the nonlinear characteristic in the neighborhood of the

origin.

Case 1. c{>(cr) = 0 implies cr = 0.

We know that cr = cr + r| and that tj -*• 0 as t -* oo. Since cr = -g * c,
e e

where g € L. and c € L , it follows that cr € L ; hence cr is
1 oo e oo e

uniformly continuous on [ 0, oo). If cr did not -*0 as t -*-oo, then

cr does not go to zero; using the uniform continuity of cr we can easily

show that the area under the function

U) -itoal) *[.<t>]
would then be infinite. This contradicts (16). Hence cr -»0 as t -*co.

This, together with cr e L , implies that cr € L . Thus (i) and (ii)
° ooe oo

are established, and (iii) follows by contradiction: if ||ti|| + ||tj|| -*• 0

and sup | cr(t) | does not go to zero then, because of the uniform con-
t>0

tinuity of cr , the bound on the integral in (16) could not go to zero.

Case 2. <j>(o~) = 0 implies cr e [-cr , cr ] with cr > 0, cr > 0 .

Using the monotonicity of c{>, and inequality (16), we obtain

l r°°(18) cMM(l +<*)(!- || y||)' *J (cr-c/k) cdt

oo /-»oo

o-x \ c"(t) dt +cr2 I c (t) dt.
'0 "0
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Hence c € L1 . But already we know c € L hence c € L . Now

- 2
cr = -g * c hence cr = gc where g, c € L . Consequently cr c L' .

Now by the Rieman Labesgue lemma cr (t) -»• 0 as t-*oo, hence

cr(t)-*0 as t-*co. Now as ||r||| + ||ti ||-*0 (18) implies that || c ||-»• 0 ;

but

ke(t)hgMl|c||

consequently sup |cr (t)|-*0, and so does sup |cr(t) | . Therefore (i),
t>0 e t>0

(ii) and (iii) have been established.

Case 3. 4>(tr) = 0 implies cr € [ 0, cr ] with cr > 0 .

Combining the techniques of Cases 1 and 2, we first observe that

oo > \ (cr - c/k) cdt > J cr"(t) - <$>[ cr"(t)] /kl c|)[ cr"(t)] dt

pCO
+ cr \ c+(t) dt .

J0

Each of the integrals is finite and its value -*• 0 as |h || + |h ||~*0 • By

the reasoning of Case 1, cr" satisfies (i), (ii) and (iii), and by that of

+ +
Case 2 so does cr . Clearly, cr = cr - cr" does so too.

Corollary .

If cj>, the characteristic of the nonlinearity, is an odd function,

then the theorem still holds without the requirement that y(t) ^ 0

for t > 0 .

-11-



Proof. By the lemma, since <{> is odd, R(0) £ |R(t)| for all t. The

previous assumption that y(t) < 0 was used only in the derivation of

(7) from (6). Under the present conditions,

pco | pOD
I y(r) R(r) di < |y(T)| |R(t)| dT ^ R(0) ||y|| ,

hence, the previous equation (6a) still holds. The remainder of the

proof requires no modifications.
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FIGURE CAPTION

Fig. 1. Feedback system under consideration.
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u=Q+BQ_i
1

<Tc *°—oKS)-1,
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