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ABSTRACT

The dyadic Green's functions of Maxwell's equations in anisotropic
media are found by a perturbation technique. The solutions are in
the form of multipole expansions that may be summed exactly in
the case of uniaxial crystal media. When the medium is biaxial or
gyrotropic, approximations by partial sum may be used. Second
order solutions for biaxial and gyrotropic media are presented.
The approximate solutions give the near fields in elementary
functions and simple integrals, which may be used to solve integral
equations arising from scattering and radiation problems.

1. INTRODUCTION

The dyadic Green's function of Maxwell's equations is defined as
the solution of the vector wave equation

•vxvx G(^0) + ko i *^V = ^V1 (1)

where e is a tensor of rank 2 and I is a unit dyad. When G(r/r )
is known, the radiation from any current distribution may be
obtained by integrating:

E(r) =jw|x jG(r/r0) •ffr^dv^
v

(2)

The formal solution of (1) using Fourier transform is straightforward.
Following the pioneering work of Bunkin [1957], many authors have
contributed to the evaluation of the Fourier inversion of the solution

using asymptotic methods that are valid for the far fields. In many
important applications of G(F/F ), such as scattering and antenna
problems, (2) is to be solved as an integral equation for the current
distribution J(r) which will produce a prescribed tangential electric
field over a known boundary. For example, in the problem of
scattering by a conducting obstacle, the integral equation to be
solved is



nX E(r ) =jcoun X f G(r /r )s Jg s 0 J(r0)dS(), (3)

where n is the unit normal of the conducting surface, and r and
r are points on the surface of the obstacle. Numerical solution
of such an integral equation [Mei and Van Bladel, 1963] is possible
if the near fields of G(F/F ) are available.

The only known investigation of the near fields of G(r/r ) is by
Mittra and Deschamps [1962], who found the singular terms of the
dyadic, but the remaining terms were left in double integrals which
are inconvenient for numerical applications. In this paper we shall
investigate the problem in a different light. The solutions of
Maxwell's equations for anisotropic media are considered as per
turbations of the solutions for isotropic media. It is shown that
the solutions so obtained result in power series of the perturbations,
The series can be summed exactly for uniaxial crystals. A partial
sum technique is used for the case of biaxial crystal and gyrotropic
media. Second order solutions are presented for biaxial and
gyrotropic media. They are in elementary functions and simple
integrals feasible for numerical applications.

2. FORMAL SOLUTIONS

In this paper we shall assume that € is in one of the following two
forms

or

€
= C

€ =

ei °
'2

0

el -jv 0

jv €1 0

0 0 e ,

Let G (r/r ) be the dyadic Green's function of the vector wave
equation in an infinite homogeneous isotropic medium, which
satisfies the radiation condition at infinity. Thus,

-VXVX G0(p/p0) +)^Cq(7/tq) =6(r7r0)I,
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2 2
where k. = k € . The solution of (6) is known to be

GoB[l*?)*ol7,7o)' (7)
where the function <j> (r/r ) is defined as

-jkjIr-JJ
+n(r/rft) = - . (8)

0 0 . I — — I4u |r- r0|

Equation (1) may be written as

- VX VX G(r770) +k* G(r7rQ) =8(7/r"Q) I - k^ 6 • G(7/r~Q),
(9)

where

- 1 6X

The solution of (9) is

G(r"/r"Q) =GQ(7/70) -k^ J fG^rVr"') • 6• G(r"7r"0)dv', (11)

where the integration is a volume integral over the entire space.
Iterating (11) once, we obtain

g(7/70) =gq(7/70) -kf J tg0(7/7«) •6•G '̂/r^dv'

+k^ f f G0(r/r') •6• GQ(r7r )•6• G(r /rQ)dv dv
v' v" (12)

Substituting (7) in the second term on the right-hand side of (12), we
get
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v„v„

"kf J (I +̂ )+0(r/r') *6' (I +-^)<t>0(r,/rQ)dv', (13)

where the operators V and Vn operate on the variables r and r ,
respectively. Since the integration in (13) is over the variable F1,
the dyadic operators may be taken outside of the integration. After
changing the variable F1 to t = r - r', we get

