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SUMMARY

In this paper a study of the effect of IPFM modulation on single

input single output feedback control is attempted. For zero input such

systems can be reduced to a nonlinear discrete system. The use of

Lagrange stability concepts is used for the stability study of such

systems.

A step-by-step procedure is devised for the construction of the

state trajectories of the IPFM system. This has been applied to a

second-order plant where it is shown that instability, asymptotic sta

bility in the large, and asymptotic stability in the Lagrange sense, are

exhibited by such systems. It is also shown that in IPFM systems, the

periodic oscillation that exists depends on the initial state.

A critical study of the equivalence concepts of such systems

are reviewed in this paper and the limitations of the method are pointed

out. Further research in this area of feedback modulation is proposed

and discussed.
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INTRODUCTION

In recent years a few papers have appeared on Pulse Frequency

1- 6
Modulated (PFM) Feedback Systems.. Such systems appear in

engineering applications such as in communications systems (because

of noise-filtering properties), in attitude control of space vehicles

(minimization of fuel usage for extended space missions), in adaptive

control, and in incremental servos (step-up motors) where changes in

speed can be affected by changes in pulse rate. Apart from engineering

applications, such modulation schemes simulate the main electrical

properties of the neuron receptors. Thus, information transmission

7
through the neurons is better explainted by using such models.

The behavior of PFM Feedback Systems is discrete in nature;

however, it differs from the conventional sampled-data system in that

the sampling rate is not fixed but dependent on a certain threshold.

Thus the analysis of such a nonlinear operation is quite difficult. Some

attempts have been made to use the describing function for the analysis

and stability study of these systems. Such methods are approximate and

sometimes one needs an exact measure of the error involved. In some

cases, a Lyapunov function has been obtained for the stability study and

in other researches a general form of Lyapunov functions has been pro-

5
posed for certain discontinuous functions.



In this paper a general modulation scheme (Functional Pulse

Frequency Modulation, FPFM) is mathematically proposed and from

such a form the authors will discuss in detail Integral Pulse Frequency

Modulation (IPFM) Feedback Systems. The main contribution is to

obtain any equivalent nonlinear discrete system. For such an equiva

lent system a formulation of the Lagrange stability criterion is obtained.

Furthermore, a step-by-step procedure is formulated for the study of

certain systems and certain conclusions are obtained. In the course of

the discussions we point out the mathematical difficulties that have led

3
some authors (including one of the present authors ) to resort to approxi

mate methods. Though the analysis problem of IPFM systems is far

from solved, an attempt is made here to clarify some of the problems

involved and to point out the possible approaches to future work.

FUNCTIONAL PULSE FREQUENCY MODULATOR (FPFM)

A functional pulse-frequency modulator is defined as a system

operating on continuous or piecewise continuous inputs and converting

them into sequences of pulses with the following properties:

The shape of the pulse (magnitude and form) is determined

a priori. The pulses are numbered by an index p (p integer > 1). The

pth pulse is fully characterized by its emission time t , its sign

€ (e = + 1) , and a given function P(t) describing its shape. Figure 1
P P -
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is a block diagram of such a modulator and in Fig. 2a the output

sequence of emission is shown for a certain input x(t). If P(t) is a

function of time, it is assumed to have a bounded support, i.e., there

exists a finite interval (a, p) with a < 0, p > 0 , such that P(t) is

identically equal to zero for all t i (a, (3). It should be noted that P(t)

can also be a generalized function as 6(t). In many applications when

the shape is of no importance, P(t) is considered as 6(t). In this work

such a case is considered. We now proceed with the characterization

of the input-output relation.

The input x to the modulator denoted as x(t) is assumed to be

continuous or piecewise continuous for all t > 0 and equal to zero for

all t< 0 . Let S denote the class of such function. We further con

sider two, arbitrary, finite numbers 8 and 61 and denote by [x(t); 0,9']

a point in the space S X R X R satisfying 9' > 9 > 0. A function X is

defined, which assigns to every point in this space a real number denoted

by I (9,9'). The following assumptions are made on.I (9,9'), as a re-
X X

suit of the operation defined by X.

(a) I (9,9») = I (9, t) +1 (t,9') , allt€(9,9»),
X X X

(b) I (9 , 9f) is a continuous function with respect to 9'(when

9 is fixed).

