Copyright © 1966, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

CONSTRAINED MINIMIZATION UNDER VECTOR-VALUED CRITERIA IN FINITE DIMENSIONAL SPACES

Neldow
by
N. O. Da Cunha
$1 / 2$
E. Polak

Memorandum Nó. ERL-M 188
 31 October 1966

ELECTRONICS RESEAR G Lit N_{3} LABORAORY
College of Engineering
University of California, Berkeley 94720

Manuscript submitted: 29 September 1966

The research reported herein was supported wholly by the National Aeronautics and Space Administration under Grant NsG-354, Supplement 3.

INTRODUCTION

Many problems in economics as well as in engineering and in mathematical programming have nonunique solutions, and one is therefore presented with the freedom to seek out optimal solutions. When there is only one criterion of optimality, which is relevant to the problem, we are faced with a straightforward optimization problem. However, when there are several criteria, all of which are important, and whose importance cannot be ordered, the matter becomes considerably more complicated, since we then have a vector-valued criterion optimization problem.

Judging from the literature on the subject, the first formulation of a vector-valued criterion optimization problem is due to the economist V. Pareto in 1896 [1]. Since then, discussions of this problem have kept reappearing in the economics literature (see Kuhn and Tucker [2], Karlin [3], Debreu [4] and, more recently, in the control engineering literature (see Zadeh [5], Chang [6]).

Although the vector-valued criterion formulation of an optimization problem is frequently much closer to reality than a formulation with a scalar valued criterion, very few results have been obtained to date, that shed light on vector-valued optimization problems. The present paper is devoted to developing a broad theory of necessary conditions for
characterizing noninferior points, and to determining when a vectorvalued criterion problem can be treated as a family of problems with scalar valued criteria.
I. Necessary Conditions for the Basic Problem

Let $f: E^{\mathrm{n}} \rightarrow E^{\mathrm{P}}, \mathrm{r}: \mathrm{E}^{\mathrm{n}} \rightarrow \mathrm{E}^{\mathrm{m}}$ be continuously differentiable functions and let Ω be a subset of E^{n}. (The function f is the vectorvalued performance criterion, while the function \mathbf{r} specifies equality constraints.)

1. Basic Problem: Find a point \hat{x} in E^{n} such that
2. (i) $\hat{x} \in \Omega$ and $r(\hat{x})=0$,
3. (ii) for every x in Ω with $r(x)=0$, the relation $f(x) \leqq f\left(\hat{x}^{*}\right.$ * (component-wise) implies that $f(x)=\hat{f(x)}$.

The solutions \hat{x} of the Basic Problem, i.e., those \hat{x} satisfying (2) and (3), are often referred to as noninferior points [5]. It can easily be shown [7] that they usually constitute an uncountable set of points.

Before we can obtain necessary conditions for a point \hat{x} in E^{n} to be a solution to the Basic Problem, we must introduce an approximation to the set Ω at \hat{x}.
4. Definition: A subset $C(\hat{x}, \Omega)$ of E^{n} will be called a linearization of the set Ω at \hat{x} if
5. (i) $C(\hat{x}, \Omega)$ is a convex cone,

* We use the following notation. For any vector y_{1}, y_{2} in $E^{P}, y_{1} \leqq y_{2}$ if and only if $y_{1}^{i} \leqq y_{2}^{i}$ for $i=1,2, \ldots, p ; y_{1} \leq y_{2}$ if and only if $y_{1} \neq y_{2}$ and $y_{1} \leqq y_{2} ; y_{1}<y_{2}$ if and only if $y_{1}^{i}<y_{2}^{i}$ for $i=1,2, \cdots, p$.

6. (ii) for any finite collection $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ of linearly independent vectors in $C(\hat{x}, \Omega)$, there exist a positive scalar ϵ_{0} and a continuous map ζ from $\operatorname{co}\left\{\epsilon \mathrm{x}_{1}, \cdots, \epsilon \mathrm{x}_{\mathrm{k}}\right\}$, the convex hull of $\left\{\epsilon \mathrm{x}_{1}, \cdots\right.$, $\left.\epsilon \mathrm{X}_{\mathrm{k}}\right\}$, with $0<\epsilon \leqq \epsilon_{0}$, into $\Omega-\{\hat{\mathrm{x}}\}$ of the form:
$\zeta(\delta x)=\delta x+o(\delta x)$ for all $\delta x \varepsilon \operatorname{co}\left\{\epsilon x_{1}, \cdots, \epsilon x_{k}\right\}, \quad 0<\epsilon \leqq \epsilon_{0}$ where the function $o(\cdot)$ is such that $\lim _{\|y\| \rightarrow 0} \frac{\|o(y)\|}{\|y\|}=0$.

An important special case of a linearization is one where the $\operatorname{map} \zeta$ is the identity map, i.e., $\operatorname{co}\left\{\epsilon \mathrm{X}_{1}, \cdots, \epsilon \mathrm{X}_{\mathrm{k}}\right\}$ is contained in $\Omega-\{\hat{x}\}$ for $0<\epsilon \leqq \epsilon_{0^{\circ}}$ We call this special case linearization of the first kind.
7. Theorem: Let \hat{x} be a solution to the Basic Problem and let $C \hat{(x}, \Omega)$ be a linearization for Ω at $\hat{\mathbf{x}}$. Then, there exist a vector μ in E^{P} and a vector η in E^{m} such that
8. (i) $\mu^{i} \leqq 0, i=1,2, \cdots, p$,
9. (ii) $(\mu, \eta) \neq 0$,
10.
(iii) $\left\langle\mu, \frac{\partial f(\hat{x})}{\partial x} x\right\rangle+\left\langle\eta, \frac{\partial r(\hat{x})}{\partial x} \hat{x}\right\rangle \leqq 0$ for all $x \in \hat{C(\hat{x}, \Omega)}$, where $\overline{C(x, \Omega)}$ is the closure of $C \hat{x}, \Omega)$.

Proof: Let
11. $A(\hat{x})=\left\{y \in E^{p} \left\lvert\, y=\frac{\partial f(\hat{x})}{\partial x} x\right., \quad x \in C(\hat{x}, \Omega)\right\}$,
12. $B(\hat{x})=\left\{z \varepsilon E^{m} \left\lvert\, z=\frac{\partial r(\hat{x})}{\partial x} x\right., x \in C(\hat{x}, \Omega)\right\}$,
13. $K(\hat{x})=\left\{u \varepsilon E^{p} \times E^{m} \left\lvert\, u=\left(\frac{\partial f(\hat{x})}{\partial x} x, \frac{\partial r(\hat{x})}{\partial x} x\right)\right., \quad x \in C(\hat{x}, \Omega)\right\}$.

Since the Jacobian matrices $\frac{\partial f(\hat{x})}{\partial x}$ and $\frac{\partial r(\hat{x})}{\partial x}$ define linear maps, $A(\hat{x}), B(\hat{x})$, and $K(\hat{x})$ are convex cones in E^{p}, E^{m}, and $E^{p} \times E^{m}$, respectively. Clearly, $\mathrm{K}(\hat{\mathrm{x}}) \subset \mathrm{A}(\hat{\mathrm{x}}) \times \mathrm{B}(\hat{\mathrm{x}})$.

Let C and R be the convex cones in E^{p} and $E^{P} \times E^{m}$, respectively, defined by
14. $C=\left\{y=\left(y^{1}, \cdots, y^{p}\right) \varepsilon E^{p} \mid y^{i}<0, i=1,2, \cdots, p\right\}$,
15. and $R=\left\{(y, 0) \varepsilon E^{p} \times E^{m} \mid y \varepsilon C, 0 \varepsilon E^{m}\right\}$.

Examining (9) and (10), we observe that the claim of the theorem is that the sets $K(\hat{x})$ and R are separated in $E^{p} \times E^{m}$. We now construct a proof by contradiction.

Suppose that $K(\hat{x})$ and R are not separated in $E^{p} \times E^{m}$. We then find that the following two statements must be true.
16. I. The smallest linear variety containing the union of R and $K(\hat{x})$ is the entire space $\mathrm{E}^{\mathrm{P}} \times \mathrm{E}^{\mathrm{m}}$, and $\mathrm{R} \bigcap \mathrm{K}(\hat{\mathrm{x}}) \neq \phi$, the empty set.
17. II. The convex cone $\mathrm{B}(\hat{\mathrm{x}})$ in E^{m}, contains the origin as an interior point and since $\hat{B(x)}$ is a convex cone, $B(\hat{x})=E^{m}$.

This follows from the fact that if 0 is not an interior point of the convex set $\mathrm{B}(\hat{\mathrm{x}})$, then by the separation theorem, ${ }^{*}$ it can be separated from $\mathrm{B}(\hat{\mathrm{x}})$ by a hyperplane in E^{m}, i. e., there exists a nonzero vector η_{0} in E^{m} such that

$$
\left\langle\eta_{0}, z\right\rangle \leqq 0 \text { for all } z \varepsilon B(\hat{x})
$$

Clearly, the vector $\left(0, \eta_{0}\right)$ in $E^{p} \times E^{m}$ separates R from $A(\hat{x}) \times \hat{B(x)}$ and hence from $\mathrm{K}(\hat{\mathrm{x}})$ contradicting our assumption that they are not separated.