-k^(I +2£) -6 • (1 +-^) J 4>0(t)4>Q(t - [r -r0])dvt. (14)
K k. ~v

2

1 "t

The integral in (14) is recognized as a convolution integral of the
functions ^(r) and <j>n(r - r ). We define the Fourier transform
pair of a function as

=Jf(7)ejk'rdv,F(k) = f(r)eJ* *dv, (15)

f(r) =—^-3 f F(k)e_:,k' rdvk. (16)
(2ir) vk

By expressing (14) in the inverse Fourier transform we have

-jk • (7- 7Q)
, 2,T , W% . P. ,T , V0V0, 1 C I ^k- k (I +-y) 6 (I +—-) - j 2 ^2-2 ' (1?)

k^ k* (Zir)* Jv (k - k )"

For convenience in the ensuing discussion, we define the function
<j> (p, a; r/r ) as

n — u

V^i5*7^ =TTT J

-jk • (r - rQ)
e d v,

k

(2ir)- "vk (p -k- 1• k)n+1

where the matrix a is defined as

-4-
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a 0 0
X

0 a

y
0

0 0 a
z-J

The integration of (18) is given in closed form in Appendix A
Equation (12) may then be written as

1

G(r/rQ) =(1 +^) • Y (-l)n [kf | +| ' W ]n 4>n
1 n=0

+ k. I i" %(r/r') • 6 • G (r« /r ) dv" dv'

v v

(19)

Further iterations of (20) lead to the formal solution of G(r/r ) as

00

G(r/rQ) =(I +̂ Z) . ^ (-l)n[k126 +6•VV]n<|>n(k12( I;r/rQ) .
^ n=0 (21)

2 - - - -
This follows since cj> (k , a;r/r_) is a function of |r - r |, hence

n 1 = 0 0

the operational relation V = - Vn still holds. It is noticed that
(21) is essentially a multipole expansion, i. e. , the nth order term
in the summation contains a singularity of order n + 1 (for n £ 0) at
r = r . We shall discuss the summation of (21) for uniaxial, biaxial,
and gyrotropic media in the following sections.

3. UNIAXIAL CRYSTAL

The dielectric tensor for a uniaxial crystal is € =€xx + €yy + €zz*.
It follows that

0 = ZZ = 0-ZZ. (22)

Substituting (22) into (21) we have

-5-



oo

G(r/rQ) =(1+ ^f-) Y {-if 6* (1^22 +22 •VV)11^^2, l;i/iQ).
^ n=0 (23)

Due to the orthogonality of the base vectors, the following relation
holds for n £ 0 :

2

(k^22 +2V^)n =(k^z-z +22 ^f1 • (^22 +2V^)
3 z

=(k^+ -^-y) 22 • (1^22 +2 V^)
B z

2 a2a2 n"1= (k122+2V~)(k1'+-^) . (24)
dz

Thus, (23) becomes

G(i/i0) =(1+ 2|.) •jI+0(k2, I;r/f0)

2 n-1

+<k2««tivi)y(-Dn6°(k2 +A> vki2'*;^v
*-« 3z J

n=l

(25)

Making use of the results of Appendix B, we may write the summation
in (25) in operational form as

2 n-1

y^-i,n6s<ki2+72> ^iii,io)
n=l

oo n _ n-1
Oo rJZ „n

=li^+TT) ^♦o*f-I';/*"o»
dz dp

n=l

(cont'd)
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oo n n-1

2lT!(kl 8p- +8p-^I) 3? W^'V
n=l

Oo o o n-1

£ ii <*i2 i| +af> i^o^'^/V- <26'
n=l

And, introducing the parameter t in (26), we get

oo _ n-1

£ (-l)n6n(k12+-\) +n(kf. I;r/f0)
n=l 9Z

00 6^ r, 1 r. 1
- V f * dt ,,2 3 3 n_i 3 2 - -
" 2 1 7^i)T (ki3F +3T) 8?+0(kl'I;r/p0}

, 0 z
n=l

2 3 3 n
p 3 1 3p 3az fl .