It may be noted from the above conditions that I (9,9)= 0.

Finally, let T (threshold) and u be two parameters (positive or equal

to zero).
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The four quantities (I (0 , t), P(t), T, jj. ) fully characterize the

input-output relations of the modulator. More precisely, let x(t) be

the input signal to the modulator. The corresponding output of the

modulator is:

m(t) = fi ) e P(t - t ) . (1)
Lj p p

Pi1

If we let t,= 0 , then t and € are determined in a recursive
0 P P

manner as follows:

t =min{t |lx(tp-1,t)|}= T, t>tp-1 (2)

€ = sign {I (t , t )} . (3)
p x p-1 p

Thus, if x(t) is given, then the modulator output m(t) is uniquely

determined. The above definition of the modulator emphasizes its non

linear properties.

Finally, IPFM forms a particular class of FPFM for which the

"decision function" I (0, t) reduces to the integral of the input, i.e.,

I (0, t) = \ x(u) du .
X J0

-4-
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REGULATOR-TYPE IPFM CONTROL SYSTEM

In this paper the IPFM control system shown in Fig. (3) is con

sidered. Its input u(t) is considered to be zero for all negative t.

The linear plant is assumed to be of the reciprocal type (i.e., no zeros

in its transfer function) and characterized by the input-output relation

of the form:

k=N

ak y(k)(t) =kQm(t), kQ >0, (5)

k=0

where a can be considered unity.

If we let the normalized threshold and gain be, respectively,

AT A
T = -T- and k = krtu. , then Eq. (5) can be written in a vector form as

r A. r 0

follows:

where

A =

Y = A Y + B kQ m(t) ,

0 1 0 . . . 0

0 0 1. . . 0

•a -a
0 1 *

• • . -a
N-l

, B = , Y(t) =

y(t)

y(1)(t)

y{N-\)

If t is an arbitrary value of t, the solution of Eq. (6) for

'^o is

-5-
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A(t_to) At r*Y(t) =e I(t0)+k0e \ e"'Bm(T)dT. (8)( e"ATB
Jto

If the degree of the minimal polynomial of A is denoted by M,

g

then there exists a set of functions {a, (t)}, _ , . , such that
k k= 0, 1, ..., M

M

;At= )ff(t)Ak, 0<M<N-1. (9)
k=0

+
Further, if we let t € (t , t ), then

P P+1

m(t) = € u 6(t - t ) . (10)
P P

Using Eqs. (9) and (10) in Eq. (8) and letting t = t , we deduce
r

a / » M +
A(t-t ) a* v k r

Y(t) =e P Y(t") +kQ eAt £ A5 \ €p ^kCT )6{t " tp) dT * (U)
k=0 p

Since

1- "k<- t) 6 (t - t ) dr = or (-t ) , (12)
P K P

and k_u = k , (13)
0 r

then noting Eq. (9), we get

A(t-t )
Y(t) = e P [Y(tJ +€ k B]. (14)
- - p p r-

-6-



to:

If we let Y(t" ) = Y" and Y(t+ ) = Y+ , then Eq. (14) reduces
- p -p - p -p

Y (p) = Y + ek B
- -p p r -

(15)

Setting t = t -.in Eq. (14) , one obtains the value of Y(t) at
P"rl

t = t „ as a function of e and t ., as follows:
p+1 p p+1

-p+1

A(t +1-t)
= e P+1 P [Y~ +€ k B]

-p p r -
(16)

The above expression is fully characterized if € and t ,_ - t are
t P P+1. P

known. Equations (2) and (3) with I (t
x p

, t) = r x(t) dT enable us to

determine t , and € as a function of the past history of y(t). This
p+1 p

is discussed in the following.