We now proceed to utilize facts I and II. Since the origin in E^{m} belongs to the nonvoid interior of $B(\hat{x})=E^{m}$ (see II), let us construct a simplex Σ in $\hat{B(x)}$, with vertices $z_{1}, z_{2}, \cdots, z_{m+1}$ such that
18. (i) 0 is in the interior of Σ;
19. (ii) there exists a set of vectors $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{m}+1}\right\}$ in $\mathrm{C}(\hat{\mathrm{x}}, \Omega)$ satisfying:
20.
(a) $z_{i}=\frac{\partial r(\hat{x})}{\partial x} x_{i}$ for $i=1,2, \ldots, m+1$:
21. (b) $\zeta(\mathrm{x})=\mathrm{x}+\mathrm{o}(\mathrm{x}) \varepsilon\{\Omega-\{\hat{\mathrm{x}}\}\}$ for all $\mathrm{x} \in \operatorname{co}\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{m}+1}\right\}$, where ζ is the map entering the definition of $C(\hat{x}, \Omega)$, see (4).

[^0]22. (c) The points $y_{i}=\frac{\partial f(\hat{x})}{\partial x} x_{i}$ are in C for $i=1,2, \cdots, m+1$.

The existence of such a simplex is easily established. First, we construct any simplex Σ^{\prime} in $B(\hat{x})$ with vertices $z_{1}^{\prime}, z_{2}^{\prime}, \cdots, z_{m+1}^{\prime}$, which contains the origin in its interior. This is clearly possible since $\hat{B(x)}=\mathrm{E}^{\mathrm{m}}$ by (17). Let $x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{m+1}^{\prime}$ be any set of points in $C(\hat{x}, \Omega)$ which satisfy (20), i. e., $z_{i}^{\prime}=\frac{\partial r(\hat{x})}{\partial x} x_{i}^{\prime}, i=1,2, \cdots, m+1$. If $\frac{\partial f(\hat{x})}{\partial x} x_{i}^{\prime}<0$ for $i=1,2, \cdots, m+1$, then (22) is satisfied and we can satisfy (2l) by letting $x_{i}=\epsilon x_{i}^{\prime}$, for some $\epsilon>0$, and still satisfy (18), (20), and (22). But suppose, without loss of generality, that $\frac{\partial f(\hat{x})}{\partial x} x_{1}^{\prime} \geq 0$ and $\frac{\partial f(\hat{x})}{\partial x} x_{i}^{\prime}<0$ for $i=2,3, \cdots, m+1$. Since by (16) $K(\hat{x}) \bigcap R \neq \phi$, there exists a point $u=\left(\frac{\partial f(\hat{x})}{\partial x} \tilde{x}, 0\right) \varepsilon K(\hat{x}) \cap R$, i. e., $\frac{\partial f(\hat{x})}{\partial \mathbf{x}} \tilde{x}<0$ and $\frac{\partial r(\hat{x})}{\partial x} \tilde{x}=0$. Choose any scalar $\lambda>0$ such that $\frac{\partial f(x)}{\partial x}\left(\lambda x_{1}^{\prime}+(1-\lambda) \tilde{x}\right)<0$, and let $x_{1}=\lambda x_{1}^{\prime}+(1-\lambda) \tilde{x}$. Then the simplex Σ with vertices $\in \lambda z_{1}^{\prime}, \in z_{2}^{\prime}, \cdots, \in z_{m+1}^{\prime}$, satisfies conditions (18) and (19) (a), (b), and (c) for the corresponding vectors $x_{1}, x_{2}^{\prime}, x_{3}^{\prime}, \cdots, x_{m+1}^{\prime}$ and some $\in>0$.

It is easy to show that (18) implies that the vectors $\left(z_{1}-z_{m+1}\right)$, $\left(z_{2}-z_{m+1}\right), \cdots,\left(z_{m}-z_{m+1}\right)$ are linearly independent. Consequently, since $\frac{\partial r(\hat{x})}{\partial x}$ is a linear map, the vectors $\left(x_{1}-x_{m+1}\right),\left(x_{2}-x_{m+1}\right), \cdots$, ($x_{m}-x_{m+1}$) are also linearly independent. Let Z be the nonsingular $m \times m$ matrix whose columns are $\left(z_{1}-z_{m+1}\right),\left(z_{2^{-}} z_{m+1}\right), \cdots,\left(z_{m}-z_{m+1}\right)$ and let X be the $n \times m$ matrix whose columns are $\left(x_{1}-x_{m+1}\right),\left(x_{2}-x_{m+1}\right)$, $\cdots,\left(x_{m}-x_{m+1}\right)$. Then $z \rightarrow X Z^{-1}\left(z-z_{m+1}\right)+x_{m+1}$ is a continuous map from Σ into $\operatorname{co}\left\{x_{1}, x_{2}, \cdots, x_{m+1}\right\}$.

Now, for $0<\alpha \leqq 1$, let S_{α} be a sphere in E^{m} with radius $\alpha \rho($ where $\rho>0$), center at the origin, and contained in the interior of the simplex Σ.

Next we define a continuous map G_{α} from the sphere S_{α} into E^{m} by
23. $\mathrm{G}_{\alpha}(\alpha \mathrm{z})=\mathrm{r}\left(\hat{\mathrm{x}}+\zeta\left(\alpha \mathrm{XZ}^{-1}\left(\mathrm{z}-\mathrm{z}_{\mathrm{m}+1}\right)+\alpha \mathrm{x}_{\mathrm{m}+1}\right)\right)$ $=r\left(\hat{x}+\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}+o\left(\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}\right)\right)$,
where $\|z\| \leqq \rho, \alpha z \in S_{\alpha}$, and ζ is the map associated with the linearization $C(\hat{x}, \Omega)$. Since r is continuously differentiable, we can expand the righthand side of (23) about \hat{x} to obtain :
24. $\quad G_{\alpha}(\alpha z)=r(\hat{x})+\alpha \frac{\partial r(\hat{x})}{\partial \mathrm{x}}\left(\mathrm{XZ}^{-1}\left(\mathrm{z-z} \mathrm{z}_{\mathrm{m}+1}\right)+\mathrm{x}_{\mathrm{m}+1}\right)+o\left(\alpha \mathrm{XZ}^{-1}\left(\mathrm{z-z} \mathrm{z}_{\mathrm{m}+1}\right)+\alpha \mathrm{x}_{\mathrm{m}+1}\right)$.

But $r(\hat{x})=0, \frac{\partial r(\hat{x})}{\partial x} X=Z$, and $\frac{\partial r(\hat{x})}{\partial x} x_{m+1}=z_{m+1}$. Hence,
becomes
25.

$$
\begin{aligned}
& \mathrm{G}_{\alpha}(\alpha \mathrm{z})=\alpha \mathrm{z}+o\left(\alpha \mathrm{XZ}^{-1}\left(\mathrm{z-z}_{m+1}\right)+\alpha \mathrm{x}_{\mathrm{m}+1}\right) \\
& \text { Now, since } \lim _{\alpha \rightarrow 0} \frac{\left\|o\left(\alpha \mathrm{XZ}^{-1}\left(\mathrm{z-z}_{m+1}\right)+\alpha \mathrm{x}_{\mathrm{m}+1}\right)\right\|}{\alpha}=0 \text {, there }
\end{aligned}
$$ exists for $\|z\|=\rho$, an $\bar{\alpha}_{0}, 0<\bar{\alpha}_{0} \leqq 1$, such that:

26. $\left\|o\left(\alpha X^{-1}\left(z-z_{m+1}\right)+\alpha X_{m+1}\right)\right\|<\alpha \rho$, for all $0<\alpha \leqq \bar{\alpha}_{0}$ and $\|z\|=\rho$.

By assumption, f is differentiable, hence we can expand each component of f about \hat{x} as follows:
27. $\mathrm{f}^{\mathrm{i}}\left(\hat{\mathrm{x}}+\zeta\left(\alpha \mathrm{XZ}^{-1}\left(\mathrm{z}-\mathrm{z}_{\mathrm{m}+1}\right)+\alpha \mathrm{X}_{\mathrm{m}+1}\right)\right)=$

$$
\begin{gathered}
\left.\hat{f}^{i} \hat{x}\right)+\alpha \frac{\left.\partial f^{i} \hat{x}\right)}{\partial \mathbf{x}}\left[X z^{-1}\left(z-z_{m+1}\right)+x_{m+1}\right]+o\left(\alpha X z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}\right) \\
i=1,2, \cdots, p
\end{gathered}
$$

Since by construction, (see(22)), $\frac{\partial f^{i}(\hat{x})}{\partial x} x_{j}<0$, for $i=1,2, \cdots, p$ and $j=1,2, \cdots, m+1$, and the point $X Z^{-1}\left(z-z_{m+1}\right)+x_{m+1}$ is in $\operatorname{co}\left\{x_{1}, x_{2}, \cdots, x_{m+1}\right\}$, we have $\frac{\partial f^{i}(\hat{x})}{\partial x}\left[\mathrm{XZ}^{-1}\left(\mathrm{z}-\mathrm{z}_{\mathrm{m}+1}\right)+\mathrm{x}_{\mathrm{m}+1}\right]<0$, with $i=1,2, \cdots, p$. Hence there exist $\bar{\alpha}_{i}, i=1,2, \cdots, p$, such that
28. $f^{i}\left(\hat{x}+\alpha\left(X Z^{-1}\left(z-z_{m+1}\right)+X_{m+1}\right)\right)<f^{i}(\hat{x})$ for all $0<\alpha \leqq \bar{\alpha}_{i},\|z\|=\rho$

$$
\text { and } \quad i=1,2, \cdots p .
$$

Let α^{*} be the minimum of $\left\{\bar{\alpha}_{0}, \bar{\alpha}_{1}, \cdots, \bar{\alpha}_{p}\right\}$. It now follows from Brower's Fixed Point Theorem [9] that there exists a point $\alpha{ }^{*} z^{*}$

