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INTRODUCTION

Many problems in economics as well as in engineering and in

mathematical programming have nonunique solutions, and one is there

fore presented with the freedom to seek out optimal solutions. When

there is only one criterion of optimality, which is relevant to the problem,

we are faced with a straightforward optimization problem. However,

when there are several criteria, all of which are important, and whose

importance cannot be ordered, the matter becomes considerably more

complicated, since we then have a vector-valued criterion optimization

problem.

Judging from the literature on the subject, the first formulation

of a vector-valued criterion optimization problem is due to the economist

V. Pareto in 1896 [1]. Since then, discussions of this problem have kept

reappearing in the economics literature (see Kuhn and Tucker [2], Karlin

[3], Debreu [4] and, more recently, in the control engineering literature

(see Zadeh. [5], Chang [6]).

Although the vector-valued criterion formulation of an optimization

problem is frequently much closer to reality than a formulation with a

scalar valued criterion, very few results have been obtained to date,

that shed light on vector-valued optimization problems. The present

paper is devoted to developing a broad theory of necessary conditions for
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characterizing noninferior points, and to determining when a vector-

valued criterion problem can be treated as a family of problems with

scalar valued criteria.
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I. Necessary Conditions for the Basic Problem

Let f: E -»- E , r : E -*• E be continuously differentiate

functions and let ft be a subset of E . (The function f is the vector-

valued performance criterion, while the function r specifies equality

constraints.)

1. Basic Problem: Find a point x in E such that

2. (i) x € £2 and r (x) = 0 ,

3. (ii) for every x in fi with r(x) = 0, the relation f(x) < f(x)

(component-wise) implies that f(x) = f(x).

The solutions x of the Basic Problem, i.e., those x satisfying

(2) and (3), are often referred to as noninferior points [5]. It can easily

be shown [7] that they usually constitute an uncountable set of points.

Before we can obtain necessary conditions for a point x in E

to be a solution to the Basic Problem, we must introduce an approximation

to the s et £2 at x.

4. Definition: A subset C(x,ft) of E will be called a linearization

of the set £2 at x if

5. (i) C(x, £2) is a convex cone,

We use the following notation. For any vector y , y2 in E , Vj < y2

if and only if y* <y2 for i=1, 2, •••, p; yx <y2 if and only if yx ^ y2 and
y < y ; y < y2 if and only if y^<yz for i =l' 2* "**' P '
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6. (ii) for any finite collection {x , x2, • • • , x } of linearly inde

pendent vectors in C(x, £2), there exist a positive scalar e and a

continuous map t, from co {«x , ••• , €x }, the convex hull of {e x^ •••

e x, }, with 0 < € < € , into £2 - {x} of the form :
k =0

£(6x) = 6x +o(6x) for all 6x £coiex^ ••• , €xfc}, 0 < « < €Q

where the function o(«) is such that lim ll I
HyII-o l|y|

= 0.

An important special case of a linearization is one where the

map 4 is the identity map, i. e. , co{ex , """ , €x^} *s contained in

Q - {x} for 0 < € < e . We call this special case a linearization of

the first kind.

7. Theorem: Let x be a solution to the Basic Problem and let C(x, £2)

be a linearization for J2 at x. Then, there exist a vector u in E

and a vector r\ in E such that

8. (i) [i1 < 0, i =1, 2, •••., p,

9. (ii) (H,T)) M,

10. (iii) <V, 2gp* x^> +<^, 2ga £>< o for all x6C(x,S2),
where C(x,£2) is the closure of C(x, £2).

Proof: Let

11. A(x) ={y*EP|y =̂ x, x£C(x,J2)} ,
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12. B(x) =[z£Em|z =2|£^ x, x£C(x,n) j ,

is. km =(ue eP xEm|» =(f^ x, *l& x) , xe c(x,n)} .

., , . . • 9f(x) „ 9r(x) , r.
Since the Jacobian matrices — and —-— define linear maps,

ox. ox c

A(x), B(x), and K(x) are convex cones in E , E , and Ep X E ,

respectively. Clearly, K(x) C A(x) X B(x).

Let C and R be the convex cones in E and Ep X E , respec

tively, defined by

14. C = {y =(y1, ••-, yP)eZP\y1 < 0, i=1, 2, •••,p} ,

mi _^ „«„tn-15. and R = {(y, 0)£EpX E |yCC, 06E }.

Examining (9) and (10), we observe that the claim of the theorem

is that the sets K(x) and R are separated in Ep X E . We now con

struct a proof by contradiction.

Suppose that K(x) and R are not separated in Ep X E . We

then find that the following two statements must be true.

16. I. The smallest linear variety containing the union of R and K(x)

is the entire space EP X Em, and R(|K(x) ^ <j>, the empty set.

17. II. The convex cone B(x) in E , contains the origin as an interior

/" m
point and since B(x) is a convex cone, B(x) = E .
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This follows from the fact that if 0 is not an interior point of

the convex set B(x), then by the separation theorem , it can be

separated from B(x) by a hyperplane in E , i. e. , there exists a

nonzero vector r\ in E such that

<^T) ,z> < 0 for all z 6 B(x) .

Clearly, the vector (0,t] ) in Ep X E separates R from A(x) X B(x)

and hence from K(x) contradicting our assumption that they are not

separated.