=1 1 =1 ^♦o(ki-IJr"/'o»dt' (27)
n=0

The summation in (27) is recognized as Taylor's expansion of the
function

^(^[k^l+t), I+t£z;r/rQ] =-c^fk* (1 +1), I+t£z;r/rQ]
/ \Z !/2

1/2 2 2 [ 0}-jk^l +t)17 [(x-xQ) +(y-yQ) + 1+tU ]
8«rr(l + t)k

We designate the function (27) by F(r/r ), thus

63
F(r/rQ) =-J ^[k^d +t), I+tzz;r7r0]dt.

-7-
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It is readily shown that

(kf +-£Y)F(f/;()) =^[^(1 +63), I+63zz;r/r0] - ^[^ . I;r/rQ] .
(30)

3z

Using the following abbreviations for the functions

4>Q[k1(l+63), I+63), I+63;z;r/r0] = ^(63),

♦o^.i.f/'o) =*0

F(r/rQ) = F,

we get the final form of G(r/r )

V
3x

+0(63) - F

G(r/rQ) =
3x3y

>0(63)
- F

82 W
3x3z

K

3x3y

+0(63)
- F

LK"

V7T
3y

+0(63>

32 V63>
3y3z

- F

82 W
3x3y

82 V63>
3y3z lc

d + —>W
k 3z

(31)

The third column in (31) which corresponds to the electric field
produced by an infinitesimal dipole in the z-axis was previously
solved by Clemmow [1962]. The above solution is exact and we
notice that the effect of the perturbation is mainly on the propagation
parameter. Therefore, if only a partial sum were used in (21), the
solution would be valid only for near and intermediate fields.

-8-



4. BIAXIAL CRYSTAL

When the medium is biaxial, the tensor 6 is of the form

0 0

6 = (32)

0 0
3-1

In this case, the operator [k 6 + 6 * V V] can no longer be
simplified as it was for the uniaxial media. An exact summation
of (21) cannot be obtained. If ||S|| is small, it is possible to take
finite terms. Let GN(r/r ) be the Nth order approximation of
G(r/rQ), i. e. ,

GN(r/r0) (I +2Z)

N

l
n=0

(-l)n[k^6 +6- W]11^^2, I;r/rQ). (33)

There are, however, several disadvantages associated with the
formula of (33) in that the multipole expansion requires G (r/r )

to be considered as a generalized function [Lighthill, 1958]
near the singularities, which results in the measure of the
high order derivatives of J(r) in (2). The integral equation (2)
then becomes an integral differential equation involving high order
derivatives of the unknown J(r). Furthermore, the high order
derivative operators in G„(r/r ) give rise to a multitude of terms
which make the application cumbersome. In the following we shall
remedy the situation by a "partial infinite sum" method which
simplifies the approximate formula as well as reduces the order of
singularity of GJr/r ). We shall only present the result of
G (r/r ) in this paper. Higher order approximations may be
obtained in essentially the same manner.

In the expansion of G (r/r ), we shall frequently come across
the operator

VV-6- VV= V(62-9T +63-^)V =VV<62-^ +93-^).
3y 3y 3y 3z

-9-
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2 2Let the scalar operators V and V? be defined as

vi2 =62 7I +53 7T' (35)
3y 3z

„2 .2 32 .2 32 ,
V2 =62 77 +63 7T • (36)

3y 3z

We can then write G (r/r ) as

- - 2 2 ^7^7 2 4

G2<r/r0> = (I +0 " \ I +2> + 2 (+0 " Vl V Vl *2>
\

- VV- 6(<|> - Vj <|>2) - 8 • VV(<t>j - Vj (t>2)

2 2 2 2 2 2+ VVV2 <}> + (le 6 • VV + k 6 • VV • 6 + 1^ VV • 6 )<j>2

(37)

We now construct a new function, G__(r/r ), by adding to (37) those
terms selected from the higher order parts of (21) to get

oo oo

GII(r/r0> = I (-X) h =*n+ ~2 Z(_1) Vl *n
n=0 1 n=0

oo oo

- vv6 ^(-i)"-1^2^^-!. vv 2<-i)n-Y(n-\
n=l n=l

* a2n-2 „ a2n_2+VvJ(-l)n[6^-^ +8^-^2]+n
^ 3y 3z

n— c.