Now, let $\mathrm{x}^{*}=\hat{\mathrm{x}}+\zeta\left(\alpha^{*} \mathrm{XZ}{ }^{-1}\left(\mathrm{z}^{*}-\mathrm{z}_{\mathrm{m}+1}\right)+\alpha^{*} \mathrm{x}_{\mathrm{m}+1}\right)$, then
29. (a) $r\left(x^{*}\right)=0\left(\right.$ since $\left.r\left(x^{*}\right)=G_{\alpha^{*}}\left(\alpha^{*} z^{*}\right)=0\right)$,
30. (b) $\mathrm{x}^{*} \in \Omega, \operatorname{since}\left(\mathrm{x}^{*}-\hat{\mathrm{x}}\right) \varepsilon \zeta\left(\cos \left\{\alpha^{*} \mathrm{x}_{1}, \alpha^{*} \mathrm{x}_{2}, \cdots, \alpha^{*} \mathrm{x}_{\mathrm{m}+1}\right\}\right) \subset \Omega-\{\hat{\mathrm{x}}\}$

But (28), (29), and (30) contradict the assumption that \hat{x} is a solution to the Basic Problem. Therefore, the convex cones $\hat{K}(\hat{x})$ and R are separated in $E^{p} \times E^{m}$, i. e., there exists a nonzero vector (μ, η) in $E^{p} \times E^{m}$ such that
31. (i)

$$
\left\langle\mu, \frac{\partial f(\hat{x})}{\partial x} x\right\rangle+\left\langle\eta, \frac{\partial r(\hat{x})}{\partial x} x\right\rangle \leqq 0 \quad \text { for all } \quad x \in C(\hat{x}, \Omega)
$$

32. (ii)

$$
\langle\mu, \mathrm{y}\rangle+\langle\eta, 0\rangle \geqq 0 \text { for all } \mathrm{y} \in \mathrm{C} .
$$

But (31) implies that

$$
\left\langle\mu, \frac{\partial f(\hat{x})}{\partial x} x\right\rangle+\left\langle\eta, \frac{\partial r(\hat{x})}{\partial x} x\right\rangle \leqq 0 \text { for all } x \in \overline{C(\hat{x}, \Omega)}
$$

and (32) and (14) implies that $\mu^{i} \leqq 0, i=1,2, \cdots, p$.
Q.E.D.

II. Reduction of a Vector-Valued Criterion to a Family of Scalar-Valued Criteria

An examination of (9) and (10) indicates that if we had used the scalar-valued criterion $\langle\mu, \mathrm{f}(\mathrm{x})\rangle$ instead of the vector-valued criterion $f(x)$ in the definition of the Basic Problem (1), with $\mu \in E^{p}$ specified by Theorem (7) for the vector -valued criterion, we would have obtained from Theorem (7) exactly the same set of necessary conditions. This observation leads us to the following question: can we obtain the solutions to the Basic Problem (1) by solving a family of scalar-valued criterion problems? A partial answer to this question is given below by Theorems (38) and (41).

To simplify our exposition, we lump the constraint set Ω with the set $\left\{x E^{n} \mid r(x)=0\right\}$. We shall therefore consider a subset A of E^{n}, a continuous mapping f from E^{n} into E^{p} and introduce the following definitions.
33. Definition: We shall denote by P the problem of finding a point $\hat{\mathbf{x}}$ in A such that for every x in A, the relation $f(x) \leqq f(\hat{x})$ (componentwise) implies that $f(x)=f(x)$.
34. Definition: Let Λ be the set of all vectors $\lambda=\left(\lambda^{1}, \lambda^{2}, \cdots, \lambda^{p}\right)$ in E^{P} such that $\Sigma_{i=1}^{P} \lambda^{i}=1$ and $\lambda^{i}>0, i=1,2, \cdots, p$.
35. Definition: Given any vector λ in E^{P}, we shall denote by $P(\lambda)$ the problem of finding a point \bar{x} in A such that $\langle\lambda, f(\bar{x})\rangle \leqq\langle\lambda, f(x)\rangle$ for all \mathbf{x} in A .

We shall consider the following subsets of E^{n} :
36. $L=\{x \in A \mid x$ solves $P\}$,
37. $M=\{x \in A \mid x$ solves $P(\lambda)$ for some $\lambda \in \Lambda\}$.
38. Theorem: The set L contains the set M.

Proof: Suppose that $\bar{x} \varepsilon M$ and $\bar{x} \notin L$. Then there must exist a point x^{\prime} in A such that $f\left(x^{\prime}\right) \leq f(\bar{x})$. But for any $\lambda \in \Lambda$, this implies that $\left\langle\lambda, f\left(x^{\prime}\right)\right\rangle\langle\langle\lambda, f(\bar{x})\rangle$, and hence \bar{x} is not in M, which is a contradiction.
39. Definition: We shall say that a solution $\hat{\mathbf{x}}$ of the problem P is regular if there exists a closed convex neighborhood U of \hat{x} such that for any $y \in A \cap U$ the relation $f(\hat{x})=f(y)$ implies $\hat{x}=y$.
40. Definition: We shall say that the problem P is regular if every solution of P is a regular solution.

It is easy to verify that if f is convex and one of its components is strictly convex then P is regular.
41. Theorem: Suppose that the problem P is regular, that the performance criterion f is convex (component-wise) and that the constraint set A is closed and convex. Then the set $L(36)$ is contained in the closure of
the set M (37).

Proof: We shall show that for every $\hat{x} \in L$, there exists a sequence of points in M which converges to \hat{x}.

We begin by constructing a sequence which converges to an arbitrary, but fixed, \hat{x} in L. We shall then show that this sequence is in M.

Let \hat{x} be any point in L. Since we can translate the origins of E^{n} and E^{p}, we may suppose, without loss of generality, that $\hat{x}=0$ and that $\hat{f(x)}=0$.

Let U be a closed convex neighborhood of \mathbf{x} satisfying the conditions of definition (39), and let $N \subset U$ be a compact convex neighborhood of $\hat{\mathrm{x}}$. For any positive scalar $\epsilon, 0<\epsilon \leqq \frac{1}{\mathrm{p}}$, (where p is the dimension of the space containing the range of $f(\cdot))$, let
42. $\Lambda(\epsilon)=\left\{\lambda=\left(\lambda^{1}, \lambda^{2}, \cdots, \lambda^{p}\right) \mid \sum_{i=1}^{p} \lambda^{i}=1, \lambda^{i} \geqq \epsilon, i=1,2, \cdots, p\right\}$.

Let g be the real-valued function with domain $A \bigcap N \times \Lambda(\epsilon)$, defined by:
43. $g(\lambda, x)=\langle\lambda, f(x)\rangle$.

Clearly, since f is convex and hence continuous, g is continuous in $A \bigcap N \times \Lambda(\epsilon)$, furthermore, g is convex in x for fixed λ and linear
in λ for fixed x. Since the sets $A \bigcap N$ and $\Lambda(\epsilon)$ are compact and convex, the sets
44.

$$
\left\{x \in A \cap N \mid g(\bar{\lambda}, x)=\operatorname{Min}_{\eta \varepsilon A \cap N} g(\bar{\lambda}, \eta)\right\}
$$

45.

$$
\left\{\lambda \varepsilon \Lambda(\epsilon) \mid g(\lambda, \bar{x})=\operatorname{Max}_{\nu \varepsilon \Lambda(\epsilon)} g(\nu, \bar{x})\right\}
$$

are well defined for every $\bar{\lambda} \varepsilon \Lambda(\epsilon)$ and every $\bar{x} \varepsilon A \bigcap N$, respectively. Obviously, the sets defined in (44) and (45) are convex.

By K. Fan's Theorem [10], * there exist a point $\lambda(\epsilon)$ in $\Lambda(\epsilon)$ and a point $x(\epsilon)$ in $A \bigcap N$ such that

* K. Fan's Theorem :

Let L_{1}, L_{2} be two separated locally convex, topological, linear spaces, and K_{1}, K_{2} be two, compact convex sets in L_{1}, L_{2}, respectively. Let g be a real-valued continuous function on $K_{1} \times K_{2}$. If, for any $\mathrm{x}_{0} \varepsilon \mathrm{~K}_{1}, \mathrm{y}_{0} \varepsilon \mathrm{~K}_{2}$ the sets

$$
\left\{x \in K_{1} \mid g\left(x, y_{0}\right)=\operatorname{Max}_{v \in \mathrm{~K}_{1}} g\left(v, y_{0}\right)\right\}
$$

and

$$
\left\{y \varepsilon K_{2} \mid g\left(x_{0}, y\right)=\operatorname{Min}_{\eta \varepsilon K_{2}} g\left(x_{0}, \eta\right)\right\}
$$

are convex, then

$$
\operatorname{Max}_{x \in K_{1}}^{\operatorname{Min}} \operatorname{Min}_{2} g(x, y)=\underset{y \in K_{2}}{\operatorname{Min}} \operatorname{Max}_{1} g(x, y) .
$$

46. $\langle\lambda(\epsilon), f(x)\rangle \geqq\langle\lambda(\epsilon), f(x(\epsilon))\rangle \geqq\langle\lambda, f(x(\epsilon))\rangle$
for every x in $A \bigcap N$ and λ in $\Lambda(\epsilon)$.
Since $\hat{x}=0$ is in $A \bigcap N$ and $f(\hat{x})=0$, we have from (46):
47. $\langle\lambda(\epsilon), f(x(\epsilon))\rangle \leqq 0$.

And from (46) and (47),
48. $\langle\lambda, f(x(\epsilon))\rangle \leqq 0$ for every λ in $\Lambda(\epsilon)$.