We now proceed to utilize facts I and II. Since the origin in E

belongs to the nonvoid interior of B(x) = E (see II), let us construct a

simplex 2 in B(x), with vertices z , z_, •••, z such that

18. (i) 0 is in the interior of 2;

19. (ii) there exists a set of vectors {x , x_, • • • , x } in C(x,J2)
1 c. m+I

satisfying:

20. (a) z. = ?p£ x. for i =1, 2,.. . , m+1 :
l 9x l

21. (b) £(x) = x +o(x) E{n - {x}} for all xgcofx^ x2> •••, x^^},

where 4 is the map entering the definition of C(x,J2), see (4).

*
See [8] p. 118, 2.22. Corollary to the Hahn-Banach Theorem

-6-



22. (c) The points y. = ——- x. are in C for i = 1, 2, • • • , m+1.

The existence of such a simplex is easily established. First, we

i *• t«i

construct any simplex 2 in B(x) with vertices z , z_, • • • , z , which
1 ^ m+1

contains the origin in its interior. This is clearly possible since B(x) = E

by (17). Let x , x~, • • •, x be any set of points in C(x, Q) which

satisfy (20), l. e. , z. = _ x., l = 1, 2, • • • , m+1. If _ x. < 0 for
l 9x l 9x i

i = 1, 2, • • • , m+1, then (22) is satisfied and we can satisfy (21) by letting

i

x. = € x. , for some € > 0, and still satisfy (18), (20), and (22). But

9f(x) ' 9f(x) '
suppose, without loss of generality, that — x > 0 and — x. < 0

for i = 2, 3, • • • , m+1. Since by (16) K(x)f | R ^ <}>, there exists a point

u=( —^ x, o) 6K(x) HR> i- e. , ^^ x<0and ^^ x=0. Choose
9f(x) ' i ~

any scalar k> 0 such that (\x + (l-\)x) < 0, and let x = Xx +(1-K)x.
dx 1 11

i i i

Then the simplex 2 with vertices €\z , e z2, • • *, € z , satisfies con

ditions (18) and (19) (a), (b), and (c) for the corresponding vectors

t i t

x., xn, x., • • * , x , _ and some € > 0 .
12 3 m+1

It is easy to show that (18) implies that the vectors (z - z ),

(z. - z ),•••, (z - z ) are linearly independent. Consequently,
2 m+1 m m+1

since -jr" is a linear map, the vectors (x -x ), (x2 -x ), • • • ,

(x - x J are also linearly independent. Let Z be the nonsingular
m m+1

m X m matrix whose columns are (z -z ), (z2 -z ), • • • , (z - z .,)

and let X be the n X m matrix whose columns are (x - x ), (x2 - x ),

• • • , (x - x ,). Then z -»- XZ (z -z ,.) + x L1 is a continuous map
* m m+1 m+17 m+1

from 2 into co{x_, x2, ••• , x } .
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Now, for 0 < a < 1, let S be a sphere in E with radius

Qfp (where p > 0), center at the origin, and contained in the interior of

the simplex 2.

Next we define a continuous map G from the sphere S into E

by

23. G (ffz) = r(x +^(aXZ'V-z J+ax •))
a m+1 m+1

=r (x +aXZ-\z ., )+,xmt] +ofaXZ'V -. )+«m+1».

where ||z|| < p, azeS , and £ is the map associated with the linearization

C(x,£2). Since r is continuously differentiable, we can expand the right-

hand side of (23) about x to obtain :

24. G (az)= r(x)+ <*2§W (XZ^fz -z )+x ,.) +o(aXZ_1(z-z .J +ck x1)
ax 9x m+1 m+1 m+1 m+1

But r(x) =0. 2Sfel X=Z, and ^ xm+1 =z^. Hence, (24)
becomes

25. G (<*z) = az + o(orXZ (z - z ) + ox ,.) .
<** ' m+1 m+17

v "o(*XZ"1('"m+l) +<"W)" n ,„
Now, since lim = 0, there

a
cr+0

exists for ||z|| = p, an a , 0 < a < 1, such that:

26. HofaXZ'̂ z -zm+1) +<*xm+i)H <aP' for a11 °' < a =ao and "Z" =P*
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By assumption, f is differentiable, hence we can expand each

component of f about x as follows:

27. f^ +MaXZ-V -»m+1) +«xm+1» =

^ +"^ lXZ"1<2 "W +Xm+l] +°^aXZ'^Z "m+l> +<"W>-
i = 1,2, •••, p.

Since by construction, (see(22)), ---—- x. < 0 , for i = 1, 2, • • • , p
ox j r

and j = 1, 2, • • • , m+1, arid the point XZ (z-z ) + x ,. is in
. A m+1 m+1

co{x , x«, •••,x }, we have -r-^ [XZ (z-z ) + x t1]<0, with
1 c m+1 ox m+1 m+1

i = 1, 2, • • • , p . Hence there exist a., i = 1, 2, • • • , p, such that

28. fV +̂ XZ^z-z^ +xm+1)) <i\x) for all 0<or < a. |Jz|| =p

and i = 1, 2, • • • p .