We denote a? as the first row of A (0 < k < M) and
k . — —

then Eq. (14) can be written as

P.1

p, 2

,+
P, N

-7-
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M

k=0 X '

(18)

By noting the form of A from Eq. (7), we can reduce a to the

vector:

0

0

0

0

hence, Eq. (18) yields

k=M

(k + 1) row

Y(t) = T or,(t - t ) Y+ , t €(t; , t_(1 ) .
— Li k p p, k+1

k=0

+

'p ' "P+1

Now, from Eq. (4) and Fig. (3) , I (t , t) = - \
x p \

(19)

(20)

\ Y(T)dT and

T = T , then t and € ,n are determined as follows (see Eqs. (2) and (3))
X. r p+1 p+1

t ,. = Min
p+1

.t M
f'I^V -1 I VT-VYP.k+idT]=±Tr-

k=M

I-€p+l= "Slgn
f-p+1
\ k p p, k+1

(22)

p k=0
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where

If we define b (t) = - \ aAt) dr , then
k J0 k

-J'-k(T-t)dT =
..t-t

- I •' V- ) du = b. (t - t )
k p

Therefore, from Eqs. (22) and (2 3) we obtain

*p+l =Min [* It>tp , ^b (t -tp) . Y^

Vi=sign <i<Vi-V' yp

b£

b0(t)

b/t)
•

V1'
0

0

=±V

(23)

(24)

(25)

(26)

The above relation yields a step-by-step procedure for determin

ing the various sequences {« } and {t } or more simply the sequences
-€ —i P P

of vectors m =
—P

If Y is the initial state of the linear plant at t = 0, t and €

are obtained from (24) and (25) as:

tx =Minj^t | t>0, (b(tx) , YQ yj =+Tr ,

«i=Bi«*{0*V. ^o>}-

-9-
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From Eq. (14) , we determine Y as follows:

- Ati

From Eq. (15), we obtain Y as

Y. = Y. + €. k B .
—1 —1 1 r —

(29)

(30)

Hence, the vectors m , m , . . . , m are determined by a
— 2 — 5 —p

similar procedure. The preceding results lead to the definition of the

"Equivalent Discrete System. " To illustrate the above procedure a

second-order example is chosen as follows:

The linear plant is characterized by the following differential

equation

y(2) +3cy(1) +2c2y= kQ m(t) , (31)

where c is arbitrary but different from zero.

The matrix "A" of the above system is given:

0 1 H

A = (32)

L- -2c -3c-J

the eigenvalues are \ = -c , and X = 2c, hence

e *= <*0(t) I +tt]L(t) A, (33)

-10-



where

... -ct -2ctaQ{t) = 2 e - e

^(t) =
-ct -2ct

e - e

For this particular case, Eqs. (24) and (25) are given as:

-C(t-t )
tp+1=Min{t | t>t , ( d(c), Y > e P

-2c(t-t )
+ < h(c) , Y* > e P} =+T_ ,

(34)

— r

-c(t -t ) , -2c(t , -t )

€p+l=Sign{(-(C)' YP> 6 +<^C)' YJ> 6 P

(35)

},

(36)

where d(c) and h(c) are vectors with two components. They are de

termined either directly from a At) and a At) or from the definition of

the vector b(t) . Also

Y+ =
r^t> np

|y(V)Jy p _

(37)

Setting e = A in Eq. (35), we can determine t ,, by
P P+1

solving the following second-degree equation.

<«¥<=>. Ip> %+ (M-)> ?+p) A^=VlTr. (38)
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A similar equation holds for € . The above equation can be

solved exactly for determining the smallest positive root which gives

For more general cases of linear plants, the exact solution of

higher equations can be quite difficult. However, certain approxima

tions can be made to reduce these higher equations into a second order.

For instance, the components of the vector b(t - t ) can be expanded
c

into power series of (t - t ). By maintaining the constant terms and

2
terms of (t - t ) and (t - t ) , one can determine t ., and € , by

p p p+1 p+1 '

solving a second-order equation. It should be noted that the larger the

+
norm of Y , the better is the approximation.

ir

EQUIVALENT DISCRETE SYSTEM

+ +
If Y is defined as Y(t ), then there exists a vector-valued

-P P

function "F" such that

Y* = F(Y+). (39)
-p+1 -p

Proof: From the definitions of t ., and e , as seen from Eqs. (21)
p+1 p+1

and (22), we deduce that there exist scalar valued functions f and g

such that

t , - t = f(Y+ ) and € , = g(Y+ ) . (40)
p+1 p -p ' p+1 s —p

-12-



Using Eq. (15) , we obtain

Cl =V +Vl kr " ' (41)

Therefore,

Yp+l=Ip+1 +krg(4)5> <42>

and from Eq. (16)

A[f(Y+)]
Xp+1=e P (Yp)+krg(Yj)BSF(Y+). (43)

The above equation proves the assertion that there exists a vector-

valued function. This function represents the vector equation of a non

linear discrete system.

