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Summary—It is shown that in order that a Norton high-pass low-pass

complementary ladder network be constant resistance, all its reactive

elements must be linear. The proof requires a novel perturbational

analysis of nonlinear networks which gives precise bounds, in terms of

the input, of the effect of the nonlinearities. This type of perturbational

analysis can be considered to be a contribution to the identification

problem.

1. INTRODUCTION

It has previously been shown [l] that every constant resistance

network made of linear, passive, time-invariant elements can be modi

fied so that its elements may become time-varying and yet it maintains

its constant resistance property. It has also been shown [1] that, under

certain conditions, the elements can become nonlinear and time-varying

and yet the constant resistance property can be preserved. Many



constant-resistance networks satisfy these conditions. However,

Norton's high-pass low-pass complementary ladders furnish examples

of networks which do not obey the conditions. Since these conditions

are merely sufficient, it is still conceivable that some, or all, of the

reactive elements can be nonlinear and yet the parallel ladders can

maintain their constant-resistance property. The purpose of this paper

is to prove that this is not possible. This result has been announced

previously [ 2].

In order to obtain a valid proof, new and original techniques for

probing nonlinear networks had to be developed. It is believed that our

perturbational analysis is of far greater interest than the answer to the

above problem. In particular, it may have important uses in identifica

tion theory; indeed, a careful study of the reasoning below will show

that we solve an identification problem which may be formulated as

follows: consider a high-pass low-pass complementary ladder-type

constant-resistance network; suppose its topology is specified as well

as the nature of its elements (i.e., whether they are resistors, inductors,

or capacitors), and suppose that the network is zero-state equivalent to

a one-ohm resistor, determine the characteristics of its elements. We

show that if the elements are assumed to be time-invariant, they must

necessarily be linear.
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2. ANALYSIS

The easiest way to make our method clear is to interlace the

general analysis with one specific example. In this way the notation is

easy to understand. We pick as our example the Norton-type constant-

resistance network shown in Fig. 1. With charges and fluxes as network

variables, the state description of the network is:
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and the port description is:
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More generally, Eqs. (1) and (2) are of the form

x = A x + b e (l1)

i = (c, x) + e (2 )

Suppose that the reactive elements are now nonlinear: nnore precisely,

let their q-v and <p-i characteristics be

{Cl =1W % =1W

^'iw \ =iw • (3)

ic3 -!w \ =2f6<v

We shall make the following assumptions on the characteristics for

j = 1, 2, . . ., 6:

2
Fl. f € C (i.e., the second derivative of f. exists and is continuous),

j J

with f.(0) = 0,

F2. f is a strictly monotonically increasing function, and
J

0 <f!(-) < co,

F3. f.:R2^R.
J

Let us call the original linear network J& and the modified network

3fa (see Figs. 1 and 2). With the nonlinear characteristics specified
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in Eq. (3), the state and port equations can be shown to be of the

form [1]

x = A f(x) + b e , (4)

i = (c, f(x)> +e , (5)

where A, b, and c are the same as in Eqs. (1 ) and (2 ), and

f(x) 'Ui^), f2(q2), f3(q3), f4(?4), f5(<P5), £6(<P6>y • For our pertur-
bational analysis, we choose e(t) = E + e(t), where E is an arbitrary

real constant and e(» ) is small, i.e., ||e|| = sup |e(t)| is a small
t

number. In other words, E is a bias and e is a small signal. Let

x = X +x, with X being a constant n-vector satisfying the equation

A f(x) = -b E , (6)

be the zero-state response of Eq. (4) to the input e = E + e . The

assumptions on f imply that for any E, Eq. (6) has one and only one

solution; indeed, as we shall see later, the linear network J6 is

asymptotically stable, hence A is nonsingular; furthermore, assump

tions F2 and F3 imply that f(») is a one-to-one mapping of R onto

R . As a consequence of Fl, Eq. (4) can be expressed as

x = A f(X + x) + b E + b e

= A f(X) + A f'(X) x + g(x) + b E + b e ,
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where g(x) depends on E and contains only the higher order terms in

x. Using Eq. (6), we have

x = A fl(X) x + g(x) + b e . (7)

Equation (7) is the perturbational equation about the constant operating

point X = (Q_, Q0, Q,, $„, $c, $,)'. We shall show that
—— «- 1 2 j 4 d o

(i) for all E, the operating point X is a. s.i.l. (asymptotically

stable in the large [3]),

(ii) the perturbational analysis is first used to show that all the

elements of the low-pass ladder are linear, and

(iii) the constant resistance assumption implies that all reactive

elements of both ladders are linear.