Since $A \bigcap_{N}$ is compact, we can choose a sequence $\epsilon_{n}, n=1,2, \cdots$, with $0<\epsilon_{n} \leqq 1 / p$, converging to zero in such a way that the resulting sequence of points $x\left(\epsilon_{n}\right)$, satisfying (46), converges, i.e.,
49. $\lim _{n \rightarrow \infty} x\left(\epsilon_{n}\right)=x^{*}, x^{*} \varepsilon A \bigcap N$.

Since $g(\lambda, x)$ is continuous, it follows from (48) and (49) that
$\left\langle\lambda, f\left(x^{*}\right)\right\rangle \leqq 0$ for all $\lambda \varepsilon \Lambda$,
which implies that $f\left(x^{*}\right) \leqq 0$. But $\hat{\mathbf{x}}$ is a solution to P, hence $f\left(x^{*}\right) \leqq 0=f(\hat{x})$ implies that $f(x *)=f(\hat{x})$. Consequently, since P is regular, $x^{*}=\hat{x}=0$. Thus, we have constructed a sequence, $\left\{x\left(\epsilon_{n}\right)\right\}$ which converges to $\hat{\mathbf{x}}$.

We shall now show that the sequence $\left\{x\left(\epsilon_{n}\right)\right\}$ contains a subsequence $\left\{\mathbf{x}\left(\epsilon_{n}\right)\right\}$ also converging to \hat{x}, which is contained in M.

Since \hat{x} is in the interior of N, there exists a positive integer n_{0} such that the points $x\left(\epsilon_{n}\right) \in A \bigcap N$ belong to the interior of N for $\mathrm{n} \geq \mathrm{n}_{0}$.

We will show that for $n \geqq n_{0}, x\left(\epsilon_{n}\right)$ is a solution to $P\left(\lambda\left(\epsilon_{n}\right)\right.$, i.e., that for $\mathrm{n} \geqq \mathrm{n}_{0}, \mathrm{x}\left(\epsilon_{\mathrm{n}}\right) \in \mathrm{M}$. By contradiction, suppose that for $\mathrm{n} \geqq \mathrm{n}_{0}$, $x\left(\epsilon_{n}\right)$ is not a solution to $P\left(\lambda\left(\epsilon_{n}\right)\right)$. Then there must be a point x^{\prime} in A such that
51. $\left\langle\lambda\left(\epsilon_{n}\right), f\left(x^{\prime}\right)\right\rangle\left\langle\left\langle\lambda\left(\epsilon_{n}\right), f\left(x\left(\epsilon_{n}\right)\right)\right\rangle\right.$.

Let $\mathrm{x}^{\prime \prime}(\alpha)=(1-\alpha) \mathrm{x}\left(\epsilon_{\mathrm{n}}\right)+\alpha \mathrm{x}_{1}{ }_{1}, \quad 0<\alpha<1$; since A is convex, $x^{\prime \prime}(\alpha)$ is an A for $0<\alpha<1$. But for $n \geqq n_{0}, x\left(\epsilon_{n}\right)$ is in the interior of N and hence there exists an $\alpha^{*}, 0<\alpha^{*}<1$ such that $\mathrm{x}^{\prime \prime}\left(\alpha^{*}\right)$ belongs to N .

Now,
52. $\left\langle\lambda\left(\epsilon_{\mathrm{n}}\right), f\left(\mathrm{x}^{\prime \prime}\left(\alpha^{*}\right)\right)\right\rangle=\left\langle\lambda\left(\epsilon_{\mathrm{n}}\right), \mathrm{f}\left(\left(1-\alpha^{*}\right) \mathrm{x}\left(\epsilon_{\mathrm{n}}\right)+\alpha \mathrm{x}^{\prime}\right)\right\rangle$.

But for $\lambda\left(\epsilon_{\mathrm{n}}\right) \varepsilon \Lambda\left(\epsilon_{\mathrm{n}}\right),\left\langle\lambda\left(\epsilon_{\mathrm{n}}\right), \mathrm{f}(\mathrm{x})\right\rangle$ is convex in x . Hence (51) and (52) imply that
53. $\left\langle\lambda\left(\epsilon_{n}\right), f\left(x^{\prime \prime}(\alpha *)\right)\right\rangle\left\langle\lambda\left(\epsilon_{n}\right), f\left(x\left(\epsilon_{n}\right)\right\rangle\right.$,
which contradicts (46).

Therefore, for $n \geqq n_{0}, x\left(\epsilon_{n}\right)$ is a solution to $P\left(\lambda\left(\epsilon_{n}\right)\right)$, i. e., $x\left(\epsilon_{n}\right)$ is in M.

Thus, for any given $\hat{x} \in L$ there exists a sequence $\left\{x\left(\epsilon_{n}\right)\right\}$ contained in M such that $x\left(\epsilon_{n}\right) \rightarrow \hat{x}$ as $n \rightarrow \infty$. This completes our proof.

III. Applications to Nonlinear Programming

In nonlinear programming the set Ω is usually defined by a set of inequalities. Thus, let $q^{i}, i=1,2, \ldots, s$ be continuously differentiable functions from E^{n} into E^{1}. Then Ω is defined by
54. $\quad \Omega=\left\{x \in E^{n} \mid q^{i}(x)<0, i=1,2, \cdots, s\right\}$.
55. Basic Nonlinear Programming Problem: We shall refer to the particular case of the Basic Problem (1), arising when the constraint set Ω is defined by (54), as the Basic Nonlinear Programming Problem.

At each point x in Ω, the index set of active constraints is defined as
56. $\quad I(x)=\left\{i \mid q^{i}(x)=0, i \in\{1,2, \cdots, s\}\right\}$.

Similarly, the index set of inactive constraints is defined as
57. $\bar{I}(x)=\left\{i \mid q^{i}(x)<0, i \in\{1,2, \cdots, s\}\right\}$.

Let $\hat{\mathbf{x}}$ be a solution to the Basic Nonlinear Programming Problem. In order to bring the additional structure of the Basic Nonlinear Programming Problem into play, it is convenient to begin by allowing the following assumption, which will subsequently be removed.
58. Assumption: There exists a vector z in E^{n} such that $\frac{\partial q^{i}(\hat{x})}{\partial x} z<0$ for every $i \in I(\hat{x})$.

Under this assumption, the nonvoid set

$$
C(\hat{x}, \Omega)=\left\{x \in E^{n} \left\lvert\, \frac{\partial q^{i}(\hat{x})}{\partial x} x<0\right., \quad i \varepsilon I(\hat{x})\right\}
$$

is a linearization of the first kind for Ω at \hat{x}, and

$$
\overline{C(\hat{x}, \Omega)}=\left\{x \in E^{n} \left\lvert\, \frac{\partial q^{i}(\hat{x})}{\partial x} x \leqq 0\right., \quad i \varepsilon I(\hat{x})\right\}
$$

By Theorem (7) there exist vectors μ in E^{p} and η in E^{m} such that
(i) $\mu^{i} \leqq 0, i=1,2, \cdots, p$,
(ii) $(\mu, \eta) \neq 0$,
(iii) $\sum_{i=1}^{p} \mu^{i} \frac{\partial f^{i}(\hat{x})}{\partial x} x+\sum_{i=1}^{m} \eta^{i} \frac{\partial r^{i}(\hat{x})}{\partial x} x \leqq 0 \quad$ for every
$x \varepsilon\left\{x \in E^{n} \left\lvert\, \frac{\partial q^{i}(\hat{x})}{\partial x} x \leqq 0\right., i \varepsilon I(\hat{x})\right\}$.
And by Farkas' Lemma [11], there exist scalars $\rho^{i} \leqq 0$, i $\varepsilon I(\hat{x})$
such that
59. $\quad \sum_{i=1}^{p} \mu^{i} \frac{\partial f^{i}(\hat{x})}{\partial x}+\sum_{i=1}^{m} \eta^{i} \frac{\partial r^{i}(\hat{x})}{\partial x}+\sum_{i \in I(\hat{x})} \rho^{i} \frac{\partial q^{i}(\hat{x})}{\partial x}=0$.

Defining $\rho^{i}=0$ for i $\varepsilon \bar{I}(\hat{x})$, we have just proved:
60. Theorem: Let \hat{x} be a solution to the Basic Nonlinear Programming

Problem. If Assumption (58) holds, then there exist scalars $\mu^{i}, i=1,2, \cdots, p$, $\eta^{j}, j=1,2, \cdots, m$ and $\rho^{k}, k=1,2, \cdots, s$ such that
61. (i) $\mu^{i} \leqq 0, i=1,2, \cdots, p$,

$$
\rho^{k} \leqq 0, k=1,2, \cdots, s,
$$

(ii) $(\mu, \eta) \neq 0$,
(iii) $\sum_{i=1}^{p} \mu^{i} \frac{\partial f^{i}(\hat{x})}{\partial x}+\sum_{j=1}^{m} \eta^{j} \frac{\partial r^{j}(\hat{x})}{\partial x}+\sum_{k=1}^{s} \rho^{k} \frac{\partial q^{k}(\hat{x})}{\partial x}=0$,
(iv) $\sum_{k=1}^{s} \rho^{k} q^{k}(\hat{x})=0$.