Let a be the minimum of {«_, or,, • • • , or } . It now follows
0 1 p

from Brower's Fixed Point Theorem [9] that there exists a point a z

Now, let x = x + I, (a XZ ~(z -z ,)+ax ,), then
m+1 m+1

*•& sfc 4* sic

29. (a) r(x ) = 0 (since r(x ) = G ^(a z ) = 0) ,

30. (b) x €Q, since (x - x) 8£(co{<* x , a x2» •••, a x })G £2 - {x}

by construction.
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But (28), (29), and (30) contradict the assumption that x is a

solution to the Basic Problem. Therefore, the convex cones K(x) and

R are separated in EX E , i. e. , there exists a nonzero vector (u,tj)

in EP X Em such that

31. (i) <V M?£l x^> +<^, *£&xy< 0 for all x£C(x,S2),

32. (ii) <^u,y\ +<^ti, Oy > 0 for all yeC.

But (31) implies that

<(i'^Ix> K^^Hr") ^ ° fora11 xeC(x>n>

and (32) and (14) implies that u < 0, i = 1, 2, • • • , p . Q. E. D.
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II. Reduction of a Vector-Valued Criterion to a Family of Scalar-Valued
Criteria

An examination of (9) and (10) indicates that if we had used the

scalar-valued criterion fu, f(x)) instead of the vector-valued criterion

f(x) in the definition of the Basic Problem (1), with uc E^ specified by

Theorem (7) for the vector -valued criterion, we would have obtained from

Theorem (7) exactly the same set of necessary conditions. This obser

vation leads us to the following question: can we obtain the solutions to

the Basic Problem (1) by solving a family of scalar-valued criterion

problems? A partial answer to this question is given below by Theorems

(38) and (41).

To simplify our exposition, we lump the constraint set £2 with the

set {x E |r(x) = 0} . We shall therefore consider a subset A of E , a

continuous mapping f from E into EP and introduce the following

definitions.

33. Definition: We shall denote by P the problem of finding a point x

in A such that for every x in A, the relation f(x) < f(x) (component

wise) implies that f(x) = f(x).

12 r%
34. Definition: Let A be the set of all vectors X. = (X. , X. , • • • , X5) in

EP such that 2P \X =1 and X1 > 0, i =1, 2, •• •, p .
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35. Definition: Given any vector X. in E , we shall denote by P(\) the

problem of finding a point x in A such that ( X., f(x)) < ( X., f(x)) for all

x in A.

We shall consider the following subsets of E :

36. L = {x8A|x solves P} ,

37. M = {xeA|x solves P(X.) for some \eA] .

38. Theorem: The set L contains the set M.

Proof: Suppose that x£M and x^L. Then there must exist a point x'

in A such that f(x') < f(x). But for any \eA, this implies that

\X,f(x')) < ( X., f(x)) , and hence x is not in M, which is a contradiction.

39. Definition: We shall say that a solution x of the problem P is

regular if there exists a closed convex neighborhood U of x such that

for any y6AJ IU the relation f(x) = f(y) implies x = y.

40. Definition: We shall say that the problem P is regular if every

solution of P is a regular solution.

It is easy to verify that if f is convex and one of its components

is strictly convex then P is regular.

41. Theorem: Suppose that the problem P is regular, that the performance

criterion f is convex (component-wise) and that the constraint set A is

closed and convex. Then the set L (36) is contained in the closure of
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the set M (37).

Proof: We shall show that for every x€L, there exists a sequence of

points in M which converges to x.

We begin by constructing a sequence which converges to an

arbitrary, but fixed, x in L . We shall then show that this sequence

is in M.

Let x be any point- in L. Since we can translate the origins of

En and E , we may suppose, without loss of generality, that x = 0

and that f (x) = 0 .

Let U be a closed convex neighborhood of x satisfying the

conditions of definition (39), and let NC U be a compact convex neighbor

hood of x. For any positive scalar e, 0 < e < — , (where p is the
= p

dimension of the space containing the range of f(*)), let

42. A(€) =1 X. =(\\ \2, •••, XP)|Y X1 =1, \X>e, i =1, 2, •-•, pL

Let g be the real-valued function with domain AI IN X A(c),

defined by:

43. g(\,x) = (K f(x)>.

Clearly, since f is convex and hence continuous, g is continuous

in Apl N X A(e), furthermore, g is convex in x for fixed X. and linear
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in \ for fixed x. Since the sets A[ IN and A(c) are compact and

convex, the sets

44. {xeAriN|g(\, x) = Min g(^,T))},
TieAflN

45. {\6A(€)|g(\,x) = Max g(v,x)} ,
vsA(e)

are well defined for every X.eA(e) and every xeAl |N, respectively.

Obviously, the sets defined in (44) and (45) are convex.

By K. Fan's Theorem [10], there exist a point X(e) in A(c)

and a point x(e) in Al IN such that

*

K. Fan's Theorem

Let L , L? be two separated locally convex, topological, linear

spaces, and K., K? be two, compact convex sets in L., L^, respec

tively. Let g be a real-valued continuous function on K X KL. If, for

any x CK , y eK. the sets

(x£Kjg(x,y ) = Maxg(v,y )|
1 1 u veIC J

and

fy£ K2 |g(xQ, y) =Min g(xQ, r\)j

are convex, then

Max Min g(x, y) = Min Max g(x, y)
xeK ygK2 yeK2 xeie
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46. <\[€ ), f(x)> > <MO. f(x(€ ))> > ( K f(x(€ )))

for every x in Aj |N and X. in A(e).