(i) Operating Point Stability. Let us show that the operating point is

a. s.i.l. Once this is established it will follow that if e(t) = E u(t)

(where u(-) is the unit step), then for all E,

lim x(t) = X .
t-*oo

Given any E, the operating point X is determined by Eq. (6); let us

translate the coordinates of the characteristics according to

x = x - X, f(x) = f(X + x) - f(X) ;
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hence, Eq. (4) (with e(t) = E u(t)) becomes

x = A f(x) . (8)

The three assumptions on f(«) are also satisfied by £(•)• With q's and

<p's as state variables, the matrix A is expressed as the product of

two square matrices

A = HD ,

where -H is the hybrid resistive matrix, and D is a diagonal matrix

for the ladder networks considered here. In our example,

D=diag. (Sr S2, S3, T4, T5, T6) =diag.(f, i, f, f, f, 2J. Hcan
be interpreted as the A-matrix of the network Jb with all reactive

elements equal to unity. As a candidate for a Lyapunov function, we

define V(*) as:

6 x.

V(x) = Yd. f f (s) ds , (9)
f-i x Jo x
1=1

where d. is the _ith diagonal element of D. V is the energy stored in

the networkc/& . We assert that V is a Lyapunov function for Eq. (8)

and that x = 0, its only equilibrium point, is a. s.i.l. To prove it

we observe that
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1. (a) V(0) = 0 ,

(b) V(x) > 0 for x £ 0 (by Fl and F2) ,

(c) V -*oo as ||x || -oo (by F3) ;

2. along any zero-input trajectory, the time derivative of V

is given by

6

V(x) =£ d.f.fx.Jx. =<f(x), DAf(x)> . (10)
i=l

Note that x 4- 0 ^=> f(x) ^ 0. It remains to show that V is negative

definite. Consider the original linear network JG and its zero-input

response, i.e., the solution of

y = Ay . (11)

The stored energy £ (t) in j(s> is given by

6

%(t) =i Z di yi2(t) =i ty~]' ??(t)> • (12)
i=l

The rate of decrease of the stored energy in c)v is, by Tellegen's

theorem [4], the power dissipated in the resistors, and it is given by

51 £s(t) =<?(t)» ?i(t)) =<y(t)» ?^z(t)> • <13)
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Thus, along any zero-input trajectory of Eq. (11)

(y(t), D Ay(t)> < 0 ,

except at isolated instants when it is zero. Since with e(* ) =0, J(o is

a hinged network consisting of two ladders with a common ground, we

can consider the energy dissipation of each ladder independently. Since

each ladder is a linear, passive, time-invariant, series-L shunt-C

(or series-C shunt-L) ladder, it follows that:

§
(a) all modes are coupled to the terminating resistor, and

(b) the current through the resistor is of the form

Pt(t) e 1 ,

where p.(» ) are polynomials.

Hence each resistor dissipates energy at a positive rate, except at

some isolated instants when it is zero. Therefore, V < 0 in Eq. (10)

for almost all x ^ 0 . Thus V satisfies all the conditions required to

establish a. s.i.l. We conclude then that any operating point, which is

uniquely established by E, is a. s.i.l.

Remark. For such a series-L shunt-C ladder structure, if any one

(or more) of the reactances has a nonmonotone characteristic, then the

operating points on those parts of the characteristic with negative

This can be proved directly by writing the state equations and showing
that with the resistor voltage as output, all states are observable.
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slopes are (locally) unstable. For if one or more of the reactances were

negative, there would be at least one exponentially growing mode as can

be seen by the continued fraction expansion test for the characteristic

polynomial of the corresponding A-matrix. This means that such an

operating point cannot be physically established.

(ii) Perturbational Analysis. The first use of our perturbational

analysis will be to show that more than half of all the reactive elements

injG> must in fact be linear if the constant resistance property is to be

retained. Before the results of the perturbation can be used, we must

first show that, under small signal inputs, the response of the actual

nonlinear network is very close to that of the perturbational linear net

work. To do this we make use of the following

Lemma. Consider the differential equation

x = G x + g(x) + u , (14)

where x, g, and u are n-vectors, and G is an n X n constant matrix,

and also g(0) = 0. Assume that:

(a) every solution of x = G x approaches zero as t -*- oo,

(b) for any 6 > 0 there is an e > 0 such that |x |, |x | ^6

implies that |g(x ) - g(x ) | < e |x - x |,

The Lemma is proved in the Appendix.