When the additional Assumption (58) does not hold, we can use the following lemma to obtain somewhat weaker necessary conditions for the Basic Nonlinear Programming Problem, still involving its entire structure.
65. Lemma: Let $v_{i}, i=1,2, \cdots, k$ be any k vectors in E^{n}. If the system
66. $\left\langle v_{i}, x\right\rangle<0, i=1,2, \ldots, k$ has no solution x in E^{n}, then there exists a nonzero vector $\bar{\rho}$ in E^{k}, with $\bar{\rho}^{-i} \leqq 0, i=1,2, \cdots, k$ such that $\Sigma_{i=1}^{k} \rho^{-i} v_{i}=0$.
Proof: Let $B=\left\{x \in E^{n} \mid x=\sum_{i=1}^{k} \rho^{i} v_{i}, \rho^{i} \leqq 0\right.$, not all zero $\}$.
We want to prove that the origin belongs to B. By contradiction, suppose that the origin does not belong to B. Then 0 does not belong to the convex hull of $\left\{-v_{1},-v_{2}, \cdots,-v_{k}\right\}$ since $\operatorname{co}\left\{-v_{1},-v_{2}, \cdots,-v_{k}\right\}$ is a subset of B. But $\operatorname{co}\left\{-v_{1},-v_{2}, \cdots,-v_{k}\right\}$ is a closed convex set in E^{n} not containing the origin. Hence, by the strong separation theorem, * there exists a hyperplane in E^{n} strictly separating the set $\operatorname{co}\left\{-\nu_{1},-v_{2}, \cdots,-v_{k}\right\}$ from the origin, i.e., there exists a nonzero vector $\overrightarrow{\mathrm{x}}$ in E^{n} such that
67. $\langle\bar{x}, x\rangle>0$ for every $x \in \operatorname{co}\left\{-v_{1},-v_{2}, \cdots,-v_{k}\right\}$.

Hence,
68. $\left\langle\bar{x}, v_{i}\right\rangle<0$, for $i=1,2, \cdots, k$,

[^1]which contradicts the assumption of the Lemma. Therefore $0 \varepsilon B$, i.e., there exists a nonzero vector $\bar{\rho}$ in $\mathrm{E}^{\mathrm{k}}, \bar{\rho}_{\mathrm{i}} \leqq 0, i=1,2, \cdots, k$, such that $\Sigma_{i=1}^{k} \bar{\rho}^{i} v_{i}=0$.

Combining Theorem (60), Assumption (58), and Lemma (65), we obtain the following extension of the Fritz-John Theorem [12].
69. Theorem: Let $\hat{\mathbf{x}}$ be a solution to the Basic Nonlinear Programming Problem. Then, there exist vectors μ in E^{p}, η in E^{m}, and ρ in E^{s} such that
(i) $\mu^{i} \leqq 0, i=1,2, \cdots, p$,
(ii) $\rho^{i} \leqq 0, i=1,2, \cdots, s$,
(iii) $(\mu, \eta, \rho) \neq 0$,
(iv) $\sum_{i=1}^{p} \mu^{i} \frac{\partial f^{i}(\hat{x})}{\partial x}+\sum_{i=1}^{m} \eta^{i} \frac{\partial r^{i}(\hat{x})}{\partial x}+\sum_{i=1}^{k} \rho^{i} \frac{\partial q^{i}(\hat{x})}{\partial x}=0$,
(v) $\sum_{i=1}^{k} \rho^{i} q^{i}(\hat{x})=0$.

The following corollaries are immediate consequences of Theorem (19):
75. Corollary: If the gradient vectors $\frac{\partial r^{l}(\hat{x})}{\partial x}, \ldots, \frac{\partial r^{m}(\hat{x})}{\partial x}$ are linearly independent; then any vectors $\mu \varepsilon E^{p}, \eta \varepsilon E^{m}, \rho \varepsilon E^{s}$, satisfying the conditions of Theorem (69), also satisfy $(\mu, \rho) \neq 0$.
76. Corollary: If the gradient vectors $\frac{\partial r^{1}(\hat{r})}{\partial x}, \frac{\partial r^{2}(\hat{x})}{\partial x}, \ldots, \frac{\partial r^{m}(\hat{x})}{\partial x}$ together with the gradient vectors $\left\{\frac{\partial q^{i}(\hat{x})}{\partial x}\right\}$, with $i \varepsilon I(\hat{x})$, are linearly independent, then any vectors $\mu \varepsilon E^{p}, \eta \varepsilon E^{m}, \rho \varepsilon E^{s}$ satisfying the conditions of Theorem (69), also satisfy $\mu \neq 0$.
77. Corollary: If the set: $\left\{x \in E^{n} \left\lvert\, \frac{\partial r^{j}(\hat{x})}{\partial x} x=0\right., j=1,2, \cdots, m\right.$, $\left.\frac{\partial q^{i}(\hat{x})}{\partial x} x<0, i \in I(\hat{x})\right\}$ is nonvoid and the vectors $\frac{\partial r^{1}(\hat{x})}{\partial x}, \frac{\partial r^{2}(\hat{x})}{\partial x}, \cdots, \frac{\partial r^{m}(\hat{x})}{\partial x}$ are linearly independent, then any vectors $\mu \varepsilon E^{p}, \eta \varepsilon E^{m}, \rho \varepsilon E^{s}$ satisfying the conditions of Theorem (69), also satisfy $\mu \neq 0$.
78. Corollary: If the system

$$
\begin{aligned}
& \frac{\partial f^{i}(\hat{x})}{\partial x} x<0, i \in\{\{1,2, \cdots, p\}-\{\hat{i}\}\} \\
& \frac{\partial r^{j}(\hat{x})}{\partial x} x=0, j=1,2, \cdots, m \\
& \frac{\partial q^{k}(\hat{x})}{\partial x} x<0, \quad k \in I(\hat{x})
\end{aligned}
$$

has a solution for some $\hat{i}\{1,2, \cdots, p\}$ and the gradient vectors $\frac{\partial r^{l}(\hat{x})}{\partial x}, \frac{\partial r^{2}(\hat{x})}{\partial x}, \cdots, \frac{\partial r^{m}(\hat{x})}{\partial x}$ are linearly independent, then any vectors $\mu \varepsilon E^{p}, \eta \varepsilon E^{m}, \rho \varepsilon E^{s}$ satisfying the conditions of Theorem (69), also satisfy $\mu^{\hat{i}}<0$.

IV. Applications to Optimal Control

79. Definition: Let P be a convex cone in E^{s}. A subset S of E^{s} is said to be P-directionally convex if for every z_{1}, z_{2} in S and $0 \leqq \lambda \leqq 1$, there exists a vector $z(\lambda)$ in P such that

$$
\lambda z_{1}+(1-\lambda) z_{2}+z(\lambda) \varepsilon S .
$$

80. Remark: It is very easy to show that a subset S of E^{s} is P-directionally convex if and only if for any finite subset $\left\{z_{1}, z_{2}, \cdots, z_{k}\right\}$ of S and any scalars $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right\}$ with $\sum_{i=1}^{k} \lambda_{i}=1, \lambda_{i} \geqq 0, i=1,2, \cdots, k$, there exists a vector $z\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right)$ in P such that

$$
\sum_{i=1}^{k} \lambda_{i} z_{i}+z\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right) \varepsilon S
$$

On rereading Theorem (7), we observe that it may be rephrased in the following equivalent form.
81. Theorem: Let $\overline{\mathrm{x}}$ be any feasible solution to the Basic Problem (1), i.e., $\overline{\mathrm{x}} \Omega$ and $\mathrm{r}(\overline{\mathrm{x}})=0$, and let $\mathrm{C}(\overline{\mathrm{x}}, \Omega)$ be a linearization of Ω at $\overline{\mathrm{x}}$. If the sets

$$
K(\bar{x})=\left\{u \varepsilon E^{p} \times E^{m} \left\lvert\, u=\left(\frac{\partial f(\bar{x})}{\partial x} x, \frac{\partial r(\bar{x})}{\partial x} x\right)\right., x \in C(\bar{x}, \Omega)\right\}
$$

and

$$
R=\left\{(y, 0) \varepsilon E^{p} \times E^{m} \mid y^{i}<0, \quad i=1,2, \cdots, p, \quad 0 \varepsilon E^{m}\right\}
$$

are not separated, then there exists a vector x^{*} in Ω, with $\mathbf{r}\left(\mathbf{x}^{*}\right)=0$ and $f\left(x^{*}\right)<f(\bar{x})$ (component-wise).

We now make one more observation.
82. Theorem: Let $\Omega^{\prime} \subset E^{n}$ be any set with the property that if $x^{\prime} \varepsilon \Omega^{\prime}$, then there is a vector x in Ω with $r\left(x^{\prime}\right)=r(x)$ and $f(x) \leqq f\left(x^{\prime}\right)$. If \hat{x} is a solution to the Basic Problem (1), if $\hat{x} \varepsilon \Omega^{\prime}$ and if $C\left(\hat{x}, \Omega^{\prime}\right)$ is a linearization for Ω^{\prime} at \hat{x}, then there exists a vector μ in E^{p} and a vector η in E^{m} such that
83. (i) $\cdot \mu^{i} \leqq 0, i=1,2, \cdots, p$,
84. (ii) $(\mu, \eta) \neq 0$,
85.

Proof: The theorem claims that the cones

$$
K^{\prime}(\hat{x})=\left\{u \in E^{p} \times E^{m} \left\lvert\, u=\left(\frac{\partial f(\hat{x})}{\partial x} x, \frac{\partial r(\hat{x})}{\partial x} x\right)\right., x \in C\left(\hat{x}, \Omega^{\prime}\right)\right\}
$$

and

$$
R=\left\{(y, 0) \varepsilon E^{p} \times E^{m} \mid y^{i}<0 \text { for } i=1,2, \cdots, p, \quad 0 \varepsilon E^{m}\right\}
$$

must be separated if \hat{x} is a solution to the Basic Problem. Suppose that $K^{\prime}(\hat{x})$ and R are not separated. Then by Theorem (81) with Ω^{\prime} taking the place of Ω, there exists a x^{*} in Ω^{\prime} such that $r\left(x^{*}\right)=0$ and $f\left(x^{*}\right)<f(\hat{x})$. But by assumption, there must exist an \bar{x} in Ω such that $r(\bar{x})=r\left(x^{*}\right)=0$ and $f(\bar{x}) \leqq f\left(x^{*}\right)<f(\hat{x})$, which contradicts the assumption that \hat{x} is a solution to the Basic Problem.