Since x = 0 is in A! IN and f(x) = 0, we have from (46):

47. <MO. f(x(e))> < 0.

And from (46) and (47),

48. <\, f(x(e))) < 0 for every X. in A(e).

Since Al IN is compact, we can choose a sequence € , n = 1, 2,,,#,

with 0 < € < 1/p, converging to zero in such a way that the resulting
n =

sequence of points x(€ ), satisfying (46), converges, i.e.,

49. lim x(€ ) = x , x 8Al IN .
n

n-**oo

Since g(X.,x) is continuous, it follows from (48) and (49) that

(\, f(x*)) < 0 for all X.S-A,

which implies that f(x ) < 0. But x is a solution to P, hence

f(x*) < 0 = f(x) implies that f(x*) = f(x). Consequently, since P is

regular, x* = x = 0. Thus, we have constructed a sequence, {x(e )}

which converges to x.

We shall now show that the sequence {x(e )} contains a sub

sequence {x(€ )} also converging to x, which is contained in M.
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Since x is in the interior of N, there exists a positive integer

n such that the points x(e ) eAl IN belong to the interior of N for

n i v

We will show that for n > n„, x(€ ) is a solution to P(X.(« ), i-e. ,
= 0 n n

that for n > n , x(€ )cM. By contradiction, suppose that for n > n ,

x(e ) is not a solution to P(X.(€ ))• Then there must be a point x' in A
n n r

such that

5i. <M«g, f(x')> <<M<g,f(x(€n))> .

Let x (a) = (l-or)x(€ )+ax', 0 < or < 1; since A is convex,
n 1

x (ca) is an A for 0 < a < 1. But for n > nrt, x(€ ) is in the interior
= 0 n

of N and hence there exists an a*, 0 < a* < 1 such that x"(o*) belongs

to N.

Now,

52. <M*n), f(x>*))> =<M«y, f((l-a*)x(€n) +*x')> .

But for X.(€ )gA(€ )» \ M6 )» f(x)) is convex in x. Hence (51) and
n n n

(52) imply that

53. (\{€), f(x"(a*))> < <MO. f(x(€^))> ,
n n n

which contradicts (46) .
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Therefore, for n > n_, x(e ) is a solution to P(M6 % i.e.,
= 0 n n

x(e ) is in M.
n

Thus, for any given xeL there exists a sequence {x(e )} con-
n

tained in M such that x(e ) -*• x as n -*• oo . This completes our proof.
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III. Applications to Nonlinear Programming

In nonlinear programming the set £2 is usually defined by a set

of inequalities. Thus, let q , i = 1, 2, • • • , s be continuously differentiable

n 1
functions from E into E . Then £2 is defined by

54. J2 = {xeE |q (x) <• 0, i = 1, 2, • • • , s} .

55. Basic Nonlinear Programming Problem: We shall refer to the

particular case of the Basic Problem (1), arising when the constraint

set £2 is defined by (54), as the Basic Nonlinear Programming Problem.

At each point x in fl, the index set of active constraints is

defined as

56. I(x) = {ilq^x) = 0, ie{l,2, .-., s}}.

Similarly, the index set of inactive constraints is defined as

57. I(x) = {ilq^x) < 0, ie{l,2, • •-, s}}.

Let x be a solution to the Basic Nonlinear Programming Problem.

In order to bring the additional structure of the Basic Nonlinear Program

ming Problem into play, it is convenient to begin by allowing the following

assumption, which will subsequently be removed.
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,n
58. Assumption: There exists a vector z in E such that

for every i€l(x).

Under this assumption, the nonvoid set

nC(x,£2) = { xeE aqx(x)
3x

x < 0, i€.I(x)

is a linearization of the first kind for £2 at x, and

nC(x,S2) = { x£E 9qX(x)
8x

x < 0, i6l(x)

9qx(x)
z < 0

By Theorem (7) there exist vectors u in Ep and r\ in E such

that

(i) u < 0, i = l,2, •••, p ,

(ii) (u,ti) 4 0 ,

p m .

..... V i df\x) _,_ V i orX(x) . _ .(m) y u gx' x + >*1 9xx x < 0 for every
i=l i=l

xefxeEn| ^f^x <0, iel(x)] .

And by Farkas' Lemma [11], there exist scalars p < 0, i£l(x)

such that
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m

8x " °""• l'"-iP*l<>"-iP*l <•'
i=l i=l ie I(x)

Defining p = 0 for i 6 I (x), we have just proved:

60. Theorem: Let x be a solution to the Basic Nonlinear Programming

Problem. If Assumption (58) holds, then there exist scalars p.1, i =l, 2, •••,p,

V» j =1,2, • • • , m and p > k=l,2, • • • , s such that

61. (i) u1 < 0, i =l,2,---,P ,

p < 0, k = l,2, ••-, s ,

(ii) (u,ti) t 0,

P . m s

i=l j=l k=l

(iv) > p q (x) = 0 .