+ (kf 62 - VV +kf 6• VV • 6+kf VV • 6 )<j> . (38)
1= 1= — l — c

-10-



Making use of the results in Appendices A and B, we obtain the
following identities:

oo oo 2n n

n=0 n=0

/

00

0

2n „n

2

n!

kT5

\

=1
.n

^V^'^'V+^V'V^V

CO

n=0

/

WI;i/V

\

i2n in
\ 63

n! )

^[\{1 +62)'lii/i0]

«, (60_^_ +6, -J_)
n

2 3a 3 3a 2

—^ — W**'^

^[^(1+63), I;r/rQ]

(39)

/

I<-^2x=l
n=0

00

n=0

= $0[\> I+ dzYY +63zz;r/r0] ,

9 9 "-1
" (62 8iT + 63 8T)

V — +(1^.1;;/;)

(40)

X<-i>nVn-\ =x n!

n=l n=l

00
c , 3 . 63 3 xn"^n-l
62(8— +67 8r) *

v 2 z ... 2

=\ i 4>
n=l

^(kj, I;r/r0)dt

(cont'd)

(n-1)
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. - rbz ['ir +lr'liH
=h 11 —^—— *i <ki ***'*<>dt

2 n=0°

IT2 2 -- 63 ~~ - -= T* <K(k , I + tyy +—tzz;r/r )dt, (41)
2 J0 2

n=2 n=2 9a

Similarly,

oo

oo 6_ - ..
2 .n-1 „n-l

dt
-1 '1' I ' ' " 0'

n=2 w ~~y

oo 6.

^J0 (n-l)!8an-l 1 1 0

2 n-1 ~n-l

n=l

sr r t a 2=-EJ0 5T3)T;^TVVIsr"/r'o)dt

+62+i(i^.ij;/;)

oo 6-
2 n „n

=- 7,[ hrz*!^'1-'*'^"
« 0 "" 3a'

n=0 y

+62^(kf.i5;/;0)

62
=- f ^(kf, I+tyy;r/r0)dt +62<|>1{k^. I;r7rQ)

(42)

2n-2 ~63
T^^SnTI *n ="J ^(kf, I+tSS;r/r )dt-l- 63^ (kf, I; rVr^)
^ 3z 0n=2 (43)

-12-



Using the formulas (39) to (43) in (38), we get the final form for
the second order solution as

Gn(r/r0) =Q>Q(k2, I;r/r0)xx +c{,o[k12(l +62), I;r/rQ]yy

2 - - ** f ^0 2 ~~_-+^[^ (l +63), I;r/r0]zz +VV \ —[\t I+62yy;r/r0]
Ul

62 63- J ^(kf, I+ty9;r/rQ)dt - j ^(kf, I+tzz; r/rQ) dt

+(62 +63)^(1^, I;r/r0)l - [VV •6•VV]~-

1 *i(,V I +tyy + — tz z ; r/r ) dt

+| kf |2 • VV +kf 6• VV • 6+kf VV • |21 <j>2(kf> I;r/rQ)

(44)

We notice that the order of singularity of G (r/r ) is the same as
that of GQ(r/r0).

5. GYROTROPIC MEDIA

In the case of gyrotropic medium, 6 is of the form

0 -jv 0

6 = jv 0 0

0 0 63J

The second order solution for this case is identical to (37). The
matrix 6n takes different forms for even and odd n. They are

-13-
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2m

2m+1

r— 2m

2m
0 V 0 »

0
2m

63 J

"o
. 2m+l

-jv 0

. 2m+l
0 0

0 0
c2m+l
0o

3 -»

(46)