Definition: Given the IPFM control system considered in Fig. (3) with

u = 0 and assuming Y to be the initial value of the state vector of the

linear plant, the nonlinear discrete system

Ip+l=F(Yp)' 4 =Io («)

is called the "Equivalent Discrete System of the IPFM Control System. "

Two properties of the equivalent discrete system are mentioned.

(a) The property t = t + f(Y ) , indicates that the modulator
p+1 p p

decides on the emission of a pulse at time t ., on the basis of the value
p+1

+
of the state vector at t . Hence, the time interval between two con-

P
+

secutive pulses (p, p+1) varies with Y and thus self-adaptive control
IT

-13-



is exhibited.

(b) The discrete system describes completely the behavior of

x _

the output vector of the linear plant. In each interval (t , t ) , the
P P+1

following equation from Eq. (14) holds:

A(t-t )
Y(t) = e p Y . (45)
"" -P

STABILITY OF EQUIVALENT NONLINEAR DISCRETE SYSTEM10

In view of the fact that, in general, Y(t) , for IPFM systems

will not tend to Y = 0 when t -»* oo , the concept of asymptotic stability

in the Lagrange sense is introduced. The introduction of this stability

concept is needed to encompass all the occurring cases.

+ +
Definition of Stability: The discrete system Y . = F(Y ) is considered

1. —p+1 p

to be asymptotically stable in the Lagrange sense if there exist two

bounded closed sets U and V with (UCV) containing Y = 0, such that

the trajectory of this discrete system corresponding to any initial con-

+
dition Y = Y , where Y is finite, will eventually enter the set U

after a finite time and thereafter remain in V (see Fig. (4) ). It should

be noted that the definition implies the convergence of the solution to a

set whose size is independent of the initial condition Y .

The test of the asymptotic stability in the Lagrange sense for a

zero input IPFM control system, based on the equivalent discrete system,

can be effected by using the Lyapunov function as follows:

-14-



+ . +
Let Y = F(Y ) be the vector difference equation of the equiva

lent discrete system and ||Y || denote the Euclidean norm of Y . Further-

more, let Y , Y , Y , be the three points in the state space. Finally,

for a given bounded set U let U designate the complement of this set.

Stability Theorem: If it is possible to find a continuous function W(Y),

two bounded closed sets U and V and two positive constants 6 and r

such that:

(I) W(Y) = 0, iff Y = 0 , (46a)

W(Y) -* +oo when Y-+oo, (46b)

W(Y) > 0, V ||Y||* 0, (46c)

(II) UCV,Y = 0 € U , (47a)

||Y - Y* || > r , y Y* e U , V- Y e V , (47b)

W(Y*) - W(Y) < 0, V Y* € U O V, V-Y € V, (47c)

(III) W(Y+(1) - W(Y+) < - 6, V Y+€U, (48a)
—p+1 p — —p

IllpVlplf r> VlJ* U> (48b)

then the discrete system or equivalently the IPFM control system is

asymptotically stable in the Lagrange sense.

Proof: Two different cases may occur:

(a) The initial state Y belongs to set U. For this case, if

the trajectory of Eq. (44) remains indefinitely in the set U, then the

above theorem is proved. This is shown as follows.

-15-



Assume that the trajectory remains in U for all p such that

p< q where q is an arbitrary finite number. Hence, this trajectory

will eventually enter the set U. However, from conditions (48b) and

(47b), one can deduce that Y ,. must be in VO U. Furthermore, if
—q+1 '

condition (47c) and (48a) are used, it is seen that this trajectory cannot

enter the set V. Therefore the theorem is verified.

(b) The initial state Y belongs to the set U.

Let W (finite) denote the values of W(Y ) . Assume that the

trajectory of Eq. (44) corresponding to the initial condition Y remains

in the set U for all values of p such that 0 < p < q' where q* is an

arbitrary finite integer. Using condition (48a) recursively, we obtain

W(Y+, )•< Wn - q'6. (49)
—q — U

From the above equation it is seen that for q1 sufficiently large,

W(Y ,) will be negative. However, from assumption (46c), it is evident

that this is impossible. Therefore, the previous assumption is not valid

wo
for q' >'ql = — and the trajectory must then enter the set U for some

p < q.