I• | is the Euclidean norm, and || x || = sup |x(t)
t
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(c) furthermore, if 6 -*• 0, € can be chosen so that 6 -*- 0.

(In particular, conditions (b) and (c) will be satisfied if

g(°) is of second order.)

Call x(») the zero-state solution of Eq. (14) to the input u. Call x (•)

the zero-state solution of

~0 = S X0 +~ *15)

to the same input. Equation (15) is the linear approximation to Eq. (14)

about the operating point x = 0. Under these conditions, for sufficiently

small ||u|| ,

x~xn'l €M

II II 1 - e M

where M* f |e"^| dt . (17)
J0

2. As ||u|| -* o, € -* 0 .

This last conclusion is extremely important for our purposes.

It says that by taking the "small signal" sufficiently small, we can make

the ratio ||x - x ||/||x || as small as we wish. Now ||x - xQ || is the

peak value of the difference between the response of the nonlinear system

(Eq. (14)) and that of the linear perturbational system (Eq. (15)); and

||x || is the peak value of the response of the linear perturbational
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system. This means that the relative error introduced by replacing x

by x can be made arbitrarily small by taking ||u|| sufficiently small.

In particular, if all components of u are sinusoidal and at the same

frequency, then, as the amplitudes of these sinusoids go together to

zero, the response of the nonlinear system is a curve whose peak

deviation (from the sinusoidal response x ) becomes arbitrarily small

compared to the amplitude of the sinusoidal response x .

We now go back to the network M0 . To help visualization let us

write the state and port equations for J\o :

<P
4

3 1 4
0 0 0

2 " 2 3

3 1
0 0 0 0

1 ~1

2
0 0 0 0

3
- 2

0 0 0 0

0 -4 0 0

T 0 0-2
4
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f4^4» (18)

w

w



3 1 „ 4 2 „
1 = "I' 'I' °' 3" 3* °

w

f3(q3)

£4<*4>

f5(^5)

W

+ e (19)

About any operating point X, the perturbational equation takes the form

of Eq. (7). Note that by assumption F2, f'(X) is a diagonal matrix with

positive diagonal entries. It is easy to see that Eq. (7) is the state

equation of a network having the same topology as J& , but each react

ance of Jv> is replaced by a nonlinear one whose characteristic is

f!(X )x. plus a higher order nonlinear term, whose collective contribu

tion to the state equations is in the term g(x). Let us now consider

the linear network with the A-matrix A, where A ^ A f'(x)- As already

discussed in (i), all modes of such network are exponentially decaying;

hence all eigenvalues of A have negative real parts. It follows that

there is a finite positive number M such that

r°° At\ | e~ | dt = M < co . (20)

Condition (a) of the lemma is thus satisfied. Now since g € C (because

2
f € C ), g(0) = 0 and g'(0) = 0, it follows that for 6 positive and
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sufficiently small, ||x ||, ||x || ^ 6 implies that

f(xl> =S(?2) +|'(X2) (X1 ~*2] +2(l^l " ?2") * (21)

Thus ||x ||, ||x || £ 6 implies that

||g(Xl) - g(x2)|| <€ ||Xl -X2|| ,

where the positive number e may be taken as

(22)

e = 2 max |g'(x)| . (23)
Ix|<6

Furthermore, the continuity of g'(« ) and g'(0) = 5 guarantee that

e->o as 6 -*• 0. Thus all the assumptions of the lemma are satisfied.

Therefore for ||e || = sup | e(t) | sufficiently small, the zero-state

response of the nonlinear network described by Eq. (7) is very close to

that of the linear network described by

z = A z + b e . (24)

More precisely, the lemma states that the relative error committed by

replacing x by z can be made arbitrarily small provided ||e|| is taken

sufficiently small. We now assert that the nonlinear network described

by Eq. (7) will be constant resistance only if the linear network J&p

described by Eq. (24) is constant resistance. Indeed, let us prove it by
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contradiction. Suppose jG were not constant resistance; then for
P

some input e , the input current would differ from e . Consider a

large number N, and suppose that e./N is applied to the nonlinear net

work (described by Eq. (7)) and to J& . However large N is, the dif

ference between e /N and the input current to jfb^ will exhibit a fixed

relative error (with respect to N). Since as N -*- oo the response of

the nonlinear network tends to that of 7S> with a vanishing relative

error, then the input current of the nonlinear network cannot be equal

to e./N. Hence the nonlinear network is not constant resistance.