(47)

n
And, the operational products VV • 6 • VV become

„„ c2m ____ ___. 2m 3 2m 3 2m 3 .
VV * 6 • VV = VV (v —— + v —— + 60 —^) ,

2m 2m 3 9 2m
7 z

3x

2m

VV 62m+1. VV= VV6^V '
3 3z2m

Using the "partial infinite sum, " we have

n=0

oo

^- l-i 3 a 2n nk_ „ dz
1 n=0

2(n-l)

-[VV6 +6. W] l^rl^lfzi^T)K
n=l BZ

00

(48)

(49)

VV
2n »2n>)^ j *2n +VVV 2n 2nf 32n

A*1 v i^ +\ n=
I ^n
n=2

.n 3 2(n-^ 2 f 2 2l
--—- <b + kT < 6 • VV + 6 • VV • 6 + VV • 6 U.2(n-l) Tn 1 |̂ = = = = J <33z2<

(50)

-14-



* <•

The summations in (50) can be calculated as in the previous section except for the following two terms

oo

I i - n

n=0

00

n=0

/
2n 2n

<kN —^1 2n!3p2n

j(kfv)
2n+l „2n+l

2n+l
(2n+l)!3p

\

2n+l a2n+1
_j(k v) r—

1 (2n+l)!3p2n+1

,2 2n 32n
(kiv) 7~^

2n!3p

.n
,2ncn d
k 6

1 3 iq nn! op

Vkr *• r"/'0)

/

=if *o[kl(1 +v)' I;*'*o] +li*<t,o[ki2(1"v)' l!'/;o] ++0[kf(i +63). I;r/J ]z£
(51)



where S is defined as

S =

1 J o

-j 1 0

0 0 0

And, using the result of Appendix C, we obtain

oo

n=l

00

n=l

2n
on

3x
2n ' 2n

n=l

, 2n 2n
K, V r» e

n 1

-jk- (r-r ) 2
U k dV.

x k
-1)

/9 N3 J 7 7 2n+1^ "k [k2-|k|2]

. 2n 2n _

„2n kl V 82n f
-J) * — \

e"jk' ^VdV
k

(2ir) 2n! 9b n "V [k, -Ikl + bk 1. .
k 1 x b=0

= +0[k1 (1-^-), I;r7r0]cosh V 2 - -— («-x).+ (k^.I,*/ro)

The final form for G (r/r ) in gyrotropic media is

Gn(r/r0) =|-S cj,Jkf(l+v), I;r/rQ] +|-S'V6o[kf(l-v), I;r/rQ]

52)

53'

3
2 - lP2~~--+^ [k! (l+63),I;r/r0]zz - [VV 6+6• VV ] — j ^[^ , I+t zz; r/rQ] dt

VVV+ *f ^[k^ I+63zz;r/r0] +^[^ (1 - —), I;r/r0][cosh — (x -xQ)

klV 2 C 3 2 -.,*-,-
+ cosh 4-(y-y0)] _ki J VkrI+tzz:r/ro)dt

-16-
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- 24^, I;r/rQ) -k263ct,1(kf, I;r/rQ)}

+kf 62- VV +6• VV- 6+W 6 4>2(k1, I;r/r ). (54)

6. DISCUSSION

The perturbation method may be started from different zeroth
order solutions other than those presented in this paper. In the

V£2+£3
biaxial problem, for example, using k ( = k r ) in

place of k., we can obviously obtain better second order solution.
We chose X. because it gives a simpler result.

The solution of the uniaxial problem is exact. We may use it to
obtain certain qualitative information about the perturbation method,
which is difficult to obtain for the solutions concerning biaxial and
gyrotropic media. The accuracy of the second order solutions,
for example, is easily obtained for the uniaxial solution using
Taylor's theorem. We may use that information to estimate the
accuracy of the approximate solutions for biaxial and gyrotropic
problems. Another use for the uniaxial solution is to determine
the branch for the fractional power terms. In general, the branch
is determined by the radiation condition at infinity. The second
order solutions are valid at short or intermediate distances from

the sources, hence the radiation condition can not be applied to it.
However, in the limit of infinite dc magnetic field, the e of a
magnetoionic medium approaches that of a uniaxial medium. Thus
the rules which govern the choice of the branch of fractional powers
in the uniaxial problems should apply to the problem in gyrotropic
media. Consider the following term of the uniaxial solution:

1/2

"'Vl (1 +63)
2 2 <»-V(x-xQ) +(y-y0) +TT^-

1/2

-jk0|r-r0|{€1[l +63sin2e]} , (55)
= e

which is valid for all real 0 and |r -r | . When e and 6^ , or
both are negative, the term inside the braces may be negative. If
so, the radiation condition requires that

2 1/2 , 1/2
{c1[l+63sin 6]} = -j|e1[l+63sin 9] | . (56)

-17-



This rule should be applied to the second order solution of the
gyrotropic problem near the plasma resonance.

APPENDIX A

The function <j> (p, a; r/r )

-jk- (r -r )

i r e dVi<
♦n(P't!r/r0) =7773 J —£ ^nTf

(2tt) V (p -k* a • k)

(-l)n 3n

-jk* (r -r )
e dV.

(2ir)3n! 3pn *Vk (p -k•a•k)

oo -J[yx-xQ)+k (y-y0)+kz(z-z0)]
(-l)n 3n CCCl dkxdkydkz

(2tt) n! 3pi Ar,n JJ^
- 00

r 2 2 2,
[p-ak -ak -ak J
Lr xx yy zzJ

T , ,1 1/2, .1 1/2. ,1 1/2,
Let k = a k , k = a k,k=a k,we get

x xxyyyy zz

<l>n(p» |»^/r0) =
n

(-D
,n

(2tt) n! (a a a ) 3p
x y z

-J

- , (x-xQ) , (y-yQ) , (z-z0)"
kx"17T +ky"n72" +kz~T7F „

L_ a a a -I dk
x y z

oo

m
dk' dk

x y

-00

-18-
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1/2
-JP

2 2 2"
(x-x ) (y-y0) lz~zr)

+ 1L_ + v—
n+1

(-D 3 e

n! (a a a ) 4ir
n y z

n
3p 2 2 2 1

(x-x ) <y-y0) (z_zo^
+ + v

X

.n

=(-1)n^r^~ +0(p,i;r/ro)-
n

APPENDIX B

2n - -
The function V <j> (p, I; r/r )

In 0

1/2

/ 2 2

vi2\(p'I^/i:o) =(6-> "^ +6 8
n

1

-jk • (r-r )
e dV.

—3J(2tt) jV

n

(-D

23y2 33z2 / (2tt)3 JVfc (p -k•I- k)n+1

n

{-if (6.k2+6,k2) -jk,(r-r0>
2 y 3 z e dv

n+1

(p - k • I • k)

3 3

52 9S~ + 53 8r

-jk • (r-r )
e dV,

(2tt) n! L y nz_j "V (p - k* a • k)^ _
a = I

^^ir^Saf^VP'15^]-
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APPENDIX C

The function k. v —5^- $0^ (p, I; r/rA)
2n 2n 0'

2n

2n 2n

3x

^1
2n 2n "jk ' (r "V 2^

0 , a-»* k v n e k dv,
. 2n 2n 3 , , lxn 1 ( x k
*l v —7T <h_ = (-1)

3x " "" (2tt)~ °V. .. 2 ir*i2
2n+l

k [k^-lkl6]

-jk • (r-r )
e dV,

= (-j)

, 2n 2n ->
2n \ v 82n f(2ir)32n! 3b2n V̂R [kf - |k|2 +bkjb=(

' b
Let k = k + — , then

x x 2

2n 2n 2n 9(-j) 1^ v Q2n

(2ir)32n! 3b2n

1
-j[k (x-xJ +k (y-yj +k (z-zj] -j ^-(x-xj

x 0 y 7 70 zx 0 2V 0

r 2 b ' 2 2,[k. +^- - k - k - k ]
L 1 4 x v zJ

b=0

dk dk dk
x y z

..2n, 2n 2n(-j) kj v 82n 2 ^ k (X-V
*0(kf+^),I,r/^ e 2

2n! 2n
3b b=0 .
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