Now consider a dynamical system described by the difference equation
86.

$$
x_{i+1}-x_{i}=f_{i}\left(x_{i}, u_{i}\right) \text { for } i=0,1,2, \cdots, k-1
$$

where $x_{i} \varepsilon E^{n}$ is the system state at time $i, u_{i} \varepsilon E^{m}$ is the system input at time i, and f_{i} is a function defined in $E^{n} \times E^{m}$ with range in E^{n}.

The Optimal Control Problem is that of finding a control sequence $\hat{U}=\left(\hat{u}_{0}, \hat{u}_{1}, \cdots, \hat{u}_{k-1}\right)$ and a corresponding trajectory $\hat{X}=\left(\hat{x}_{0}, \hat{x}_{1}, \cdots, \hat{x}_{k}\right)$ determined by (86), such that
87. (i) $\hat{u}_{i} \varepsilon U_{i} \subset E^{m}, i=0,1,2, \cdots, k-1$,
88. (ii) $\hat{x}_{i} \subset x_{0}=x_{0}^{\prime} \cap X_{0}^{\prime \prime}$, with $\dot{x}_{0}^{\prime}=\left\{x \in E^{n} \mid q_{0}(x) \leqq 0\right\}$, and $X_{0}^{\prime \prime}=\left\{x \in E^{n} \mid q_{0}(x)=0\right\}$, where $g_{0} \operatorname{maps} E^{n}$ into E^{ℓ} and q_{0} maps E^{n} into $\mathrm{E}^{\mathrm{m}} 0$,
89. (iii) $\hat{X}_{k} \in X_{k}=X_{k}^{\prime} \cap X_{k}^{\prime \prime}$, with $X_{k}^{\prime}=\left\{\operatorname{xeE}^{n} \mid q_{n}(x) \leqq 0\right\}$ and $X_{k}^{\prime \prime}=\left\{x \in E^{n} \mid g_{k}(x)=0\right\}$, where g_{k} maps E^{n} into $E^{\ell_{k}}$ and g maps
E^{n} into $E^{\mathrm{m}} \mathrm{k}$,
90. (iv) $\hat{X}_{i} \in X_{i}=X_{i}^{\prime}, \quad X_{i}^{\prime}=\left\{x \in E^{n} \mid q_{i}(x) \leqq 0\right\}, i=1,2, \cdots, k-1$ where q_{i} maps E^{n} into E^{i},
91. (v) for every control sequence $U=\left(u_{0}, u_{1}, \cdots, u_{k-1}\right)$ and corresponding trajectory $X=\left(x_{0}, x_{1}, \cdots, x_{k}\right)$, satisfying the conditions (i), (ii), and (iii), the relation $\Sigma_{i=0}^{k-1} c_{i}\left(x_{i}, u_{i}\right) \leqq \Sigma_{i=0}^{k-1} c_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)$ implies that $\Sigma_{i=0}^{k-1} c_{i}\left(x_{i}, u_{i}\right)=\Sigma_{i=0}^{k-1} c_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)$, where the $c_{i} \operatorname{map} E^{n}$ into E^{p} for $i=0,1,2, \cdots, k-1$.

The following assumptions will be made:
92. (i) for $i=0,1,2, \cdots, k-1$ and for every fixed u_{i} in U_{i}, the functions $f_{i}\left(x_{i}, u_{i}\right)$ and $c_{i}\left(x_{i}, u_{i}\right)$ are continuously differentiable in x_{i};
93.
(ii) let $\bar{R}=\left\{(y, 0) \varepsilon E^{p} \times E^{m} \mid y \varepsilon E^{p}, y^{i} \leqq 0, i=1,2, \cdots, p, \quad 0 \varepsilon E^{m}\right\}$ and let ${\underset{-i}{i}}(x, u)=\left(c_{i}(x, u), f_{i}(x, u)\right)$; then for each x in E^{n}, the sets ${\underset{-i}{f}}_{f}\left(x_{i}, U_{i}\right), i=0,1,2, \cdots, k-1$ are \bar{R}-directionally convex;
94. (iii) the functions $g_{0}(x)$ and $g_{k}(x)$ are continuously differentiable and the corresponding Jacobian matrices $\frac{\partial g_{0}(x)}{\partial x}, \frac{\partial g_{k}(x)}{\partial x}$ are of maximum rank for every x in X_{0} and every x in X_{k} respectively;
95. (iv) for every $x_{i} \varepsilon X_{i}^{\prime}, i=0,1,2, \cdots, k,\left\{\left.\frac{\partial q_{i}^{j}(x)}{\partial x} \right\rvert\, j \varepsilon\left\{j \mid q_{i}^{j}(x)=0\right.\right.$, $\left.\left.j=1,2, \ldots, m_{i}\right\}\right\}$ is a set of linearly independent vectors.

In order to transcribe the control problem into the form of the Basic Problem, we introduce the following definitions:
96. (i) For $i=0,1,2, \cdots, k-1$, let $\underline{v}_{i}=\left(a_{i}, v_{i}\right)$ where $a_{i} \varepsilon c_{i}\left(x_{i}, U_{i}\right)$ and $v_{i} \varepsilon f_{i}\left(x_{i}, U_{i}\right)$, i.e., $v_{i} \varepsilon_{-i}\left(x_{i}, U_{i}\right)$,
97.

$$
\text { (ii) Let } z=\left(x_{0}, x_{1}, \cdots, x_{k-1}, v_{0}, v_{1}, \cdots, v_{k-1}\right) \text {, }
$$

98.

(iii) Let $f(z)=\sum_{i=0}^{k-1} a_{i}$,
99. (iv) Let $r(z)$ be the function defined by:

$$
r(z)=\left[\begin{array}{l}
x_{1}-x_{0}-v_{0} \\
\vdots \\
x_{k}-x_{k-1}-v_{k-1} \\
g_{0}\left(x_{0}\right) \\
g_{k}\left(x_{k}\right)
\end{array}\right],
$$

100.

(v) Let $\Omega=\left\{z \mid x_{i} \varepsilon X_{i}^{\prime}, i=0,1,2, \ldots, k, v_{i} \varepsilon_{-}{\underset{i}{i}}\left(x_{i}, U_{i}\right), i=0,1, \cdots, k-1\right\}$.

Thus, the Optimal Control Problem is equivalent to the Basic Problem with z, f, r, and Ω given by (97), (98), (99) and (100), respectively.

Let us define the set Ω^{\prime} by
101. $\Omega^{\prime}=\left\{z \mid x_{i} \varepsilon X_{i}^{\prime}, i=0,1,2, \cdots, k, \quad v_{i} \varepsilon \operatorname{cof}{\underset{-i}{i}}^{\prime}\left(x_{i}, U_{i}\right), i=0,1,2, \ldots, k-1\right\}$.

We now show that the sets Ω and Ω^{\prime} defined in (100) and (101), respectively, satisfy the conditions stated in Theorem (82). Let z^{*} be any point in Ω^{\prime}. Then for $i=0,1,2, \cdots, k, x_{i}^{*} \varepsilon X_{i}^{\prime}$ and $v_{-i}^{*}=\sum_{j \in J} *_{i} \lambda_{i}^{j} v_{i}^{j}$, where $\sum_{j \in J}{ }^{*} \lambda_{i}^{j}=1, \lambda_{i}^{j} \geqq 0, J *$ a finite set and ${\underset{-i}{j}}_{j} \varepsilon_{-i}^{f}\left(x_{i}, U_{i}\right) \cdot$ But by Assumption (93), the sets $\underset{-}{f}\left(x_{i}, U_{i}\right), i=0,1,2, \cdots, k-1$, are \bar{R}-directionally convex and hence there exists a \tilde{z} in Ω such that $\tilde{x}_{i}=x_{i}^{*}, \tilde{v}_{i}=v_{i}^{*}$, and $\tilde{a}_{i} \leqq a_{i}^{*}$.

Now let \hat{z} be a solution to the optimal control problem. Then $\hat{z} \varepsilon \Omega$ and, since Ω^{\prime} contains $\Omega, \hat{z} \varepsilon \Omega^{\prime}$.

In the appendix we prove that the set

$$
\text { 102. } \begin{aligned}
\mathbf{C}\left(\hat{z}, \Omega^{\prime}\right)= & \left\{\delta \delta_{z}=\left(\delta x_{0}, \delta x_{1}, \cdots, \delta x_{k}, \delta v_{0}, \delta v_{-1}, \cdots, \delta v_{k-1}\right) \mid\right. \\
& \frac{\partial q_{i}^{j}\left(\hat{x}_{i}\right)}{\partial x_{i}} \delta x_{i}<0 \text { for all } j \varepsilon\left\{j \mid q_{i}^{j}\left(\hat{x}_{i}\right)=0\right\} \text { and } \\
& \left.\delta v_{-i} \varepsilon\left\{\frac{\partial \underline{f}_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x_{i}} \delta x_{i}\right\}+\operatorname{RC}\left(\hat{v}_{-i}, \operatorname{cof}_{-i}\left(\hat{x}_{i}, U_{i}\right)\right)\right\} \dagger
\end{aligned}
$$

is a linearization for the set Ω^{\prime} at \hat{z}.