Finally, if we consider the results of A, it is evident that the

theorem is demonstrated for the case B .

-16-



STATE TRAJECTORIES OF THE

EQUIVALENT DISCRETE SYSTEM

In this section we are concerned with the development of a step-

by-step procedure for the graphical construction of the state trajectories

of the linear plant. This will lead to an investigation of some of the

properties of IPFM control systems. This development is based on the

following:

Theorem:

Let

Y = (50)

N

be a point in the state space. Furthermore, let Y be given and assume

+
the state trajectory C of the linear plant Y = AY , (Y. = Y ) to be

— — —0 —p

oriented in the direction of increasing "t" . Then, Y is the first
—*p+l

intersection of C with the surface defined by:

k=N

I
k=l

n

ak(Yk-Y£k> =(-1)~P+1'l«n(Yn »a0Tr
P+1

(51)

where a, and a_ are the coefficients given in Eq. (5) and n is the
k 0 ° p+1

smallest value of k, 1 < k < N , such that the component Y of

Y ., i.e., the solution of Eq. (51), is different from zero (see Eq. A-7 of
p+1

Appendix).
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Using this theorem with relations (15) and (A-1) of the appendix,

i.e.,

. Xp"+1 =V +̂ 1^ ' <52)

Vl =(-1)Vlsign(Yp+l, n >< <53>
P+1

we see that we have obtained a step-by-step procedure for finding the

trajectories of the equivalent discrete system.

The proof of the above theorem can be obtained by first showing the

following relation:

If |A| is different from zero, then

Jt
P

1 A(t'tn) +
Y(t) dT= A (e P - I) Y (54)
— . —P •

The above equation can be shown as follows:

1 A(1>tJ
A (e P - I) = 0 , for t = t . (55)

P

Furthermore,

k

—(t" V
k=l ' k=l

^'-v-^^ii^-./yi^-.j (56)

and
oo

nit--*- \ r

_d f A-l,

dt
k=l

i Mt-t ) J • r v- Ak-i . ^

^•V p-i)> !j-i IV'-V^)' (57)

-18-



which is equal to

00

l
k=l

Ak_1 k 1 + A(t>tJ 4-•^Tr, (t-t )k"1Y+=e P Y+.
(k-1): p —p —p

A(t-t ) +
Since e Y = Y(t), the assertion in Eq. (54) is proved.

From Fig. 3, and the above relation, we obtain

I (t
e p

, t) =- f Yi
Jt

* -l A(t-v +Y(t) dx= - v A l(e P -I) Y+,
1 -p

where v is the transpose of the N vector v •

(58)

(59)

(60)

To prove the theorem, we consider the value t of the (p+l)th

emission time. This value satisfies the following relation (see Eqs. (2)

and (59) ):

A(t -t )
~l[o P+] P-v A x[ - I] = + T = € T .

— r p+1 r

-19
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From the definition of t and € , and using Eq. (54), we obtain

(Vi
\

Y(t) dT =

where

Y(t) =

t' y(t)

LY(t)J

„ A-ir A(VrVdT = A [e ^ ^

— ^-

Y2(t)

•

=

YN(t»

Y(1)(t)

^(t)

-I] YT,

(62)

(63)

The above is obtained from Y(t) by deleting its first component. Further

more, if we let

ff £ f p+1T =

\
Y(t) dT =

N

(64)

then by using Eq. (61) , relation (62) can be reduced to:

CP+1Y(T) dT =-
^t

P

€ XI Tp+1 r

T -J
=A_1[e P+1 P - I] Y+ . (65)

P

A(t -t )
Since Y +1 =e P P Y , Eq. (65) yields

-20-



or

A"1(Y^4-1 -Yn> =p+1 p

Y ,. - Y = -A
—p+1 p

p+1 r

- T -J

€p+lTr

N

(66)

(67)

It should be noted tiiat the solution of the above equation yields

the value Y at t = t . Using the form of A given in Eq. (7), we

obtain

P+1, 1

p+1

p+1, N-l

Y 1 - T->p, 1 2

Y - T,
p, 2 3

YT -T '
p, N-l N

(68)

p+1, N p, N 0 p+1 r 12 N-l N.