k=l

When the additional Assumption (58) does not hold, we can use

the following lemma to obtain somewhat weaker necessary conditions

for the Basic Nonlinear Programming Problem, still involving its

entire structure.
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65. Lemma: Let v., i = 1, 2, • • • , k be any k vectors in E . If the

system

66. (v.,x) < 0, i = 1,2, .. • , k
l

n - k
has no solution x in E , then there exists a nonzero vector p in E ,

-i k -i
with p < 0, i = l,2,»»»,k such that 2. p v. = 0.

k

Proof: Let B = {xeE |x-= > p v., p < 0, not all zero}.

i=l

We want to prove that the origin belongs to B . By contradiction,

suppose that the origin does not belong to B. Then 0 does not belong

to the convex hull of { - v,, - v~, •••, - v,} since co{ - v,, - v2» ••• , - v, }

is a subset of B. But co{ - v,, - v2, •••, - v, } is a closed convex set

in E not containing the origin. Hence, by the strong separation

* ntheorem, there exists a hyperplane in E strictly separating the set

co{ - v., - v2» ••• , - v, } from the origin, i. e. , there exists a nonzero

vector x in E such that

67. \x, x) > 0 for every xeco{- v , - v-, • • •, - v, } .
1 " k

Hence,

68. <x, v. > < 0, for i =1,2, • • • , k,

*

See Edwards, 8 , p. 118, 2.2.3 Corollary to the Hahn-Banach Theorem,
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which contradicts the assumption of the Lemma. Therefore 0 6B, i.e. ,

k
there exists a nonzero vector p in E , p. < 0, i = l,2, •••, k, such

k — i
that 2. , p v. = 0 .

1=1 l

Combining Theorem (60), Assumption (58), and Lemma (65),

we obtain the following extension of the Fritz-John Theorem [12],

69. Theorem: Let x be a solution to the Basic Nonlinear Programming

Problem. Then, there exist vectors u in E , t| in E , and p in E

such that

(i) p.1 < 0, i =l, 2, •••, p ,

(ii) p1 < 0, i =l,2, •••, s ,

(iii) (u, r\, p) t 0,

p m . k

.. , V i 9^(x) _,_ V i 9r*(x) ^ V i ^(x)

i=l i=l i=l

k

V i i *(v) > p q (x) = 0 .

i=l

The following corollaries are immediate consequences of

Theorem (19):
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75. Corollary: If the gradient vectors —- , • • •, —-—— are linearly

independent; then any vectors p6E , rjeE , p£E , satisfying the

conditions of Theorem (69), also satisfy (p, p) £ 0.

1 •* 2 m •"»
7A r n t* 4-u j- 4. + 9r M 9r (x) 9r (x)76. Corollary: If the gradient vectors , — , •••, —

together with the gradient vectors j ^ >, with i£l(x), are linearly

independent, then any vectors peE , ir^eE , p eE satisfying the con

ditions of Theorem (69), also satisfy p / 0.

77. Corollary: If the set: jx£En|ar ^ x = 0, j=1, 2, •••, m,
i 1 2 — -

9q (x) -ct/~\1 •« -a a*.^ 4. 9r (x) 9r (x) 9rm(x)—a-J— x < 0, i£l(x) > is nonvoid and the vectors 1—' *—- • • • *—£
i,-v . . 1.-. . 2.-. ^ m ~

(3

are linearly independent, then any vectors peE , T|eE , peE satisfy

ing the conditions of Theorem (69), also satisfy p ^ 0.

78. Corollary: If the system

^^x <0, ie{{l,2, ...,p} -{i}},

9rJ(x) .-g^— x = 0, j = 1, 2, ••• , m ,

k -

23^> x< o, kel(£),

has a solution for some i {1, 2, • • • , p} and the gradient vectors

gr^x) 9r2(x) . 9rm(x) _. , . J
—r-1—, —-—S » —7 ' are linearly independent, then any vectors

peE , T|tE , peE satisfying the conditions of Theorem (69), also

satisfy p. < 0.
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IV. Applications to Optimal Control

s s
79. Definition: Let P be a convex cone in E . A subset S of E is said

to be P-directionally convex if for every z , z? in S and 0 < \ < 1,

there exists a vector z(X.) in P such that

\z. + (14)z, + z(V)eS
1 «

80. Remark: It is very easy to show that a subset S of E is P-directionally

convex if and only if for any finite subset {z , zy, • • • , z } of S and any

scalars {>y k^ •••, \^} with 2 K=l, K > 0, i =l,2, •••, k, there

exists a vector z(V, \, • • •, U in P such that

k

Y \.z.+ zt^, \2, •••, yes .
i=l

On rereading Theorem (7), we observe that it may be rephrased

in the following equivalent form.

81. Theorem: Let x be any feasible solution to the Basic Problem (1),

i.e., x £2 and r(x) = 0, and let C(x, £2) be a linearization of £2 at x.

If the sets

K(x) ={ueEPxEm|u=(M£x> 2g£l*) . xeCM,}
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and

R=f(y, 0)eEP XE^y^ 0, i=l,2, --.,p, 0eEmJ

are not separated, then there exists a vector x in ft, with r(x ) = 0

and f(x ) < f(x) (component-wise).

We now make one more observation.