Therefore we have shown that if the nonlinear network (Eq. (7)) is con

stant resistance, then 0£ (described by Eq. (24)) is also constant

resistance. Let us recall that, in the linear case, the network is con

stant resistance if and only if a predetermined set of ratios is main

tained among the values of all the reactive elements [1]. For our

example Mo, if S = 3k/2 (with k being any real constant), then J\o is

constant resistance if and only if S_ = k/2, S = 3k/4, r = 4k/3,
Ct J *T

r_ = 2k/3, I\ = 2k. Thus for JQ> to be constant resistance, the
5 6

matrix f'(X) must be equal to the identity matrix times a constant k

for all operating points X. For if Jv is constant resistance, the per

turbation source e(») must also see a constant resistance at the port.

In short, at every operating point, the slopes of all the scalar functions

f. are the same. For jCo , the operating point which, for any E, is

given by Eq. (18), is:
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X=̂Qr Q2, Q3, «4, *5. *6j

=ff"1(2E/3), 0, f3X(4E/3), 0, f'̂ E/Z), f£X(E/2)| . (25)

Equation (25) shows that the operating points of elements 1, 3, 5, and 6

vary with E, whereas those of elements 2 and 4 stay at the origin

regardless of the value of E. (For convenience we refer to elements

2 and 4 by C and L , respectively.) Such a condition always occurs

because in high-pass ladder configurations the first series capacitor

blocks the d-c path to the subsequent elements. Therefore, we conclude

that all reactive elements, except possibly C and L , must be linear,

because for each one of them:

(a) at each operating point the slope of the characteristic must

be equal to a constant (independent of E) times the slope of

the q-v characteristic of cL at the origin, and

(b) each nonlinear characteristic goes through the origin.

It remains to be shown that C and L must also be linear.

(iii) Linearity of the High-Pass Ladder. In (ii) we have shown that the

low-pass section can only contain linear reactive elements and that the

first series capacitor of the high-pass ladder is linear. By using an

induction step, we are going to show for the general case that all the

remaining reactive elements are linear. Suppose that the first k
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St

elements are linear, we shall prove presently that the (k+1) element

is also linear. Refer to Fig. 3. The constant resistance condition

implies that the relation between e and j is specified by Y^s), the

input admittance of the ladder. Similarly, jfc is related to e by a

transfer admittance Y,(s).

Consider the Norton's equivalent circuit of the one-port to the

left of the terminals (k) , © (see Fig. 4). Note that Yeq(0) =0. The

source e (in Fig. 3) can be adjusted so that the current source of Fig. 4

is of the form i = I + i, where I is a constant and i is small. Since

Y (0) = 0, the d-c current I must go through the nonlinear inductor,
eqx

and hence the operating point of that inductor is (with notations as in

Eqs. (3), (9) and (25)) $k =f~ (1/^)- Using the perturbational analysis

and a previous reasoning, we conclude that the slope of the function

f-1(I/d ) is a constant (independent of I), hence the inductor is linear,
k k

Clearly, similar reasoning shows that the series capacitor Ck+1 (with

characteristic dfc+1 fk+1(qk+1)) is linear—take the Thevenin's equivalent

circuit of the one-port to the left of terminals ® , © and adjust e

(of Fig. 3) so that the TheVenin's equivalent source is e = E + e; note

that for the present case Z (0) = 0, hence the nonlinear capacitor

C must block the d-c voltage E, etc. This completes the induction
k+1

step. Consequently the high-pass ladder must have all its elements

linear.
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This completes the proof that the constant resistance property

of u(o implies that all its reactive elements are linear.

3. CONCLUSION

Previously [1, 2], we showed that, given a constant resistance

network made of linear and time-invariant elements, it is always pos

sible to have the reactive elements become time varying and yet pre

serve the constant resistance property. A general method in many

cases allowed these elements to become nonlinear. This method could

not be used on Norton-type constant resistance networks. In this paper

it is shown that neither this method nor any other method could do so.

The contribution of this paper can also be considered from the point

of view of an identification problem. Given the topology of the network

and the nature of the elements, the perturbational method developed in

this paper identifies every element of the network as a linear element.

Of course, the reactive elements had the slope of their characteristic

identified up to a common constant factor. This factor may be inter

preted as a frequency normalization factor. In fact, the possibility of

having all the reactive elements time varying can be interpreted as

having the normalization factor becoming an arbitrary function of time.