(69)

Replacing the values of T, , T, , , , T of Eq. (68) into (69) ,
2 ' 3 N

and noting that (see the appendix and note Fig. 3) ,

n

p+1 p+1, np+1 (70)

we have proved the above theorem.
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Finally, it may be noted that for all Y which do not have their

first component equal to zero, the surface described by Eq. (51) reduces

to two half-hyperplanes H and H as follows:
J. £

k=N

.+

"k x*k ~p, k' ~ ~0~r ' *1
k=l

Hl "* X ^ (Y- "Y- J =-a"T- ' Yl >°' (71)

k=-N

.+

2 Li ~kv*k *p,k'~ ~0"r' *1
k=l

H> " J H|Y^Y-«.)= a"T-' Y^<0- (72)

Example s:

To illustrate the application of the above procedure, assume that

the linear plant is characterized by

y(2) +alY(1) +aQy= kQm(t) . (73)

For the system shown in Fig. 3, the construction of the state

trajectory of Y(t) follows.

For Y > 0 and Y < 0, H and H from Eq. (71) and (72) reduce
x J. X tit

respectively to

al<Yl-Yp,l>+<Y2-<i)=-a0Tr» <74>

al(Yl-Yp,l)+<Y2-Y^2) =a0Tr- (75)
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The above equations are of parallel straight lines with slopes of

-a . They intersect, in the phase plane Y , Y , the line G(Y. = Y .)
1 12 1 p, 1

+ + +
at Y _ - a.T and Y . + a^T , respectively. If Y(0) = Y is known,

p, 2 Or p, 1 Or J — —p

the point Y is easily obtained as shown in Fig. 5.

From Y_ , we obtain Y by applying theorem (51). We obtain

Y from Y by using relation (15) with

n +1

6 = (-1) sign(Y ) (see appendix and Fig. 3).
i 1, n

+ + +
Similarly, we obtain Y , Y_ , . . . Y , and thus a step-by-step pro-

cedure is easily developed.

Three different cases of a second-order linear plant are given

for the application of the method,

(a) y(2) +y=kQm(t)

with k = 1, \ = 1, T = 1, u =1 , k = 1, T =1.
0 r . r

The linear plant is unstable, and from Fig. 6 the zero input

IPFM control system is also unstable.

(b) y(2) +3yU) +2y=k0m(t)

with k_ = 4, \=1, T = 1, u = 1 , k = 4, T = 1 .
0 r r

The linear is strictly stable, and from Fig. 7 the zero input

IPFM control system is asymptotically stable in the large.
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(c) y(2) +0. 5y(1) +y=kQm(t)

with kA = 4, \ = 1, T = 1, u =1 k = 4, T = 1 .
0 r r

The linear system is stable, and from Fig. 8 the zero

input IPFM control system is asymptotically stable in the Lagrange sense.

It should be noted from these examples that when periodic oscilla

tions are obtained, their characteristics depend upon the initial state.

In the case of a first-order system (which has been investigated thoroughly

but, for brevity consideration, is not presented here), the relation of

the characteristics of eventual periodic oscillations to the initial state of

the plant may be obtained exactly. This emphasizes the main aspect of

the oscillations in IPFM systems.

CONCLUSIONS

The concept of a nonlinear equivalent discrete system has been

introduced and investigated. The results obtained in the case of a plant

with no zeros in its transfer function can be extended to more general

plants. It leads to the only approach for describing the local behavior

of the regulator-type IPFM control system. The results that can be

achieved by the equivalence are the exact analytical solution of the first-

order case and the geometrical construction of the trajectories in higher

order systems. In view of the difficulty of analyzing IPFM systems,
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these results are important. It is of interest to note that more general

results on the global behavior of IPFM control have also been obtained.

They are not discussed here but will be presented in future work.

It is clearly seen that there are practical limits to the equivalent

method presented in this paper. In general, these are due to the difficulty

in obtaining a closed-form expression for the equivalent discrete system

as well as a suitable candidate for the Lyapunov function. However, by

replacing the modulator by an equivalent gain, as can be done in certain

cases, we can obtain candidates for the Lyapunov function more easily.