Definition: Given a subset A of an Euclidean space, we define the radial cone to A at $\bar{x} \in A$ to be the cone
$\operatorname{RC}(\overline{\mathrm{x}}, \mathrm{A})=\{\mathbf{x} \mid(\overline{\mathrm{x}}+\alpha \mathrm{x}) \varepsilon \mathrm{A}$ for all $0 \leqq \alpha \leqq \in(\overline{\mathrm{x}}, \mathrm{x})$, where $\epsilon>0\}$

It now follows from Theorem (82) that there exists a nonzero vector $\psi=\left(\mathrm{p}_{\ell}^{0}, \pi\right), \mathrm{p}^{0} \varepsilon E^{\mathrm{p}}, \mathrm{p}^{0} \leqq 0, \pi=\left(-\mathrm{p}_{1},-\mathrm{p}_{2}, \cdots,-\mathrm{p}_{\mathrm{k}}, \mu_{0}, \mu_{\mathrm{k}}\right)$, $p_{i} \in E^{n}, \mu_{0} \varepsilon E^{\ell}{ }^{0}, \mu_{k} \varepsilon E^{\ell}{ }^{\ell}$ such that
103. $\mathrm{p}^{0} \frac{\partial f(\hat{\mathrm{z}})}{\partial \mathrm{z}} \delta_{\mathrm{z}}+\pi \frac{\partial \mathrm{r}(\hat{\mathrm{z}})}{\partial \mathrm{z}} \delta \mathrm{z} \leqq 0$ for all $\delta \mathrm{z} \mathrm{\varepsilon} \overline{\mathrm{C}\left(\hat{z}, \Omega^{\prime}\right)}$.

Substituting (98) and (99) into (103) we obtain
104. $p^{0} \sum_{i=0}^{k-1} \delta a_{i}-\sum_{i=0}^{k-1} p_{i+1}\left(\delta x_{i+1}-\delta x_{i}-\delta v_{i}\right)$.

$$
+\mu_{0} \frac{\partial g_{0}\left(\hat{x}_{0}\right)}{\partial x} \delta x_{0}+\mu_{k} \frac{\partial g_{k}\left(\hat{x}_{k}\right)}{\partial x} \delta x_{k} \leqq 0
$$

for every $\delta_{z} \varepsilon \overline{C\left(\hat{z}, \Omega^{\prime}\right)}$.
Now, by interpreting (104) we obtain the following theorem:
105. Theorem: If the control sequence $\hat{U}=\left(\hat{u}_{0}, \hat{u}_{1}, \cdots, \hat{u}_{k-1}\right)$ and the corresponding trajectory $\hat{X}=\left(\hat{x}_{0}, \hat{x}_{1}, \cdots, \hat{x}_{k}\right)$ constitute a solution to the Optimal Control Problem, then there exists a vector $p^{0} \varepsilon E^{p}, p^{0} \leqq 0$, vectors $p_{0}, p_{1}, \cdots, p_{k}$ in E^{n}, vectors $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{k}, \lambda_{i} \in E^{n_{i}}, i=0,1, \cdots, k$,
vectors $\mu_{0} \varepsilon^{\prime}, \mu_{l} \varepsilon^{k}$ such that vectors $\mu_{0} \varepsilon E^{0}, \mu_{k} \varepsilon E^{k}$ such that
106.
(i) $\left(p^{0}, p_{0}, p_{1}, \cdots, p_{k}, \mu_{0}, \mu_{k}\right) \neq 0$,
107.
(ii) $p_{i}-p_{i+1}=p_{i+1} \frac{\partial f_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x}+p^{0} \frac{\partial c_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x}+\lambda_{i} \frac{\partial q_{i}\left(\hat{x}_{i}\right)}{\partial x}$, $i=0,1, \cdots, k-1$.
108. (iii) $p_{0}=-\mu_{0} \frac{\partial g_{0}(\hat{x})}{\partial \mathrm{x}}$,
109. (iv) $\mathrm{p}_{\mathrm{k}}=\mu_{\mathrm{k}} \frac{\partial \mathrm{g}_{\mathrm{k}}\left(\hat{\mathrm{x}}_{\mathrm{k}}\right)}{\partial \mathrm{x}}+\lambda_{\mathrm{k}} \frac{\partial \mathrm{g}_{\mathrm{k}}\left(\hat{\mathrm{x}}_{\mathrm{k}}\right)}{\partial \mathrm{x}}$,
110. (v) $\lambda_{i} q_{i}\left(\hat{x}_{i}\right)=0, i=0,1, \cdots, k$,
111. (vi) the Hamiltonian $H\left(x, u, p, p^{0}, i\right)=\left\langle p^{0}, c_{i}(x, u)\right\rangle+\left\langle p, f_{i}(x, u)\right\rangle$ satisfies the maximum principle

$$
H\left(\hat{x}_{i}, \hat{u}_{i}, p, p{ }^{0}, i\right) \geqq H\left(\hat{x}_{i}, u_{i}, p, p^{0}, i\right) \text { for all } u_{i} \in U_{i}, i=0,1, \cdots, k-1
$$

Proof:
(i) This was established in Theorem (82)
(ii) Let $\delta{\underset{-i}{ }}=\frac{\partial f_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial \mathbf{x}} \delta x_{i}$. Then (104) becomes:
$p^{0} \frac{\partial c_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i}+p_{i+1} \frac{\partial f_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i}+p_{i+1} \delta x_{i}-p_{i} \delta x_{i} \leqq 0$ for every δx_{i} satisfying $\frac{\partial q_{i}^{j}\left(\hat{x}_{i}\right)}{\partial x} \delta x_{i} \leqq 0$, with $q_{i}^{j}\left(\hat{x}_{i}\right)=0$. Applying Farkas' Lemma [11] we obtain (107) and that $\lambda_{i} q_{i}\left(\hat{x}_{i}\right)=0$ for $i=0,1, \cdots$, k-1.
(iii) This is seen to be merely an arbitrary but consistent definition.
(iv) and (v). $\mathrm{W}_{\mathrm{j}} \mathrm{e}$ select $\delta_{\mathrm{z}}=\left(0,0, \cdots, 0, \delta x_{k}, 0,0, \cdots, 0\right)$, with δx_{K} such that $\frac{\partial q_{k}^{j}}{\partial x} \delta x_{k} \leqq 0$ whenever $q_{k}^{j}\left(\hat{x}_{k}\right)=0$. Again applying Farkas' Lemma, we get (109) and $\lambda_{k} q_{k}\left(\hat{x}_{k}\right)=0$.
(vi) For $i=0,1,2, \ldots, k-1$, let v_{-i}^{\prime} be an arbitrary point in $\operatorname{cof}_{-i}\left(\hat{\mathrm{x}}_{i}, U_{i}\right)$,
 and, choosing $\delta z=(0,0, \cdots, 0, \delta{\underset{-}{i}}, 0, \cdots, 0)$, we find that $\delta z \varepsilon C\left(\hat{z}, \Omega^{\prime}\right)$, and hence we obtain from.(104),
112. $p^{0} \delta a_{i}+p_{i+1} \delta v_{i} \leqq 0$.

Substituting ${\underset{v}{i}}_{\prime}-\hat{\mathbf{v}}_{\mathbf{i}}$ for $\delta \mathrm{v}_{\mathrm{i}}$ in (112) we obtain
113. $p^{0}\left(a_{i}^{\prime}-c_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)\right)+p_{i+1}\left(v_{i}^{\prime}-f_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)\right) \leqq 0$.

Clearly (113) also holds for every $\left(a_{i}^{\prime}, v_{i}^{\prime}\right) \varepsilon_{-i}\left(\hat{x}_{i}, U_{i}\right)$.
Therefore:

$$
p^{0}\left(c_{i}\left(\hat{x}_{i}, u_{i}\right)-c_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)\right)+p_{i+1}\left(f_{i}\left(\hat{x}_{i}, u_{i}\right)-f_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)\right) \leqq 0 \text { for all } u_{i} \varepsilon U_{i}
$$

which completes our proof of (111).

Appendix

Al Given a subset B of a Euclidean space, defined by inequalities, i. e., $B=\left\{x \mid q^{i}(x) \leqq 0, i=1,2, \cdots, m\right\}$, where the q^{i} are continuously differentiable scalar-valued functions, we define the internal cone to B at $\overline{\mathrm{x}} \mathrm{B}$ to be the cone

A2 $\quad \operatorname{IC}(\bar{x}, B)=\left\{x \left\lvert\, \frac{\partial q^{i}(\hat{x})}{\partial x} x<0\right.\right.$ whenever $q^{i}(\bar{x})=0, i \varepsilon\{1,2, \cdots, m\}$.

We now return to the set Ω^{\prime}, which was defined in (101) as

A3

$$
\begin{gathered}
\Omega^{\prime}=\left\{z=\left(x_{0}, x_{1}, \cdots, x_{k}, v_{0}, v_{-1}, \cdots, v_{k-1}\right) \mid x_{i} \in X_{i}^{\prime}, i=0,1,2, \cdots, k,\right. \\
\left.{\underset{-j}{ }} \varepsilon \operatorname{cof}_{-j}\left(x_{j}, U_{j}\right), j=0,1,2, \cdots, k-1\right\} .
\end{gathered}
$$

We shall prove that the set $\left.C \hat{(} \hat{z}, \Omega^{\prime}\right)$ defined in (102), as shown below, is a linearization for the set Ω^{\prime} at $\hat{z} \varepsilon \Omega^{\prime}$.

 $i=0,1, \cdots, k-1\}$.