82. Theorem: Let ft'C E be any set with the property that if x'eft',

then there is a vector x in ft with r(x') = r(x) and f(x) < f(x'). If x

is a solution to the Basic Problem (1), if xeft' and if C(x,ft') is a

linearization for ft at x, then there exists a vector p in EP and a

vector r| in E such that

83. (i) p1 < 0, i =l,2, ••-,?,

84. (ii) (u,r|) * 0 ,

85. (iii)<^p, ^~x^> +<^, ^^x^> <0for all xeC(x\ft').

Proof: The theorem claims that the cones

K.(5) ={u8EPxEm|u=(^x, »giix) , xeCfx.n')}

and

={(y,0)6EPXEm|y1<0 for i=l,2, ---.p. 06Em}
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must be separated if x is a solution to the Basic Problem. Suppose

that K'(x) and R are not separated. Then by Theorem (81) with ft

taking the place of ft, there exists ax' in ft' such that r(x j = 0 and

f(x ) < f(x). But by assumption, there must exist an x in ft such that

r(x) = r(x ) = 0 and f(x) < f(x ) < f(x), which contradicts the assumption

that x is a solution to the Basic Problem.

Now consider a dynamical system described by the difference

equation

86. x.., - x. = f. (x.,u .) for i= 0,1, 2, • • • , k-1 ,
l+l l ill

where x.£E is the system state at time i, u.8E is the system input

at time i, and f. is a function defined in E X E with range in E .

The Optimal Control Problem is that of finding a control sequence

U = (u , u , • • • , u ) and a corresponding trajectory X = (x , x , • • • , x )

determined by (86), such that

87. (i) u.eU.C Em> i = 0, 1, 2, •••, k-1 ,
l l

88. (ii) x.C XQ =XQC\ X0, with X^ ={xeEn|q0(x) <0} , and
X = {xeE |q0(x) =0}, where g maps E into E and q maps E

into E ,

89. (iii) Xj^eXj^. =X* P\»with X^ ={xeEn|qn(x) <0} and
X = {xeEn|g, (x) = 0}, where g maps E into E and g maps
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En into E

90. (iv) ieX =x|, x! ={xeEn|q.(x) <0}, i=1, 2, •••, k-1
m.

where q. maps E into E

91. (v) for every control sequence U = (u , u , • • •, u, ) and

corresponding trajectory X = (x , x , • • • , x.) , satisfying the conditions

k-1 k-1
(i), (ii), and (iii), the relation 2. _ c.(x.,u.) < 2. rt c.(x.,u.) implies

i=0 ii i = i=0 i i i r
k-1 k-1 a a n _that Si=Q c^x^ u^ = S c.(x.,u.), where the c. map E into EP for

i = 0,1,2, ••-, k-1.

The following assumptions will be made:

92. (i) for i= 0,1,2, ••., k-1 and for every fixed u. in U , the
l i

functions f. (x.,u.) and c.(x.,u.) are continuously differentiable in x. ;

93. (ii) let R = {(y, 0)eEPX Em|yeEP, y1 < 0, i =l,2, ••-,?, 06Em}

and let f .(x,u) = (c.(x,u), f.(x,u)); then for each x in En, the sets

f.(x.,U.), i=0,l,2, • • • , k-1 are R -directionally convex;

94. (iii) the functions gQ(x) and gk(x) are continuously differentiable
9g0(x) 3gk(x)

and the corresponding Jacobian matrices —r , —r are of maximum
9x 9x

rank for every x in X and every x in X, respectively;

f8qJ.(x)
95. (iv) for every x.£X., i= 0,1, 2, • • • , k, < — je{j |qJ.(x) =0,
j =l,2, •••, m.}^ is a set of linearly independent vectors.
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In order to transcribe the control problem into the form of the

Basic Problem, we introduce the following definitions:

96. (i) For i= 0,1, 2, • • • , k-1, let v. = (a., v.) where a.6c.(x.,U.)

and v. gf.(x., U.), i.e., v.6f.(x.,U.) ,
1111 -1-111

97. (ii) Let z =(xQ, x^ •• • , xk, vQ, v^ ••• , v^) ,
k-1

98. (iii) Let f(z) = \ a. ,
i=0

99. (iv) Let r(z) be the function defined by :

r(z) =

x, - x_ - v„
10 0

Xk " Xk-1 ' Vk-1

g0(xo)

gk(xk>

100. (v) Let ft = {z|x.eX., i=0,l,2, ... , k, v.ef .(x.,U.), i =0,l, •••, k-1},

Thus, the Optimal Control Problem is equivalent to the Basic

Problem with z, f, r, and ft given by (97), (98), (99) and (100),

respectively.

t

Let us define the set ft by
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1 . I

101. ft = {z|x.eX., i=0,l,2, ••• , k, v.ecof.(x.,U.), i= 0,1, 2, • • • , k-1}.

We now show that the sets ft and ft defined in (100) and (101),

respectively, satisfy the conditions stated in Theorem (82). Let z be

i * ' * i iany point in ft . Then for i= 0,1, 2, • • • , k, x. eX. and v. = 2 \. v ,
i ' 1 -l . * l -l

j j * j J€J
where 2 ^\. = 1, X.. > 0, J a finite set and v.e f .(x.,U.) . But by

. ,^ i i = -l - i l i '

Assumption (93), the sets f.(x.,U.), i = 0, 1, 2, •••, k-1,

are R - directionally convex and hence there exists a Z in ft such that

x. = x. , v. = v. , and a. < a. .
1111 1=1

Now let z be a solution to the optimal control problem. Then

zeft and, since ft contains ft, z£ft'.