This identification point of view suggests a new problem: up to now all

observations were assumed to be unaffected by noise so we might ask:
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what tolerance can one guarantee upon the element characteristics

given that the network is constant resistance,and that all measurements

are performed in a noise background with a specified power spectrum?
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APPENDIX

Proof of Lemma. We have to prove the following facts:

1. ||x|| is small for ||u|| sufficiently small, and

l*-_*0ll£r4rizboll>

2. As I)xx II - 0, e -* 0.

The zero-state solution of Eq. ( 14) may be expressed as [5]

x(t) =xQ(t) +J e^{t'V) g(x(t»)) dt' (Al)

where x (•) is the zero-state solution of Eq. (15) and is given by

xQ(t) =J e5(t_t,) u(t') dt« . (A2)

By assumption (a), the positive number M defined in Eq. (17) is finite.

From Eq. (A2) we have

llxJI *f* |.eS(t-t,,| ||u||df *M ||u|| (A3)
for all t > 0.

The solution of Eq. (Al) can be obtained by taking the limit of the con

verging iteration scheme

-20-



?n+l(t) =?0(t) +I e9(t"t') ?(2n(t,)) dt' * (A4)

Using x as the first term of the approximating sequence, we get

from Eq. (A4),

x(t) =x (t) +f e^(t'tl) g(xQ(t')) dt' . (A5)
~ 0

(A3) shows that ||x || can be made as small as we wish by choosing

||UL|| sufficiently small; in fact, we may choose ||u|| so small that

||x || < M ||u|| < 2M ||u|| ^6 (A6)

where 6 is the number which is used in assumption (b). By assumption

(b), and from Eq. (A5), it follows that

HxJI S M||u|| +eM ||x0|| .

Clearly by choosing ||u|| sufficiently small, 6 can be made small and

by (c), so will e. Consequently by choosing ||u|| sufficiently small

we have

HxJI <(1 +€ M) M ||u|| < 6 (A7)

Now from (A3) and (A4), we obtain,
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bn+1ll sM||a|| +j*' |«5<t-t,,| ||g(xn)|| df . (A8)

Let us reason by induction. Suppose that we can choose ||u|| sufficiently

small so that

|xj| £ 2M ||u|| s 6 ; (A9)

then from (A8),

|x | S M|u| +2.M2 ||u|| (A10)

Since € -* 0 as 6 -*• 0, we can choose ||u|| so small such that

€ M < (1/2), and consequently,

l|xn+1H S 2M |u|| . (All)

Thus we have shown that if ||u|| is sufficiently small, first ||x || ^ 6,

and, second, ||x || ^ 6 implies ||x || ^6. Hence for ||u|| suf

ficiently small, for all integers n ^ 1,

|x || < 2M ||u|| < 6 . (A12)

Furthermore, the sequence {x } converges. Now from Eq. (A4), we
~n

get, for n = 1, 2,

-22-



fn+lW "^n'4' " J0 6
G(t-t') g(xn(t')) - gtj^t1))

By (A12) and assumption (6)

x . - x < e M x - x
~n+l ~n" "~n ~n-l

n = 1, 2,

df

(A13

With sufficiently small ||u||, e M < 1/2; hence the sequence of functions

{x } is a Cauchy sequence which converges uniformly on [ 0, oo) to a
~n

necessarily continuous function which we call x. Taking the limit of

both sides of Eq. (A4) as n -*• oo we see that x is the zero-state solution

of Eq. (14). The difference between the Nth iterate and x can be

written as

N-l

5m(*> - 2FnW =•N ffn+lW " ^*>
n = 0

and by (A5), (A13) and (A14),

N-l

>XN - X0

Letting N -> oo we get

N

x -* II s ) («M>n b0"~n+l ~n

n =0 n=l

-23-
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Hence

X - X <
€ M

0" 1 - e M "~0
(A16)

IX"X0" €MU - € iVi (A17)

Ko
1 - e M

Now as ||vx|| is taken smaller and smaller, ||x || -»• 0 (see (A6)),

||x || -> 0 (see (A12)), and ||x|| -*• 0 (by the limiting argument); there

fore in the estimates we can write ||g(x ) || ^ € ||x || and as ||u|| -* 0,

€ -»• 0. Thus with (A17), ||u|| -»• 0 implies

IX "xo"
————~——— > u .

lxo

24-
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