A5 Lemma: The set $C\left(\hat{z}, \Omega^{\prime}\right)$ is a linearization of the set Ω^{\prime} at \hat{z}.

Proof: First of all it is clear that $C\left(\hat{z}, \Omega^{\prime}\right)$ is a convex cone. Now, for $j=1,2, \ldots, N$, let

A6

$$
\delta z_{j}=\left(\delta x_{0 j}, \cdots, \delta x_{k j}, \delta v_{0 j}, \cdots, \delta v_{-k-1 j}\right)
$$

be N linearly independent vectors in $C\left(\hat{z}, \Omega^{\prime}\right)$, and let $S=\cos \left\{\bar{\epsilon} \delta z_{1}\right.$, $\left.\bar{\epsilon} \delta z_{2}, \cdots, \bar{\epsilon} \delta z_{N}\right\}$ where $\bar{\epsilon}$ is a positive scalar, defined below.

For any δz in S we can uniquely write:

A7 $\delta z=\bar{\epsilon} \sum_{i=1}^{N} \mu_{i}(\delta z) \delta z_{i}$, where $\sum_{i=1}^{N} \mu_{i}(\delta z)=1, \mu_{i}(\delta z) \geqq 0, i=1,2, \cdots, N$

Therefore:

A8

$$
\delta x_{i}=\bar{\epsilon} \sum_{j=1}^{N} \mu_{j}(\delta z) \delta x_{i j}
$$

and

A9 $\delta v_{-i}=\bar{\epsilon} \sum_{j=1}^{N} \mu_{j}(\delta z) \delta v_{-i j}$

But by definition:

Al0

$$
\delta v_{-i j}=\frac{\partial f_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i j}+v_{-i j}
$$

where $v_{-i j} \in \operatorname{RC}\left(\hat{v}_{-i}, \operatorname{cof}{\left.\underset{-i}{ }\left(\hat{x}_{i}, U_{i}\right)\right)}\right.$

From (A8), (A9) and (Al0),

All $\delta v_{-i}=\frac{\partial f_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i}+\bar{\epsilon} \sum_{j=1}^{N} \mu_{j}(\delta z) v_{-i j}$

Now, let's define the positive scalar $\bar{\epsilon}$.
(a) For $j=1,2, \cdots, N$ and $i=0,1, \cdots, k, \delta x_{i j}$ belongs to the convex cone $\operatorname{IC}\left(\hat{x}_{i}, X_{i}\right)$. Hence from (A7), $\sum_{j=1}^{N} \mu_{j}(\delta z) \delta x_{i j}$ is also in $\operatorname{IC}\left(\hat{x}_{i}, X_{i}\right)$ for $i=0,1, \cdots, k$. Therefore there exist positive scalars $\bar{\epsilon}_{i}, i=0,1, \cdots, k$, possible depending on $\delta z_{1}, \delta z_{2}, \cdots, \delta z_{N}$, such that:

Al2 $\left(\hat{x}_{i}+\epsilon_{i} \sum_{j=1}^{N} \mu_{j}(\delta z) \delta x_{i j}\right) \varepsilon X_{i}^{\prime}$ for all $0 \leqq \epsilon_{i} \leqq \bar{\epsilon}_{i}$
(b) Similarly, for $i=0,1, \cdots, k-1$,

Al3 $\sum_{j=1}^{N} \mu_{j}(\delta z) v_{-i j} \in \operatorname{RC}\left(\hat{v}_{i}, \operatorname{cof}{\left.\underset{-i}{ }\left(\hat{x}_{i}, U_{i}\right)\right), ~}_{\text {, }}\right.$
and hence there exist positive scalars ϵ_{i}, possible depending on $\delta z_{1}, \delta z_{2}, \cdots, \delta z_{N}$, such that:

Al4 $\quad \hat{\mathbf{v}}_{i}+\epsilon_{i} \sum_{j=1}^{N} \mu_{j}\left(\delta_{z}\right) v_{-i j} \varepsilon \operatorname{cof}{\underset{-i}{ }}\left(\hat{x}_{i}, U_{i}\right)$ for all $0 \leqq \epsilon_{i} \leqq \epsilon_{-i}$.

We now define $\bar{\epsilon}$ to be minimum of the scalars $\bar{\epsilon}_{i}, i=0,1, \cdots, k$,
and $\epsilon_{-j}, j=0,1, \cdots, k-1$.

From (Al4), there exists a finite set A_{i} and scalars λ_{α}^{i} such that

A15 $\bar{\epsilon} \sum_{j=1}^{N} \mu_{j}\left(\delta_{z}\right) v_{-i j}=\sum_{\alpha \in A_{i}} \lambda_{\alpha-i}^{i} f_{i}\left(\hat{x}_{i}, u_{i}^{\alpha}\right)-\hat{v}_{-i}$
where $u_{i}^{\alpha} \in U_{i}, \quad \alpha \varepsilon A_{i}$, and $\sum_{\alpha \in A_{i}} \lambda_{\alpha}^{i}=1, \quad \lambda_{\alpha}^{i} \geqq 0$.

Combining (Al5) and (All) we obtain

Al6 $\quad \delta{\underset{v}{i}}=\frac{\partial \underline{f}_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i}+\sum_{\alpha \in A_{i}} \lambda_{\alpha}^{i}{\underset{f}{i}}\left(\hat{x}_{i}, u_{i}^{\alpha}\right)-\hat{v}_{-i}$.

We can define a map ζ from S into $\Omega^{\prime}-\{\hat{z}\}$ by

Al7

$$
\zeta(\delta \mathrm{z})=\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \cdots, \mathrm{y}_{\mathrm{K}},{\underset{-}{0}}, \underline{\mathrm{w}}_{-1}, \cdots, \mathrm{w}_{\mathrm{k}-1}\right)
$$

where

Al8

$$
y_{i}(\delta z)=\delta x_{i}=\bar{\epsilon} \sum_{j=1}^{N} \mu_{j}(\delta z) \delta x_{i j}, i=0,1, \cdots, k, \text { and }
$$

A19

$$
\underline{w}_{i}(\delta z)=\sum_{\alpha \in A_{i}} \lambda_{\alpha-i}^{i} f_{i}\left(\hat{\mathbf{x}}_{i}+\delta x_{i}, u_{i}^{\alpha}\right)-\hat{\mathbf{v}}_{i}, \quad i=0,1, \cdots, k-1
$$

From (Al2), (A15), (A18) and (Al9) it is clear that ζ maps S into $\Omega^{\prime}-\{\hat{z}\}$.

Expanding (Al9) in a Taylor series about \hat{z} we find that:

where $\frac{\left\|o_{i}(\delta z)\right\|}{\|\delta z\|} \rightarrow 0$ as $\|\delta z\| \rightarrow 0$.
Combining (A20), (A13), (A17) and (A18), we see that
$\zeta(\delta z)=\delta z+o(\delta z)$, where $\lim _{\|\delta z\| \rightarrow 0} \frac{\|\circ(\delta z)\|}{\|\delta z\|}=0$

Since ζ is obviously continuous, $C\left(\hat{z}, \Omega^{\prime}\right)$ is a linearization for Ω^{\prime} at \hat{z}.

Conclusion

This paper has presented a theory of necessary conditions for vector-valued criterion optimization problems, which did not depend on the customary convexity assumptions (see Karlin [3]). When the constraint sets are assumed to be convex and the components of the cost function are also convex, the necessary conditions may alsa become sufficient [see Karlin p. 218]. Conditions under which a vector-valued criterion problem can be treated as a family of scalar valued criterion problems are very important, as they define the class of problems for which we can effectively compute noninferior points.

Since the conditions presented in this paper are considerably more general then theories hitherto available in the literature, it is hoped that they will open up important classes of optimization problems.

References

1. Pareto, V., Cours d'Economie Politique, Lausanne, Rouge, 1896.
2. H. W. Kuhn and A. W. Tucker, "Nonlinear Programming," Proc. of the Second Berkeley Symposium on Mathematic Statistics and Probability," Univ. of California Press, Berkeley, California, 1951, pp. 481-492.
3. Karlin, S., Mathematical Methods and Theory in Games, Programming and Economics, 1 , Addison-Wesley, Massachusetts, 1959.
4. Debreu, G., Theory of Value, John Wiley, New York, 1959.
5. Zadeh, L. A., "Optimality and Non-Scalar-Valued Performance Criteria," IEEE Transactions on Automatic Control, vol. AC-8, number 1, pp. 59-60; January 1963.
6. Chang, S. S. L., "General Theory of Optimal Processes," J. SIAM Control, Vol. 4, No. 1, 1966, pp. 46-55.
7. Klinger, A., "Vector-valued Performance Criteria," IEEE Transactions on Automatic Control, vol. , pp. 117-118; January 1964.
8. Edwards, R. E., Functional Analysis Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
9. Dieudonne', J., Foundations of Modern Analysis, Academic Press, New York, 1960.
10. Fan, K., "Fixed point and minimax theorems in locally convex topological linear spaces," Proc. Natl. Acad. Sci., U. S. 38 (1952), 121-126.
11. Farkas, J., "Uber die Theorie der einfachen Ungleichungen," Journal für die reine und angewandte Mathematik, vol. 124, 1901, pp. 1-27.
12. John, F., "Extremum problems with inequalities as side conditions" in Studies and Essays, Courant Anniversary Volume, edited by K. O. Friedrichs, O. E. Neugebauer and J. J. Stoker, Interscience, New York, N. Y., 1948; pp. 187-204.

[^0]: * See [8] p. 118, 2.22. Corollary to the Hahn-Banach Theorem

[^1]: * See Edwards, 8 , p. 118, 2.2.3 Corollary to the Hahn-Banach Theorem.