In the appendix we prove that the set

102. C(z,ft,) =J6z =(6xQ, 6xr "., 6xk, 6vQ, 6v^ •••, Sv^)!

9x.
l

6x. < 0 for all jeftlq^x.) = 0} and

5v.6 r-i 6x. \ + RC(v., cof.(x.,U.)) } '
-i 9x. i v-i' -ix i' i"

is a linearization for the set ft at z .

t
Definition: Given a subset A of an Euclidean space, we define the

radial cone to A at xcA to be the cone

RC(x,A) = {x|(x +ax)eA for all 0 < a < e(x,x), where € > 0}
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It now follows from Theorem (82) that there exists a nonzero

vector 4» =(p ,tt), p eEP, p <0, ir =(-p -p2, •••, -pk> pQ, u^,
*0 *k

p.CE , IJ-^eE , p 6E such that
1 U K

103. p° —^ 6 +tt ^^ 6z < 0 for all 6zeC(z\ft').
oz z dz =

Substituting (98) and (99) into (103) we obtain

k-1 k-1

104. p°£ 6a.- ^Pi+1(6xi+1-6xi-6v.)
i=0 i=0

ag0(»0) agk(xk) , ^ n
+ ^o -aT- 6xo+ ^k -ST- 5xk ± °

for every 8 £C(z,ft ).
z

Now, by interpreting (104) we obtain the following theorem:

105. Theorem: If the control sequence U = (u , u_, * • • , u, .) and the

corresponding trajectory X = (x , x_, • • •, x^) constitute a solution to

the Optimal Control Problem, then there exists a vector p £ E , p < 0,
n.

vectors p , p , • • •, p in E , vectors \ , V, • • • , K, X..eE , i= 0,1, • • • ,k,

0 kvectors Pn£E , p eE such that

106. (i) (p , pQ, py ••• , pk, pQ, pk) ± 0 ,

,„, ,», 8fi(Vi' A o8ci(*i' si> x v 8<5i(*i>107. (u) p. - p.+1 = p.+1 — + p gj + X. -_— ,

i = 0,1, • •• , k-1 .
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8gQ(x)
108. (iii) pQ = -pQ "9^—,

8«k(xk> . . 8gk{xk>109. (iv) pk = pk -^— + Kfc -^— ,

110. (v) \.q. (x.) = 0, i=0,l, •••,k,
ill

111. (vi) the Hamiltonian H(x, u, p, p , i) = (p , c.(x, u)) + (p, f.(x, u))

satisfies the maximum principle

H(x., u., p, p , i) > H(x., u., p, p , i) for all u. eU., i = 0,1, • • • , k-1
iir =11^^ ii

Proof:

(i) This was established in Theorem (82)

9f.(x.,u.)
-i i i

(ii) Let 6v. = 6x.. Then (104) becomes
-l 9x l

o 8ci<xrui) . af^u.)
9x

6x. + p. - 6x. + p.,. 6x. - p. 6x. < 0
l ^1+1 9x l *i+l i *i i =

8qi(ii) j -
for every 6x. satisfying —r 6x. < 0, with q. (x.) = 0. Applying

Farkas' Lemma [11] we obtain (107) and that X.. q.(x.) = 0 for i= 0, 1, • **,

k-1.

(iii) This is seen to be merely an arbitrary but consistent definition.
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(iv) and (v). W.e select 6 =(0, 0, •" • , 0, 6x^, 0, 0, • • •, 0), with
9qJ

k i **
6x„ such that — 6x, < 0 whenever q,(x,) = 0. Again applying

K 9 x k = kk

Farkas' Lemma, we get (109) and X. q, (x, ) = 0-
k k k

(vi) For i= 0, 1, 2, • •» , k-1, let v! be an arbitrary point in cof.(x., U.),

which is convex by construction. Then 6 v. = v* - v. is in RC(v., cof.(x.,U.))
-l-i-i i -i* i i"

and, choosing 6z = (0, 0, •••, 0, 6v., 0, •••, 0), we find that 6z£C(z,ft'),

and hence we obtain from (104),

112. p 6a. + p.., 6v. < 0 .
i ^i+l i =

Substituting v! - v. for 6 v. in (112) we obtain

11 3. p°(a^ - c.(x., u\)) +p1+1(v£ - f.(x., u.)) <0.

Clearly (113 ) also holds for every (a!, v!) ef. (x., U.) .

Therefore:

p (c (x ,u) - c (x ,u )) +p (f (x ,u) -f (x ,u)) < 0 for all u eU.,
Ill 111 1T1 111 111— 11

which completes our proof of (111).
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Appendix

Al Given a subset B of a Euclidean space, defined by inequalities,

i.e., B= {x|q (x) < 0, i =l,2, •••,m}, where the q are continuously

differentiable scalar-valued functions, we define the internal cone to B

at x B to be the cone

A i.-
A2 IC(x,B) = {xl J3- x < ° whenever q\x.) = 0, ie{l,2, ••• , m}}.

d x

We now return to the set ft', which was defined in (101) as

A3 ft' ={z =(Xq,^, •••, x^ vQ, vx, ••• , ^.^Ix^X^ i=0,l,2,»--,k ,

v € cof. (x., U.), j = 0,1, 2, • • •, k-1} .
** J «/ J

We shall prove that the set C(z,ft ) defined in (102), as shown

below, is a linearization for the set ft' at zeft'.