It should be noted that the computer can also be adapted to test the dif

ferent conditions of Lagrange stability.

Finally, the graphic method presented in this paper is exact in

its concept, and thus offers a way of checking earlier results which were

based on approximate methods such as the describing function. This is

needed when the previous methods fail or more accurate results are

sought.
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APPENDIX

Relation Between the Sign of the Emission Sequence {e } and the Input
——— p

(or its Derivative to the Modulator at Time {t }, __ p

In this appendix the following relation, which is used in the text,

will be derived:

(n ,,-D
Vl=(-D P sign^ ). (A-1)

p+1

We assume that x(t) is infinitely differentiable, has bounded de

rivatives for all value of t in the interval (t , t .), and has a finite
P P+1

number of zeros in each finite interval, i.e.,

|x(n)(t)|<Mn, VW-St(Tf x(t)), VLn, (A-2)

whe re

S (T, x(t)) represents the emission time sequences.

Lemma A. 1: There exists a positive number a satisfying 0 < a < t ,,-t ,
— p+1 p

such that for all t belonging to the interval (t - a, t ) , x(t) has the

sign of «p+1 .

The above will be proved by contradiction. Assume that no such

a exists (assumption a).

Let {6 } be the sequence of zeros of x(t) in the interval

[t , t fl] and 9 = Max{0. | 0. e {0. }, t ,. - 9 > 0} . In the
p p+1 max k1 k k p+1 k
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interval (0 **+])» x^ has a constant sign and by assumption (a) ,

has the sign -e . Therefore, \ x(t) dr has the sign of -€ , in
P+1 J0 P+1

max

the same interval. Without loss of generality, assume that e = 1 .
P+1

t

The input-output relation of the modulator, \ x(t) dT, reaches the
Jt

threshold T for the first time at t = t
p+1

Hence,

and

0
max , . ,

x(t) dT < T , (A-3)i,

4 ., J9 A

fP+1X(T)dT = (maXx(T)dT +(P+1X(T)dT.(A-4)
Jt Jt J0

p p max

The above is less than

Therefore,

T - (t - 0 ) x(?) , where 0 < f < t t. . (A-5)
p+1 max max p+1 v ;

( P+1x(t) dT< T- 6, 6 >0 . (A-6)
P

The above inequality contradicts the fact that a positive pulse

has been emitted at t = t , therefore, a can be chosen arbitrary in

the interval (0, t ,, -0 1 and the lemma is proved.
p+1 max r
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— /n —1 \ —
Proceeding to prove Eq. (A-1), we denote x , = x (t

P+1, n p+1)

and n is the smallest value of n > 1 such that x , is different
p+1 — p+1, n

from zero. More precisely, we have

x =0, 1< n < n
p+1, n — p+1

x 4 0 , otherwise. J
P+1' np+l

(A-7)

For any t e (t - a, t ), a Taylor's expansion for x(t)

can be found.

k=M (t - t" >k It t~ \n+l
V P+r (k), - x , p+r (n+l)r , r - i

X(t)= 2 —W X (Vl)+ (n-l)I X [ctL V[t- W] 'P+1

(A-8)
k=l

Using Eq. (A-7), we reduce the above to

x(t) =

If we let

(t - W
'"p+r1'

(nP+i - D;

(n„+i>
+(t - w (vi> 4Vl.np+1+ (np+l)! X (Ct»-

(A-9)

x(t)
x(t)

(t - w
<"p+l - D

(A-10)

(nP+r x»:

then use Eq. (A-9), we obtain
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(t - t" (n )

**> = Xn+1 n +"H^ * <Ct> • <A-U>P+1,np+l "p+l *

(np+l)
Since x (c ) is bounded by M , the value of t - t , can

1 Vi p+1
be taken small enough so that 3c(t) can have the sign of x • in

P+1' np+l
Eq. (A-ll).

Using the sign of the expression of 3c(t) in Eq. (A-10), Lemma A. 1,

and the fact that t - t is negative, we obtain
p+1

K+l " X)
6p+i = <-l>"P sien(Vi.n »• (A"12)

P+1

which proves the theorem.
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