A4 C(z,ft') = {6z =(6x(),-",6xk, 6vQ, ••', 8vkl)|6x.eIC(xi,Xp
9f.(x.,u.)

for i=0, 1, • • •, k, and 6v. ^-r 6x. eRC(v., cof.(x.,U.)) for
-l 9x l -l -iii

i=0, 1, •••, k-1}.

A5 Lemma: The set C(z,ft') is a linearization of the set ft' at z.

Proof: First of all it is clear that C(z,ft') is a convex cone. Now,

for j = l,2, •.., N, let
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A6 6"j-(6*oj,,"'6V6-Oj,'",6-k-lJ)

be N linearly independent vectors in C(z,ft'), and let S = co{e 6z ,

e" 6z?, • • • , €6z } where € is a positive scalar, defined below.

For any 6 z in S we can uniquely write:

N N

A7 6z =i V u. (6z)8z., where Y [a.(6z)=1, |i.(6z) > 0, i =l,2, "-.N
i=l i=l

Therefore:

N

A8 6x. = € ) p. (6z) 6x..

and

N

A9 6v. = i > p. (6z)6v..

j=l

But by definition:

9f.(x.,u.)
-l i i

A10 6v.. = r 6x.. + v..
-ij 9x ij -ij

where v..€ RC(v., cof. (x.,U.))
-ij -l -ii r

From (A8), (A9) and (A10) ,
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- - N

8.fi(*i'ui> . v
All 6v. = 6x. + € > p.(6z)v..

-l 9 x 1 Ij j x -ij
j=l

Now, let's define the positive scalar € .

(a) For j =1, 2, • • •, N and i = 0,1, • • •, k, 6 x.. belongs to the convex

N
cone IC(x., XI). Hence from (A7), 2. p. (6z)6x.. is also in IC(x.,X!)

for i= 0, 1, • • •, k . Therefore there exist positive scalars i., i= 0, 1, • • •, k,

possible depending on 6 z , 6 z~, • • • , 6 z , such that:

N

A12 I x, +€. > p.(6z)6x..]eX^ for all 0 < €. < c".

(b) Similarly, for i = 0, 1, • • •, k-1,

N

A13 > p. (6z)v..eRC(v., cof. (x., U.)),

and hence there exist positive scalars €., possible depending on

6 z , 6 z_, • • •, 6 z„, such that:

N

A14 v. +€. > p. (6 )v..ecof.(x.,U.) for all 0 < €. < €. .
-i i /; j z -ij -r 1 i' = i = -i

We now define € to be minimum of the scalars €., i= 0,1, • • •, k,

and €., j = 0, l,-- •• , k-1.
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From (A14), there exists a finite set A. and scalars X such

that

N

V^ V^ i - <x
A15 € > p.(6 )v.. = > \ f.(x.,u. ) -v.Ij rjv z' -ij 1_j of-iv ii7 -l

1=1 aeA.
J l

where u. 6U., aeA., and ) \ =1, \ > 0.
ii l l_j a ot =

. aeA.
l

Combining (A15) and (All) we obtain

9f .(x.,u.)

A16
-1 1 1 C , V \1 £ #* ^V6 v. = —- 6 x. + ) X f. (x.,u. ) - v.

-l 9x l l_j <x -l l i -l
<*€A.

l

We can define a map £ from S into ft' - {z} by

A17 t, (5z) = (yQ, yl§ ••• , yK» wQ, w^ ••• , vt^J

where

N

A18 y.(6z) = 6x. = i > p.(6z)6x.., i=0,l, • • • , k, and

, i = 0,l, ••• , k-1 .A19 w.(6z) = > X1 f. (x. +6x., u") - v.- ix ' £j a -i i ii -l
tt€A.

l
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From (A12), (A15), (AL8) and (A19) it is clear that £ maps S

into ft' - {z}.

Expanding (A19) in a Taylor series about z we find that:

9f.(x.,u.)
A20 w.(8z) = "* 1 * 6x. + > X* f (x ,u") - v + o (6z)

-l 9x i l_j & -i i i -l l
Qf€ A.

1

l|o.(8z)||
where • 0 as ' II 6z II -* 0 .

Combining (A20), (A13), (A17) and (A18), we see that

||o(6z)||
£(8z) = 6z+o(6z), where lim .= 0

||6z|h0 ||6.||

Since £ is obviously continuous, C(z,ft') is a linearization for

ft' at z .
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Conclus ion

This paper has presented a theory of necessary conditions for

vector-valued criterion optimization problems, which did not depend

on the customary convexity assumptions (see Karlin [3])# When the

constraint sets are assumed to be convex and the components of the cost

function are also convex, the necessary conditions may also, become

sufficient [see Karlin p. 218]. Conditions under which a vector-valued

criterion problem can be treated as a family of scalar valued criterion

problems are very important, as they define the class of problems for

which we can effectively compute noninferior points.

Since the conditions presented in this paper are considerably

more general then theories hitherto available in the literature, it is

hoped that they will open up important classes of optimization problems.
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